JP7383446B2 - Manufacturing method of vanadium compound - Google Patents

Manufacturing method of vanadium compound Download PDF

Info

Publication number
JP7383446B2
JP7383446B2 JP2019189432A JP2019189432A JP7383446B2 JP 7383446 B2 JP7383446 B2 JP 7383446B2 JP 2019189432 A JP2019189432 A JP 2019189432A JP 2019189432 A JP2019189432 A JP 2019189432A JP 7383446 B2 JP7383446 B2 JP 7383446B2
Authority
JP
Japan
Prior art keywords
vanadium compound
vanadium
source
producing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019189432A
Other languages
Japanese (ja)
Other versions
JP2021062995A (en
Inventor
純也 深沢
透 畠
拓馬 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2019189432A priority Critical patent/JP7383446B2/en
Publication of JP2021062995A publication Critical patent/JP2021062995A/en
Application granted granted Critical
Publication of JP7383446B2 publication Critical patent/JP7383446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、バナジウム化合物の製造方法に関するものである。 The present invention relates to a method for producing a vanadium compound.

多くの物質は、温度が上昇すると熱膨張によって長さや体積が増大する。これに対して、温度が上昇すると長さや体積が小さくなる負の熱膨張を示す材料(以下「負熱膨張材」ということがある。)も知られている。負の熱膨張を示す材料は、他の材料とともに用いることによって、温度変化による材料の熱膨張を抑制できることが知られている。 Many materials increase in length and volume due to thermal expansion when the temperature rises. On the other hand, there are also known materials that exhibit negative thermal expansion (hereinafter sometimes referred to as "negative thermal expansion materials") whose length and volume decrease as the temperature rises. It is known that by using a material exhibiting negative thermal expansion together with other materials, it is possible to suppress the thermal expansion of the material due to temperature changes.

負の熱膨張を示す材料としては、例えば、β-ユークリプタイト、タングステン酸ジルコニウム(ZrW)、リン酸タングステン酸ジルコニウム(ZrWO(PO)、ZnCd1-x(CN)、マンガン窒化物、ビスマス・ニッケル・鉄酸化物等が知られている。 Examples of materials exhibiting negative thermal expansion include β-eucryptite, zirconium tungstate (ZrW 2 O 8 ), zirconium phosphotungstate (Zr 2 WO 4 (PO 4 ) 2 ), and Zn x Cd 1- x (CN) 2 , manganese nitride, bismuth nickel iron oxide, etc. are known.

リン酸タングステン酸ジルコニウムの線膨張係数は、0~400℃の温度範囲で-3.4~-3.0ppm/℃であり、負熱膨張性が大きいことが知られている。このリン酸タングステン酸ジルコニウムと、正の熱膨張を示す材料(以下「正熱膨張材」ということがある。)とを併用することで、低熱膨張の材料を製造することができる(特許文献1~2等参照)。また、正熱膨張材である樹脂等の高分子化合物と負熱膨張材とを併用することも提案されている(特許文献3等参照)。 The coefficient of linear expansion of zirconium tungstate phosphate is -3.4 to -3.0 ppm/°C in the temperature range of 0 to 400°C, and it is known that it has a large negative thermal expansion property. By using this zirconium tungstate phosphate in combination with a material exhibiting positive thermal expansion (hereinafter sometimes referred to as a "positive thermal expansion material"), a material with low thermal expansion can be manufactured (Patent Document 1). ~2nd place). It has also been proposed to use a polymer compound such as a resin as a positive thermal expansion material in combination with a negative thermal expansion material (see Patent Document 3, etc.).

また、非特許文献1には、Cu1.8Zn0.2が、200~700Kの温度範囲で-14.4ppm/Kの大きな線膨張係数を有することが開示されており、このCu1.8Zn0.2の製造方法として、CuO、ZnO及びVを原料とした混合物を得た後、該混合物を焼成する方法が記載されている。 Furthermore, Non-Patent Document 1 discloses that Cu 1.8 Zn 0.2 V 2 O 7 has a large linear expansion coefficient of -14.4 ppm/K in the temperature range of 200 to 700 K, As a method for producing this Cu 1.8 Zn 0.2 V 2 O 7 , a method is described in which a mixture is obtained using CuO, ZnO and V 2 O 5 as raw materials, and then the mixture is fired.

