JP5930380B2 - Alumina sintered body and manufacturing method thereof - Google Patents

Alumina sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP5930380B2
JP5930380B2 JP2012044239A JP2012044239A JP5930380B2 JP 5930380 B2 JP5930380 B2 JP 5930380B2 JP 2012044239 A JP2012044239 A JP 2012044239A JP 2012044239 A JP2012044239 A JP 2012044239A JP 5930380 B2 JP5930380 B2 JP 5930380B2
Authority
JP
Japan
Prior art keywords
range
sintered body
powder
particle diameter
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012044239A
Other languages
Japanese (ja)
Other versions
JP2013180909A (en
Inventor
紀子 齋藤
紀子 齋藤
中村 浩章
中村  浩章
小倉 知之
知之 小倉
友幸 三浦
友幸 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012044239A priority Critical patent/JP5930380B2/en
Publication of JP2013180909A publication Critical patent/JP2013180909A/en
Application granted granted Critical
Publication of JP5930380B2 publication Critical patent/JP5930380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、アルミナ質焼結体及びその製造方法に関する。   The present invention relates to an alumina sintered body and a method for producing the same.

アルミナ質焼結体は、Cl又はFなどの腐食性ガスに対する耐食性が高く、かつ、安価であるため、半導体製造装置のようにマイクロ波又は高周波数の電磁波が使用され、当該腐食性ガスが用いられる環境下に置かれる装置に用いられている。アルミナ質焼結体の誘電正接(tanδ)を低く抑えるため、低アルカリの高純度原料を用いる方法等が提案されている。   Since the alumina sintered body has high corrosion resistance against a corrosive gas such as Cl or F and is inexpensive, microwaves or high-frequency electromagnetic waves are used as in a semiconductor manufacturing apparatus, and the corrosive gas is used. It is used for equipment that is placed in an environment where In order to keep the dielectric loss tangent (tan δ) of the alumina sintered body low, a method using a high purity raw material with low alkali has been proposed.

特開2001−072462号公報JP 2001-074262 A

しかし、特許文献1では、TiOが添加された場合、焼結性が促進され、かつ、焼結体のQ値(tanδ)が低減するが、Alの粒成長よりも第2相であるAlTiO相の生成が優先的になり、当該焼結体の粒界の面積が増える可能性がある。このため、アルミナ質焼結体の加工容易性が低下する可能性がある。また、不可避不純物を内包するAlTiOの組織内の不均一及び結晶粒子に内包されず粒界面に存在する不可避不純物の分布の広がりにより、内包されない不可避不純物が、イオンジャンプなどによってQ値に悪影響を与える可能性も考えられる。 However, in Patent Document 1, when TiO 2 is added, the sinterability is promoted and the Q value (tan δ) of the sintered body is reduced, but the second phase is higher than the grain growth of Al 2 O 3. The generation of the Al 2 TiO 5 phase which is the above becomes preferential, and the area of the grain boundary of the sintered body may increase. For this reason, the processability of an alumina sintered body may be reduced. Further, due to non-uniformity in the structure of Al 2 TiO 5 containing unavoidable impurities and the spread of the distribution of unavoidable impurities present at the grain interface that are not included in the crystal grains, the inevitable impurities not included in the Q value are increased by ion jump or the like There is also the possibility of adverse effects.

そこで、本発明は、加工容易性の向上を図りながら、安定的に誘電正接の低下を図ることができるアルミナ質焼結体及びその製造方法を提供することを課題とする。   Therefore, an object of the present invention is to provide an alumina sintered body capable of stably lowering a dielectric loss tangent while improving workability and a method for manufacturing the same.

前記課題を解決するための本発明のアルミナ質焼結体は、Alの純度が99.3[wt%]以上であって、Al結晶粒子内にTiがTiO換算で0.08〜0.20[wt%]の範囲で固溶し、SiがSiO換算で焼結体に0.05〜0.40[wt%]の範囲で含有され、長軸長さの粒径が10[μm]以上であるAl 結晶粒子の存在比率が0.80以上であり、長軸長さの粒径が10[μm]未満のAl 結晶粒子の存在比率が0.20以下であり、かつ、長軸長さの粒径が20[μm]以上であるAl 結晶粒子の存在比率が0.40以上であることを特徴とする。 In the alumina sintered body of the present invention for solving the above-mentioned problems, the purity of Al 2 O 3 is 99.3 [wt%] or more, and Ti is converted into TiO 2 in the Al 2 O 3 crystal particles. 0.08 to 0.20 and a solid solution in a range of [wt%], Si is contained in an amount of 0.05 to 0.40 [wt%] in the sintered body in terms of SiO 2, the major axis length of particle size is not less 10 [[mu] m] or more in which Al 2 O 3 existing ratio of the crystal grains is 0.80 or more, abundance ratio of Al 2 O 3 crystal particles having a particle size of major axis length of less than 10 [[mu] m] Is 0.20 or less, and the abundance ratio of Al 2 O 3 crystal grains having a major axis length of 20 [μm] or more is 0.40 or more .

