JP5937587B2 - 動画像復号化方法、および動画像復号化装置 - Google Patents

動画像復号化方法、および動画像復号化装置 Download PDF

Info

Publication number
JP5937587B2
JP5937587B2 JP2013517856A JP2013517856A JP5937587B2 JP 5937587 B2 JP5937587 B2 JP 5937587B2 JP 2013517856 A JP2013517856 A JP 2013517856A JP 2013517856 A JP2013517856 A JP 2013517856A JP 5937587 B2 JP5937587 B2 JP 5937587B2
Authority
JP
Japan
Prior art keywords
motion vector
candidate
vector predictor
unit
candidates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013517856A
Other languages
English (en)
Other versions
JPWO2012164886A1 (ja
Inventor
敏康 杉尾
敏康 杉尾
西 孝啓
孝啓 西
陽司 柴原
陽司 柴原
京子 谷川
京子 谷川
寿郎 笹井
寿郎 笹井
徹 松延
徹 松延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Publication of JPWO2012164886A1 publication Critical patent/JPWO2012164886A1/ja
Application granted granted Critical
Publication of JP5937587B2 publication Critical patent/JP5937587B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/65Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using error resilience
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

本発明は、動画像符号化方法および動画像復号化方法に関する。
動画像符号化処理では、一般に、動画像が有する空間方向および時間方向の冗長性を利用して情報量の圧縮が行われる。ここで一般に、空間方向の冗長性を利用する方法としては、周波数領域への変換が用いられる。また、時間方向の冗長性を利用する方法としては、ピクチャ間予測(以降、「インター予測」と呼ぶ)符号化処理が用いられる。インター予測符号化処理では、あるピクチャを符号化する際に、符号化対象ピクチャに対して表示時間順で前方または後方にある符号化済みのピクチャが、参照ピクチャとして用いられる。そして、その参照ピクチャに対する符号化対象ピクチャの動き検出により、動きベクトルが導出される。そして、導出された動きベクトルに基づいて動き補償を行って得られた予測画像データと符号化対象ピクチャの画像データとの差分を算出することにより、時間方向の冗長性が取り除かれる(例えば、非特許文献1参照)。ここで、動き検出では、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックが参照ブロックとして決定される。そして、符号化対象ブロックと、参照ブロックとを用いて、動きベクトルが検出される。
ITU−T Recommendation H.264「Advanced video coding for generic audiovisual services」、2010年3月 JCT−VC,"WD3:Working Draft 3 of High−Efficiency Video Coding",JCTVC−E603,March 2011.
しかしながら、上記従来の技術では、インター予測を用いた動画像符号化及び復号化のエラー耐性を向上させることが望まれている。
そこで、本発明の目的は、インター予測を用いた動画像符号化及び復号化のエラー耐性を向上させることができる動画像符号化方法及び動画像復号化方法を提供することである。
本発明の一態様に係る動画像符号化方法は、復号化対象ブロックを復号化する動画像復号化方法であって、第1ブロックの復号化に用いられた第1動きベクトルに基づいて第1予測動きベクトルを有する第1候補を導出し、前記第1候補を含む1以上の候補の数が最大候補数より小さいか否かを判定し、前記第1候補を含む1以上の候補の数が最大候補数より小さい場合に、第2予測動きベクトルを有する第2候補を導出し、予測動きベクトルを有する候補に対応する符号化されたインデックスを復号化し、前記候補は、前記第1候補および前記第2候補を含む複数の候補のうちの1つである。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD−ROM(Compact Disc Read Only Memory)などの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本発明の一態様によれば、インター予測を用いた動画像符号化及び復号化のエラー耐性を向上させることが可能になる。
図1Aは、Bピクチャにおける参照ピクチャリストの一例を説明するための図である。 図1Bは、Bピクチャにおける予測方向0の参照ピクチャリストの一例を示す図である。 図1Cは、Bピクチャにおける予測方向1の参照ピクチャリストの一例を示す図である。 図2は、時間予測動きベクトルモードにおける動きベクトルを説明するための図である。 図3は、予測動きベクトル指定モードにおいて用いられる隣接ブロックの動きベクトルの一例を示す図である。 図4は、予測方向0の予測動きベクトル候補リストの一例を説明するための図である。 図5は、予測方向1の予測動きベクトル候補リストの一例を説明するための図である。 図6は、予測動きベクトルインデックスへのビット列の割り当ての一例を示す図である。 図7は、予測動きベクトル指定モードを用いる場合の符号化処理の一例を示すフローチャートである。 図8Aは、予測動きベクトルの算出例を示す図である。 図8Bは、予測動きベクトルの算出例を示す図である。 図9は、予測動きベクトル指定モードを用いて動画像を符号化する動画像符号化装置の構成の一例を示すブロック図である。 図10は、予測動きベクトル指定モードを用いる場合の復号化処理の一例を示すフローチャートである。 図11は、予測動きベクトル指定モードを用いて符号化された動画像を復号化する動画像復号化装置の構成の一例を示すブロック図である。 図12は、予測動きベクトルインデックスをビットストリームに付加する際のシンタックスを示す図である。 図13は、実施の形態1に係る動画像符号化装置の構成を示すブロック図である。 図14は、実施の形態1に係る動画像符号化装置の処理動作を示すフローチャートである。 図15は、実施の形態1における予測方向0の予測動きベクトル候補リストの一例を示す図である。 図16は、実施の形態1における予測方向1の予測動きベクトル候補リストの一例を示す図である。 図17は、実施の形態1における予測動きベクトル候補、および、予測動きベクトル候補リストサイズの算出処理を示すフローチャートである。 図18は、実施の形態1における予測可能候補数の更新処理を示すフローチャートである。 図19は、実施の形態1における新規候補の追加処理を示すフローチャートである。 図20は、実施の形態1における予測動きベクトル候補の選択に関する処理を示すフローチャートである。 図21は、実施の形態2に係る動画像符号化装置の構成を示すブロック図である。 図22は、実施の形態2に係る動画像符号化装置の処理動作を示すフローチャートである。 図23は、実施の形態3に係る動画像復号化装置の構成を示すブロック図である。 図24は、実施の形態3に係る動画像復号化装置の処理動作を示すフローチャートである。 図25は、実施の形態3における予測可能候補数の算出処理を示すフローチャートである。 図26は、実施の形態3における予測動きベクトル候補の算出処理を示すフローチャートである。 図27は、予測動きベクトルインデックスをビットストリームに付加する際のシンタックスの一例を示す図である。 図28は、予測動きベクトル候補リストサイズを予測動きベクトル候補数の最大値に固定した場合のシンタックスの一例を示す図である。 図29は、実施の形態4に係る動画像復号化装置の構成を示すブロック図である。 図30は、実施の形態4に係る動画像復号化装置の処理動作を示すフローチャートである。 図31は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。 図32は、デジタル放送用システムの全体構成図である。 図33は、テレビの構成例を示すブロック図である。 図34は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。 図35は、光ディスクである記録メディアの構造例を示す図である。 図36Aは、携帯電話の一例を示す図である。 図36Bは、携帯電話の構成例を示すブロック図である。 図37は、多重化データの構成を示す図である。 図38は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。 図39は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。 図40は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。 図41は、PMTのデータ構成を示す図である。 図42は、多重化データ情報の内部構成を示す図である。 図43は、ストリーム属性情報の内部構成を示す図である。 図44は、映像データを識別するステップを示す図である。 図45は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。 図46は、駆動周波数を切り替える構成を示す図である。 図47は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。 図48は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。 図49Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。 図49Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。
(本発明の基礎となった知見)
既に標準化されている、H.264と呼ばれる動画像符号化方式では、情報量の圧縮のために、Iピクチャ、Pピクチャ、Bピクチャという3種類のピクチャタイプが用いられている。
Iピクチャは、インター予測符号化処理で符号化されない。すなわち、Iピクチャは、ピクチャ内予測(以降、「イントラ予測」と呼ぶ)符号化処理で符号化される。Pピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの1つのピクチャを参照してインター予測符号化される。Bピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの2つのピクチャを参照してインター予測符号化される。
インター予測符号化においては、参照ピクチャを特定するための参照ピクチャリストが生成される。参照ピクチャリストは、インター予測で参照する符号化済みの参照ピクチャに参照ピクチャインデックスを割り当てたリストである。例えば、Bピクチャでは、2つのピクチャを参照して符号化を行えるため、2つの参照ピクチャリスト(L0、L1)が生成される。
図1Aは、Bピクチャにおける参照ピクチャリストの一例を説明するための図である。図1Bは、双方向予測における予測方向0の参照ピクチャリスト0(L0)の一例を示す。ここでは、参照ピクチャリスト0において、参照ピクチャインデックス0の値0は、表示順2の参照ピクチャ0に割り当てられている。また、参照ピクチャインデックス0の値1は、表示順1の参照ピクチャ1に割り当てられている。また、参照ピクチャインデックス0の値2は、表示順0の参照ピクチャ2に割り当てられている。つまり、符号化対象ピクチャに対して表示順で時間的に近い参照ピクチャほど、小さい値を有する参照ピクチャインデックスが割り当てられている。
一方、図1Cは、双方向予測における予測方向1の参照ピクチャリスト1(L1)の一例を示す。ここでは、参照ピクチャリスト1において、参照ピクチャインデックス1の値0は、表示順1の参照ピクチャ1に割り当てられている。また、参照ピクチャインデックス1の値1は、表示順2の参照ピクチャ0に割り当てられている。また、参照ピクチャインデックス2の値2は、表示順0の参照ピクチャ2に割り当てられている。
このように、各参照ピクチャに対して、予測方向毎に異なる参照ピクチャインデックスの値を割り当てること(図1Aの参照ピクチャ0、1)、あるいは同じ参照ピクチャインデックスの値を割り当てることが可能である(図1Aの参照ピクチャ2)。
また、H.264と呼ばれる動画像符号化方式(非特許文献1)では、Bピクチャにおける各符号化対象ブロックのインター予測の符号化モードとして、動きベクトル検出モードが用いられる。動きベクトル検出モードでは、予測画像データおよび符号化対象ブロックの画像データの差分値と、予測画像データ生成に用いた動きベクトルとが符号化される。また、動きベクトル検出モードでは、予測方向として、双方向予測と片方向予測とを選択することができる。双方向予測では、符号化対象ピクチャの前方または後方にある既に符号化済みの2つのピクチャを参照して予測画像が生成される。片方向予測では、前方または後方にある既に符号化済みの1つのピクチャを参照して予測画像が生成される。
また、H.264と呼ばれる動画像符号化方式では、Bピクチャの符号化において、動きベクトルを導出する際に、時間予測動きベクトルモードと呼ばれる符号化モードを選択することができる。時間予測動きベクトルモードにおけるインター予測符号化方法を、図2を用いて説明する。
図2は、時間予測動きベクトルモードにおける動きベクトルを説明するための図である。具体的には、図2は、ピクチャB2のブロックaを時間予測動きベクトルモードで符号化する場合を示している。
ここでは、ピクチャB2の後方にある参照ピクチャであるピクチャP3内の、ブロックaと同じ位置にあるブロックb(以下、「co−locatedブロック」と呼ぶ)の符号化に用いられた動きベクトルvbが利用されている。動きベクトルvbは、ブロックbがピクチャP1を参照して符号化された際に用いられた動きベクトルである。
動きベクトルvbに平行な動きベクトルを用いて、前方向参照ピクチャであるピクチャP1と、後方参照ピクチャであるピクチャP3とから、ブロックaのための2つの参照ブロックが取得される。そして、取得された2つの参照ブロックに基づいて2方向予測を行うことにより、ブロックaが符号化される。すなわち、ブロックaを符号化する際に用いられる動きベクトルは、ピクチャP1に対しては動きベクトルva1であり、ピクチャP3に対しては動きベクトルva2である。
また、BピクチャあるいはPピクチャにおける各符号化対象ブロックの動きベクトルを符号化する方法として、予測動きベクトル指定モードが検討されている(非特許文献2)。予測動きベクトル指定モードでは、符号化対象ブロックの隣接ブロックを符号化する際に用いられた動きベクトルから予測動きベクトル候補を生成する。そして、予測動きベクトル候補の中から予測動きベクトルを選択して、符号化対象ブロックの動きベクトルの符号化が行われる。この際に、選択された予測動きベクトルのインデックス等がビットストリームに付加される。これによって、復号化時にも、符号化時に用いられた予測動きベクトルと同一の予測動きベクトルを選択できるようになる。具体例を、図3を参照して説明する。
図3は、予測動きベクトル指定モードにおいて用いられる隣接ブロックの動きベクトルの一例を示す図である。図3において、隣接ブロックAは、符号化対象ブロックの左隣接の符号化済みブロックである。隣接ブロックBは、符号化対象ブロックの上隣接の符号化済みブロックである。隣接ブロックCは、符号化対象ブロックの右上隣接の符号化済みブロックである。隣接ブロックDは、符号化対象ブロックの左下隣接の符号化済みブロックである。
また、図3において、符号化対象ブロックは、動き検出等の結果、予測方向0の参照ピクチャインデックスRefL0が示す参照ピクチャに対する動きベクトルとして、予測方向0の動きベクトルMvL0を持ち、予測方向1の参照ピクチャインデックスRefL1が示す参照ピクチャに対する動きベクトルとして、予測方向1の動きベクトルMvL1を持つ、双方向予測で符号化されたブロックである。ここで、MvL0とは、参照ピクチャリスト0(L0)により特定される参照ピクチャを参照する動きベクトルである。また、MvL1とは、参照ピクチャリスト1(L1)により特定される参照ピクチャを参照する動きベクトルである。
また、隣接ブロックAは、予測方向0の片方向予測で符号化されたブロックである。隣接ブロックAは、予測方向0の参照ピクチャインデックスRefL0_Aが示す参照ピクチャに対する動きベクトルとして、予測方向0の動きベクトルMvL0_Aを持つ。また、隣接ブロックBは、予測方向1の片方向予測で符号化されたブロックである。隣接ブロックBは、予測方向1の参照ピクチャインデックスRefL1_Bが示す参照ピクチャに対する動きベクトルとして、予測方向1の動きベクトルMvL1_Bを持つ。また、隣接ブロックCは、イントラ予測で符号化されたブロックである。また、隣接ブロックDは、予測方向0の片方向予測で符号化されたブロックである。隣接ブロックDは、予測方向0の参照ピクチャインデックスRefL0_Dが示す参照ピクチャに対する動きベクトルとして、予測方向0の動きベクトルMvL0_Dを持つ。
このような場合では、符号化対象ブロックの予測動きベクトルとして、例えば、隣接ブロックA、B、C、Dの動きベクトル、および、co−locatedブロックを用いて求めた時間予測動きベクトルモードによる動きベクトルから生成された予測動きベクトル候補の中から、符号化対象ブロックの動きベクトルを最も効率よく符号化できる予測動きベクトルが選択される。そして、選択された予測動きベクトルを表す予測動きベクトルインデックスがビットストリームに付加される。例えば、符号化対象ブロックの予測方向0の動きベクトルMvL0を符号化する際に、隣接ブロックAの予測方向0の動きベクトルMvL0_Aが、予測動きベクトルとして選択された場合、図4に示すように、隣接ブロックAから生成した予測動きベクトル候補が用いられたことを表す予測動きベクトルインデックスの値「0」のみがビットストリームに付随される。これにより、符号化対象ブロックの予測方向0の動きベクトルMvL0の情報量を削減できる。
ここで、図4は、予測方向0の予測動きベクトル候補リストの一例を示す図である。また、図4に示すように、予測動きベクトル指定モードでは、予測動きベクトルの生成が不可能である候補(以下、「予測不可能候補」と呼ぶ)、または他の予測動きベクトル候補と値が一致する候補(以下、「重複候補」と呼ぶ)が、予測動きベクトル候補から削除される。このように、予測動きベクトル候補数を削減することで、予測動きベクトルインデックスに割り当てる符号量が削減される。ここで、予測動きベクトルの生成が不可能であるということは、隣接ブロックが、(1)イントラ予測で符号化されたブロックであること、(2)符号化対象ブロックを含むスライスまたはピクチャ境界外のブロックであること、または、(3)まだ符号化されていないブロックであること等を表している。
図4の例では、隣接ブロックCがイントラ予測で符号化されている。そのため、予測動きベクトルインデックスの値が「3」の予測候補は、予測不可能候補であり、予測動きベクトル候補リストから削除される。また、隣接ブロックDから生成された予測方向0の予測動きベクトルは、隣接ブロックAから生成された予測方向0の予測動きベクトルと値が一致しているため、予測動きベクトルインデックスの値が「4」の予測候補は、予測動きベクトル候補リストから削除される。その結果、最終的に、予測方向0の予測動きベクトル候補数は3となり、予測方向0の予測動きベクトル候補リストのリストサイズは3に設定される。
また、図5は、予測方向1の予測動きベクトル候補リストの一例を示す図である。図5に示す例では、予測不可能候補および重複候補の削除によって、最終的に予測方向1の予測動きベクトル候補数2となり、予測方向1の予測動きベクトル候補リストのリストサイズは2に設定される。
予測動きベクトルインデックスは、予測動きベクトル候補リストサイズの大きさに応じて、図6に示すように、ビット列が割り当てられ、可変長符号化される。また、予測動きベクトル候補リストサイズが1の場合は、予測動きベクトルインデックスをビットストリームに付随させず、復号化側で値0と推定させる。このように、予測動きベクトル指定モードでは、予測動きベクトルインデックスに割り当てるビット列を、予測動きベクトル候補リストサイズの大きさによって変化させることにより、符号量を削減している。
図7は、予測動きベクトル指定モードを用いる場合の符号化処理の一例を示すフローチャートである。
ステップS1001では、隣接ブロックおよびco-locatedブロック(以下、「予測ブロック候補」と呼ぶ)から、予測方向Xの予測動きベクトル候補が算出される。ここで、Xは「0」または「1」の値をとり、それぞれ予測方向0または予測方向1を表す。予測方向Xの予測動きベクトル候補sMvLXは、予測ブロック候補の動きベクトルMvLX_Nと参照ピクチャインデックスRefLX_N、および、符号化対象ブロックの参照ピクチャインデックスRefLXを用いて、以下の式で算出される。
sMvLX=
MvLX_N×(POC(RefLX)−curPOC)/(POC(RefLX_N)−curPOC) …(式1)
ここで、POC(RefLX)は、参照ピクチャインデックスRefLXが示す参照ピクチャの表示順を、POC(RefLX_N)は、参照ピクチャインデックスRefLX_Nが示す参照ピクチャの表示順を、curPOCは、符号化対象ピクチャの表示順を示す。なお、予測ブロック候補が予測方向Xの動きベクトルMvLX_Nを持たない場合は、予測方向(1−X)の動きベクトルMvL(1−X)_Nと参照ピクチャインデックスRefL(1−X)_Nを用いて、式2により予測動きベクトルsMvLXを算出する。
sMvLX=
MvL(1-X)_N×(POC(RefLX)−curPOC)/(POC(RefL(1-X)_N)−curPOC)
…(式2)
図8A、図8Bに式1、式2による予測動きベクトルの算出例を示す図である。なお、式1、式2に示すように、POC(RefLX)とPOC(RefLX_N)の値が同じ場合、つまり、同一のピクチャを参照する場合は、スケーリングを省略できる。
ステップS1002では、予測方向Xの予測動きベクトル候補から重複候補および予測不可能候補が削除される。ステップS1003では、削除処理後の予測動きベクトル候補数が、予測動きベクトル候補リストサイズに設定される。ステップS1004では、符号化対象ブロックの予測方向Xの動きベクトル符号化に用いる予測動きベクトルインデックスが決定される。ステップS1005において、決定された予測動きベクトルインデックスが、予測動きベクトル候補リストサイズによって決められたビット列を用いて可変長符号化される。
