JP5786756B2 - Method for producing phosphor powder - Google Patents

Method for producing phosphor powder Download PDF

Info

Publication number
JP5786756B2
JP5786756B2 JP2012033299A JP2012033299A JP5786756B2 JP 5786756 B2 JP5786756 B2 JP 5786756B2 JP 2012033299 A JP2012033299 A JP 2012033299A JP 2012033299 A JP2012033299 A JP 2012033299A JP 5786756 B2 JP5786756 B2 JP 5786756B2
Authority
JP
Japan
Prior art keywords
phosphor powder
particle size
powder
phosphor
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012033299A
Other languages
Japanese (ja)
Other versions
JP2013170184A (en
Inventor
聡美 関
聡美 関
明生 並木
明生 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2012033299A priority Critical patent/JP5786756B2/en
Publication of JP2013170184A publication Critical patent/JP2013170184A/en
Application granted granted Critical
Publication of JP5786756B2 publication Critical patent/JP5786756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、蛍光体粉末の製造方法に関する。   The present invention relates to a method for producing a phosphor powder.

従来の蛍光体粉末の製造方法として、蛍光体粉末又はその原料化合物に炭素を添加し、還元することにより、原料化合物に含有される酸素を除去する方法が知られている(例えば、特許文献1、2参照)。   As a conventional method for producing a phosphor powder, a method of removing oxygen contained in a raw material compound by adding carbon to the phosphor powder or its raw material compound and reducing it is known (for example, Patent Document 1). 2).

特許文献1によれば、AlN:Eu、Si蛍光体を製造した後、AlN:Eu、Si蛍光体に対して0.03〜0.1wt%の高純度カーボンを添加し、アニール処理を行う。   According to Patent Document 1, after an AlN: Eu, Si phosphor is manufactured, 0.03-0.1 wt% high-purity carbon is added to the AlN: Eu, Si phosphor, and an annealing process is performed.

また、特許文献2によれば、蛍光体の原料混合物を焼成する際に、炭素若しくは炭素含有化合物からなる容器、発熱体、又は断熱材から生じる微量の炭素を蛍光体の原料混合物に添加する。   According to Patent Document 2, when a phosphor raw material mixture is baked, a small amount of carbon generated from a container, a heating element, or a heat insulating material made of carbon or a carbon-containing compound is added to the phosphor raw material mixture.

特開2011−046780号公報JP 2011-046780 A 特開2008−208238号公報JP 2008-208238 A

一般に、所望の粒径の蛍光体粉末を得るためには、製造した蛍光体粉末を分級し、所望の粒径を有する粒子を選出する。このとき、所望したものと異なる粒径を有する粒子は、通常、廃棄されるため、製造した蛍光体粉末の粒径のばらつきが大きいほど蛍光体粉末の歩留まりが低下し、製造コストが高くなる。そのため、蛍光体粉末は、粒径が小さいだけでなく、ばらつきが小さいことが求められる。   In general, in order to obtain a phosphor powder having a desired particle size, the produced phosphor powder is classified, and particles having a desired particle size are selected. At this time, since particles having a particle size different from that desired are usually discarded, the larger the variation in the particle size of the manufactured phosphor powder, the lower the yield of the phosphor powder and the higher the manufacturing cost. Therefore, the phosphor powder is required not only to have a small particle size but also to have a small variation.

そこで、本発明の目的は、粒径が小さく、かつ粒径のばらつきの小さい蛍光体粉末を製造することにある。   Accordingly, an object of the present invention is to produce a phosphor powder having a small particle size and a small variation in particle size.

上記目的を達成するため、本発明の一態様は、蛍光体原料に炭素原料として粉末状のCを30mol%以上添加して前駆体を形成する工程と、
前記前駆体を焼成し、蛍光体粉末を得る工程と、
を含み、
前記焼成の直後の前記蛍光体粉末の粒度分布における、体積基準のアンダーサイズ累積が90%の粒径であるD90と10%の粒径であるD10との差が、前記蛍光体粉末がCaAlSiN :Euの粉末である場合は41μm以下であり、(Ba,Sr) SiO :Euの粉末である場合は50μm以下であることにより、前記蛍光体粉末に粉砕処理及び分級処理を施さない、
蛍光体粉末の製造方法を提供する。
In order to achieve the above object, one embodiment of the present invention includes a step of forming a precursor by adding 30 mol% or more of powdery C as a carbon raw material to a phosphor raw material,
Firing the precursor to obtain a phosphor powder;
Including
In the particle size distribution of the phosphor powder immediately after the firing, the difference between D90 having a particle size with a volume-based undersize accumulation of 90% and D10 having a particle size of 10% is that the phosphor powder is CaAlSiN 3. : 41 μm or less in the case of Eu powder, (Ba, Sr) 2 SiO 4 : 50 μm or less in the case of Eu powder, so that the phosphor powder is not subjected to pulverization and classification,
A method for producing a phosphor powder is provided.