本発明のアルミナ質焼結体によれば、Al粒子中にTiが固溶することでAl粒子が粗大化し、Al粒子同士の粒界の面積が小さくなる。これにより、焼結体の加工容易性の向上が図られる。さらに粒界中のSi、Ti、Alの化合物がAl結晶の粒界に液相を形成させる。形成した液相がAl原料粉末中の不可避不純物を内包する。これにより、不可避不純物のイオンジャンプ等が抑制できるため、焼結体の誘電正接の安定的な低下が図られる。 According to the alumina sintered body of the present invention, Al 2 O 3 Al 2 O 3 particles by Ti forms a solid solution in the particles are coarsened, the grain boundary area between the Al 2 O 3 particles is reduced. Thereby, the improvement of the workability of a sintered compact is achieved. Further, Si, Ti, and Al compounds in the grain boundaries form a liquid phase at the grain boundaries of the Al 2 O 3 crystal. The formed liquid phase contains inevitable impurities in the Al 2 O 3 raw material powder. Thereby, since ion jump etc. of an inevitable impurity can be suppressed, the stable fall of the dielectric loss tangent of a sintered compact is achieved.

当該構成のアルミナ質焼結体によれば、Al結晶粒子の長軸長さの粒径分布の制御によって加工容易性の向上及び誘電正接の低下が図られる、さらには焼結体の緻密化が図られる。 According to the alumina sintered body having the above configuration, the processability can be improved and the dielectric loss tangent can be reduced by controlling the particle size distribution of the major axis length of the Al 2 O 3 crystal particles. Densification is achieved.

前記課題を解決するための本発明のアルミナ質焼結体を製造する方法は、粒子径D50が0.70[μm]以下であり、かつ、粒子径D50と粒子径D10との偏差が0.40[μm]以下であるAl粉末が99.3[wt%]以上含まれ、粒子径D50が0.30〜0.50[μm]のチタン化合物がTiO換算で0.10〜0.30[wt%]の範囲で含まれ、かつ、粒子径D50が0.08〜0.70[μm]のシリコン化合物がSiO換算で0.05〜0.40[wt%]の範囲で含まれている原料を調製し、前記原料を成形することにより成形体を作製し、前記成形体を大気雰囲気にて昇温中において、当該雰囲気1[m]あたりの空気導入量を8〜25[l/min]に制御し、1500〜1600[℃]で3時間以上にわたり焼成し、その後の冷却過程において1400〜800[℃]の温度範囲における降温速度が5〜30[℃/hr]の範囲に制御されることにより前記アルミナ質焼結体を製造することを特徴とする。 In the method for producing an alumina sintered body of the present invention for solving the above problems, the particle diameter D50 is 0.70 [μm] or less, and the deviation between the particle diameter D50 and the particle diameter D10 is 0.00. Al 2 O 3 powder of 40 [μm] or less is contained in 99.3 [wt%] or more, and a titanium compound having a particle diameter D50 of 0.30 to 0.50 [μm] is 0.10 in terms of TiO 2. The silicon compound contained in the range of 0.30 [wt%] and having a particle diameter D50 of 0.08 to 0.70 [μm] is in the range of 0.05 to 0.40 [wt%] in terms of SiO 2. The molded body is prepared by forming the raw material contained in the above and molding the raw material. While raising the temperature of the molded body in an air atmosphere, the amount of air introduced per 1 [m 3 ] of the atmosphere is 8 -25 [l / min], 3 to 1500-1600 [° C] It is fired over the above, and in the subsequent cooling process, the temperature reduction rate in the temperature range of 1400 to 800 [° C.] is controlled to the range of 5 to 30 [° C./hr] to produce the alumina sintered body. Features.

本発明のアルミナ質焼結体の製造方法によれば、Al粉末の粒子径分布が調節されることにより、シリコン化合物の粉末をAl粉末の表面に均一に付着させ、Al粉末の液相焼結を位置の相違に関係なく均等に進行させることができる。これにより、焼結体が大型化されても組織の均一化が図られる。さらに、液相化したSi、Ti、Alの化合物により、Al原料粉末中に含有されているアルカリ金属又はアルカリ土類金属などの不可避不純物がトラップされるのでtanδの低下が図られる。 According to the method for producing an alumina sintered body of the present invention, by adjusting the particle size distribution of the Al 2 O 3 powder, the silicon compound powder is uniformly attached to the surface of the Al 2 O 3 powder. Liquid phase sintering of 2 O 3 powder can proceed evenly regardless of the difference in position. Thereby, even if the sintered body is enlarged, the structure can be made uniform. In addition, the tan δ can be reduced because trapped inevitable impurities such as alkali metal or alkaline earth metal contained in the Al 2 O 3 raw material powder by the liquid phase Si, Ti, Al compound.

焼成過程における昇温中の空気導入量を調整することによって、Al結晶粒子中へのTiの固溶を促進させることができる。さらに成形体の焼成後の冷却過程において、雰囲気の降温速度が制御されることにより、Al結晶粒子内に固溶せず粒界にわずかに存在するAlTiOが、Al及びTiOに分解され、AlTiO起因で生じる色調の不安定化が防止されうる。さらに、急冷に熱応力差による焼結体の破断を抑制できる。 By adjusting the amount of air introduced during temperature rise in the firing process, solid solution of Ti in the Al 2 O 3 crystal particles can be promoted. Further, in the cooling process after firing of the molded body, the temperature lowering rate of the atmosphere is controlled, so that Al 2 TiO 5 that does not dissolve in the Al 2 O 3 crystal particles but exists slightly at the grain boundary is changed to Al 2 O 3. 3 and TiO 2 , and color tone instability caused by Al 2 TiO 5 can be prevented. Furthermore, it is possible to suppress breakage of the sintered body due to thermal stress difference due to rapid cooling.