図9は、予測動きベクトル指定モードを用いて動画像を符号化する動画像符号化装置1000の構成の一例を示すブロック図である。
動画像符号化装置1000は、図9に示すように、減算部1001と、直交変換部1002と、量子化部1003と、逆量子化部1004と、逆直交変換部1005と、加算部1006、ブロックメモリ1007と、フレームメモリ1008と、イントラ予測部1009と、インター予測部1010と、インター予測制御部1011と、ピクチャタイプ決定部1012と、スイッチ1013と、予測動きベクトル候補算出部1014と、colPicメモリ1015と、可変長符号化部1016とを備える。
図9において、予測動きベクトル候補算出部1014は、予測動きベクトル候補を算出する。そして、予測動きベクトル候補算出部1014は、算出した予測動きベクトル候補数を可変長符号化部1016に送信する。可変長符号化部1016は、予測動きベクトル候補数を符号化パラメータである予測動きベクトル候補リストサイズに設定する。そして、可変長符号化部1016は、符号化に用いられた予測動きベクトルインデックスに、予測動きベクトル候補リストサイズに応じたビット列を割り当てて可変長符号化を行う。
図10は、予測動きベクトル指定モードを用いる場合の復号化処理の一例を示すフローチャートである。
ステップS2001では、隣接ブロックおよびco−locatedブロック(予測ブロック候補)から、予測方向Xの予測動きベクトル候補を算出する。ステップS2002では、予測動きベクトル候補から重複候補および予測不可能候補が削除される。ステップS2003では、削除処理後の予測動きベクトル候補数が、予測動きベクトル候補リストサイズに設定される。ステップS2004では、ビットストリームから、復号化対象ブロックの復号化に用いる予測動きベクトルインデックスが、予測動きベクトル候補リストサイズを用いて復号化される。ステップS2005において、復号化された予測動きベクトルインデックが示す予測動きベクトル候補に、差分動きベクトルが加算されて動きベクトルが算出され、算出された動きベクトルを用いて、予測画像が生成され、復号化処理が行われる。
図11は、予測動きベクトル指定モードを用いて符号化された動画像を復号化する動画像復号化装置の構成の一例を示すブロック図である。
動画像復号装置2000は、図11に示すように、可変長復号部2001と、逆量子化部2002と、逆直交変換部2003と、加算部2004と、ブロックメモリ2005と、フレームメモリ2006と、イントラ予測部2007と、インター予測部2008と、インター予測制御部2009と、スイッチ2010と、予測動きベクトル候補算出部2011と、colPicメモリ2012とを備える。
図11において、予測動きベクトル候補算出部2011は、予測動きベクトル候補を算出する。そして、予測動きベクトル候補算出部2011は、算出した予測動きベクトル候補数を可変長復号化部2001に送信する。可変長復号化部2001は、予測動きベクトル候補数を復号パラメータである予測動きベクトル候補リストサイズに設定する。そして、可変長復号化部2001は、ビットストリームに含まれる予測動きベクトルインデックスを、予測動きベクトル候補リストサイズを用いて復号する。
図12は、予測動きベクトルインデックスをビットストリームに付加する際のシンタックスを表す図である。図12において、inter_pred_flagは、インター予測の予測方向フラグを表す。mvp_idxは、予測動きベクトルインデックスを表す。NumMVPCandは、予測動きベクトル候補リストサイズを表す。このNumMVPCandは、予測動きベクトル候補から、予測不可能候補および重複候補を削除した後の予測動きベクトル候補数が設定されている。
以上のように、予測動きベクトル指定モードを用いて動画像が符号化または復号化される。しかしながら、上記の予測動きベクトル指定モードでは、予測動きベクトルインデックスを符号化または復号化する際に用いられる予測動きベクトル候補リストサイズに、予測動きベクトル候補数が設定される。この予測動きベクトル候補数は、co−locatedブロック等を含む参照ピクチャ情報を用いて予測不可能候補または重複候補を削除した後に得られる。そのため、動画像符号化装置と動画像復号化装置とで予測動きベクトル候補数に不一致が発生した場合等に、予測動きベクトルインデックスに割り当てるビット列に動画像符号化装置と動画像復号化装置とで不一致が生じる。その結果、動画像復号化装置は、ビットストリームを正しく復号化できなくなる場合がある。
例えば、伝送路等で発生したパケットロス等により、co−locatedブロックとして参照していた参照ピクチャの情報がロスされた場合、co−locatedブロックの動きベクトルまたは参照ピクチャインデックスが不明となる。そのため、co−locatedブロックから生成される予測動きベクトル候補の情報が不明となる。このような場合、復号化時に予測動きベクトル候補から予測不可能候補や重複候補を正しく削除することができなくなる。その結果、動画像復号化装置は、予測動きベクトル候補リストサイズを正しく求めることができず、予測動きベクトルインデックスを正常に復号化できなくなる。
そこで、本発明は、予測動きベクトルインデックスを符号化または復号化する際に用いる予測動きベクトル候補リストサイズを、co−locatedブロック等を含む参照ピクチャ情報に依存しない方法で算出することによって、エラー耐性を向上する動画像符号化方法を提供することを目的とする。
そこで、本発明の一態様に係る動画像符号化方法は、符号化対象ブロックの動きベクトルを符号化する際に用いる予測動きベクトルを算出して、前記符号化対象ブロックを符号化することでビットストリームを生成する動画像符号化方法であって、前記予測動きベクトルの候補となる予測動きベクトル候補の最大数を決定する決定ステップと、第1予測動きベクトル候補を導出する第1導出ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいか否かを判定する判定ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出する第2導出ステップと、前記第1予測動きベクトル候補および第2予測動きベクトル候補の中から前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを選択する選択ステップと、選択された前記予測動きベクトルを特定するためのインデックスを、決定された前記最大数を用いて符号化し、符号化した前記インデックスを前記ビットストリームに付加する符号化ステップとを含む。
これによれば、予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて符号化することができる。つまり、実際に導出される予測動きベクトル候補の数に依存せずに、インデックスを符号化することができる。したがって、予測動きベクトル候補の導出に必要な情報(例えば、co−locatedブロック等の情報)がロスされた場合でも、復号側ではインデックスを復号することができ、エラー耐性を向上させることが可能となる。また、復号側では、実際に導出される予測動きベクトル候補の数に依存せずにインデックスを復号できる。つまり、復号側では、予測動きベクトル候補の導出処理を待たずにインデックスの復号処理を行うことができる。すなわち、予測動きベクトル候補の導出処理とインデックスの復号処理とを並列に行うことが可能なビットストリームを生成することができる。
さらに、これによれば、第1予測動きベクトル候補の数が最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出することができる。したがって、最大数を超えない範囲で予測動きベクトル候補の数を増加させることができ、符号化効率を向上させることが可能となる。
例えば、前記第1導出ステップでは、動きベクトルが既に導出された第1予測動きベクトル候補と重複しない予測動きベクトル候補を前記第1予測動きベクトル候補として導出してもよい。
これによれば、重複する第1予測動きベクトル候補を削除することができる。その結果、第2予測動きベクトル候補の数を増加させることができ、選択可能な動きベクトルの種類を増やすことができる。したがって、さらに符号化効率を向上させることが可能となる。
例えば、前記第1導出ステップでは、前記符号化対象ブロックに空間的または時間的に隣接するブロックの符号化に用いられた動きベクトルに基づいて前記第1予測動きベクトル候補を導出してもよい。
これによれば、符号化対象ブロックに空間的または時間的に隣接するブロックの符号化に用いられた動きベクトルに基づいて第1予測動きベクトル候補を導出することができる。
例えば、前記第1導出ステップでは、前記符号化対象ブロックに空間的に隣接するブロックのうち、イントラ予測で符号化されたブロック、前記符号化対象ブロックを含むスライスもしくはピクチャ境界外に位置するブロック、およびまだ符号化されていないブロックを除くブロックの符号化に用いられた動きベクトルを、前記第1予測動きベクトル候補として導出してもよい。
これによれば、予測動きベクトル候補を得るために適切なブロックから第1予測動きベクトル候補を導出することができる。
例えば、前記第2導出ステップでは、動きベクトルが前記第1予測動きベクトル候補と異なる予測動きベクトル候補を前記第2予測動きベクトル候補として導出してもよい。
これによれば、動きベクトルが第1予測動きベクトル候補と異なる予測動きベクトル候補を第2予測動きベクトル候補として導出することができる。したがって、動きベクトルが異なる予測動きベクトル候補を増やすことができ、さらに符号化効率を向上させることが可能となる。
例えば、前記符号化ステップでは、さらに、決定された前記最大数を示す情報を前記ビットストリームに付加してもよい。
これによれば、決定された最大数を示す情報をビットストリームに付加することができる。したがって、適切な単位で最大数を切り替えることができ、符号化効率を向上させることが可能となる。
例えば、前記動画像符号化方法は、さらに、第1規格に準拠する第1符号化処理、または第2規格に準拠する第2符号化処理に、符号化処理を切り替える切り替えステップと、切り替えられた前記符号化処理が準拠する前記第1規格または前記第2規格を示す識別情報を前記ビットストリームに付加する付加ステップとを含み、前記符号化処理が前記第1符号化処理に切り替えられた場合に、前記第1符号化処理として、前記決定ステップと、前記第1導出ステップと、前記判定ステップと、前記第2導出ステップと、前記選択ステップと、前記符号化ステップとが行われてもよい。
これによれば、第1規格に準拠する第1符号化処理と第2規格に準拠する第2符号化処理とを切り替えることが可能となる。
また、本発明の一態様に係る動画像復号化方法は、ビットストリームに含まれる復号化対象ブロックの動きベクトルを復号化する際に用いる予測動きベクトルを算出して、前記復号化対象ブロックを復号化する動画像復号化方法であって、前記予測動きベクトルの候補となる予測動きベクトル候補の最大数を決定する決定ステップと、第1予測動きベクトル候補を導出する第1導出ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいか否かを判定する判定ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出する第2導出ステップと、前記ビットストリームに付加された符号化されたインデックスであって前記予測動きベクトルを特定するためのインデックスを、決定された前記最大数を用いて復号化する復号化ステップと、復号された前記インデックスに基づいて、前記第1予測動きベクトル候補および前記第2予測動きベクトル候補の中から前記復号対象ブロックの復号に用いられる予測動きベクトルを選択する選択ステップとを含む。
これによれば、予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて復号することができる。つまり、実際に導出される予測動きベクトル候補の数に依存せずに、インデックスを復号することができる。したがって、予測動きベクトル候補の導出に必要な情報(例えば、co−locatedブロック等の情報)がロスされた場合でも、インデックスを復号することができ、エラー耐性を向上させることが可能となる。さらに、予測動きベクトル候補の導出処理を待たずにインデックスの復号処理を行うことができ、予測動きベクトル候補の導出処理とインデックスの復号処理とを並列に行うことも可能となる。
さらに、これによれば、第1予測動きベクトル候補の数が最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出することができる。したがって、最大数を超えない範囲で予測動きベクトル候補の数を増加させることができ、符号化効率が向上された符号化画像を復号することが可能となる。
例えば、前記第1導出ステップでは、動きベクトルが既に導出された第1予測動きベクトル候補と重複しない予測動きベクトル候補を前記第1予測動きベクトル候補として導出してもよい。
これによれば、重複する第1予測動きベクトル候補を削除することができる。その結果、第2予測動きベクトル候補の数を増加させることができ、選択可能な動きベクトルの種類を増やすことができる。したがって、さらに符号化効率が向上された符号化画像を復号することが可能となる。
例えば、前記第1導出ステップでは、前記復号化対象ブロックに空間的または時間的に隣接するブロックの復号化に用いられた動きベクトルに基づいて前記第1予測動きベクトル候補を導出してもよい。
これによれば、復号対象ブロックに空間的または時間的に隣接するブロックの復号に用いられた動きベクトルに基づいて第1予測動きベクトル候補を導出することができる。
例えば、前記第1導出ステップでは、前記復号化対象ブロックに空間的に隣接するブロック候補のうち、イントラ予測で復号されたブロック、前記復号対象ブロックを含むスライスもしくはピクチャ境界外に位置するブロック、およびまだ復号化されていないブロックを除くブロックの復号に用いられた動きベクトルを、前記第1予測動きベクトル候補として導出してもよい。
これによれば、予測動きベクトル候補を得るために適切なブロックから第1予測動きベクトル候補を導出することができる。
例えば、前記第2導出ステップでは、動きベクトルが前記第1予測動きベクトル候補と異なる予測動きベクトル候補を前記第2予測動きベクトル候補として導出してもよい。
これによれば、動きベクトルが第1予測動きベクトル候補と異なる予測動きベクトル候補を第2予測動きベクトル候補として導出することができる。したがって、動きベクトルが異なる予測動きベクトル候補を増やすことができ、さらに符号化効率が向上された符号化画像を復号することが可能となる。
例えば、前記決定ステップでは、前記ビットストリームに付加された最大数を示す情報に基づいて、前記最大数を決定してもよい。
これによれば、ビットストリームに付加された情報に基づいて最大数を決定することができる。したがって、適切な単位で最大数を切り替えて符号化された画像を復号することが可能となる。
例えば、前記動画像復号化方法は、さらに、前記ビットストリームに付加された第1規格または第2規格を示す識別情報に応じて、前記第1規格に準拠する第1復号処理、または前記第2規格に準拠する第2復号処理に、復号処理を切り替える切り替えステップを含み、前記復号処理が第1復号処理に切り替えられた場合に、前記第1復号処理として、前記決定ステップと、前記第1導出ステップと、前記判定ステップと、前記第2導出ステップと、前記復号化ステップと、前記選択ステップとが行われてもよい。
これによれば、第1規格に準拠する第1復号処理と第2規格に準拠する第2復号処理とを切り替えることが可能となる。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD−ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
以下、本発明の一態様に係る動画像符号化装置および動画像復号化装置について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
図13は、実施の形態1に係る動画像符号化装置100の構成を示すブロック図である。
動画像符号化装置100は、図13に示すように、減算部101、直交変換部102、量子化部103、逆量子化部104、逆直交変換部105、加算部106、ブロックメモリ107、フレームメモリ108、イントラ予測部109、インター予測部110、インター予測制御部111、ピクチャタイプ決定部112、スイッチ113、予測動きベクトル候補算出部114、colPicメモリ115、および可変長符号化部116を備えている。
減算部101は、ブロックごとに、入力画像列に含まれる入力画像データから予測画像データを減算することにより予測誤差データを生成する。直交変換部102は、生成された予測誤差データに対し、画像領域から周波数領域への変換を行う。量子化部103は、周波数領域に変換された予測誤差データに対し、量子化処理を行う。
逆量子化部104は、量子化部103によって量子化処理された予測誤差データに対し、逆量子化処理を行う。逆直交変換部105は、逆量子化処理された予測誤差データに対し、周波数領域から画像領域への変換を行う。
加算部106は、符号化対象ブロックごとに、予測画像データと、逆直交変換部105によって逆量子化処理された予測誤差データとを加算することにより、再構成画像データを生成する。ブロックメモリ107には、再構成画像データがブロック単位で保存される。フレームメモリ108には、再構成画像データがフレーム単位で保存される。
ピクチャタイプ決定部112は、Iピクチャ、Bピクチャ、およびPピクチャのいずれのピクチャタイプで入力画像データを符号化するかを決定する。そして、ピクチャタイプ決定部112は、ピクチャタイプ情報を生成する。イントラ予測部109は、ブロックメモリ107に保存されているブロック単位の再構成画像データを用いてイントラ予測を行うことにより、符号化対象ブロックのイントラ予測画像データを生成する。インター予測部110は、フレームメモリ108に保存されているフレーム単位の再構成画像データと、動き検出等により導出した動きベクトルとを用いてインター予測を行うことにより、符号化対象ブロックのインター予測画像データを生成する。
スイッチ113は、符号化対象ブロックがイントラ予測符号化される場合に、イントラ予測部109によって生成されたイントラ予測画像データを、符号化対象ブロックの予測画像データとして減算部101および加算部106に出力する。一方、スイッチ113は、符号化対象ブロックがインター予測符号化される場合に、インター予測部110によって生成されたインター予測画像データを、符号化対象ブロックの予測画像データとして減算部101および加算部106に出力する。
予測動きベクトル候補算出部114は、符号化対象ブロックの隣接ブロックの動きベクトル等、および、colPicメモリ115に格納されているco−locatedブロックの動きベクトル等のcolPic情報を用いて、予測動きベクトル指定モードの予測動きベクトル候補を導出する。そして、予測動きベクトル候補算出部114は、後述する方法で、予測可能候補数を算出する。また、予測動きベクトル候補算出部114は、導出した予測動きベクトル候補に対して、予測動きベクトルインデックスの値を割り当てる。そして、予測動きベクトル候補算出部114は、予測動きベクトル候補と、予測動きベクトルインデックスとを、インター予測制御部111に送る。また、予測動きベクトル候補算出部114は、算出した予測可能候補数を可変長符号化部116に送信する。
インター予測制御部111は、動き検出により導出された動きベクトルを用いて生成したインター予測画像を用いて、インター予測符号化を行うようインター予測部110を制御する。また、インター予測制御部111は、インター予測符号化に用いた動きベクトルの符号化に最適な予測動きベクトル候補を後述する方法で選択する。そして、インター予測制御部111は、選択した予測動きベクトル候補に対応する予測動きベクトルインデックスと、予測の誤差情報(差分動きベクトル)とを、可変長符号化部116に送る。さらに、インター予測制御部111は、符号化対象ブロックの動きベクトル等を含むcolPic情報をcolPicメモリ115に転送する。
可変長符号化部116は、量子化処理された予測誤差データ、予測方向フラグ、ピクチャタイプ情報、および差分動きベクトルに対し、可変長符号化処理を行うことで、ビットストリームを生成する。また、可変長符号化部116は、予測可能候補数を予測動きベクトル候補リストサイズに設定する。そして、可変長符号化部116は、動きベクトル符号化に用いた予測動きベクトルインデックスに、予測動きベクトル候補リストサイズに応じたビット列を割り当てて可変長符号化を行う。
図14は、実施の形態1に係る動画像符号化装置100の処理動作を示すフローチャートである。
ステップS101では、インター予測制御部111は、動き検出により、符号化対象ブロックの予測方向、参照ピクチャインデックスおよび、動きベクトルを決定する。ここで、動き検出では、例えば、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックが参照ブロックとして決定される。そして、符号化対象ブロック位置と、参照ブロック位置とから、動きベクトルを求める方法などを用いて、動きベクトルが求められる。また、インター予測制御部111は、予測方向0と予測方向1との参照ピクチャに対し、それぞれ動き検出を行い、予測方向0、または、予測方向1、または、双方向予測を選択するかどうかを、例えば、R−D最適化モデルの以下の式等で算出する。
Cost=D+λ×R …(式3)
式3において、Dは符号化歪を表し、ある動きベクトルで生成した予測画像を用いて符号化対象ブロックを符号化および復号化して得られた画素値と、符号化対象ブロックの元の画素値との差分絶対値和などを用いる。また、Rは発生符号量を表し、予測画像生成に用いた動きベクトルを符号化することに必要な符号量などを用いる。また、λはラグランジュの未定乗数である。
ステップS102では、予測動きベクトル候補算出部114は、符号化対象ブロックの隣接ブロックおよびco−locatedブロックから予測動きベクトル候補を導出する。また、予測動きベクトル候補算出部114は、後述する方法で、予測動きベクトル候補リストサイズを算出する。
例えば、図3のような場合では、予測動きベクトル候補算出部114は、符号化対象ブロックの予測動きベクトル候補として、例えば、隣接ブロックA、B、C、およびDの持つ動きベクトルを選択する。さらに、予測動きベクトル候補算出部114は、co−locatedブロックの動きベクトルから時間予測モードによって算出した動きベクトル等を予測動きベクトル候補として算出する。
予測動きベクトル候補算出部114は、図15(a)および図16(a)のように予測方向0および予測方向1の予測動きベクトル候補に対して予測動きベクトルインデックスを割り当てる。そして、予測動きベクトル候補算出部114は、後述する方法で、予測不可能候補および重複候補の削除、および新規候補追加を行うことにより、図15(b)および図16(b)のような予測動きベクトル候補リスト、および、予測動きベクトル候補リストサイズを算出する。
予測動きベクトルインデックスは、値が小さいほど短い符号が割り振られる。即ち、予測動きベクトルインデックスの値が小さい場合に予測動きベクトルインデックスに必要な情報量が少なくなる。一方、予測動きベクトルインデックスの値が大きくなると、予測動きベクトルインデックスに必要な情報量が大きくなる。従って、より精度が高い予測動きベクトルとなる可能性の高い予測動きベクトル候補に対して、値の小さい予測動きベクトルインデックスが割り当てられると、符号化効率が高くなる。