前記蛍光体粉末がCaAlSiN :Euの粉末である場合の前記D90とD10との差が、28μm以下であってもよい。 The difference between D90 and D10 when the phosphor powder is CaAlSiN 3 : Eu powder may be 28 μm or less.

前記蛍光体粉末がCaAlSiN :Euの粉末である場合の前記D90とD10との差が、20μm以下であってもよい。 The difference between D90 and D10 in the case where the phosphor powder is CaAlSiN 3 : Eu powder may be 20 μm or less.

本発明によれば、粒径が小さく、かつ粒径のばらつきの小さい蛍光体粉末を製造することができる。   According to the present invention, a phosphor powder having a small particle size and a small variation in particle size can be produced.

図1は、実施の形態に係る蛍光体粉末の製造工程を表すフローチャートである。FIG. 1 is a flowchart showing a manufacturing process of a phosphor powder according to an embodiment. 図2は、実施例1に係る試料A、B、C、D、Eの焼成直後の体積基準の粒度分布を表すグラフである。FIG. 2 is a graph showing the volume-based particle size distribution immediately after firing Samples A, B, C, D, and E according to Example 1. 図3は、実施例1に係る試料A、B、C、D、Eの焼成直後の体積基準の粒度分布を表すグラフである。FIG. 3 is a graph showing a volume-based particle size distribution immediately after firing Samples A, B, C, D, and E according to Example 1. 図4は、試料A、B、Cの粒度分布を図1から抜き出したグラフである。FIG. 4 is a graph obtained by extracting the particle size distribution of Samples A, B, and C from FIG. 図5は、実施例2に係る試料F、G、Hの体積基準の粒度分布を表すグラフである。FIG. 5 is a graph showing the volume-based particle size distribution of samples F, G, and H according to Example 2. 図6は、実施例2に係る試料F、G、Hの体積基準の粒度分布を表すグラフである。FIG. 6 is a graph showing the volume-based particle size distribution of samples F, G, and H according to Example 2.

〔実施の形態〕
図1は、実施の形態に係る蛍光体粉末の製造工程を表すフローチャートである。蛍光体粉末は、例えば、窒化物を母物質とするCaAlSiN:Eu等の窒化物蛍光体や、酸化物を母物質とする(Ba,Sr)SiO:Eu等の酸化物蛍光体の粉末である。以下、図1のフローチャートに従って、蛍光体粉末の製造工程について説明する。
Embodiment
FIG. 1 is a flowchart showing a manufacturing process of a phosphor powder according to an embodiment. The phosphor powder is, for example, a nitride phosphor such as CaAlSiN 3 : Eu using nitride as a base material, or an oxide phosphor such as (Ba, Sr) 2 SiO 4 : Eu using oxide as a base material. It is a powder. Hereinafter, the manufacturing process of the phosphor powder will be described with reference to the flowchart of FIG.

まず、蛍光体の原料、及び炭素原料を化学量論比に従って秤量する(ステップS1)。   First, the phosphor raw material and the carbon raw material are weighed according to the stoichiometric ratio (step S1).

炭素原料として粉末状のCを用いる場合は、蛍光体の原料に対して10mol%以上の炭素原料を混合することが好ましく、蛍光体の原料に対して30mol%以上の炭素原料を混合することがより好ましい。炭素原料として粉末状のCを用いる場合は、蛍光体の原料に対して10mol%以上の炭素原料を混合することが好ましい。また、炭素原料としてチップ状のCを用いる場合は、蛍光体の原料に対して10mol%以上の炭素原料を混合することが好ましい。 When powdered C is used as the carbon material, it is preferable to mix 10 mol% or more of the carbon material with respect to the phosphor material, and to mix 30 mol% or more of the carbon material with respect to the phosphor material. More preferred. When powdered C 3 N 4 is used as the carbon material, it is preferable to mix 10 mol% or more of the carbon material with respect to the phosphor material. Further, when chip-like C is used as the carbon raw material, it is preferable to mix 10 mol% or more of the carbon raw material with respect to the phosphor raw material.