しかしながら、非特許文献1の方法では、焼成後のバナジウム化合物は、焼結体となって反応容器に付着した状態で得られるため、目的物を回収すること自体が困難であり、工業的に粉体を製造することが難しいという問題もあった。 However, in the method of Non-Patent Document 1, the vanadium compound after firing is obtained as a sintered body and adhered to the reaction vessel, so it is difficult to recover the target product, and it is difficult to powder it industrially. Another problem was that it was difficult to manufacture the body.

特開2005-35840号公報Japanese Patent Application Publication No. 2005-35840 特開2015-10006号公報JP 2015-10006 Publication 特開2018-2577号公報JP 2018-2577 Publication

Appl.Phys.Lett.113(2018)181902Appl. Phys. Lett. 113 (2018) 181902

従って、本発明の目的は、焼成時にバナジウム成分が坩堝等の反応容器に付着するのを抑制し、焼成後に容易に反応容器からバナジウム化合物を回収できる、負熱膨張材等として有用なバナジウム化合物の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a vanadium compound useful as a negative thermal expansion material, which can suppress adhesion of vanadium components to a reaction vessel such as a crucible during firing, and easily recover the vanadium compound from the reaction vessel after firing. The purpose is to provide a manufacturing method.

本発明者らは、上記実情に鑑み、鋭意研究を重ねた結果、Cu源、Zn源及びV源を溶解した原料混合液から溶媒を除去して得られるペースト状の前記バナジウム化合物の反応前駆体を用い、該反応前駆体を焼成することにより、坩堝等からの取り出しが容易なバナジウム化合物の焼成品が得られることを見出し、本発明を完成するに到った。 In view of the above circumstances, the present inventors have conducted extensive research, and as a result, the present inventors have discovered a paste-like reaction precursor of the vanadium compound obtained by removing the solvent from a raw material mixture solution in which a Cu source, a Zn source, and a V source are dissolved. The present inventors have discovered that by firing the reaction precursor using a method, a fired product of a vanadium compound that can be easily taken out from a crucible or the like can be obtained, and the present invention has been completed.

即ち、本発明は、下記の第1工程~第3工程を含む、下記一般式(1)で表されるバナジウム化合物の製造方法である。
(Cu2-xZn)V (1)
(式中、xは、0<x<2である。)
第1工程:Cu源、Zn源及びV源を水溶媒に溶解した原料混合液を調製する工程。
第2工程:前記原料混合液から水溶媒を除去して、前記一般式(1)で表されるバナジウム化合物の反応前駆体を調製する工程。
第3工程:前記反応前駆体を焼成する工程。
That is, the present invention is a method for producing a vanadium compound represented by the following general formula (1), which includes the following first to third steps.
(Cu 2-x Zn x )V 2 O 7 (1)
(In the formula, x is 0<x<2.)
First step: A step of preparing a raw material mixture solution in which a Cu source, a Zn source, and a V source are dissolved in a water solvent.
Second step: a step of removing the water solvent from the raw material mixture to prepare a reaction precursor of the vanadium compound represented by the general formula (1).
Third step: a step of firing the reaction precursor.

本発明の製造方法によれば、焼成時にバナジウム成分が坩堝等の反応容器に付着するのを抑制し、焼成後に容易に反応容器からバナジウム化合物を回収できることから、工業的に有利な方法で負熱膨張材として有用なバナジウム化合物を粉体として製造することができる。 According to the production method of the present invention, adhesion of the vanadium component to a reaction vessel such as a crucible during firing is suppressed, and the vanadium compound can be easily recovered from the reaction vessel after firing, so it is possible to use negative heat in an industrially advantageous manner. Vanadium compounds useful as intumescent materials can be produced as powders.

実施例1で得られた焼成品1のX線回折図である。2 is an X-ray diffraction diagram of fired product 1 obtained in Example 1. FIG. 実施例1で得られたバナジウム化合物1のSEM写真である。1 is a SEM photograph of vanadium compound 1 obtained in Example 1. 比較例1で得られた焼結体のX線回折図である。3 is an X-ray diffraction diagram of a sintered body obtained in Comparative Example 1. FIG.

以下、本発明を好ましい実施形態に基づいて説明する。
本製造方法で得られるバナジウム化合物は、下記一般式(1)で表されるものである。
(Cu2-xZn)V (1)
(式中、xは、0<x<2である。)
The present invention will be described below based on preferred embodiments.
The vanadium compound obtained by this production method is represented by the following general formula (1).
(Cu 2-x Zn x )V 2 O 7 (1)
(In the formula, x is 0<x<2.)