そこで、予測動きベクトル候補算出部114は、例えば、予測動きベクトルとして選ばれた回数を予測動きベクトル候補毎に計測し、その回数が多い予測動きベクトル候補に対し、値の小さい予測動きベクトルインデックスを割り当ててもよい。具体的には、隣接ブロックにおいて選択された予測動きベクトルを特定しておき、対象ブロックの符号化の際に、特定した予測動きベクトル候補に対する予測動きベクトルインデックスの値を小さくすることが考えられる。
なお、隣接ブロックが、動きベクトル等の情報を有しない場合(イントラ予測で符号化されたブロックである場合、ピクチャやスライスの境界外などに位置するブロックである場合、まだ符号化されていないブロックである場合など)には、予測動きベクトル候補として利用できない。
本実施の形態では、予測動きベクトル候補として利用できないことを予測不可能候補と呼ぶ。また、予測動きベクトル候補として利用できることを予測可能候補と呼ぶ。また、複数の予測動きベクトル候補において、他のいずれかの予測動きベクトルと値が一致している候補を重複候補と呼ぶ。
図3の場合では、隣接ブロックCは、イントラ予測で符号化されたブロックであるので、予測不可能候補とする。また、隣接ブロックDから生成される予測方向0の予測動きベクトルsMvL0_Dは、隣接ブロックAから生成される予測方向0の予測動きベクトルMvL0_Aと値が一致しており、重複候補とする。
ステップS103では、インター予測制御部111は、予測方向Xの動きベクトル符号化に用いる予測動きベクトルインデックスの値を、後述する方法で決定する。
ステップS104では、可変長符号化部116は、予測方向Xの動きベクトル符号化に用いる予測動きベクトル候補の予測動きベクトルインデックスに図6に示すような予測動きベクトル候補リストサイズに応じたビット列を割り当て、可変長符号化を行う。
本実施の形態では、図15(a)および図16(a)のように、隣接ブロックAに対応する予測動きベクトルインデックスの値として「0」が割り当てられる。また、隣接ブロックBに対応する予測動きベクトルインデックスの値として「1」が割り当てられる。また、co−locatedブロックに対応する予測動きベクトルインデックスの値として「2」が割り当てられる。また、隣接ブロックCに対応する予測動きベクトルインデックスの値として「3」が割り当てられる。また、隣接ブロックDに対応する予測動きベクトルインデックスの値として「4」が割り当てられる。
なお、必ずしも、予測動きベクトルインデックスの値の割り当て方は、この例に限らない。例えば、可変長符号化部116は、後述する方法を用いて新規候補が追加された場合などには、元々の予測動きベクトル候補には小さい値を割り当て、新規候補には大きい値を割り当ててもよい。つまり、可変長符号化部116は、元々の予測動きベクトル候補に優先して小さな値の予測動きベクトルインデックスを割り当てても構わない。
また、必ずしも、予測動きベクトル候補は、隣接ブロックA、B、C、Dの位置に限定されない。例えば、左下隣接ブロックDの上に位置する隣接ブロック等が予測動きベクトル候補として用いられても構わない。また、必ずしもすべての隣接ブロックが予測動きベクトル候補として使用される必要はない。例えば、隣接ブロックA、Bのみが予測動きベクトル候補として用いられても良い。または、隣接ブロックDが予測不可能候補ならば、隣接ブロックAを用いるなど、隣接ブロックを順にスキャンするようにしても構わない。
また、本実施の形態では、図14のステップS104において、可変長符号化部116は、予測動きベクトルインデックスをビットストリームに付加したが、必ずしも予測動きベクトルインデックスをビットストリームに付加する必要はない。例えば、可変長符号化部116は、予測動きベクトル候補リストサイズが1の場合には、予測動きベクトルインデックスをビットストリームに付加しなくても構わない。これにより、予測動きベクトルインデックスの情報量を削減できる。
図17は、図14のステップS102の詳細な処理を示すフローチャートである。具体的には、図17は、予測動きベクトル候補、および、予測動きベクトル候補リストサイズを算出する方法を表す。以下、図17について説明する。
ステップS111では、予測動きベクトル候補算出部114は、予測ブロック候補[N]が予測可能候補であるかどうかを後述する方法で判定する。そして、予測動きベクトル候補算出部114は、判定結果に従って、予測可能候補数を更新する。
ここで、Nは各予測ブロック候補を表すためのインデックス値である。本実施の形態では、Nは0から4までの値をとる。具体的には、予測ブロック候補[0]には、図3の隣接ブロックAが割り振られる。また、予測ブロック候補[1]には図3の隣接ブロックBが割り振られる。また、予測ブロック候補[2]にはco−locatedブロックが割り振られる。また、予測ブロック候補[3]には図3の隣接ブロックCが割り振られる。また、予測ブロック候補[4]には図3の隣接ブロックDが割り振られる。
ステップS112では、予測動きベクトル候補算出部114は、予測ブロック候補[N]から、予測方向Xの予測動きベクトル候補を、上記の式1、式2を用いて算出して、予測動きベクトル候補リストに追加する。
ステップS113では、予測動きベクトル候補算出部114は、図15および図16に示すように、予測動きベクトル候補リストから予測不可能候補および重複候補を探索し、削除する。
ステップS114では、予測動きベクトル候補算出部114は、後述する方法で、予測動きベクトル候補リストに新規候補を追加する。ここで、新規候補を追加する際には、予測動きベクトル候補算出部114は、元々ある予測動きベクトル候補に優先して小さい予測動きベクトルインデックスが割り当たるように、予測動きベクトルインデックスの値の再割り当てを行ってもよい。つまり、予測動きベクトル候補算出部114は、新規候補には値が大きい予測動きベクトルインデックスが割り当たるように、予測動きベクトルインデックスの値の再割り当てを行っても構わない。これにより予測動きベクトルインデックスの符号量を削減できる。
ステップS115では、予測動きベクトル候補算出部114は、ステップS111で算出された予測可能候補数を予測動きベクトル候補リストサイズに設定する。図15および図16の例では、後述する方法により、予測方向0の予測可能候補数は「4」と算出され、予測方向0の予測動きベクトル候補リストサイズには「4」が設定される。また、予測方向1の予測可能候補数は「4」と算出され、予測方向1の予測動きベクトル候補リストサイズには「4」に設定される。
なお、ステップS114における新規候補とは、後述する方法で、予測動きベクトル候補数が予測可能候補数に達していない場合に、予測動きベクトル候補に新たに追加される候補である。例えば、新規候補は、図3における左下隣接ブロックDの上に位置する隣接ブロックから生成される予測動きベクトルであってもよい。また、新規候補は、例えば、co−locatedブロックの隣接ブロックA、B、C、Dに対応するブロックから生成される予測動きベクトルであってもよい。また、新規候補は、例えば、参照ピクチャの画面全体または一定の領域の動きベクトルの統計等から算出した予測動きベクトルであってもよい。このように、予測動きベクトル候補数が予測可能候補数に達していない場合には、予測動きベクトル候補算出部114は、新たな予測動きベクトルを新規候補として追加することによって、符号化効率を向上できる。
図18は、図17のステップS111の詳細な処理を示すフローチャートである。具体的には、図18は、予測ブロック候補[N]が予測可能候補であるかどうかを判定し、予測可能候補数を更新する方法を表す。以下、図18について説明する。
ステップS121では、予測動きベクトル候補算出部114は、予測ブロック候補[N]が、(1)イントラ予測で符号化されたブロック、または、(2)符号化対象ブロックを含むスライスまたはピクチャ境界外に位置するブロック、または、(3)まだ符号化されていないブロックであるかどうかを判定する。
ここで、ステップS121の判定結果が真ならば(S121のYes)、ステップS122において、予測動きベクトル候補算出部114は、予測ブロック候補[N]を予測不可能候補に設定する。一方、ステップS121の判定結果が偽ならば(S121のNo)、ステップS123において、予測動きベクトル候補算出部114は、予測ブロック候補[N]を予測可能候補に設定する。
ステップS124では、予測動きベクトル候補算出部114は、予測ブロック候補[N]が予測可能候補、または、co−locatedブロック候補であるかどうかを判定する。ここで、ステップS124の判定結果が真ならば(S124のYes)、ステップS5において、予測動きベクトル候補算出部114は、予測可能候補数に1を加算して、予測動きベクトル候補数を更新する。一方、ステップS124の判定結果が偽ならば(S124のNo)、予測動きベクトル候補算出部114は、予測可能候補数を更新しない。
このように、予測ブロック候補がco−locatedブロックの場合は、予測動きベクトル候補算出部114は、co−locatedブロックが予測可能候補か予測不可能候補かどうかに関らず、予測可能候補数に1を加算する。これにより、パケットロス等でco−locatedブロックの情報がロスされた場合でも、動画像符号化装置と動画像復号化装置とで予測可能候補数に不一致が発生しない。
この予測可能候補数は、図17のステップS115において、予測動きベクトル候補リストサイズに設定される。さらに、図14のS104において、予測動きベクトル候補リストサイズは、予測動きベクトルインデックスの可変長符号化に用いられる。これによって、co−locatedブロック等を含む参照ピクチャ情報をロスした場合でも、動画像符号化装置100は、予測動きベクトルインデックスを正常に復号化できるビットストリームを生成することが可能になる。
図19は、図17のステップS114の詳細な処理を示すフローチャートである。具体的には、図19は、新規候補を追加する方法を表す。以下、図19について説明する。
ステップS131では、予測動きベクトル候補算出部114は、予測動きベクトル候補数が予測可能候補数より小さいか否かを判定する。つまり、予測動きベクトル候補算出部114は、予測動きベクトル候補数が予測可能候補数に達していないかどうかを判定する。
ここで、ステップS131の判定結果が真ならば(S131のYes)、ステップS132において、予測動きベクトル候補算出部114は、予測動きベクトル候補として予測動きベクトル候補リストに追加可能な新規候補が存在するかどうかを判定する。ここで、ステップS132の判定結果が真ならば(S132のYes)、ステップS133において、予測動きベクトル候補算出部114は、新規候補に予測動きベクトルインデックスの値を割り当て、予測動きベクトル候補リストに新規候補を追加する。さらに、ステップS134において、予測動きベクトル候補算出部114は、予測動きベクトル候補数に1を加算する。
一方、ステップS131またはステップS132の判定結果が偽ならば(S131またはS132のNo)、新規候補追加処理を終了する。つまり、予測動きベクトル候補数が予測可能候補数に達している場合、または、新規候補が存在しない場合は、新規候補追加処理を終了する。
図20は、図14のステップS103の詳細な処理を示すフローチャートである。具体的には、図20は、予測動きベクトル候補の選択に関する処理を示す。以下、図20について説明する。
ステップS141では、インター予測制御部111は、初期化として、予測動きベクトル候補インデックスmvp_idxに0を設定し、最小差分動きベクトルに値の最大値を設定する。
ステップS142では、インター予測制御部111は、予測動きベクトル候補インデックスmvp_idxの値が予測動きベクトル候補数より小さいか否かを判定する。すなわち、インター予測制御部111は、すべての予測動きベクトル候補の差分動きベクトルを算出したかどうかを判定する。
ここで、まだ予測動きベクトル候補が残っていれば(S142のYes)、ステップS143において、インター予測制御部111は、動き検出で求められた動きベクトル(動き検出結果ベクトル)から予測動きベクトル候補を差し引くことによって、差分動きベクトルを算出する。
ステップS144では、インター予測制御部111は、ステップS143で求めた差分動きベクトルが最小差分動きベクトルより値が小さいかどうかを判定する。
ここで、ステップS144の判定結果が真であれば(S144のYes)、ステップS145において、インター予測制御部111は、最小差分動きベクトルおよび予測動きベクトルインデックスの値を更新する。一方、ステップS144の判定結果が偽ならば(S144のNo)、インター予測制御部111は、最小差分動きベクトルおよび予測動きベクトルインデックスの値を更新しない。
ステップS146では、インター予測制御部111は、予測動きベクトル候補インデックスを+1で更新し、ステップS142に戻って次の予測動きベクトル候補が存在するかどうかを判定する。
一方、ステップS2において、すべての予測動きベクトル候補に対し、差分動きベクトルを算出したと判定すれば(S142のNo)、ステップS147において、インター予測制御部111は、最終的に設定されている最小差分動きベクトルおよび予測動きベクトルインデックスを確定する。
このように、本実施の形態に係る動画像符号化装置100によれば、予測動きベクトルインデックスを符号化または復号化する際に用いる予測動きベクトル候補リストサイズを、co−locatedブロック等を含む参照ピクチャ情報に依存しない方法で算出することができる。これによって、動画像符号化装置100は、エラー耐性を向上することが可能になる。
より具体的には、本実施の形態に係る動画像符号化装置100は、co−locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco−locatedブロックであれば常に予測可能候補数に1を加算する。そして、動画像符号化装置100は、このようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定する。これにより、動画像符号化装置100は、co−locatedブロックを含む参照ピクチャ情報をロスした場合でも、予測動きベクトルインデックスを正常に復号化できるビットストリームを生成することが可能になる。
また、本実施の形態に係る動画像符号化装置100は、予測動きベクトル候補数が、予測可能候補数に達していない場合には、新たな予測動きベクトルを持つ新規候補を予測動きベクトル候補として追加することによって、符号化効率を向上できる。
なお、本実施の形態では、動画像符号化装置100は、予測動きベクトル候補数が予測可能候補数に達していない場合に、新たな予測動きベクトルを持つ新規候補を予測動きベクトル候補として追加しているが、これに限られるものではない。例えば、動画像符号化装置100は、予測動きベクトル候補リストを作成する際に、予測動きベクトル候補リスト上のすべての予測動きベクトル候補の初期値として、新たな予測動きベクトルを持つ新規候補を設定しておいても構わない。この場合、動画像符号化装置100は、予測動きベクトル候補を算出して、予測動きベクトル候補リストに追加する際に、初期値である新規候補を上書きすることになる。そして、動画像符号化装置100は、算出された予測動きベクトル候補を予測動きベクトル候補リストに追加する前に、予測動きベクトル候補が予測不可能候補または重複候補であるか否かの判定を行う。これにより、予測不可能候補または重複候補があった場合に、予測動きベクトル候補リストに初期値である新規候補が残る。このような方法によって、新規候補を予測動きベクトル候補として追加することも可能である。
また、本実施の形態では、符号化対象ブロックの隣接ブロックから予測動きベクトル候補を生成し、符号化対象ブロックの動きベクトルの符号化を行う予測動きベクトル指定モードを用いた例を示したが、必ずしもこれに限らない。例えば、ダイレクトモードまたはスキップモードを用いてもよい。ダイレクトモードまたはスキップマージモードでは、図15(b)および図16(b)のように作成した予測動きベクトル候補から予測動きベクトルを選択し、選択した予測動きベクトルを動きベクトルとして直接予測画像を生成することで、動きベクトル差分をビットストリームに付加しなくても構わない。
(実施の形態2)
上記実施の形態1では、動画像符号化装置は、co−locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco−locatedブロックであれば常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定したが、これに限られるものではない。例えば、動画像符号化装置は、図18のステップS124において、co−locatedブロック以外の予測ブロック候補に対しても、必ず常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定してもよい。すなわち、動画像符号化装置は、予測動きベクトル候補数の最大値Nに固定された予測動きベクトル候補リストサイズを用いて、予測動きベクトルインデックスにビット列を割り当てても構わない。つまり、動画像符号化装置は、全ての予測ブロック候補を予測可能候補とみなし、予測動きベクトル候補リストサイズを、予測動きベクトル候補数の最大値Nに固定して、予測動きベクトルインデックスを符号化しても構わない。
例えば、上記実施の形態1では、予測動きベクトル候補数の最大値Nは5であるため(隣接ブロックA、隣接ブロックB、co−locatedブロック、隣接ブロックC、隣接ブロックD)、動画像符号化装置は、常に予測動きベクトル候補リストサイズに5を設定して、予測動きベクトルインデックスを符号化するようにしても構わない。また、例えば、予測動きベクトル候補数の最大値Nが4(隣接ブロックA、隣接ブロックB、隣接ブロックC、隣接ブロックD)の場合には、動画像符号化装置は、常に予測動きベクトル候補リストサイズに4を設定して、予測動きベクトルインデックスを符号化しても構わない。
このように、動画像符号化装置は、予測動きベクトル候補数の最大値に応じて、予測動きベクトル候補リストサイズを決定しても構わない。これにより、動画像復号化装置の可変長復号化部が、ビットストリーム中の予測動きベクトルインデックスを、隣接ブロックまたはco−locatedブロックの情報を参照せずに復号化することができるビットストリームを生成することが可能となり、可変長復号化部の処理量を削減することができる。
以下に、このような動画像符号化装置の特徴的な構成を実施の形態2に係る動画像符号化装置として具体的に説明する。
図21は、実施の形態2に係る動画像符号化装置200の構成を示すブロック図である。この動画像符号化装置200は、画像をブロック毎に符号化することでビットストリームを生成する。動画像符号化装置200は、予測動きベクトル候補導出部210と、予測制御部220と、符号化部230とを備える。
予測動きベクトル候補導出部210は、上記実施の形態1における予測動きベクトル候補算出部114に対応する。予測動きベクトル候補導出部210は、予測動きベクトル候補を導出する。そして、予測動きベクトル候補導出部210は、例えば、導出された各予測動きベクトル候補に、当該予測動きベクトル候補を特定するためのインデックス(以下、「予測動きベクトルインデックス」と呼ぶ)を対応付けた予測動きベクトル候補リストを生成する。
予測動きベクトル候補とは、符号化対象ブロックの符号化に用いられる予測動きベクトルの候補となる動きベクトルである。
図21に示すように、予測動きベクトル候補導出部210は、決定部211と、第1導出部212と、特定部213と、判定部214と、第2導出部215とを備える。
決定部211は、予測動きベクトル候補の最大数を決定する。つまり、決定部211は、予測ブロック候補数の最大値Nを決定する。
例えば、決定部211は、入力画像列(シーケンス、ピクチャ、スライス、またはブロックなど)の特徴に基づいて、予測動きベクトル候補の最大数を決定する。また例えば、決定部211は、予め定められた数を予測動きベクトル候補の最大数と決定してもよい。
第1導出部212は、第1予測動きベクトル候補を導出する。具体的には、第1導出部212は、第1予測動きベクトル候補の数が最大数を超えないように第1予測動きベクトル候補を導出する。より具体的には、第1導出部212は、例えば、符号化対象ブロックに空間的または時間的に隣接するブロックの符号化に用いられた動きベクトルに基づいて第1予測動きベクトル候補を導出する。そして、第1導出部212は、例えば、このように導出された第1予測動きベクトル候補を予測動きベクトルインデックスに対応付けて予測動きベクトル候補リストに登録する。
空間的に隣接するブロックとは、符号化対象ブロックを含むピクチャ内のブロックであって、符号化対象ブロックに隣接するブロックである。具体的には、空間的に隣接するブロックは、例えば、図3に示す隣接ブロックA〜Dである。
時間的に隣接するブロックとは、符号化対象ブロックを含むピクチャと異なるピクチャに含まれるブロックであって、符号化対象ブロックと対応するブロックである。具体的には、時間的に隣接するブロックは、例えば、co−locatedブロックである。
なお、時間的に隣接するブロックは、必ずしも符号化対象ブロックと同じ位置のブロック(co−locatedブロック)である必要はない。例えば、時間的に隣接するブロックは、co−locatedブロックに隣接ブロックであってもよい。
なお、第1導出部212は、例えば、符号化対象ブロックに空間的に隣接するブロックのうち予測不可能候補であるブロックを除くブロックの符号化に用いられた動きベクトルを、第1予測動きベクトル候補として導出してもよい。予測不可能候補であるブロックとは、イントラ予測で符号化されたブロック、符号化対象ブロックを含むスライスもしくはピクチャ境界外に位置するブロック、または、まだ符号化されていないブロックである。これにより、予測動きベクトル候補を得るために適切なブロックから第1予測動きベクトル候補を導出することができる。
特定部213は、複数の第1予測動きベクトル候補が導出された場合に、動きベクトルが他の第1予測動きベクトル候補と重複する第1予測動きベクトル候補(重複候補)を特定する。そして、特定部213は、特定された重複候補を予測動きベクトル候補リストから削除する。
判定部214は、第1予測動きベクトル候補の数が、決定された最大数より小さいか否かを判定する。ここでは、判定部214は、特定された重複する第1予測動きベクトル候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいか否かを判定する。
第2導出部215は、第1予測動きベクトル候補の数が、決定された最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出する。具体的には、第2導出部215は、第1予測動きベクトル候補の数と第2予測動きベクトル候補の数との和が最大数を超えないように第2予測動きベクトル候補を導出する。ここでは、第2導出部215は、重複候補を除く第1予測動きベクトル候補の数と第2予測動きベクトル候補の数との和が最大数を超えないように第2予測動きベクトル候補を導出する。
この第2予測動きベクトル候補は、実施の形態1における新規候補に相当する。したがって、第2導出部215は、例えば、第1予測動きベクトル候補とは異なる隣接ブロックの符号化に用いられた動きベクトルに基づいて第2予測動きベクトル候補を導出してもよい。