次に、秤量した蛍光体の原料及び炭素原料を混合して前駆体を形成する(ステップS2)。   Next, a precursor is formed by mixing the weighed phosphor material and carbon material (step S2).

次に、前駆体をルツボに入れて電気炉で加熱し、焼成して、蛍光体粉末を得る(ステップS3)。焼成条件は、温度、時間、圧力が、それぞれ1600〜2300℃、1〜24時間、0〜1MPaであることが好ましい。また、Nガス等の不活性ガス雰囲気下で焼成を行うことが好ましい。 Next, the precursor is put in a crucible, heated in an electric furnace, and baked to obtain a phosphor powder (step S3). As for the firing conditions, the temperature, time, and pressure are preferably 1600 to 2300 ° C., 1 to 24 hours, and 0 to 1 MPa, respectively. Moreover, it is preferable to perform baking in an inert gas atmosphere such as N 2 gas.

本実施の形態に係る蛍光体粉末は、焼成直後の粒径のばらつきが小さい(粒度分布の均一性が高い)ため、最終的に得られる蛍光体粉末の粒径のばらつきも小さい。そのため、分級により除外され、廃棄される粉末が少なく、蛍光体粉末の歩留まりが高い。その結果、蛍光体粉末の製造コストを下げることができる。さらに、焼成後の粒径のばらつきが十分に小さい場合は、分級工程を省略することができる。   Since the phosphor powder according to the present embodiment has a small variation in particle size immediately after firing (high uniformity of particle size distribution), the variation in the particle size of the finally obtained phosphor powder is also small. Therefore, there are few powders that are excluded and discarded by classification, and the yield of the phosphor powder is high. As a result, the manufacturing cost of the phosphor powder can be reduced. Furthermore, when the particle size variation after firing is sufficiently small, the classification step can be omitted.

炭素の添加により蛍光体粉末の粒径のばらつきが小さくなる機構は明らかではないが、焼成時に炭化物や炭酸化物等の炭素含有化合物が生成され、蛍光体の粒成長を阻害することによると推測される。   The mechanism by which the variation in the particle size of the phosphor powder is reduced by the addition of carbon is not clear, but it is presumed that carbon-containing compounds such as carbides and carbonates are generated during firing and inhibit the phosphor grain growth. The

炭素の添加により蛍光体粉末の粒径のばらつきが小さくなるという効果は、酸化物蛍光体よりも、窒化物蛍光体において顕著に現れる。これは、酸化物蛍光体においては、一部の炭素が酸化物の還元に用いられることによると考えられる。すなわち、一部の炭素が酸素と結合して二酸化炭素等として排出されるため、炭素含有化合物の生成量が少なくなり、窒化物蛍光体の場合ほどには粒成長が阻害されないものと考えられる。   The effect that the variation in the particle size of the phosphor powder is reduced by the addition of carbon is more noticeable in the nitride phosphor than in the oxide phosphor. This is considered to be due to the fact that part of carbon is used for oxide reduction in oxide phosphors. In other words, since a part of carbon is combined with oxygen and discharged as carbon dioxide or the like, the amount of carbon-containing compound produced is reduced, and it is considered that grain growth is not inhibited as much as in the case of a nitride phosphor.

なお、蛍光体粉末の粒径のばらつきを小さくするためには、還元により酸素を除去するために用いられる炭素原料の量(例えば、粉末状のCで蛍光体の原料に対して0.03〜0.1wt%)では不十分である。これは、微量の炭素では炭素含有化合物がほとんど生成されず、粒成長が阻害されないためと考えられる。   In order to reduce the variation in the particle size of the phosphor powder, the amount of the carbon raw material used for removing oxygen by reduction (for example, 0.03 to 0.03 of the phosphor raw material in the form of powder C). 0.1 wt%) is insufficient. This is presumably because a very small amount of carbon produces almost no carbon-containing compound and does not inhibit grain growth.