(製造方法)
本発明のアルミナ質焼結体は、次のような手順で製造される。
(Production method)
The alumina sintered body of the present invention is manufactured by the following procedure.

まず、Al粉末が99.3[wt%]以上含まれ、チタン化合物の粉末がTiO換算で0.10〜0.30[wt%]の範囲で含まれ、かつ、シリコン化合物がSiO換算で0.05〜0.40[wt%]含まれている原料が調製される。原料におけるAl、TiO換算のチタン化合物及びSiO換算のシリコン化合物の合計含有量は100[wt%]以下である。原料におけるチタン化合物の含有量がTiO換算で0.10〜0.20[wt%]の範囲に含まれ、シリコン化合物の含有量がSiO換算で0.10〜0.20[wt%]の範囲に含まれることがさらに好ましい。 First, Al 2 O 3 powder is contained in 99.3 [wt%] or more, titanium compound powder is contained in a range of 0.10 to 0.30 [wt%] in terms of TiO 2 , and a silicon compound is contained. A raw material containing 0.05 to 0.40 [wt%] in terms of SiO 2 is prepared. The total content of Al 2 O 3 , titanium compound in terms of TiO 2 and silicon compound in terms of SiO 2 in the raw material is 100 [wt%] or less. The content of the titanium compound in the raw material is included in the range of 0.10 to 0.20 [wt%] in terms of TiO 2 , and the content of the silicon compound is 0.10 to 0.20 [wt%] in terms of SiO 2 More preferably, it is included in the range.

原料において、MgO又はCaOといったアルカリ土類金属酸化物等の不可避的な不純物の合計含有量は0.2[wt%]以下であることが好ましい。不純物には、アルカリ土類金属酸化物に限らず、アルカリ金属、アルカリ金属酸化物及びアルカリ土類金属等も含まれる。   In the raw material, the total content of inevitable impurities such as alkaline earth metal oxides such as MgO or CaO is preferably 0.2 [wt%] or less. Impurities include not only alkaline earth metal oxides but also alkali metals, alkali metal oxides, alkaline earth metals, and the like.

Al粉末の純度は99.0%([wt%])以上であれば十分であるが、99.8%以上であることが好ましく、99.9%以上であることがより好ましい。Al粉末の粒子径(D50)が0.70[μm]以下であり、かつ、粒子径D50と粒子径D10との差ΔDが0.40[μm]以下であることが好ましい。粒子径の粒度分布が単一分布(極大値が1つのみの分布)であることが好ましい。Al粉末の粒子径(D50)が0.1〜0.5[μm]の範囲に含まれることがさらに好ましい。 The purity of the Al 2 O 3 powder is sufficient if it is 99.0% ([wt%]) or more, but is preferably 99.8% or more, and more preferably 99.9% or more. The particle diameter (D50) of the Al 2 O 3 powder is preferably 0.70 [μm] or less, and the difference ΔD between the particle diameter D50 and the particle diameter D10 is preferably 0.40 [μm] or less. The particle size distribution is preferably a single distribution (a distribution having only one maximum value). More preferably, the particle diameter (D50) of the Al 2 O 3 powder is included in the range of 0.1 to 0.5 [μm].

TiO等のチタン化合物の粉末で添加されることが好ましいが、これに限定されず、大気中での焼結後に酸化物を生成する塩化物、水酸化チタン、又は有機チタン化合物等の種々の形態で添加されてもよい。チタン化合物の粉末の粒子径D50が0.30〜0.50[μm]の範囲に含まれることが好ましい。 It is preferably added as a powder of a titanium compound such as TiO 2, but is not limited to this, and various kinds such as a chloride, a titanium hydroxide, or an organic titanium compound that generates an oxide after sintering in the atmosphere. It may be added in the form. The particle diameter D50 of the titanium compound powder is preferably in the range of 0.30 to 0.50 [μm].

SiO粉末源としては、SiO粉末そのもののほか、コロイダルシリカ、シリカゾル、シリカゲル、ケイ素ハロゲン化物、ケイ素のアルコキシド又は水ガラスなどが用いられる。コロイダルシリカの形で添加されることがより好ましい。SiO粒子径(D50)は0.08〜0.70[μm]の範囲に含まれることが好ましく、0.35〜0.65[μm]の範囲に含まれることがさらに好ましい。 As the SiO 2 powder source, colloidal silica, silica sol, silica gel, silicon halide, silicon alkoxide, water glass or the like is used in addition to the SiO 2 powder itself. More preferably, it is added in the form of colloidal silica. The SiO 2 particle diameter (D50) is preferably included in the range of 0.08 to 0.70 [μm], and more preferably in the range of 0.35 to 0.65 [μm].