一般式(1)の式中のxは0<x<2であり、特に負熱膨張特性が優れるという観点から、式中のxは0.05≦x≦1.5であることが好ましい。 In general formula (1), x satisfies 0<x<2, and from the viewpoint of particularly excellent negative thermal expansion characteristics, x in the formula preferably satisfies 0.05≦x≦1.5.

本発明の前記バナジウム化合物の製造方法は、下記の第1工程~第3工程を含むことを特徴とするものである。
第1工程:Cu源、Zn源及びV源を水溶媒に溶解した原料混合液を調製する工程。
第2工程:前記原料混合液から水溶媒を除去して、前記一般式(1)で表されるバナジウム化合物の反応前駆体を調製する工程。
第3工程:前記反応前駆体を焼成する工程。
The method for producing the vanadium compound of the present invention is characterized by including the following first to third steps.
First step: A step of preparing a raw material mixture solution in which a Cu source, a Zn source, and a V source are dissolved in a water solvent.
Second step: a step of removing the water solvent from the raw material mixture to prepare a reaction precursor of the vanadium compound represented by the general formula (1).
Third step: a step of firing the reaction precursor.

第1工程は、Cu源、Zn源及びV源を水溶媒に溶解した原料混合液を調製する工程である。
前記水溶媒とは、水を50質量%超含む溶媒を指し、水のみからなるものでもよく、水と親水性有機溶媒との混合溶媒であってもよい。親水性有機溶媒とは、任意の割合で水に溶解する有機溶媒のことである。
The first step is a step of preparing a raw material mixture solution in which a Cu source, a Zn source, and a V source are dissolved in a water solvent.
The aqueous solvent refers to a solvent containing more than 50% by mass of water, and may be composed only of water, or may be a mixed solvent of water and a hydrophilic organic solvent. A hydrophilic organic solvent is an organic solvent that dissolves in water in any proportion.

第1工程に係るCu源としては、水溶媒に溶解できるものであれば特に制限されるものではないが、例えば、グルコン酸銅、クエン酸銅、硫酸銅、酢酸銅、乳酸銅等の有機カルボン酸や鉱酸の銅塩が挙げられる。 The Cu source for the first step is not particularly limited as long as it can be dissolved in an aqueous solvent, but examples include organic carbon atoms such as copper gluconate, copper citrate, copper sulfate, copper acetate, and copper lactate. Examples include copper salts of acids and mineral acids.

Zn源としては、水溶媒に溶解できるものであれば特に制限されるものではないが、例えば、グルコン酸亜鉛、クエン酸亜鉛、塩化亜鉛、乳酸亜鉛等の有機カルボン酸の亜鉛塩やハロゲン化物が挙げられる。 The Zn source is not particularly limited as long as it can be dissolved in an aqueous solvent, but examples include zinc salts and halides of organic carboxylic acids such as zinc gluconate, zinc citrate, zinc chloride, and zinc lactate. Can be mentioned.

V源としては、水溶媒に溶解できるものであれば特に制限されるものではないが、バナジン酸及びこれらのナトリウム塩、カリウム塩、アンモニウム塩、カルボン酸のバナジウム塩等が挙げられる。
カルボン酸のバナジウム塩としては、ギ酸、酢酸、グリコール酸、乳酸、グルコン酸等のモノカルボン酸、シュウ酸、マレイン酸、マロン酸、リンゴ酸、酒石酸、コハク酸等のジカルボン酸、カルボキシル基の数が3であるクエン酸等のカルボン酸が挙がられる。
これらのうち、バナジン酸アンモニウム、グルコン酸バナジウムが不純物の少ない目的物を得るという観点から好ましい。
The V source is not particularly limited as long as it can be dissolved in an aqueous solvent, and examples thereof include vanadic acid, their sodium salts, potassium salts, ammonium salts, vanadium salts of carboxylic acids, and the like.
Vanadium salts of carboxylic acids include monocarboxylic acids such as formic acid, acetic acid, glycolic acid, lactic acid, and gluconic acid; dicarboxylic acids such as oxalic acid, maleic acid, malonic acid, malic acid, tartaric acid, and succinic acid; Examples include carboxylic acids such as citric acid where is 3.
Among these, ammonium vanadate and vanadium gluconate are preferred from the viewpoint of obtaining the target product with few impurities.