蛍光体粉末の粒径のばらつきの指標として、D90とD10の差であるD90−D10の値を用いることができる。ここで、D90は、体積基準のアンダーサイズ累積(粒径の小さいものからの累計)が90%での粒径を表し、D10は、体積基準のアンダーサイズ累積が10%での粒径を表す。D90−D10の値が小さいほど、粒径のばらつきが小さい。   A value of D90-D10 that is a difference between D90 and D10 can be used as an index of variation in particle diameter of the phosphor powder. Here, D90 represents the particle size when the volume-based undersize accumulation (cumulative from the smaller particle size) is 90%, and D10 represents the particle size when the volume-based undersize accumulation is 10%. . The smaller the value of D90-D10, the smaller the variation in particle size.

例えば、蛍光体粉末が窒化物蛍光体粉末である場合のD90−D10の値は41μm以下であり、好ましくは28μm以下、より好ましくは20μm以下である。また、蛍光体粉末が酸化物蛍光体粉末である場合のD90−D10の値は50μm以下であり、好ましくは47μm以下である。   For example, when the phosphor powder is a nitride phosphor powder, the value of D90-D10 is 41 μm or less, preferably 28 μm or less, more preferably 20 μm or less. Further, when the phosphor powder is an oxide phosphor powder, the value of D90-D10 is 50 μm or less, preferably 47 μm or less.

また、本実施の形態に係る蛍光体粉末は、焼成直後の粒径が小さい。このため、焼成後の蛍光体粉末の粒径が十分に小さく、所望の粒径が得られている場合は、粉砕処理を省略することができる。   Moreover, the phosphor powder according to the present embodiment has a small particle size immediately after firing. For this reason, when the particle size of the phosphor powder after firing is sufficiently small and a desired particle size is obtained, the pulverization treatment can be omitted.

ここで、体積基準のアンダーサイズ累積が50%での粒径D50(メジアン径とも呼ばれる)の値を粒径分布の指標として用いることができる。   Here, the value of the particle diameter D50 (also called the median diameter) when the volume-based undersize accumulation is 50% can be used as an index of the particle size distribution.

例えば、蛍光体粉末が窒化物蛍光体粉末である場合のD50の値は19μm以下であり、好ましくは15μm以下である。また、蛍光体粉末が酸化物蛍光体粉末である場合のD50の値は24μm以下であり、好ましくは22μm以下である。   For example, when the phosphor powder is a nitride phosphor powder, the value of D50 is 19 μm or less, preferably 15 μm or less. Further, when the phosphor powder is an oxide phosphor powder, the value of D50 is 24 μm or less, preferably 22 μm or less.

上記のD10、D50、D90の値は、蛍光体粉末を解砕した後、レーザー回折・散乱法等により測定することができる。解砕は、粒子の凝集を解く処理であり、粒径を小さくするための粉砕とは異なる。   The values of D10, D50, and D90 can be measured by a laser diffraction / scattering method or the like after pulverizing the phosphor powder. Crushing is a process that breaks up the agglomeration of particles and is different from crushing to reduce the particle size.

次に、蛍光体粉末に粉砕処理を施し、微粒化する(ステップS4)。ただし、上述のように、ステップS3の焼成直後の蛍光体粉末の粒径が十分に小さく、所望の粒径が得られている場合は、粉砕処理を省略することができる。   Next, the phosphor powder is pulverized and atomized (step S4). However, as described above, when the particle size of the phosphor powder immediately after firing in step S3 is sufficiently small and a desired particle size is obtained, the pulverization process can be omitted.

次に、蛍光体粉末を水又は酸水溶液を用いて洗浄し(ステップS5)、乾燥させる(ステップS6)。   Next, the phosphor powder is washed with water or an acid aqueous solution (step S5) and dried (step S6).

次に、蛍光体粉末を分級し、所望の粒径を有する粒子を選出する(ステップS7)。ただし、上述のように、ステップS3の焼成直後の蛍光体粉末の粒径のばらつきが十分に小さく、所望の均一性が得られている場合は、分級処理を省略することができる。   Next, the phosphor powder is classified, and particles having a desired particle diameter are selected (step S7). However, as described above, when the variation in the particle diameter of the phosphor powder immediately after firing in step S3 is sufficiently small and the desired uniformity is obtained, the classification process can be omitted.

実施例1として、上記実施の形態によって製造したCaAlSiN:Euからなる窒化物蛍光体粉末の評価結果を以下に述べる。 As Example 1, the evaluation results of the nitride phosphor powder made of CaAlSiN 3 : Eu manufactured according to the above embodiment will be described below.