また例えば、第2導出部215は、動きベクトルが第1予測動きベクトル候補と異なる予測動きベクトル候補を第2予測動きベクトル候補として導出してもよい。これにより、動きベクトルが異なる予測動きベクトル候補を増やすことができ、さらに符号化効率を向上させることが可能となる。
なお、第2導出部215は、必ずしも、第1予測動きベクトル候補と重複しない予測動きベクトル候補を第2予測動きベクトル候補として導出する必要はない。つまり、第2導出部215が、結果的に、第1予測動きベクトル候補と重複する予測動きベクトル候補を第2予測動きベクトル候補として導出してしまってもよい。
そして、第2導出部215は、例えば、このように導出された第2予測動きベクトル候補を予測動きベクトルインデックスに対応付けて予測動きベクトル候補リストに登録する。このとき、第2導出部215は、実施の形態1と同様に、第1予測動きベクトル候補に第2予測動きベクトル候補よりも小さい値の予測動きベクトルインデックスが割り当たるように、第2予測動きベクトル候補を予測動きベクトル候補リストに登録してもよい。これにより、動画像符号化装置200は、第2予測動きベクトル候補よりも第1予測動きベクトル候補が符号化に用いられる予測動きベクトル候補として選択される可能性が高い場合に、符号量を削減でき、符号化効率を向上させることができる。
なお、第2導出部215は、必ずしも、第1予測動きベクトル候補の数と第2予測動きベクトル候補の数との和が決定された最大数と一致するように、第2予測動きベクトル候補を導出する必要はない。第1予測動きベクトル候補の数と第2予測動きベクトル候補の数との和が決定された最大数より小さい場合には、例えば、予測動きベクトル候補が対応付けられていない予測動きベクトルインデックスの値が存在してもよい。
予測制御部220は、第1予測動きベクトル候補および第2予測動きベクトル候補の中から符号化対象ブロックの符号化に用いられる予測動きベクトルを選択する。つまり、予測制御部220は、予測動きベクトル候補リストから、符号化対象ブロックの符号化に用いられる予測動きベクトルを選択する。
符号化部230は、選択された予測動きベクトル候補を特定するためのインデックス(予測動きベクトルインデックス)を、決定された最大数を用いて符号化する。具体的には、符号化部230は、図6に示すように、選択された予測動きベクトル候補のインデックス値に割り当てられたビット列を可変長符号化する。さらに、符号化部230は、符号化されたインデックスをビットストリームに付加する。
ここで、符号化部230は、さらに、決定部211によって決定された最大数を示す情報をビットストリームに付加してもよい。具体的には、符号化部230は、最大数を示す情報を、例えばスライスヘッダなどに書き込んでもよい。これにより、適切な単位で最大数を切り替えることができ、符号化効率を向上させることが可能となる。
なお、符号化部230は、必ずしも最大数を示す情報をビットストリームに付加する必要はない。例えば、最大数が規格により予め定められている場合、または、最大数が既定値と同じ場合などには、符号化部230は、最大数を示す情報をビットストリームに付加しなくてもよい。
次に、以上のように構成された動画像符号化装置200の各種動作について説明する。
図22は、実施の形態2に係る動画像符号化装置200の処理動作を示すフローチャートである。
まず、決定部211は、予測動きベクトル候補の最大数を決定する(S201)。第1導出部212は、第1予測動きベクトル候補を導出する(S202)。特定部213は、複数の第1予測動きベクトル候補が導出された場合に、動きベクトルが他の第1予測動きベクトル候補と重複する第1予測動きベクトル候補を特定する(S203)。
判定部214は、重複候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいか否かを判定する(S204)。ここで、重複候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいと判定された場合(S204のYes)、第2導出部215は、第2予測動きベクトル候補を導出する(S205)。一方、重複候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいと判定されなかった場合(S204のNo)、第2導出部215は、第2予測動きベクトル候補を導出しない。これらのステップS204およびステップS205は、実施の形態1におけるステップS114に相当する。
予測制御部220は、第1予測動きベクトル候補および第2予測動きベクトル候補の中から符号化対象ブロックの符号化に用いられる予測動きベクトルを選択する(S206)。例えば、予測制御部220は、実施の形態1と同様に、予測動きベクトル候補リストから、差分動きベクトルが最小となる予測動きベクトルを選択する。
符号化部230は、選択された予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて符号化する(S207)。さらに、符号化部230は、符号化されたインデックスをビットストリームに付加する。
以上のように、本実施の形態に係る動画像符号化装置200によれば、予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて符号化することができる。つまり、実際に導出される予測動きベクトル候補の数に依存せずに、インデックスを符号化することができる。したがって、予測動きベクトル候補の導出に必要な情報(例えば、co−locatedブロック等の情報)がロスされた場合でも、復号側ではインデックスを復号することができ、エラー耐性を向上させることが可能となる。また、復号側では、実際に導出される予測動きベクトル候補の数に依存せずにインデックスを復号できる。つまり、復号側では、予測動きベクトル候補の導出処理を待たずにインデックスの復号処理を行うことができる。すなわち、予測動きベクトル候補の導出処理とインデックスの復号処理とを並列に行うことが可能なビットストリームを生成することができる。
さらに、本実施の形態に係る動画像符号化装置200によれば、第1予測動きベクトル候補の数が最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出することができる。したがって、最大数を超えない範囲で予測動きベクトル候補の数を増加させることができ、符号化効率を向上させることが可能となる。
また、本実施の形態に係る動画像符号化装置200によれば、重複する第1予測動きベクトル候補を除く第1予測動きベクトル候補の数に応じて第2予測動きベクトル候補を導出することができる。その結果、第2予測動きベクトル候補の数を増加させることができ、選択可能な動きベクトルの種類を増やすことができる。したがって、さらに符号化効率を向上させることが可能となる。
なお、本実施の形態では、動画像符号化装置200は、特定部213を備えていたが、必ずしも特定部213を備える必要はない。つまり、図22に示すフローチャートに、必ずしもステップS203が含まれる必要はない。このような場合であっても、動画像符号化装置200は、予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて符号化することができるので、エラー耐性を向上させることが可能となる。
また、本実施の形態では、図22に示すように、第1導出部212が第1予測動きベクトル候補を導出した後に、特定部213が重複候補を特定していたが、必ずしもこのように順に処理される必要はない。例えば、第1導出部212は、第1予測動きベクトル候補を導出する過程において、重複候補を特定し、特定された重複候補が第1予測動きベクトル候補に含まれないように、第1予測動きベクトル候補を導出してもよい。つまり、第1導出部212は、動きベクトルが既に導出された第1予測動きベクトル候補と重複しない予測動きベクトル候補を第1予測動きベクトル候補として導出してもよい。より具体的には、例えば、左隣接ブロックに基づく予測動きベクトル候補が第1予測動きベクトル候補として既に導出されている場合に、上隣接ブロックに基づく予測動きベクトル候補が左隣接ブロックに基づく予測動きベクトル候補と重複していなければ、第1導出部212は、上隣接ブロックに基づく予測動きベクトル候補を第1予測動きベクトル候補として導出してもよい。
(実施の形態3)
図23は、実施の形態3に係る動画像復号化装置300の構成を示すブロック図である。
動画像復号化装置300は、図23に示すように、可変長復号化部301、逆量子化部302、逆直交変換部303、加算部304、ブロックメモリ305、フレームメモリ306、イントラ予測部307、インター予測部308、インター予測制御部309、スイッチ310、予測動きベクトル候補算出部311、およびcolPicメモリ312を備えている。
可変長復号化部301は、入力されたビットストリームに対し、可変長復号化処理を行い、ピクチャタイプ情報、予測方向フラグ、量子化係数、および差分動きベクトルを生成する。また、可変長復号化部301は、後述する予測可能候補数を用いて、予測動きベクトルインデックスの可変長復号化処理を行う。
逆量子化部302は、可変長復号化処理によって得られた量子化係数に対し、逆量子化処理を行う。逆直交変換部303は、逆量子化処理によって得られた直交変換係数を、周波数領域から画像領域へ変換することにより、予測誤差データを生成する。ブロックメモリ305には、予測誤差データと、予測画像データとが加算されて生成された復号化画像データが、ブロック単位で保存される。フレームメモリ306には、復号化画像データが、フレーム単位で保存される。
イントラ予測部307は、ブロックメモリ305に保存されているブロック単位の復号化画像データを用いてイントラ予測することにより、復号化対象ブロックの予測画像データを生成する。インター予測部308は、フレームメモリ306に保存されているフレーム単位の復号化画像データを用いてインター予測することにより、復号化対象ブロックの予測画像データを生成する。
スイッチ310は、復号対象ブロックがイントラ予測復号される場合に、イントラ予測部307によって生成されたイントラ予測画像データを、復号対象ブロックの予測画像データとして加算部304に出力する。一方、スイッチ310は、復号対象ブロックがインター予測復号される場合に、インター予測部308によって生成されたインター予測画像データを、復号対象ブロックの予測画像データとして加算部304に出力する。
予測動きベクトル候補算出部311は、復号化対象ブロックの隣接ブロックの動きベクトル等、および、colPicメモリ312に格納されているco-locatedブロックの動きベクトル等のcolPic情報を用いて、予測動きベクトル指定モードの予測動きベクトル候補を後述する方法で導出する。また、予測動きベクトル候補算出部311は、導出した各予測動きベクトル候補に対し、予測動きベクトルインデックスの値を割り当てる。そして、予測動きベクトル候補算出部311は、予測動きベクトル候補と、予測動きベクトルインデックスとを、インター予測制御部309に送る。
インター予測制御部309は、予測動きベクトル候補から、復号化された予測動きベクトルインデックスに基づいて、インター予測に用いる予測動きベクトルを選択する。そして、インター予測制御部309は、予測動きベクトルおよび差分動きベクトルから復号化対象ブロックの動きベクトルを算出する。そして、インター予測制御部309は、算出した動きベクトルを用いて、インター予測部308にインター予測画像を生成させる。また、インター予測制御部309は、復号化対象ブロックの動きベクトル等を含むcolPic情報をcolPicメモリ312に転送する。
最後に、加算部304は、予測画像データと予測誤差データとを加算することにより、復号画像データを生成する。
図24は、実施の形態3に係る動画像復号化装置300の処理動作を示すフローチャートである。
ステップS301では、可変長復号部301は、予測方向フラグおよび参照ピクチャインデックスを復号する。そして、復号された予測方向フラグに応じて予測方向Xの値を決定され、以下のステップS302からステップS305の処理行われる。
ステップS302では、予測動きベクトル候補算出部311は、後述する方法で、予測可能候補数を算出する。そして、予測動きベクトル候補算出部311は、算出された予測可能候補数を予測動きベクトル候補リストサイズに設定する。
ステップS303では、可変長復号部301は、算出された予測動きベクトル候補リストサイズを用いて、ビットストリーム中の予測動きベクトルインデックスを可変長復号化する。ステップS304では、予測動きベクトル候補算出部311は、後述する方法で、復号化対象ブロックの隣接ブロックおよびco-locatedブロックから予測動きベクトル候補を生成する。ステップS305では、インター予測制御部309は、復号された予測動きベクトルインデックスの示す予測動きベクトル候補に、復号された差分動きベクトルを加算し、動きベクトルを算出する。そして、インター予測制御部309は、算出した動きベクトルを用いて、インター予測部308にインター予測画像を生成させる。
なお、ステップS302で算出された予測動きベクトル候補リストサイズが「1」の場合は、予測動きベクトルインデックスは、復号されずに、0と推定されても構わない。
図25は、図24のステップS302の詳細な処理を示すフローチャートである。具体的には、図25は、予測ブロック候補[N]が予測可能候補であるかどうかを判定し、予測可能候補数を算出する方法を表す。以下、図25について説明する。
ステップS311では、予測動きベクトル候補算出部311は、予測ブロック候補[N]が、(1)イントラ予測で復号化されたブロック、または、(2)復号化対象ブロックを含むスライスまたはピクチャ境界外に位置するブロック、または、(3)まだ復号化されていないブロックであるかどうかを判定する。
ここで、ステップS311の判定結果が真ならば(S311のYes)、ステップS312において、予測動きベクトル候補算出部311は、予測ブロック候補[N]を予測不可能候補に設定する。一方、ステップS311の判定結果が偽ならば(S311のNo)、ステップS313において、予測動きベクトル候補算出部311は、予測ブロック候補[N]を予測可能候補に設定する。
ステップS314では、予測動きベクトル候補算出部311は、予測ブロック候補[N]が予測可能候補、または、co−locatedブロック候補であるかどうかを判定する。ここで、ステップS314の判定結果が真ならば(S314のYes)、ステップS5において、予測動きベクトル候補算出部311は、予測可能候補数に1を加算して値を更新する。一方、ステップS314が偽ならば(S314のNo)、予測動きベクトル候補算出部311は、予測可能候補数を更新しない。
このように、予測ブロック候補がco−locatedブロックの場合は、予測動きベクトル候補算出部311は、co−locatedブロックが予測可能候補か予測不可能候補かどうかに関らず、予測可能候補数に1を加算する。これにより、パケットロス等でco−locatedブロックの情報がロスされた場合でも、動画像符号化装置と動画像復号化装置とで予測可能候補数に不一致が発生しない。
この予測可能候補数は、図24のステップS302において、予測動きベクトル候補リストサイズに設定される。さらに、図24のS303において、予測動きベクトル候補リストサイズは、予測動きベクトルインデックスの可変長復号化に用いられる。これによって、co−locatedブロック等を含む参照ピクチャ情報をロスした場合でも、動画像復号化装置300は、予測動きベクトルインデックスを正常に復号化することが可能になる。
図26は、図24のステップS304の詳細な処理を示すフローチャートである。具体的には、図26は、予測動きベクトル候補を算出する方法を表す。以下、図26について説明する。
ステップS321では、予測動きベクトル候補算出部311は、予測ブロック候補[N]から、予測方向Xの予測動きベクトル候補を、上記の式1、式2を用いて算出して、予測動きベクトル候補リストに追加する。
ステップS322では、予測動きベクトル候補算出部311は、図15および図16に示すように、予測動きベクトル候補リストから予測不可能候補および重複候補を探索し、削除する。
ステップS323では、予測動きベクトル候補算出部311は、図19と同様の方法で、予測動きベクトル候補リストに新規候補を追加する。
図27は、予測動きベクトルインデックスをビットストリームに付加する際のシンタックスの一例を表す図である。図27において、inter_pred_flagは予測方向フラグ、mvp_idxは予測動きベクトルインデックスを表す。NumMVPCandは予測動きベクトル候補リストサイズを表し、本実施の形態では図25の処理フローで算出された予測可能候補数が設定される。
このように、本実施の形態に係る動画像復号化装置300によれば、予測動きベクトルインデックスを符号化または復号化する際に用いる予測動きベクトル候補リストサイズを、co−locatedブロック等を含む参照ピクチャ情報に依存しない方法で算出することができる。これによって、動画像復号化装置300は、エラー耐性を向上したビットストリームを適切に復号することが可能になる。
より具体的には、本実施の形態に係る動画像復号化装置300は、co−locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco−locatedブロックであれば常に予測可能候補数に1を加算する。そして、動画像復号化装置300は、このようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定する。これにより、動画像復号化装置300は、co−locatedブロックを含む参照ピクチャ情報をロスした場合でも、予測動きベクトルインデックスを正常に復号化することが可能になる。
また、本実施の形態に係る動画像復号化装置300は、予測動きベクトル候補数が、予測可能候補数に達していない場合には、新たな予測動きベクトルを持つ新規候補を予測動きベクトル候補として追加することによって、符号化効率を向上したビットストリームを適切に復号することが可能になる。
なお、本実施の形態では、動画像復号化装置300は、予測動きベクトル候補数が予測可能候補数に達していない場合に、新たな予測動きベクトルを持つ新規候補を予測動きベクトル候補として追加しているが、これに限られるものではない。例えば、上記実施の形態1と同様に、動画像復号化装置300は、予測動きベクトル候補リストを作成する際に、予測動きベクトル候補リスト上のすべての予測動きベクトル候補の初期値として、新たな予測動きベクトルを持つ新規候補を設定しておいても構わない。
(実施の形態4)
上記実施の形態3では、動画像復号化装置は、co−locatedブロックが予測可能候補かどうかに関らず、予測ブロック候補がco−locatedブロックであれば常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定したが、これに限られるものではない。例えば、動画像復号化装置は、図25のステップS314において、co−locatedブロック以外の予測ブロック候補に対しても、必ず常に1を加算するようにして算出した予測可能候補数を用いて、予測動きベクトルインデックスに割り当てるビット列を決定してもよい。すなわち、動画像復号化装置は、予測動きベクトル候補数の最大値Nに固定された予測動きベクトル候補リストサイズを用いて、予測動きベクトルインデックスにビット列を割り当てても構わない。つまり、動画像復号化装置は、全ての予測ブロック候補を予測可能候補とみなし、予測動きベクトル候補リストサイズを、予測動きベクトル候補数の最大値Nに固定して、予測動きベクトルインデックスを復号化しても構わない。
例えば、上記実施の形態3では、予測動きベクトル候補数の最大値Nは5であるため(隣接ブロックA、隣接ブロックB、co−locatedブロック、隣接ブロックC、隣接ブロックD)、動画像復号化装置は、常に予測動きベクトル候補リストサイズに5を設定して、予測動きベクトルインデックスを復号化するようにしても構わない。これにより、動画像復号化装置の可変長復号化部は、ビットストリーム中の予測動きベクトルインデックスを、隣接ブロックまたはco−locatedブロックの情報を参照せずに復号化することが可能になる。その結果、例えば、図25のステップS314、およびステップS315の処理などを省略することができ、可変長復号化部の処理量を削減できる。
図28は、予測動きベクトル候補リストサイズを予測動きベクトル候補数の最大値に固定した場合のシンタックスの一例を示す図である。図28のように、予測動きベクトル候補リストサイズを予測動きベクトル候補数の最大値に固定する場合は、NumMVPCandをシンタックスから削除できる。
以下に、このような動画像復号化装置の特徴的な構成を実施の形態4に係る動画像復号化装置として具体的に説明する。
図29は、実施の形態4に係る動画像復号化装置400の構成を示すブロック図である。この動画像復号化装置400は、ビットストリームに含まれる符号化画像をブロック毎に復号化する。具体的には、動画像復号化装置400は、例えば、実施の形態2に係る動画像符号化装置200によって生成されたビットストリームに含まれる符号化画像をブロック毎に復号化する。動画像復号化装置400は、予測動きベクトル候補導出部410と、復号化部420と、予測制御部430とを備える。
予測動きベクトル候補導出部410は、上記実施の形態3における予測動きベクトル候補算出部311に対応する。予測動きベクトル候補導出部410は、予測動きベクトル候補を導出する。そして、予測動きベクトル候補導出部410は、例えば、導出された各予測動きベクトル候補に、当該予測動きベクトル候補を特定するためのインデックス(予測動きベクトルインデックス)を対応付けた予測動きベクトル候補リストを生成する。
図29に示すように、予測動きベクトル候補導出部410は、決定部411と、第1導出部412と、特定部413と、判定部414と、第2導出部415とを備える。
決定部411は、予測動きベクトル候補の最大数を決定する。つまり、決定部211は、予測ブロック候補数の最大値Nを決定する。
例えば、決定部411は、実施の形態2における決定部211と同様の方法で、予測動きベクトル候補の最大数を決定する。また例えば、決定部411は、ビットストリームに付加された最大数を示す情報に基づいて最大数を決定してもよい。
なお、ここでは、決定部411は、予測動きベクトル候補導出部410に備えられているが、復号化部420に備えられてもよい。
第1導出部412は、第1予測動きベクトル候補を導出する。具体的には、第1導出部412は、実施の形態2における第1導出部212と同様に第1予測動きベクトル候補を導出する。例えば、第1導出部412は、第1予測動きベクトル候補の数が最大数を超えないように第1予測動きベクトル候補を導出する。より具体的には、第1導出部412は、例えば、復号化対象ブロックに空間的または時間的に隣接するブロックの復号化に用いられた動きベクトルに基づいて第1予測動きベクトル候補を導出する。そして、第1導出部412は、例えば、このように導出された第1予測動きベクトル候補を予測動きベクトルインデックスに対応付けて予測動きベクトル候補リストに登録する。
なお、第1導出部412は、例えば、復号化対象ブロックに空間的に隣接するブロックのうち予測不可能候補であるブロックを除くブロックの復号化に用いられた動きベクトルを、第1予測動きベクトル候補として導出してもよい。これにより、予測動きベクトル候補を得るために適切なブロックから第1予測動きベクトル候補を導出することができる。