Al粉末、チタン化合物粉末及びシリコン化合物粉末は、ボールミル混合等の公知の方法を用いて混合される。必要に応じて分散剤及びバインダーなどが加えられて原料粉末が調製される。原料粉末の十分な混合のために、混合時間は例えば18時間以上に設定される。原料粉末の混合が不十分であると、チタン化合物粉末及びシリコン化合物粉末の分散が均一であるスラリーを得ることが難しくなるためである。例えば、チタン化合物粉末及びシリコン化合物粉末の分散が不均一なスラリーを用いられて作製された肉厚の焼結体では、チタン化合物粉末及びシリコン化合物粉末の空間分布が不均一であるためにtanδにムラが生じやすくなる。 The Al 2 O 3 powder, the titanium compound powder, and the silicon compound powder are mixed using a known method such as ball mill mixing. If necessary, a raw material powder is prepared by adding a dispersant, a binder and the like. In order to sufficiently mix the raw material powder, the mixing time is set to 18 hours or more, for example. This is because if the mixing of the raw material powder is insufficient, it is difficult to obtain a slurry in which the titanium compound powder and the silicon compound powder are uniformly dispersed. For example, in a thick sintered body made using a slurry in which the dispersion of the titanium compound powder and the silicon compound powder is not uniform, the spatial distribution of the titanium compound powder and the silicon compound powder is not uniform. Unevenness is likely to occur.

続いて、原料粉末が成形されることにより成形体が作製される。成形法としては、一軸プレス成形、CIP成形、湿式成形、加圧鋳込みや廃泥鋳込み等の種々の方法が採用されうる。   Then, a molded object is produced by shape | molding raw material powder. As the molding method, various methods such as uniaxial press molding, CIP molding, wet molding, pressure casting, and waste mud casting may be employed.

最後に、焼成過程において昇温中は1[m]当たりの空気導入量が8〜25[l/min]の範囲に含まれるように調整されることが好ましい。さらに好ましくは、1[m]当たりの空気導入量が15〜20[l/min]に制御されることが好ましい。成形体が1500〜1600[℃]の温度範囲で3時間以上にわたり大気雰囲気中で焼成されることによりアルミナ質焼結体が得られる。1500[℃]以上の温度で3時間以上、好ましくは5時間以上にわたり成形体が焼成される。また、焼成雰囲気の昇温速度は80[℃/h]以下に制御される。成形体の表層部及び内部の間で温度差が生じやすく、SiOによる液相生成の具合が不均一になることよる微構造の差異が生じ、場所の相違によるtanδ値の有意差が発生しやすくなるためである。また、肉厚品では素材が破損する可能性があるためである。特に焼結後の厚みが15[mm]以上になる成形体を焼成するには、上記の原料の条件および焼成条件で焼成することが好適である。 Finally, it is preferable to adjust so that the amount of air introduced per 1 [m 3 ] is included in the range of 8 to 25 [l / min] during the temperature rise in the firing process. More preferably, the air introduction amount per 1 [m 3 ] is preferably controlled to 15 to 20 [l / min]. An alumina-based sintered body is obtained by firing the molded body in the air atmosphere for 3 hours or more in a temperature range of 1500 to 1600 [° C.]. The formed body is fired at a temperature of 1500 [° C.] or higher for 3 hours or longer, preferably 5 hours or longer. Moreover, the temperature increase rate in the firing atmosphere is controlled to 80 [° C./h] or less. A temperature difference is likely to occur between the surface layer portion and the inside of the molded body, a difference in microstructure occurs due to non-uniformity of liquid phase generation by SiO 2 , and a significant difference in tan δ value due to a difference in location occurs. This is because it becomes easier. Moreover, it is because a raw material may be damaged in a thick product. In particular, in order to fire a molded body having a thickness after sintering of 15 [mm] or more, it is preferable to fire under the above-described raw material conditions and firing conditions.

所定焼成温度での焼成後の冷却過程において、1400〜800[℃]の温度範囲の降温速度が5〜30[℃/hr]の範囲に含まれるように制御される。当該速度が10〜18.5[℃/hr]の範囲に含まれるように制御されることが好ましい。   In the cooling process after firing at a predetermined firing temperature, the temperature drop rate in the temperature range of 1400 to 800 [° C.] is controlled to be included in the range of 5 to 30 [° C./hr]. It is preferable that the speed is controlled so as to fall within a range of 10 to 18.5 [° C./hr].

(実施例)
表1に示されている製造条件にしたがって、実施例1〜11のそれぞれの焼結体が製造された。当該製造条件には、原料におけるAl粉末、TiO粉末及びSiO粉末のそれぞれの含有量、Al粉末のD50及びΔD=D50−D10、TiO粉末及びTiO粉末のそれぞれのD50が含まれている。さらに、当該製造条件には、成形体の焼成雰囲気(大気雰囲気)の昇温速度、昇温中の1[m]当たりの空気導入量、焼成温度及び焼成時間、焼成後の1400〜800[℃]における雰囲気の降温速度(以下、単に「降温速度」という場合がある。)が含まれる。
(Example)
According to the manufacturing conditions shown in Table 1, the respective sintered bodies of Examples 1 to 11 were manufactured. The production conditions include the contents of Al 2 O 3 powder, TiO 2 powder and SiO 2 powder in the raw material, D50 and ΔD of Al 2 O 3 powder = D50-D10, TiO 2 powder and TiO 2 powder, respectively. D50 is included. Further, the production conditions include a temperature increase rate of the firing atmosphere (atmosphere) of the molded body, an air introduction amount per 1 [m 3 ] during the temperature increase, a firing temperature and a firing time, and 1400 to 800 [after firing] [° C.] atmosphere lowering rate (hereinafter sometimes simply referred to as “temperature lowering rate”).