実施例1においては、Ca、AlN、Si、及びEuをCaAlSiN:Eu蛍光体の原料として用いて、粉末状のC、チップ状のC、及び粉末状のCを炭素原料として用いた。 In Example 1, using Ca 3 N 2 , AlN, Si 3 N 4 , and Eu 2 O 3 as raw materials for the CaAlSiN 3 : Eu phosphor, powder C, chip C, and powder C 3 N 4 was used as a carbon raw material.

以下、実施例1において製造した、炭素原料を添加していないCaAlSiN:Eu蛍光体粉末を試料A、10mol%の粉末状のCを添加したCaAlSiN:Eu蛍光体粉末を試料B、30mol%の粉末状のCを添加したCaAlSiN:Eu蛍光体粉末を試料C、10mol%の粉末状のCを添加したCaAlSiN:Eu蛍光体粉末を試料D、18.8mol%のチップ状のCを添加したCaAlSiN:Eu蛍光体粉末を試料Eと記載する。 Hereinafter, CaAlSiN 3 : Eu phosphor powder prepared in Example 1 to which no carbon raw material was added was added to sample A, and 10 mol% of powdered C was added to sample B, 30 mol% of CaAlSiN 3 : Eu phosphor powder. CaAlSiN that the addition of powdery C 3: Eu phosphor powder samples C, 10 mol% of powdered C 3 N 4 CaAlSiN 3 with the addition of: Eu phosphor powder sample D, 18.8mol% of the chip- The CaAlSiN 3 : Eu phosphor powder to which C was added is referred to as Sample E.

図2及び図3は、実施例1に係る試料A、B、C、D、Eの焼成直後の体積基準の粒度分布を表すグラフである。ここで、図2は頻度分布を表し、図3は累積分布を表す。   2 and 3 are graphs showing the volume-based particle size distribution immediately after firing Samples A, B, C, D, and E according to Example 1. FIG. Here, FIG. 2 represents a frequency distribution, and FIG. 3 represents a cumulative distribution.

図2及び3の粒度分布は、各試料を解砕した後、レーザー回折・散乱法により測定した。測定において、イオン交換水を溶媒として用いた。   The particle size distributions in FIGS. 2 and 3 were measured by a laser diffraction / scattering method after each sample was crushed. In the measurement, ion exchange water was used as a solvent.

図2から、炭素を添加したいずれの蛍光体粉末も、炭素を添加していない蛍光体粉末よりも曲線のピーク位置が小粒径側にあり、また、曲線の形状がシャープである。このことから、炭素を添加したいずれの蛍光体粉末も、炭素を添加していない蛍光体粉末よりも頻度の最も高い粒径が小さく、また、粒径のばらつきが小さいことがわかる。   As can be seen from FIG. 2, in any phosphor powder to which carbon is added, the peak position of the curve is closer to the smaller particle size than the phosphor powder to which no carbon is added, and the shape of the curve is sharp. From this, it can be seen that any phosphor powder to which carbon is added has the smallest frequency of particle size and the variation in particle size is smaller than the phosphor powder to which no carbon is added.

また、各蛍光体粉末のD10、D50、D90を図3から求めることができる。D10、D50、D90は、それぞれ各曲線における体積基準の累計(%)が10、50、90であるときの粒径(μm)である。各蛍光体粉末のD10、D50、D90、及びD90−D10の値(μm)を表1に示す。   Further, D10, D50, and D90 of each phosphor powder can be obtained from FIG. D10, D50, and D90 are particle diameters (μm) when the volume-based cumulative (%) in each curve is 10, 50, and 90, respectively. Table 1 shows the values (μm) of D10, D50, D90, and D90-D10 of each phosphor powder.

Figure 0005786756
Figure 0005786756

炭素を添加したいずれのCaAlSiN:Eu蛍光体粉末も、炭素を添加していないCaAlSiN:Eu蛍光体粉末よりもD90−D10の値が小さく、粒径のばらつきが小さいことがわかる。 It can be seen that any CaAlSiN 3 : Eu phosphor powder to which carbon is added has a smaller value of D90-D10 and less variation in particle size than the CaAlSiN 3 : Eu phosphor powder to which no carbon is added.