特定部413は、複数の第1予測動きベクトル候補が導出された場合に、動きベクトルが他の第1予測動きベクトル候補と重複する第1予測動きベクトル候補(重複候補)を特定する。そして、特定部413は、特定された重複候補を予測動きベクトル候補リストから削除する。
判定部414は、第1予測動きベクトル候補の数が、決定された最大数より小さいか否かを判定する。ここでは、判定部414は、特定された重複する第1予測動きベクトル候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいか否かを判定する。
第2導出部415は、第1予測動きベクトル候補の数が、決定された最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出する。具体的には、第2導出部415は、実施の形態2における第2導出部215と同様に第2予測動きベクトル候補を導出する。
例えば、第2導出部415は、動きベクトルが第1予測動きベクトル候補と異なる予測動きベクトル候補を第2予測動きベクトル候補として導出してもよい。これにより、動きベクトルが異なる予測動きベクトル候補を増やすことができ、さらに符号化効率が向上された符号化画像を復号化することが可能となる。
そして、第2導出部415は、例えば、実施の形態2における第2導出部215と同様に、このように導出された第2予測動きベクトル候補を予測動きベクトルインデックスに対応付けて予測動きベクトル候補リストに登録する。
復号化部420は、ビットストリームに付加された符号化されたインデックスであって予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて復号化する。
予測制御部430は、復号化されたインデックスに基づいて、第1予測動きベクトル候補および第2予測動きベクトル候補の中から復号化対象ブロックの復号化に用いられる予測動きベクトルを選択する。つまり、予測制御部430は、予測動きベクトル候補リストから、復号化対象ブロックの復号化に用いられる予測動きベクトルを選択する。
次に、以上のように構成された動画像復号化装置400の各種動作について説明する。
図30は、実施の形態4に係る動画像復号化装置400の処理動作を示すフローチャートである。
まず、決定部411は、予測動きベクトル候補の最大数を決定する(S401)。第1導出部412は、第1予測動きベクトル候補を導出する(S402)。特定部413は、複数の第1予測動きベクトル候補が導出された場合に、動きベクトルが他の第1予測動きベクトル候補と重複する第1予測動きベクトル候補を特定する(S403)。
判定部414は、重複候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいか否かを判定する(S404)。ここで、重複候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいと判定された場合(S404のYes)、第2導出部415は、第2予測動きベクトル候補を導出する(S405)。一方、重複候補を除く第1予測動きベクトル候補の数が、決定された最大数より小さいと判定されなかった場合(S404のNo)、第2導出部415は、第2予測動きベクトル候補を導出しない。
復号化部420は、ビットストリームに付加された符号化されたインデックスであって予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて復号化する(S406)。
予測制御部430は、復号化されたインデックスに基づいて、第1予測動きベクトル候補および第2予測動きベクトル候補の中から復号化対象ブロックの復号化に用いられる予測動きベクトルを選択する(S407)。
なお、ここでは、インデックスの復号化処理(S406)は、予測動きベクトル候補が導出された後に行われていたが、必ずしもこのような順番で行われる必要はない。例えば、インデックスの復号化処理(S406)の後に、予測動きベクトル候補の導出処理(S402〜S405)が行われてもよい。また、インデックスの復号化処理(S406)と、予測動きベクトル候補の導出処理(S402〜S405)とは、並列に行われてもよい。これにより、復号化の処理速度を向上させることができる。
以上のように、本実施の形態に係る動画像復号化装置400によれば、予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて復号化することができる。つまり、実際に導出される予測動きベクトル候補の数に依存せずに、インデックスを復号化することができる。したがって、予測動きベクトル候補の導出に必要な情報(例えば、co−locatedブロック等の情報)がロスされた場合でも、インデックスを復号化することができ、エラー耐性を向上させることが可能となる。さらに、予測動きベクトル候補の導出処理を待たずにインデックスの復号化処理を行うことができ、予測動きベクトル候補の導出処理とインデックスの復号化処理とを並列に行うことも可能となる。
さらに、本実施の形態に係る動画像復号化装置400によれば、第1予測動きベクトル候補の数が最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出することができる。したがって、最大数を超えない範囲で予測動きベクトル候補の数を増加させることができ、符号化効率が向上された符号化画像を復号化することが可能となる。
また、本実施の形態に係る動画像復号化装置400によれば、重複する第1予測動きベクトル候補を除く第1予測動きベクトル候補の数に応じて第2予測動きベクトル候補を導出することができる。その結果、第2予測動きベクトル候補の数を増加させることができ、選択可能な、予測方向、動きベクトルおよび参照ピクチャインデックスの組合せの種類を増やすことができる。したがって、さらに符号化効率が向上された符号化画像を復号化することが可能となる。
なお、本実施の形態では、動画像復号化装置400は、特定部413を備えていたが、実施の形態2と同様に、必ずしも特定部413を備える必要はない。つまり、図30に示すフローチャートに、必ずしもステップS403が含まれる必要はない。このような場合であっても、動画像復号化装置400は、予測動きベクトル候補を特定するためのインデックスを、決定された最大数を用いて復号化することができるので、エラー耐性を向上させることが可能となる。
また、本実施の形態では、図30に示すように、第1導出部412が第1予測動きベクトル候補を導出した後に、特定部413が重複候補を特定していたが、必ずしもこのように順に処理される必要はない。例えば、第1導出部412は、動きベクトルが既に導出された第1予測動きベクトル候補と重複しない予測動きベクトル候補を第1予測動きベクトル候補として導出してもよい。
以上、本発明の1つまたは複数の態様に係る動画像符号化装置および動画像復号化装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の1つまたは複数の態様の範囲内に含まれてもよい。
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の動画像符号化装置または動画像復号化装置などを実現するソフトウェアは、次のようなプログラムである。
すなわち、このプログラムは、コンピュータに、符号化対象ブロックの動きベクトルを符号化する際に用いる予測動きベクトルを算出して、前記符号化対象ブロックを符号化することでビットストリームを生成する動画像符号化方法であって、前記予測動きベクトルの候補となる予測動きベクトル候補の最大数を決定する決定ステップと、第1予測動きベクトル候補を導出する第1導出ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいか否かを判定する判定ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出する第2導出ステップと、前記第1予測動きベクトル候補および第2予測動きベクトル候補の中から前記符号化対象ブロックの前記動きベクトルの符号化に用いる前記予測動きベクトルを選択する選択ステップと、選択された前記予測動きベクトルを特定するためのインデックスを、決定された前記最大数を用いて符号化し、符号化した前記インデックスを前記ビットストリームに付加する符号化ステップとを含む動画像符号化方法を実行させる。
あるいは、このプログラムは、コンピュータに、ビットストリームに含まれる復号化対象ブロックの動きベクトルを復号化する際に用いる予測動きベクトルを算出して、前記復号化対象ブロックを復号化する動画像復号化方法であって、前記予測動きベクトルの候補となる予測動きベクトル候補の最大数を決定する決定ステップと、第1予測動きベクトル候補を導出する第1導出ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいか否かを判定する判定ステップと、前記第1予測動きベクトル候補の数が前記最大数より小さいと判定された場合に、第2予測動きベクトル候補を導出する第2導出ステップと、前記ビットストリームに付加された符号化されたインデックスであって前記予測動きベクトルを特定するためのインデックスを、決定された前記最大数を用いて復号化する復号化ステップと、復号された前記インデックスに基づいて、前記第1予測動きベクトル候補および前記第2予測動きベクトル候補の中から前記復号対象ブロックの復号に用いられる予測動きベクトルを選択する選択ステップとを含む動画像復号化方法を実行させる。
(実施の形態5)
上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。
図31は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。
このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。
しかし、コンテンツ供給システムex100は図31のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。
カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W−CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。
コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の一態様に係る画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。
なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。
また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD−ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。
また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。
以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。
なお、コンテンツ供給システムex100の例に限らず、図32に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の一態様に係る画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。
また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。
図33は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。
また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の一態様に係る画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。
まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。
また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。
また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。
一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図34に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。
以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。
図35に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。
以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。
また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図33に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。
図36Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。
さらに、携帯電話ex114の構成例について、図36Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。
電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。
携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。
さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。
データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の一態様に係る画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。
多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。
データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の一態様に係る画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。
また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。
このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。
また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。
(実施の形態6)
上記各実施の形態で示した動画像符号化方法または装置と、MPEG−2、MPEG4−AVC、VC−1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。
この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG−2トランスポートストリーム形式のデジタルストリームである。
図37は、多重化データの構成を示す図である。図37に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC−3、Dolby Digital Plus、MLP、DTS、DTS−HD、または、リニアPCMのなどの方式で符号化されている。
多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
図38は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。
図39は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図39における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図39の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time−Stamp)やピクチャの復号時刻であるDTS(Decoding Time−Stamp)が格納される。
図40は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD−ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図40下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
図41はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
多重化データ情報ファイルは、図42に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
多重化データ情報は図42に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
ストリーム属性情報は図43に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
また、本実施の形態における動画像復号化方法のステップを図44に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。
このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。
(実施の形態7)
上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図45に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。
なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。
また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。
なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
(実施の形態8)
上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図46は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。
より具体的には、駆動周波数切替え部ex803は、図45のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図45の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態6で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態6で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図48のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。
図47は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。
さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。
また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4−AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。
さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。
このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。
(実施の形態9)
テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG−2、MPEG4−AVC、VC−1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図49Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4−AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4−AVC規格に対応する復号処理部ex902を共有し、MPEG4−AVC規格に対応しない、本発明の一態様に特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明の一態様は、動き補償に特徴を有していることから、例えば、動き補償については専用の復号処理部ex901を用い、それ以外のエントロピー復号、デブロッキング・フィルタ、逆量子化のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4−AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。
また、処理を一部共有化する他の例を図49Bのex1000に示す。この例では、本発明の一態様に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の一態様に係る動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明の一態様、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。
このように、本発明の一態様に係る動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。
本発明に係る動画像符号化方法および動画像復号化方法は、あらゆるマルチメディアデータに適用することができ、動画像符号化および復号化のエラー耐性を向上させることが可能であり、例えば携帯電話、DVD装置、およびパーソナルコンピュータ等を用いた蓄積、伝送、通信等における動画像符号化方法および動画像復号化方法として有用である。
100、200 動画像符号化装置
101 減算部
102 直交変換部
103 量子化部
104、302 逆量子化部
105、303 逆直交変換部
106、304 加算部
107、305 ブロックメモリ
108、306 フレームメモリ
109、307 イントラ予測部
110、308 インター予測部
111、309 インター予測制御部
112 ピクチャタイプ決定部
113、310 スイッチ
114、311 予測動きベクトル候補算出部
115、312 colPicメモリ
116 可変長符号化部
210、410 予測動きベクトル候補導出部
211、411 決定部
212、412 第1導出部
213、413 特定部
214、414 判定部
215、415 第2導出部
220、430 予測制御部
230 符号化部
300、400 動画像復号化装置
301 可変長復号化部
420 復号化部