ルチル化率80%以上であるTiO粉末が用いられた。SiO粉末源としてはコロイダルシリカが用いられた。Al粉末、TiO粉末及びコロイダルシリカの混合粉末が、適切な配合で添加された溶媒、有機バインダー及び分散剤とともにミル混合された。当該混合物がスプレードライヤー法により顆粒化された。当該顆粒がCIP成形されることにより150[mm]×150[mm]×20[mm]の略正方形板状の成形体が作製された。 A TiO 2 powder having a rutile ratio of 80% or more was used. Colloidal silica was used as the SiO 2 powder source. A mixed powder of Al 2 O 3 powder, TiO 2 powder and colloidal silica was mill mixed with the solvent, organic binder and dispersant added in the appropriate formulation. The mixture was granulated by a spray dryer method. The granules were CIP-molded to produce a substantially square plate-shaped molded body of 150 [mm] × 150 [mm] × 20 [mm].

Figure 0005930380
Figure 0005930380

表1から、各実施例の焼結体の原料におけるAl粉末の含有量が99.3[wt%]以上であること、TiO粉末の含有量が0.10〜0.30[wt%]の範囲に含まれていること、及びSiO含有量が0.05〜0.40[wt%]の範囲に含まれていることがわかる。Al粉末の粒子径D50が0.70[μm]以下であり、かつ、ΔDが0.40[μm]以下であること、TiO粉末の粒子径D50が0.30〜0.50[μm]の範囲に含まれていること、及びコロイダルシリカ中のSiOの粒子径D50が0.08〜0.70[μm]の範囲に含まれていることがわかる。 From Table 1, it the content of Al 2 O 3 powder in the raw material of the sintered body of each example is 99.3 [wt%] or more, the content of TiO 2 powder is 0.10 to 0.30 [ It can be seen that it is included in the range of wt%] and that the SiO 2 content is included in the range of 0.05 to 0.40 [wt%]. The particle diameter D50 of the Al 2 O 3 powder is 0.70 [μm] or less and ΔD is 0.40 [μm] or less, and the particle diameter D50 of the TiO 2 powder is 0.30 to 0.50. It can be seen that it is included in the range of [μm] and that the particle diameter D50 of SiO 2 in the colloidal silica is included in the range of 0.08 to 0.70 [μm].

さらに、成形体の焼成雰囲気の昇温速度が10〜80[℃/hr]の範囲に制御されたこと、昇温中の1[m]あたりの空気導入量が8〜25[l/min]に制御されたこと、成形体の焼成温度が1500〜1600[℃]の範囲に制御され、焼成時間が3時間以上に制御されたこと、及び当該焼成後の雰囲気の降温速度が5〜30[℃/hr]の範囲に制御されたことがわかる。 Furthermore, the heating rate of the firing atmosphere of the compact was controlled in the range of 10 to 80 [° C./hr], and the air introduction amount per 1 [m 3 ] during the heating was 8 to 25 [l / min. ], The firing temperature of the molded body was controlled in the range of 1500 to 1600 [° C.], the firing time was controlled to 3 hours or more, and the temperature lowering rate of the atmosphere after firing was 5 to 30 It can be seen that the temperature was controlled in the range of [° C./hr].

(評価方法)
アルミナ質焼結体の表面から5[mm]深さの部分から□50mm×3mmの試験片が作製され、各種性質の測定対象とされた。
(Evaluation method)
A test piece of □ 50 mm × 3 mm was produced from a portion having a depth of 5 [mm] from the surface of the alumina sintered body, and was used as a measurement object for various properties.

誘導結合プラズマ発光分光分析装置(エスアイアイナノテクノロジー社製SPS−3500型)によって、焼結体におけるSi含有量が求められ、酸化物換算された。当該誘導結合プラズマ発光分光分析装置が用いられ、誘導結合プラズマ発光分光分析方法による定量分析により焼結体のAl23結晶粒子における酸化チタン(TiO2)の固溶量が測定された。 The Si content in the sintered body was determined and converted into an oxide by an inductively coupled plasma emission spectrometer (SPS-3500 type manufactured by SII Nano Technology). The inductively coupled plasma emission spectroscopic analyzer was used, and the solid solution amount of titanium oxide (TiO 2 ) in the Al 2 O 3 crystal particles of the sintered body was measured by quantitative analysis using an inductively coupled plasma emission spectroscopic analysis method.

焼結体に含まれる全Ti量は、焼結体試料を加圧容器内で硫酸に溶解させ、溶液中に含まれるTiが定量分析されることにより求められた。焼結体に含まれる全Ti量は、Al23結晶粒子に固溶したTiの量及び固溶せずに結晶粒界に存在するTiの量の合計である。焼結体の結晶粒界中に含まれるTi量は、当該焼結体が常圧化でフッ化水素酸−王水混酸で30分間加熱された後、不溶解物が濾別され、濾液に含まれるTiが定量分析されることにより求められた。そして、上記全Ti量から結晶粒界中に含まれるTi量が差し引かれることで、Al23結晶粒子中に固溶しているTi量が求められ、酸化物換算された。 The total amount of Ti contained in the sintered body was determined by dissolving the sintered body sample in sulfuric acid in a pressurized container and quantitatively analyzing Ti contained in the solution. The total amount of Ti contained in the sintered body is the sum of the amount of Ti dissolved in the Al 2 O 3 crystal particles and the amount of Ti present in the grain boundaries without being dissolved. The amount of Ti contained in the crystal grain boundaries of the sintered body is determined by the fact that the sintered body is heated at atmospheric pressure with hydrofluoric acid-aqua regia mixed acid for 30 minutes, insoluble matter is filtered off, and the filtrate is filtered. It was determined by quantitative analysis of Ti contained. Then, by subtracting the amount of Ti contained in the crystal grain boundary from the total amount of Ti, the amount of Ti dissolved in the Al 2 O 3 crystal particles was determined and converted to oxide.