表1は、炭素を添加した全ての試料、試料B、C、D、EのD90−D10の値が41μm以下であり、試料C、D、EのD90−D10の値が28μm以下であり、試料CのD90−D10の値が20μm以下であることを示している。   Table 1 shows that the values of D90-D10 of all the samples added with carbon, samples B, C, D, and E are 41 μm or less, and the values of D90-D10 of samples C, D, and E are 28 μm or less. It shows that the value of D90-D10 of sample C is 20 μm or less.

また、表1は、炭素を添加した全ての試料、試料B、C、D、EのD50の値が19μm以下であり、試料CのD50の値が15μm以下であることを示している。   Table 1 shows that the D50 values of all the samples to which carbon was added, Samples B, C, D, and E were 19 μm or less, and the D50 value of Sample C was 15 μm or less.

図4は、試料A、B、Cの粒度分布を図1から抜き出したグラフである。   FIG. 4 is a graph obtained by extracting the particle size distribution of Samples A, B, and C from FIG.

図4からわかるように、粉末状のCの添加量の増加に伴い、曲線のピーク位置が小粒径側にシフトし、また、曲線の形状がシャープになっている。このことから、頻度の最も高い粒径が小さくなり、また、粒径のばらつきが小さくなることがわかる。   As can be seen from FIG. 4, the peak position of the curve shifts to the small particle size side as the amount of powdered C added increases, and the shape of the curve becomes sharper. From this, it can be seen that the most frequent particle size becomes smaller and the variation in particle size becomes smaller.

また、図2からわかるように、粉末状のCを添加したCaAlSiN:Eu蛍光体粉末と、チップ状のCを添加したCaAlSiN:Eu蛍光体粉末も、炭素を添加していないCaAlSiN:Eu蛍光体粉末よりも、頻度の最も高い粒径が小さく、また、粒径のばらつきが小さい。このことから、粒径のばらつきを小さくするためにCaAlSiN:Eu蛍光体粉末に添加される炭素原料の組成や形状は、限定されないといえる。 Moreover, as can be seen from FIG. 2, CaAlSiN added powdered C 3 N 4 3: Eu as the phosphor powder, CaAlSiN added with chipped C 3: Eu phosphor powder even without the addition of carbon Compared to CaAlSiN 3 : Eu phosphor powder, the most frequent particle size is small and the variation in particle size is small. From this, it can be said that the composition and shape of the carbon raw material added to the CaAlSiN 3 : Eu phosphor powder in order to reduce the variation in particle size are not limited.

実施例2として、上記実施の形態によって製造した(Ba,Sr)SiO:Eu(BOS)からなる酸化物蛍光体粉末の評価結果を以下に述べる。 As Example 2, the evaluation results of the oxide phosphor powder made of (Ba, Sr) 2 SiO 4 : Eu (BOS) manufactured according to the above embodiment will be described below.

実施例2においては、BaCO、SrCO、SiO、Eu、及び融剤としてのハロゲン化合物を混合したものを(Ba,Sr)SiO:Eu蛍光体の原料として用いて、粉末状のCを炭素原料として用いた。実施例2において製造した(Ba,Sr)SiO:Eu蛍光体の具体的な組成は、(Ba0.90Sr0.101.92SiO:Eu0.08である。 In Example 2, a mixture of BaCO 3 , SrCO 3 , SiO 2 , Eu 2 O 3 and a halogen compound as a flux was used as a raw material for (Ba, Sr) 2 SiO 4 : Eu phosphor, Powdered C was used as a carbon raw material. The specific composition of the (Ba, Sr) 2 SiO 4 : Eu phosphor produced in Example 2 is (Ba 0.90 Sr 0.10 ) 1.92 SiO 4 : Eu 0.08 .

以下、実施例2において製造した、炭素原料を添加していない(Ba,Sr)SiO:Eu蛍光体粉末を試料F、10mol%の粉末状のCを添加した(Ba,Sr)SiO:Eu蛍光体粉末を試料G、30mol%の粉末状のCを添加した(Ba,Sr)SiO:Eu蛍光体粉末を試料Hと記載する。 Hereinafter, (Ba, Sr) 2 SiO 4 : Eu phosphor powder produced in Example 2 without addition of carbon raw material was added to sample F, 10 mol% of powdered C (Ba, Sr) 2 SiO 4 : Eu phosphor powder is referred to as sample G, and (Ba, Sr) 2 SiO 4 : Eu phosphor powder added with 30 mol% of powdery C is referred to as sample H.