Claims (8)

  1. 復号化対象ブロックを復号化する動画像復号化方法であって、
    第1ブロックの復号化に用いられた第1動きベクトルに基づいて第1予測動きベクトルを有する第1候補を導出し、
    前記第1候補を含む1以上の候補の数が最大候補数より小さいか否かを判定し、
    前記第1候補を含む1以上の候補の数が最大候補数より小さい場合に、第2予測動きベクトルを有する第2候補を導出し、
    予測動きベクトルを有する候補に対応する符号化されたインデックスを復号化し、
    前記候補は、前記第1候補および前記第2候補を含む複数の候補のうちの1つである
    動画像復号化方法。
  2. 前記復号化対象ブロックの動きベクトルは、前記復号化対象ブロックの差分動きベクトルと前記予測動きベクトルとの和である
    請求項に記載の動画像復号化方法。
  3. 復号化対象ブロックを復号化する動画像復号化装置であって、
    第1ブロックの復号化に用いられた第1動きベクトルに基づいて第1予測動きベクトルを有する第1候補を導出する第1導出器と、
    前記第1候補を含む1以上の候補の数が最大候補数より小さいか否かを判定する判定器と、
    前記第1候補を含む1以上の候補の数が最大候補数より小さい場合に、第2予測動きベクトルを有する第2候補を導出する第2導出器と、
    予測動きベクトルを有する候補に対応する符号化されたインデックスを復号化する復号化器とを備え、
    前記候補は、前記第1候補および前記第2候補を含む複数の候補のうちの1つである
    動画像復号化装置。
  4. 前記復号化対象ブロックの動きベクトルは、前記復号化対象ブロックの差分動きベクトルと前記予測動きベクトルとの和である
    請求項に記載の動画像復号化装置。
  5. 前記最大候補数は、5である
    請求項1に記載の動画像復号化方法。
  6. 前記最大候補数は、4である
    請求項1に記載の動画像復号化方法。
  7. 前記最大候補数は、3である
    請求項1に記載の動画像復号化方法。
  8. 前記最大候補数は、2である
    請求項1に記載の動画像復号化方法。
JP2013517856A 2011-05-27 2012-05-25 動画像復号化方法、および動画像復号化装置 Active JP5937587B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161490747P 2011-05-27 2011-05-27
US61/490,747 2011-05-27
PCT/JP2012/003416 WO2012164886A1 (ja) 2011-05-27 2012-05-25 動画像符号化方法、動画像符号化装置、動画像復号化方法、動画像復号化装置、および動画像符号化復号化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016096568A Division JP6150190B2 (ja) 2011-05-27 2016-05-12 動画像符号化方法、および動画像符号化装置