焼結体の表面が鏡面研磨され、サーマルエッチングにより結晶粒界を析出させた当該研磨面の任意領域(200×200μmのエリア)がSEM観察された。観察された多数の粒子のそれぞれが矩形に近似され、その長辺方向の長さ(長軸長さ)が粒子径として測定され、焼結体における結晶粒子の平均粒子径が求められた。目黒電波測器社製Qメータが用いられて焼結体の誘電正接(tanδ)が測定された。   The surface of the sintered body was mirror-polished and an arbitrary region (200 × 200 μm area) of the polished surface where crystal grain boundaries were precipitated by thermal etching was observed by SEM. Each of the observed many particles was approximated to a rectangle, and the length in the long side direction (major axis length) was measured as the particle size, and the average particle size of the crystal particles in the sintered body was determined. The dielectric loss tangent (tan δ) of the sintered body was measured using a Q meter manufactured by Meguro Radio Co., Ltd.

表2には当該評価結果がまとめて示されている。   Table 2 summarizes the evaluation results.

Figure 0005930380
Figure 0005930380

表2から、各実施例の焼結体におけるAl含有量(純度)が99.32[wt%]以上であること、Al結晶粒子内におけるTiの固溶量がTiO換算で0.08〜0.20[wt%]の範囲に含まれていること、及び、焼結体におけるSiがSiO換算で0.05〜0.40[wt%]の範囲に含まれていることがわかる。また、長軸長さの粒径が10[μm]未満のAl結晶粒子の存在比率が0.20以下であり、長軸長さの粒径が10[μm]以上であるAl結晶粒子の存在比率が0.80以上であり、長軸長さの粒径が20[μm]以上であるAl結晶粒子の存在比率が0.40以上であることがわかる。 From Table 2, the Al 2 O 3 content (purity) in the sintered body of each example is 99.32 [wt%] or more, and the solid solution amount of Ti in the Al 2 O 3 crystal particles is TiO 2. It is included in the scope of 0.08 to 0.20 [wt%] in terms of, and, Si in the sintered body is included in the range of 0.05 to 0.40 [wt%] in terms of SiO 2 You can see that In addition, the Al 2 O 3 crystal particle abundance ratio of the major axis length particle size of less than 10 [μm] is 0.20 or less, and the major axis length particle size of 10 [μm] or more is Al 2. O 3 existence ratio of crystal grains is not less than 0.80, abundance ratio of Al 2 O 3 crystal grains is the particle size of the major axis is 20 [[mu] m] or more is found to be 0.40 or more.

周波数10[MHz]における誘電正接(tanδ)が6.0×10-4以下であることがわかる。各実施例の焼結体に色ムラがみられず、割れもみられないことがわかる。 It can be seen that the dielectric loss tangent (tan δ) at a frequency of 10 [MHz] is 6.0 × 10 −4 or less. It can be seen that no color unevenness is observed in the sintered body of each example, and no cracks are observed.

(比較例)
表3に示されている製造条件にしたがって、比較例1〜11のそれぞれの焼結体が製造された。
(Comparative example)
According to the manufacturing conditions shown in Table 3, the sintered bodies of Comparative Examples 1 to 11 were manufactured.

Figure 0005930380
Figure 0005930380

表3から、比較例3、5、7及び9の原料におけるAl粉末の含有量が99.3[wt%]未満であること、比較例1〜5、7及び9の原料におけるTiO粉末の含有量が0.10〜0.30[wt%]の範囲から外れていること、比較例2、6、8及び11の原料におけるSiO含有量が0.05〜0.40[wt%]の範囲から外れていることがわかる。 From Table 3, the content of Al 2 O 3 powder in the raw materials of Comparative Examples 3, 5, 7 and 9 is less than 99.3 [wt%], and TiO in the raw materials of Comparative Examples 1 to 5, 7 and 9 2 The content of the powder is out of the range of 0.10 to 0.30 [wt%], and the content of SiO 2 in the raw materials of Comparative Examples 2, 6, 8 and 11 is 0.05 to 0.40 [ It can be seen that it is out of the range of [wt%].

比較例6〜9におけるAl粉末の粒子径D50が0.70[μm]を超えていること、比較例6〜8におけるAl粉末のΔDが0.40[μm]以下であること、比較例1、6、7及び10におけるTiO粉末の粒子径D50が0.30〜0.50[μm]の範囲から外れていること、比較例6及び7におけるSiO粉末の粒子径D50が0.08〜0.70[μm]の範囲から外れていることがわかる。 The particle diameter D50 of the Al 2 O 3 powder in Comparative Examples 6 to 9 exceeds 0.70 [μm], and the ΔD of the Al 2 O 3 powder in Comparative Examples 6 to 8 is 0.40 [μm] or less. The particle diameter D50 of the TiO 2 powder in Comparative Examples 1, 6, 7 and 10 is out of the range of 0.30 to 0.50 [μm]; the particles of the SiO 2 powder in Comparative Examples 6 and 7 It can be seen that the diameter D50 is out of the range of 0.08 to 0.70 [μm].