図5及び図6は、実施例2に係る試料F、G、Hの焼成直後の体積基準の粒度分布を表すグラフである。ここで、図5は頻度分布を表し、図6は累積分布を表す。   5 and 6 are graphs showing the volume-based particle size distribution immediately after firing Samples F, G, and H according to Example 2. FIG. Here, FIG. 5 represents a frequency distribution, and FIG. 6 represents a cumulative distribution.

図5及び6の粒度分布は、各試料を解砕した後、レーザー回折・散乱法により測定した。測定において、イオン交換水を溶媒として用いた。   The particle size distributions in FIGS. 5 and 6 were measured by laser diffraction / scattering method after crushing each sample. In the measurement, ion exchange water was used as a solvent.

図5からわかるように、粉末状のCの添加量の増加に伴い、曲線の形状がシャープになっており、粒径のばらつきが小さくなることがわかる。なお、粒径の変化は、実施例1の酸化物蛍光体粉末ほど大きくはない。   As can be seen from FIG. 5, as the amount of powdery C added increases, the shape of the curve becomes sharper and the variation in particle size becomes smaller. The change in particle size is not as great as that of the oxide phosphor powder of Example 1.

また、各蛍光体粉末のD10、D50、D90を図6から求めることができる。各蛍光体粉末のD10、D50、D90、及びD90−D10の値(μm)を表2に示す。   Moreover, D10, D50, and D90 of each phosphor powder can be obtained from FIG. Table 2 shows the values (μm) of D10, D50, D90, and D90-D10 of each phosphor powder.

Figure 0005786756
Figure 0005786756

炭素を添加したいずれの(Ba,Sr)SiO:Eu蛍光体粉末も、炭素を添加していない(Ba,Sr)SiO:Eu蛍光体粉末よりもD90−D10の値が小さく、粒径のばらつきが小さいことがわかる。 Any (Ba, Sr) 2 SiO 4 : Eu phosphor powder added with carbon has a smaller value of D90-D10 than (Ba, Sr) 2 SiO 4 : Eu phosphor powder without carbon added, It can be seen that the variation in particle size is small.

表2は、炭素を添加した全ての試料、試料G、H、のD90−D10の値が50μm以下であり、試料HのD90−D10の値が47μm以下であることを示している。   Table 2 shows that the values of D90-D10 of all the samples to which carbon was added, samples G and H are 50 μm or less, and the values of D90-D10 of sample H are 47 μm or less.

また、表2は、炭素を添加した全ての試料、試料G、HのD50の値が24μm以下であり、試料HのD50の値が22μm以下であることを示している。   Table 2 shows that the D50 values of all the samples to which carbon was added, the samples G and H are 24 μm or less, and the D50 value of the sample H is 22 μm or less.

本発明は、上記の実施の形態及び実施例に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。   The present invention is not limited to the embodiments and examples described above, and various modifications can be made without departing from the spirit of the invention.

また、上記の実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   Moreover, said embodiment and Example do not limit the invention which concerns on a claim. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

Claims (3)

蛍光体原料に炭素原料として粉末状のCを30mol%以上添加して前駆体を形成する工程と、
前記前駆体を焼成し、蛍光体粉末を得る工程と、
を含み、
前記焼成の直後の前記蛍光体粉末の粒度分布における、体積基準のアンダーサイズ累積が90%の粒径であるD90と10%の粒径であるD10との差が、前記蛍光体粉末がCaAlSiN :Euの粉末である場合は41μm以下であり、(Ba,Sr) SiO :Euの粉末である場合は50μm以下であることにより、前記蛍光体粉末に粉砕処理及び分級処理を施さない、
蛍光体粉末の製造方法。
Adding 30 mol% or more of powdered C as a carbon raw material to the phosphor raw material to form a precursor;
Firing the precursor to obtain a phosphor powder;
Including
In the particle size distribution of the phosphor powder immediately after the firing, the difference between D90 having a particle size with a volume-based undersize accumulation of 90% and D10 having a particle size of 10% is that the phosphor powder is CaAlSiN 3. : 41 μm or less in the case of Eu powder, (Ba, Sr) 2 SiO 4 : 50 μm or less in the case of Eu powder, so that the phosphor powder is not subjected to pulverization and classification,
Method for producing phosphor powder.
前記蛍光体粉末がCaAlSiN :Euの粉末である場合の前記D90とD10との差が、28μm以下である、
請求項1に記載の蛍光体粉末の製造方法。
The difference between D90 and D10 when the phosphor powder is CaAlSiN 3 : Eu powder is 28 μm or less,
The manufacturing method of the fluorescent substance powder of Claim 1.
前記蛍光体粉末がCaAlSiN :Euの粉末である場合の前記D90とD10との差が、20μm以下である、
請求項1又は2に記載の蛍光体粉末の製造方法。
The difference between D90 and D10 when the phosphor powder is CaAlSiN 3 : Eu powder is 20 μm or less,
The manufacturing method of the fluorescent substance powder of Claim 1 or 2.
JP2012033299A 2012-02-17 2012-02-17 Method for producing phosphor powder Active JP5786756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033299A JP5786756B2 (en) 2012-02-17 2012-02-17 Method for producing phosphor powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033299A JP5786756B2 (en) 2012-02-17 2012-02-17 Method for producing phosphor powder