Publications (2)

Publication Number Publication Date
JPWO2012164886A1 JPWO2012164886A1 (ja) 2015-02-23
JP5937587B2 true JP5937587B2 (ja) 2016-06-22

Family

ID=47258763

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2013517856A Active JP5937587B2 (ja) 2011-05-27 2012-05-25 動画像復号化方法、および動画像復号化装置
JP2016096568A Active JP6150190B2 (ja) 2011-05-27 2016-05-12 動画像符号化方法、および動画像符号化装置
JP2017094630A Active JP6436404B2 (ja) 2011-05-27 2017-05-11 動画像復号化方法、および動画像復号化装置
JP2018206480A Active JP7065354B2 (ja) 2011-05-27 2018-11-01 動画像復号化方法、および動画像復号化装置
JP2021009156A Active JP7228851B2 (ja) 2011-05-27 2021-01-22 動画像復号化方法
JP2023016132A Active JP7507407B2 (ja) 2011-05-27 2023-02-06 動画像符号化方法及び動画像符号化装置
JP2024091592A Pending JP2024113087A (ja) 2011-05-27 2024-06-05 ビットストリーム及びビットストリームを送信する方法

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2016096568A Active JP6150190B2 (ja) 2011-05-27 2016-05-12 動画像符号化方法、および動画像符号化装置
JP2017094630A Active JP6436404B2 (ja) 2011-05-27 2017-05-11 動画像復号化方法、および動画像復号化装置
JP2018206480A Active JP7065354B2 (ja) 2011-05-27 2018-11-01 動画像復号化方法、および動画像復号化装置
JP2021009156A Active JP7228851B2 (ja) 2011-05-27 2021-01-22 動画像復号化方法
JP2023016132A Active JP7507407B2 (ja) 2011-05-27 2023-02-06 動画像符号化方法及び動画像符号化装置
JP2024091592A Pending JP2024113087A (ja) 2011-05-27 2024-06-05 ビットストリーム及びビットストリームを送信する方法

Country Status (10)

Country Link
US (9) US9485518B2 (ja)
EP (1) EP2717576A4 (ja)
JP (7) JP5937587B2 (ja)
KR (2) KR102068235B1 (ja)
CN (1) CN103563384B (ja)
CA (1) CA2834125C (ja)
MX (1) MX2013012124A (ja)
RU (1) RU2601192C2 (ja)
TW (1) TWI580257B (ja)
WO (1) WO2012164886A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066110B2 (en) 2011-03-08 2015-06-23 Texas Instruments Incorporated Parsing friendly and error resilient merge flag coding in video coding
PL3136727T3 (pl) 2011-04-12 2018-11-30 Sun Patent Trust Sposób kodowania ruchomych obrazów i urządzenie do kodowania ruchomych obrazów
US9485518B2 (en) * 2011-05-27 2016-11-01 Sun Patent Trust Decoding method and apparatus with candidate motion vectors
US9866859B2 (en) * 2011-06-14 2018-01-09 Texas Instruments Incorporated Inter-prediction candidate index coding independent of inter-prediction candidate list construction in video coding
TWI587692B (zh) * 2011-06-27 2017-06-11 三星電子股份有限公司 運動資訊之解碼方法
JP2013012905A (ja) * 2011-06-29 2013-01-17 Sony Corp 画像処理装置および方法
WO2013001749A1 (ja) 2011-06-29 2013-01-03 パナソニック株式会社 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置および画像符号化復号装置
KR101900986B1 (ko) 2011-06-30 2018-09-20 선 페이턴트 트러스트 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치, 및, 화상 부호화 복호 장치
CN105245874B (zh) * 2011-06-30 2017-05-24 Jvc建伍株式会社 图像解码装置和图像解码方法
PL2744202T3 (pl) 2011-08-11 2020-12-28 Sun Patent Trust Sposób kodowania obrazów, sposób dekodowania obrazów, urządzenie do kodowania obrazów, urządzenie do dekodowania obrazów oraz urządzenie do kodowania/dekodowania obrazów
JP5488666B2 (ja) * 2011-09-28 2014-05-14 株式会社Jvcケンウッド 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム
KR101809880B1 (ko) 2011-09-28 2017-12-15 가부시키가이샤 제이브이씨 켄우드 동영상 디코딩 장치, 동영상 디코딩 방법 및 동영상 디코딩 프로그램을 저장한 기록매체
JP5884697B2 (ja) * 2011-09-28 2016-03-15 株式会社Jvcケンウッド 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム
MY180182A (en) 2011-10-19 2020-11-24 Sun Patent Trust Picture coding method,picture coding apparatus,picture decoding method,and picture decoding apparatus
HRP20230687T1 (hr) 2012-04-12 2023-10-13 Jvckenwood Corporation Konstrukcija popisa udruženih kandidata
JP6020323B2 (ja) * 2012-04-12 2016-11-02 株式会社Jvcケンウッド 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、送信装置、送信方法及び送信プログラム
JP5633597B2 (ja) * 2012-04-12 2014-12-03 株式会社Jvcケンウッド 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法及び受信プログラム
EP2847996B1 (en) 2012-05-09 2020-10-07 Sun Patent Trust Method of performing motion vector prediction, encoding and decoding methods, and apparatuses thereof
US20130343459A1 (en) * 2012-06-22 2013-12-26 Nokia Corporation Method and apparatus for video coding
US9699450B2 (en) * 2012-10-04 2017-07-04 Qualcomm Incorporated Inter-view predicted motion vector for 3D video
US9826239B2 (en) * 2013-01-07 2017-11-21 Lg Electronics Inc. Video signal processing method and device
US10735762B2 (en) * 2014-12-26 2020-08-04 Sony Corporation Image processing apparatus and image processing method
JP6525611B2 (ja) * 2015-01-29 2019-06-05 キヤノン株式会社 画像処理装置およびその制御方法
WO2019225993A1 (ko) * 2018-05-23 2019-11-28 주식회사 케이티 비디오 신호 처리 방법 및 장치
CN118803268A (zh) * 2018-06-29 2024-10-18 株式会社Kt 解码图像和编码图像的方法以及用于传送压缩视频数据的设备
US10735759B2 (en) * 2018-10-06 2020-08-04 Tencent America LLC Pairwise average motion vector prediction
CN111107354A (zh) 2018-10-29 2020-05-05 华为技术有限公司 一种视频图像预测方法及装置
EP3905685B1 (en) * 2018-12-28 2024-03-20 JVCKenwood Corporation Image encoding device, image encoding method, image encoding program, image decoding device, image decoding method, and image decoding program
TWI782887B (zh) 2018-12-28 2022-11-01 日商Jvc建伍股份有限公司 影像編碼裝置、影像編碼方法、影像編碼程式、影像解碼裝置、影像解碼方法及影像解碼程式
US11025935B2 (en) * 2019-01-10 2021-06-01 Tencent America LLC Method and apparatus for history based motion information buffer update with parallel processing capability
CN116800959B (zh) * 2019-03-12 2024-03-26 北京达佳互联信息技术有限公司 用于视频编码的方法、装置和存储介质
TWI771991B (zh) 2021-04-21 2022-07-21 宏芯科技股份有限公司 視訊影像插補裝置及適應性移動補償畫面插補方法
JP2024131593A (ja) 2023-03-16 2024-09-30 ヤマハ株式会社 楽器