さらに、比較例3〜7における昇温中の1[m]あたりの空気導入量が8〜25[l/min]から外れていること、比較例1、3、7〜9及び11における成形体の焼成温度が1500〜1600[℃]の範囲から外れていること、比較例5における焼成時間が3時間未満であること、及び比較例2〜6、8及び10における当該焼成後の降温速度が5〜30[℃/hr]から外れていることがわかる。 Furthermore, the amount of air introduced per 1 [m 3 ] during temperature rise in Comparative Examples 3 to 7 deviates from 8 to 25 [l / min], and molding in Comparative Examples 1, 3, 7 to 9 and 11 is performed. The firing temperature of the body is out of the range of 1500 to 1600 [° C.], the firing time in Comparative Example 5 is less than 3 hours, and the cooling rate after the firing in Comparative Examples 2-6, 8 and 10 It is understood that is deviated from 5 to 30 [° C./hr].

(評価方法)
各比較例の焼結体の物性が、各実施例の焼結体と同様に測定された。表4には各比較例の焼結体の評価結果がまとめて示されている。
(Evaluation method)
The physical properties of the sintered bodies of the respective comparative examples were measured in the same manner as the sintered bodies of the respective examples. Table 4 summarizes the evaluation results of the sintered bodies of the comparative examples.

Figure 0005930380
Figure 0005930380

表4から、比較例3、5、7及び9の焼結体におけるAl含有量(純度)が99.3[wt%]以下であることがわかる。比較例1、2、8及び11の焼結体におけるAl結晶粒子内にTiの固溶量がTiO換算で0.08〜0.20[wt%]の範囲から外れていることがわかる。比較例2、6、8及び11の焼結体におけるSiがSiO換算で0.05〜0.40[wt%]の範囲から外れていることがわかる。 From Table 4, it can be seen that the Al 2 O 3 content (purity) in the sintered bodies of Comparative Examples 3, 5, 7 and 9 is 99.3 [wt%] or less. The solid solution amount of Ti in the Al 2 O 3 crystal particles in the sintered bodies of Comparative Examples 1, 2, 8, and 11 is out of the range of 0.08 to 0.20 [wt%] in terms of TiO 2 . I understand. It can be seen that Si in the sintered bodies of Comparative Examples 2, 6, 8, and 11 is out of the range of 0.05 to 0.40 [wt%] in terms of SiO 2 .

また、比較例1〜5、7〜9及び11の焼結体における長軸長さの粒径が10[μm]未満のAl結晶粒子の存在比率が0.20より高く、長軸長さの粒径が10[μm]以上であるAl結晶粒子の存在比率が0.80未満であることがわかる。比較例1〜5、7〜9及び11に加えて比較例10の焼結体における長軸長さの粒径が20[μm]以上であるAl結晶粒子の存在比率が0.40未満であることがわかる。 Further, in the sintered bodies of Comparative Examples 1 to 5, 7 to 9, and 11, the abundance ratio of Al 2 O 3 crystal particles having a major axis length of less than 10 μm is higher than 0.20, and the major axis It can be seen that the abundance ratio of Al 2 O 3 crystal particles having a length particle size of 10 [μm] or more is less than 0.80. In addition to Comparative Examples 1 to 5, 7 to 9 and 11, the abundance ratio of Al 2 O 3 crystal grains having a major axis length of 20 μm or more in the sintered body of Comparative Example 10 is 0.40. It turns out that it is less than.

比較例2、6、8及び11の焼結体の誘電正接(tanδ)が6.0×10-4より高いことがわかる。比較例1、2、5〜7及び9〜11の焼結体に色ムラがみられることがわかる。比較例2、3、5、6、8及び10の焼結体に割れが生じたことがわかる。 It can be seen that the dielectric loss tangent (tan δ) of the sintered bodies of Comparative Examples 2, 6, 8 and 11 is higher than 6.0 × 10 −4 . It can be seen that uneven color is observed in the sintered bodies of Comparative Examples 1, 2, 5-7, and 9-11. It can be seen that cracks occurred in the sintered bodies of Comparative Examples 2, 3, 5, 6, 8, and 10.

Claims (2)