Publications (2)

Publication Number Publication Date
JP2013170184A JP2013170184A (en) 2013-09-02
JP5786756B2 true JP5786756B2 (en) 2015-09-30

Family

ID=49264349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033299A Active JP5786756B2 (en) 2012-02-17 2012-02-17 Method for producing phosphor powder

Country Status (1)

Country Link
JP (1) JP5786756B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088483A (en) * 2013-09-26 2015-05-07 信越化学工業株式会社 Red color lamp and light device for vehicle
JP7312187B2 (en) * 2018-09-12 2023-07-20 デンカ株式会社 Phosphor and light emitting device
KR20230043845A (en) * 2020-07-30 2023-03-31 덴카 주식회사 Phosphor particles, composites, wavelength conversion members and projectors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336450A (en) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd Phosphor composition, method for producing the same and light-emitting device using the same phosphor composition
WO2007091687A1 (en) * 2006-02-10 2007-08-16 Mitsubishi Chemical Corporation Phosphor, method for producing same, phosphor-containing composition, light-emitting device, image display, and illuminating device
JP5446066B2 (en) * 2006-12-28 2014-03-19 日亜化学工業株式会社 Nitride phosphor and light emitting device using the same

Also Published As

Publication number Publication date
JP2013170184A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
JP4762892B2 (en) α-sialon and method for producing the same
JP5292723B2 (en) Method for manufacturing phosphor
WO2006011317A1 (en) α-SIALON POWDER AND PROCESS FOR PRODUCING THE SAME
KR20170021282A (en) Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
TWI351392B (en) Dielectric ceramic composition having wide sinteri
JPWO2020032060A1 (en) Hexagonal Boron Nitride Powder and Method for Producing Hexagonal Boron Nitride Powder
JP5786756B2 (en) Method for producing phosphor powder
WO2019188630A1 (en) α-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE
KR20180004020A (en) β-sialon fluorescent material, Method of producing thereof, Light-emitting member and Light-emitting device
JP7317737B2 (en) Hexagonal boron nitride powder and raw material composition for sintered body
JP5809605B2 (en) Method for producing indium gallium zinc oxide composition
TW200804564A (en) Fluorescent material and method of manufacturing alloy for fluorescent material
JP2019019045A (en) Aluminum nitride-based powder and method for producing the same
WO2012029956A1 (en) Dielectric ceramic, method for manufacturing same, and dielectric resonator
WO2012053595A1 (en) Method for producing nitride fluophor by using coprecipitated material, nitride fluophor, and material therefor
JP5930380B2 (en) Alumina sintered body and manufacturing method thereof
JP2008063188A (en) Compounding material for ptc thermistor and semiconductor ceramic composition for ptc thermister
JP2017088800A (en) Fluophor and manufacturing method therefor
JP6070536B2 (en) Method for producing silicate phosphor particles
JP2016506976A (en) Method for producing powder precursor material, powder precursor material and use thereof
JP7383446B2 (en) Manufacturing method of vanadium compound
WO2021100617A1 (en) Hexagonal boron nitride powder
TW201319007A (en) Conductive mayenite compound sintered compact, sputtering target, and method for producing conductive mayenite compound sintered compact
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5786756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150