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0314018B1 (en) 1987-10-30 1993-09-01 Nippon Telegraph And Telephone Corporation Method and apparatus for multiplexed vector quantization
FR2725577B1 (fr) 1994-10-10 1996-11-29 Thomson Consumer Electronics Procede de codage ou de decodage de vecteurs mouvement et dispositif de codage ou de decodage mettant en oeuvre ledit procede
US5995080A (en) 1996-06-21 1999-11-30 Digital Equipment Corporation Method and apparatus for interleaving and de-interleaving YUV pixel data
JP3263807B2 (ja) 1996-09-09 2002-03-11 ソニー株式会社 画像符号化装置および画像符号化方法
US6148026A (en) 1997-01-08 2000-11-14 At&T Corp. Mesh node coding to enable object based functionalities within a motion compensated transform video coder
JPH10224800A (ja) 1997-02-07 1998-08-21 Matsushita Electric Ind Co Ltd 動きベクトル符号化方法および復号化方法
US6043838A (en) 1997-11-07 2000-03-28 General Instrument Corporation View offset estimation for stereoscopic video coding
JP4004653B2 (ja) 1998-08-03 2007-11-07 カスタム・テクノロジー株式会社 動きベクトル検出方法および装置、記録媒体
US6192148B1 (en) 1998-11-05 2001-02-20 Winbond Electronics Corp. Method for determining to skip macroblocks in encoding video
US6192080B1 (en) 1998-12-04 2001-02-20 Mitsubishi Electric Research Laboratories, Inc. Motion compensated digital video signal processing
US6594313B1 (en) 1998-12-23 2003-07-15 Intel Corporation Increased video playback framerate in low bit-rate video applications
JP4487374B2 (ja) 1999-06-01 2010-06-23 ソニー株式会社 符号化装置及び符号化方法並びに多重化装置及び多重化方法
US6842483B1 (en) 2000-09-11 2005-01-11 The Hong Kong University Of Science And Technology Device, method and digital video encoder for block-matching motion estimation
JP2002152750A (ja) 2000-11-10 2002-05-24 Matsushita Electric Ind Co Ltd 動きベクトル検出方法および装置
CN1484922A (zh) * 2001-11-06 2004-03-24 松下电器产业株式会社 运动图像编码方法及运动图像解码方法
JP4015934B2 (ja) 2002-04-18 2007-11-28 株式会社東芝 動画像符号化方法及び装置
JP2004088722A (ja) 2002-03-04 2004-03-18 Matsushita Electric Ind Co Ltd 動画像符号化方法および動画像復号化方法
AU2003235174A1 (en) 2002-04-19 2003-11-03 Matsushita Electric Industrial Co., Ltd Method for calculating motion vector
ES2576629T3 (es) 2002-04-19 2016-07-08 Panasonic Intellectual Property Corporation Of America Método de cálculo de vectores de movimiento
TWI259726B (en) 2002-04-19 2006-08-01 Matsushita Electric Ind Co Ltd Motion vector derivation method
US20040001546A1 (en) 2002-06-03 2004-01-01 Alexandros Tourapis Spatiotemporal prediction for bidirectionally predictive (B) pictures and motion vector prediction for multi-picture reference motion compensation
AU2003242037A1 (en) 2002-07-02 2004-01-23 Matsushita Electric Industrial Co., Ltd. Image encoding method and image decoding method
US8406301B2 (en) 2002-07-15 2013-03-26 Thomson Licensing Adaptive weighting of reference pictures in video encoding
WO2004008773A1 (ja) 2002-07-11 2004-01-22 Matsushita Electric Industrial Co., Ltd. フィルタリング強度の決定方法、動画像符号化方法、および動画像復号化方法
CN100553338C (zh) 2002-07-15 2009-10-21 株式会社日立制作所 动态图像编码方法
AU2003256591A1 (en) 2002-07-19 2004-02-09 Celerity Group Inc. Variable resistance sensor with common reference leg
US7154952B2 (en) 2002-07-19 2006-12-26 Microsoft Corporation Timestamp-independent motion vector prediction for predictive (P) and bidirectionally predictive (B) pictures
US7023921B2 (en) 2002-08-06 2006-04-04 Motorola, Inc. Method and apparatus for determining block match quality
ES2650068T3 (es) 2002-08-08 2018-01-16 Godo Kaisha Ip Bridge 1 Procedimiento de codificación y procedimiento de descodificación de imágenes en movimiento
KR100506864B1 (ko) 2002-10-04 2005-08-05 엘지전자 주식회사 모션벡터 결정방법
BRPI0306684B1 (pt) 2002-11-01 2018-03-13 Godo Kaisha Ip Bridge 1 “Método e aparelho de codificação de um sinal de imagem e método e aparelho de decodificação de um sinal de imagem”
CN101141651B (zh) 2002-11-25 2010-11-10 松下电器产业株式会社 动态补偿方法、图像编码方法及图像解码方法
RU2375839C2 (ru) 2003-02-18 2009-12-10 Нокиа Корпорейшн Способ кодирования изображений
KR100693669B1 (ko) 2003-03-03 2007-03-09 엘지전자 주식회사 피일드 매크로 블록의 레퍼런스 픽쳐 결정 방법
US7266147B2 (en) 2003-03-31 2007-09-04 Sharp Laboratories Of America, Inc. Hypothetical reference decoder
KR20060037352A (ko) 2003-07-15 2006-05-03 톰슨 라이센싱 고속 검색 블록 매칭에 의한 움직임 추정
US7426308B2 (en) 2003-07-18 2008-09-16 Microsoft Corporation Intraframe and interframe interlace coding and decoding
KR100579542B1 (ko) 2003-07-29 2006-05-15 삼성전자주식회사 블럭 간의 상관성을 고려한 움직임 추정 장치 및 방법
KR20060060000A (ko) 2003-08-05 2006-06-02 코닌클리케 필립스 일렉트로닉스 엔.브이. 비디오 엔코딩 및 디코딩 방법들 및 장치들
US8064520B2 (en) 2003-09-07 2011-11-22 Microsoft Corporation Advanced bi-directional predictive coding of interlaced video
CN1225127C (zh) 2003-09-12 2005-10-26 中国科学院计算技术研究所 一种用于视频编码的编码端/解码端双向预测方法
FR2860678A1 (fr) 2003-10-01 2005-04-08 Thomson Licensing Sa Procede de codage differentiel
GB2407006A (en) 2003-10-08 2005-04-13 Sony Uk Ltd Communicating streamed payload data and packet based auxiliary data
JP3675464B2 (ja) 2003-10-29 2005-07-27 ソニー株式会社 動画像符号化装置および動画像符号化制御方法
TWI330976B (en) 2003-12-05 2010-09-21 Trident Microsystems Far East Method and apparatus for encoding/decoding dynamic graphic content
US7301482B1 (en) 2003-12-12 2007-11-27 Marvell International Ltd. Circuits, architectures, systems, methods, algorithms and software for conditional modulation coding
JP2005184042A (ja) 2003-12-15 2005-07-07 Sony Corp 画像復号装置及び画像復号方法並びに画像復号プログラム
US8190003B2 (en) 2004-01-14 2012-05-29 Samsung Electronics Co., Ltd. Storage medium storing interactive graphics stream activated in response to user's command, and reproducing apparatus for reproducing from the same
KR100608050B1 (ko) 2004-01-14 2006-08-02 삼성전자주식회사 사용자의 요구에 의해 활성화되는 인터랙티브 그래픽스트림을 저장한 저장 매체, 재생 장치 및 그 재생 방법
EP1583367A1 (en) 2004-03-30 2005-10-05 Matsushita Electric Industrial Co., Ltd. Motion estimation employing line and column vectors
DE602004030993D1 (de) 2004-04-30 2011-02-24 Panasonic Corp Bewegungsschätzung unter Verwendung von adaptiven räumlichen Verfeinerungsvektoren
JP4145275B2 (ja) 2004-07-27 2008-09-03 富士通株式会社 動きベクトル検出・補償装置
TWI250423B (en) 2004-07-30 2006-03-01 Ind Tech Res Inst Method for processing video images
TWI268715B (en) 2004-08-16 2006-12-11 Nippon Telegraph & Telephone Picture encoding method, picture decoding method, picture encoding apparatus, and picture decoding apparatus
EP1638333A1 (en) 2004-09-17 2006-03-22 Mitsubishi Electric Information Technology Centre Europe B.V. Rate adaptive video coding
JP4375305B2 (ja) 2004-10-26 2009-12-02 ソニー株式会社 情報処理装置および情報処理方法、記録媒体、並びに、プログラム
JP4148228B2 (ja) 2005-02-10 2008-09-10 ソニー株式会社 画像記録装置、画像再生制御装置、画像記録再生制御装置、これらの装置の処理方法およびその方法をコンピュータに実行させるプログラム
US7660354B2 (en) 2005-05-11 2010-02-09 Fang Shi Temporal error concealment for bi-directionally predicted frames
US8761258B2 (en) 2005-06-17 2014-06-24 The Hong Kong University Of Science And Technology Enhanced block-based motion estimation algorithms for video compression
US9661376B2 (en) 2005-07-13 2017-05-23 Polycom, Inc. Video error concealment method
EP1753242A2 (en) 2005-07-18 2007-02-14 Matsushita Electric Industrial Co., Ltd. Switchable mode and prediction information coding
US7697783B2 (en) 2005-07-26 2010-04-13 Sony Corporation Coding device, coding method, decoding device, decoding method, and programs of same
US20070025444A1 (en) 2005-07-28 2007-02-01 Shigeyuki Okada Coding Method
JP4401336B2 (ja) 2005-08-31 2010-01-20 三洋電機株式会社 符号化方法
JP2008011455A (ja) 2006-06-30 2008-01-17 Sanyo Electric Co Ltd 符号化方法
JP4570532B2 (ja) 2005-08-02 2010-10-27 パナソニック株式会社 動き検出装置、動き検出方法、集積回路およびプログラム
US20070030894A1 (en) 2005-08-03 2007-02-08 Nokia Corporation Method, device, and module for improved encoding mode control in video encoding
JP2007142637A (ja) 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd 画像情報符号化装置
KR101406156B1 (ko) 2006-02-02 2014-06-13 톰슨 라이센싱 움직임 보상 예측을 위한 적응 가중 선택 방법 및 장치
US9215475B2 (en) 2006-02-02 2015-12-15 Thomson Licensing Method and apparatus for motion estimation using combined reference bi-prediction
US20070200949A1 (en) 2006-02-21 2007-08-30 Qualcomm Incorporated Rapid tuning in multimedia applications
JP4757080B2 (ja) 2006-04-03 2011-08-24 パナソニック株式会社 動き検出装置、動き検出方法、動き検出集積回路および画像符号化装置
US7672377B2 (en) 2006-04-21 2010-03-02 Dilithium Holdings, Inc. Method and system for video encoding and transcoding
CN101090491B (zh) 2006-06-16 2016-05-18 香港科技大学 用于视频压缩的增强的基于块的运动估计算法
EP2030450B1 (en) 2006-06-19 2015-01-07 LG Electronics Inc. Method and apparatus for processing a video signal
KR20070120416A (ko) 2006-06-19 2007-12-24 엘지전자 주식회사 비디오 신호 디코딩 방법 및 장치, 비디오 신호 인코딩방법 및 장치
DE102006043707A1 (de) 2006-09-18 2008-03-27 Robert Bosch Gmbh Verfahren zur Datenkompression in einer Videosequenz
US8250618B2 (en) 2006-09-18 2012-08-21 Elemental Technologies, Inc. Real-time network adaptive digital video encoding/decoding
US8213509B2 (en) * 2006-10-06 2012-07-03 Calos Fund Limited Liability Company Video coding on parallel processing systems
US9319700B2 (en) 2006-10-12 2016-04-19 Qualcomm Incorporated Refinement coefficient coding based on history of corresponding transform coefficient values
US8565314B2 (en) 2006-10-12 2013-10-22 Qualcomm Incorporated Variable length coding table selection based on block type statistics for refinement coefficient coding
US8325819B2 (en) 2006-10-12 2012-12-04 Qualcomm Incorporated Variable length coding table selection based on video block type for refinement coefficient coding
US8599926B2 (en) 2006-10-12 2013-12-03 Qualcomm Incorporated Combined run-length coding of refinement and significant coefficients in scalable video coding enhancement layers
CN101529918B (zh) 2006-10-30 2011-08-03 日本电信电话株式会社 预测参照信息生成方法、活动图像的编码及解码方法及其装置
JP2008199587A (ja) 2007-01-18 2008-08-28 Matsushita Electric Ind Co Ltd 画像符号化装置、画像復号化装置および方法
JP5025286B2 (ja) 2007-02-28 2012-09-12 シャープ株式会社 符号化装置及び復号装置
TW200845758A (en) 2007-05-03 2008-11-16 Nat Univ Chung Cheng Fast intra coding algorithms for dynamic definition adjustment
KR101403341B1 (ko) 2007-03-28 2014-06-09 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
EP2140684B1 (en) 2007-04-12 2018-08-15 Thomson Licensing DTV Method and apparatus for context dependent merging for skip-direct modes for video encoding and decoding
JPWO2008136178A1 (ja) 2007-04-26 2010-07-29 パナソニック株式会社 動き検出装置、動き検出方法、及び動き検出プログラム
JP2008283490A (ja) 2007-05-10 2008-11-20 Ntt Docomo Inc 動画像符号化装置、方法及びプログラム、並びに動画像復号化装置、方法及びプログラム
EP2160900A1 (en) 2007-06-12 2010-03-10 Thomson Licensing Methods and apparatus supporting multi-pass video syntax structure for slice data
KR101495886B1 (ko) 2007-07-19 2015-02-26 한국전자통신연구원 하향링크 프레임 생성 방법 및 셀 탐색 방법
KR101597325B1 (ko) 2007-10-16 2016-03-02 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
KR101228020B1 (ko) 2007-12-05 2013-01-30 삼성전자주식회사 사이드 매칭을 이용한 영상의 부호화 방법 및 장치, 그복호화 방법 및 장치
CN101198064A (zh) 2007-12-10 2008-06-11 武汉大学 一种分辨率分层技术中的运动矢量预测方法
KR20090095012A (ko) 2008-03-04 2009-09-09 삼성전자주식회사 연속적인 움직임 추정을 이용한 영상 부호화, 복호화 방법및 장치
JP2009218873A (ja) * 2008-03-11 2009-09-24 Nec Personal Products Co Ltd デジタル放送受信機、および、プログラム
ES2812473T3 (es) * 2008-03-19 2021-03-17 Nokia Technologies Oy Vector de movimiento combinado y predicción de índice de referencia para la codificación de vídeo
BRPI0910477A2 (pt) 2008-04-11 2015-09-29 Thomson Licensing método e equipamento para predição de equiparação de gabarito (tmp) na codificação e decodificação de vídeo
KR101596829B1 (ko) 2008-05-07 2016-02-23 엘지전자 주식회사 비디오 신호의 디코딩 방법 및 장치
PT104083A (pt) 2008-06-02 2009-12-02 Inst Politecnico De Leiria Método para transcodificar imagens de vídeo h.264/avc em mpeg-2
EP2394431A4 (en) 2009-02-05 2013-11-06 Thomson Licensing METHOD AND DEVICES FOR ADAPTIVE MODE VIDEO CODING AND DECODING
CN101931803B (zh) 2009-06-26 2013-01-09 华为技术有限公司 视频图像运动信息获取方法、装置及设备、模板构造方法
KR101452859B1 (ko) 2009-08-13 2014-10-23 삼성전자주식회사 움직임 벡터를 부호화 및 복호화하는 방법 및 장치
US9060176B2 (en) 2009-10-01 2015-06-16 Ntt Docomo, Inc. Motion vector prediction in video coding
WO2011046008A1 (ja) 2009-10-16 2011-04-21 シャープ株式会社 動画像符号化装置、および、動画像復号装置
TWI566586B (zh) 2009-10-20 2017-01-11 湯姆生特許公司 一序列形象的現時區塊之寫碼方法和重建方法
KR101459714B1 (ko) 2009-10-28 2014-11-13 에스케이텔레콤 주식회사 공간 분할을 이용한 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
KR101441905B1 (ko) 2009-11-18 2014-09-24 에스케이텔레콤 주식회사 후보 예측 움직임 벡터 집합 선택을 이용한 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
JPWO2011061880A1 (ja) * 2009-11-19 2013-04-04 三菱電機株式会社 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法
KR101807170B1 (ko) 2009-11-24 2017-12-08 에스케이 텔레콤주식회사 적응적 2차예측 기반 영상 부호화/복호화 방법, 장치 및 기록 매체
WO2011064673A1 (en) 2009-11-30 2011-06-03 France Telecom Method of and apparatus for encoding video frames, method of and apparatus for decoding video frames
CN101860754B (zh) 2009-12-16 2013-11-13 香港应用科技研究院有限公司 运动矢量编码和解码的方法和装置
JP2013514718A (ja) * 2009-12-17 2013-04-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 映像符号化の方法及び装置
US9036692B2 (en) 2010-01-18 2015-05-19 Mediatek Inc. Motion prediction method
CN102860006B (zh) * 2010-02-05 2016-11-23 瑞典爱立信有限公司 管理预测运动向量候选
US9100649B2 (en) 2010-02-10 2015-08-04 Lg Electronics Inc. Method and apparatus for processing a video signal
US8995527B2 (en) 2010-02-19 2015-03-31 Qualcomm Incorporated Block type signalling in video coding
WO2011110039A1 (en) 2010-03-12 2011-09-15 Mediatek Singapore Pte. Ltd. Motion prediction methods
CN102210910B (zh) 2010-04-02 2013-02-13 重庆融海超声医学工程研究中心有限公司 一种超声换能器
KR101752418B1 (ko) 2010-04-09 2017-06-29 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
ES2936323T3 (es) * 2010-05-04 2023-03-16 Lg Electronics Inc Método y aparato para codificar y descodificar una señal de vídeo
US9124898B2 (en) 2010-07-12 2015-09-01 Mediatek Inc. Method and apparatus of temporal motion vector prediction
CN106412602B (zh) 2010-09-02 2019-11-15 Lg电子株式会社 编码和解码视频的方法和使用该方法的装置
US20120082228A1 (en) 2010-10-01 2012-04-05 Yeping Su Nested entropy encoding
US10104391B2 (en) 2010-10-01 2018-10-16 Dolby International Ab System for nested entropy encoding
JP2012109720A (ja) 2010-11-16 2012-06-07 Panasonic Corp 画像変換装置、画像再生装置及び画像変換方法
US8824558B2 (en) 2010-11-23 2014-09-02 Mediatek Inc. Method and apparatus of spatial motion vector prediction
US8976873B2 (en) 2010-11-24 2015-03-10 Stmicroelectronics S.R.L. Apparatus and method for performing error concealment of inter-coded video frames
US8711940B2 (en) 2010-11-29 2014-04-29 Mediatek Inc. Method and apparatus of motion vector prediction with extended motion vector predictor
EP2656610A4 (en) 2010-12-21 2015-05-20 Intel Corp SYSTEM AND METHOD FOR EXTENDED DMVD PROCESSING
US9049455B2 (en) 2010-12-28 2015-06-02 Panasonic Intellectual Property Corporation Of America Image coding method of coding a current picture with prediction using one or both of a first reference picture list including a first current reference picture for a current block and a second reference picture list including a second current reference picture for the current block
CN106231339B (zh) 2011-01-07 2019-07-09 Lg电子株式会社 视频编码和解码的装置
US20130301734A1 (en) 2011-01-12 2013-11-14 Canon Kabushiki Kaisha Video encoding and decoding with low complexity
US9319716B2 (en) * 2011-01-27 2016-04-19 Qualcomm Incorporated Performing motion vector prediction for video coding
US9066110B2 (en) * 2011-03-08 2015-06-23 Texas Instruments Incorporated Parsing friendly and error resilient merge flag coding in video coding
KR101532665B1 (ko) 2011-03-14 2015-07-09 미디어텍 인크. 시간적 움직임 백터 예측을 도출하기 위한 방법 및 장치
US9648334B2 (en) 2011-03-21 2017-05-09 Qualcomm Incorporated Bi-predictive merge mode based on uni-predictive neighbors in video coding
US9143795B2 (en) 2011-04-11 2015-09-22 Texas Instruments Incorporated Parallel motion estimation in video coding
PL3136727T3 (pl) 2011-04-12 2018-11-30 Sun Patent Trust Sposób kodowania ruchomych obrazów i urządzenie do kodowania ruchomych obrazów
CA2833893C (en) 2011-05-24 2024-02-27 Panasonic Corporation Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US9485518B2 (en) * 2011-05-27 2016-11-01 Sun Patent Trust Decoding method and apparatus with candidate motion vectors
US9866859B2 (en) 2011-06-14 2018-01-09 Texas Instruments Incorporated Inter-prediction candidate index coding independent of inter-prediction candidate list construction in video coding
CN106791834B (zh) 2011-06-14 2020-07-10 三星电子株式会社 对图像进行解码的方法和设备
US9282338B2 (en) 2011-06-20 2016-03-08 Qualcomm Incorporated Unified merge mode and adaptive motion vector prediction mode candidates selection
CN105245874B (zh) 2011-06-30 2017-05-24 Jvc建伍株式会社 图像解码装置和图像解码方法
WO2013001803A1 (ja) 2011-06-30 2013-01-03 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法、画像符号化プログラム、画像復号装置、画像復号方法および画像復号プログラム
AU2012323631B2 (en) 2011-10-11 2015-09-17 Mediatek Inc. Method and apparatus of motion and disparity vector derivation for 3D video coding and HEVC
JP5870047B2 (ja) 2013-01-08 2016-02-24 住友ゴム工業株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
JP2024113087A (ja) 2024-08-21
US20160345020A1 (en) 2016-11-24
US20120328021A1 (en) 2012-12-27
RU2013147414A (ru) 2015-08-10
JP2017158204A (ja) 2017-09-07
US20170257642A1 (en) 2017-09-07
US11076170B2 (en) 2021-07-27
RU2601192C2 (ru) 2016-10-27
TW201311009A (zh) 2013-03-01
JPWO2012164886A1 (ja) 2015-02-23
JP2019036993A (ja) 2019-03-07
EP2717576A1 (en) 2014-04-09
US11895324B2 (en) 2024-02-06
US9723322B2 (en) 2017-08-01
JP2023041958A (ja) 2023-03-24
JP6150190B2 (ja) 2017-06-21
US20240129521A1 (en) 2024-04-18
US9485518B2 (en) 2016-11-01
KR102068235B1 (ko) 2020-01-20
JP2021083097A (ja) 2021-05-27
JP6436404B2 (ja) 2018-12-12
US20190124354A1 (en) 2019-04-25
TWI580257B (zh) 2017-04-21
US9883199B2 (en) 2018-01-30
CN103563384A (zh) 2014-02-05
JP7507407B2 (ja) 2024-06-28
US11575930B2 (en) 2023-02-07
KR20140015354A (ko) 2014-02-06
KR102148435B1 (ko) 2020-08-26
US20170006305A1 (en) 2017-01-05
EP2717576A4 (en) 2014-11-05
US10212450B2 (en) 2019-02-19
CN103563384B (zh) 2017-09-08
JP7228851B2 (ja) 2023-02-27
MX2013012124A (es) 2014-01-23
JP7065354B2 (ja) 2022-05-12
KR20200010569A (ko) 2020-01-30
US20210337231A1 (en) 2021-10-28
US20230130122A1 (en) 2023-04-27
CA2834125C (en) 2019-02-26
US20170289568A1 (en) 2017-10-05
US10200714B2 (en) 2019-02-05
JP2016167870A (ja) 2016-09-15
WO2012164886A1 (ja) 2012-12-06
CA2834125A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP7065354B2 (ja) 動画像復号化方法、および動画像復号化装置
JP6384691B2 (ja) 動画像符号化方法および動画像符号化装置
JP6435574B2 (ja) 動画像復号化方法、および動画像復号化装置
JP6340707B2 (ja) 画像符号化方法および画像符号化装置
JP6094983B2 (ja) 画像処理装置
JP6403125B2 (ja) 復号方法および復号装置
JP6089312B2 (ja) 画像処理装置、画像符号化装置及び方法、並びに、画像復号装置及び方法
JP5937588B2 (ja) 画像復号方法、および画像復号装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313133

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250