Alの純度が99.3[wt%]以上であって、Al結晶粒子内にTiがTiO換算で0.08〜0.20[wt%]の範囲で固溶し、SiがSiO換算で焼結体に0.05〜0.40[wt%]の範囲で含有され、
長軸長さの粒径が10[μm]以上であるAl結晶粒子の存在比率が0.80以上であり、長軸長さの粒径が10[μm]未満のAl結晶粒子の存在比率が0.20以下であり、かつ、長軸長さの粒径が20[μm]以上であるAl結晶粒子の存在比率が0.40以上であることを特徴とするアルミナ質焼結体。
The purity of Al 2 O 3 is 99.3 [wt%] or more, and Ti is dissolved in the Al 2 O 3 crystal particles in the range of 0.08 to 0.20 [wt%] in terms of TiO 2. , Si is contained in the sintered body in the range of 0.05 to 0.40 [wt%] in terms of SiO 2 ,
The proportion of Al 2 O 3 crystal particles having a major axis length of 10 [μm] or more is 0.80 or more, and the major axis length of Al 2 O 3 is less than 10 [μm]. The abundance ratio of Al 2 O 3 crystal grains having an abundance ratio of crystal grains of 0.20 or less and a major axis length of 20 μm or more is 0.40 or more. Alumina sintered body.
請求項1記載のアルミナ質焼結体を製造する方法であって、
粒子径D50が0.70[μm]以下であり、かつ、粒子径D50と粒子径D10との偏差が0.40[μm]以下であるAl粉末が99.3[wt%]以上含まれ、粒子径D50が0.30〜0.50[μm]のチタン化合物がTiO換算で0.10〜0.30[wt%]の範囲で含まれ、かつ、粒子径D50が0.08〜0.70[μm]のシリコン化合物がSiO換算で0.05〜0.40[wt%]の範囲で含まれている原料を調製し、
前記原料を成形することにより成形体を作製し、
前記成形体を大気雰囲気にて昇温中において、当該雰囲気1[m]あたりの空気導入量を8〜25[l/min]に制御し、1500〜1600[℃]で3時間以上にわたり焼成し、その後の冷却過程において1400〜800[℃]の温度範囲における降温速度が5〜30[℃/hr]の範囲に制御されることを特徴とする方法。
A method for producing the alumina sintered body according to claim 1 ,
The Al 2 O 3 powder having a particle diameter D50 of 0.70 [μm] or less and a deviation between the particle diameter D50 and the particle diameter D10 of 0.40 [μm] or less is 99.3 [wt%] or more. A titanium compound having a particle diameter D50 of 0.30 to 0.50 [μm] is included in a range of 0.10 to 0.30 [wt%] in terms of TiO 2 , and the particle diameter D50 is 0.00. A raw material containing a silicon compound of 08 to 0.70 [μm] in a range of 0.05 to 0.40 [wt%] in terms of SiO 2 is prepared,
A molded body is produced by molding the raw material,
While the molded body is being heated in an air atmosphere, the air introduction amount per 1 [m 3 ] of the atmosphere is controlled to 8 to 25 [l / min], and fired at 1500 to 1600 [° C.] for 3 hours or more. In the subsequent cooling process, the cooling rate in the temperature range of 1400 to 800 [° C.] is controlled to the range of 5 to 30 [° C./hr].
JP2012044239A 2012-02-29 2012-02-29 Alumina sintered body and manufacturing method thereof Active JP5930380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044239A JP5930380B2 (en) 2012-02-29 2012-02-29 Alumina sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044239A JP5930380B2 (en) 2012-02-29 2012-02-29 Alumina sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013180909A JP2013180909A (en) 2013-09-12
JP5930380B2 true JP5930380B2 (en) 2016-06-08

Family

ID=49271839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044239A Active JP5930380B2 (en) 2012-02-29 2012-02-29 Alumina sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5930380B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111201208B (en) 2017-10-05 2023-05-23 阔斯泰公司 Alumina sintered body and method for producing same
KR102354650B1 (en) 2017-10-05 2022-01-24 쿠어스택 가부시키가이샤 Alumina sintered compact and manufacturing method thereof
JP6674496B2 (en) * 2018-03-26 2020-04-01 日本特殊陶業株式会社 Spark plug and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179009A (en) * 1985-01-31 1986-08-11 日本特殊陶業株式会社 Alumina ceramics composition
JP3488350B2 (en) * 1996-11-28 2004-01-19 京セラ株式会社 Alumina sintered body and method for producing the same
JP2002012470A (en) * 2000-06-23 2002-01-15 Ngk Spark Plug Co Ltd High purity alumina sintered body, high purity alumina ball, jig for semiconductor, insulator, ball bearing, check valve and method of manufacturing high purity alumina sintered compact

Also Published As

Publication number Publication date
JP2013180909A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP4525788B2 (en) Dielectric particle manufacturing method
EP2766323B1 (en) Method for making a dense sic based ceramic product
KR101196297B1 (en) Y2o3 sintered body, corrosion resistant member and method for producing same, and member for semiconductor/liquid crystal producing apparatus
TW201410904A (en) Oxide sintered body, sputtering target, and method of manufacturing same
CN103351162A (en) Preparation method for aluminum titanate ceramic
Kim et al. Fabrication and plasma resistance of Y2O3 ceramics
JP5930380B2 (en) Alumina sintered body and manufacturing method thereof
JP4889223B2 (en) Aluminum oxide sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member
JP2010083729A (en) Alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
CN105541411B (en) Zircon base refractory product
JP2010150093A (en) Method for producing sintered compact for transparent electroconductive film
TWI820786B (en) Yttria-zirconia sintered ceramics for plasma resistant materials and method of making the same
JP5786756B2 (en) Method for producing phosphor powder
KR101694975B1 (en) Method for preparing low-temperature sinterable alumina and low-soda alumina
KR100998258B1 (en) Yttria ceramics and manufacture method thereof
CN107117963B (en) Manufacturing process of large-size and large-span zircon refractory material
JP5750022B2 (en) Alumina sintered body and manufacturing method thereof
JP5426224B2 (en) Ceramic sintered body with excellent dimensional accuracy and manufacturing method thereof
JP5698568B2 (en) Aluminum oxide sintered body and method for producing the same
JP6041719B2 (en) Heat treatment member made of zirconia sintered body
JP5763490B2 (en) Alumina sintered body and manufacturing method thereof
TWI586461B (en) An alumina sintered body and a method for producing the same
KR20140044963A (en) Alumina-based sintered body and the preparation method thereof
JP2017538651A (en) Ceramic powder with controlled size distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5930380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250