また、V源としてカルボン酸のバナジウム塩を用いる場合、水溶媒に五酸化バナジウム、還元剤及びカルボン酸を添加し、60~100℃で加熱処理してカルボン酸のバナジウム塩を生成させ、この反応液をそのまま原料混合液の調製に用いてもよい。
還元剤としては、還元糖が好ましく、還元糖としては、例えば、グルコース、フルクトース、ラクトース、マルトース、スクロース等が挙げられ、このうち、ラクトース、スクロースが、優れた反応性を有するという観点から特に好ましい。
還元糖の添加量は、五酸化バナジウム中のVに対する還元糖中のCのモル比(C/V)で0.7~3.0とすることが好ましく、0.8~2.0とすることが、効率的に還元反応を行うという観点から、より好ましい。
カルボン酸の添加量は、五酸化バナジウムに対するモル比で0.1~4.0とすることが好ましく、0.2~3.0とすることが、効率的に透明なバナジウム溶解液を得るという観点から、より好ましい。
In addition, when using a vanadium salt of carboxylic acid as a V source, vanadium pentoxide, a reducing agent, and a carboxylic acid are added to an aqueous solvent, heat-treated at 60 to 100°C to generate a vanadium salt of carboxylic acid, and the reaction is performed. The liquid may be used as it is for preparing a raw material mixture.
As the reducing agent, reducing sugars are preferable, and examples of the reducing sugars include glucose, fructose, lactose, maltose, sucrose, etc. Among these, lactose and sucrose are particularly preferable from the viewpoint of having excellent reactivity. .
The amount of reducing sugar added is preferably 0.7 to 3.0, and preferably 0.8 to 2.0 in molar ratio (C/V) of C in reducing sugar to V in vanadium pentoxide. This is more preferable from the viewpoint of efficiently performing the reduction reaction.
The amount of carboxylic acid added is preferably 0.1 to 4.0 in molar ratio to vanadium pentoxide, and 0.2 to 3.0 is said to efficiently obtain a transparent vanadium solution. From this point of view, it is more preferable.

第1工程に係る原料混合液の調製において、Cu源、Zn源及びV源の水溶媒への添加量は、原料混合液中のCu源、Zn源及びV源が前記一般式(1)で表されるバナジウム化合物の組成に合わせて適宜調製することが好ましい。
原料混合液におけるV源の濃度は、1~40質量%とすることが好ましく、2~30質量%とすることが、均一溶液の作製及び次工程における水分蒸発の効率の観点からより好ましい。
In the preparation of the raw material mixture according to the first step, the amounts of the Cu source, Zn source, and V source added to the water solvent are such that the Cu source, Zn source, and V source in the raw material mixture are expressed by the general formula (1) above. It is preferable to prepare it appropriately according to the composition of the vanadium compound represented.
The concentration of the V source in the raw material mixture is preferably 1 to 40% by mass, and more preferably 2 to 30% by mass from the viewpoint of producing a homogeneous solution and the efficiency of water evaporation in the next step.

水溶媒へのCu源、Zn源及びV源の添加順序は特に制限されるものではないが、V源を水溶媒に溶解した溶液(A液)と、Cu源とZn源とを水溶媒に溶解した(B液)とを調製し、これらA液とB液を混合して原料混合液を得ることが好ましい。A液とB液の混合方法は特に制限されるものではないが、B液をA液に添加することが、均一溶液を得るという観点から好ましい。 The order in which the Cu source, Zn source, and V source are added to the water solvent is not particularly limited; It is preferable to prepare a dissolved (liquid B) and mix these liquids A and B to obtain a raw material mixture liquid. Although the method of mixing liquid A and liquid B is not particularly limited, it is preferable to add liquid B to liquid A from the viewpoint of obtaining a homogeneous solution.

A液におけるV源の濃度は、1~40質量%とすることが好ましく、2~30質量%とすることが、均一溶液の作製及び次工程における水分蒸発の効率の観点から、より好ましい。
なお、A液はV源の溶解性を高めるため、アルカリを添加したり、温度を上げたり、或いは両方の処置を行っても差し支えない。
The concentration of the V source in liquid A is preferably 1 to 40% by mass, and more preferably 2 to 30% by mass from the viewpoint of producing a homogeneous solution and the efficiency of water evaporation in the next step.
Note that in order to increase the solubility of the V source in the A solution, an alkali may be added, the temperature may be increased, or both may be treated.

B液におけるCu源及びZn源のトータルの濃度は、1~40質量%とすることが好ましく、2~30質量%とすることが、均一溶液作製及び次工程における水分蒸発の効率化の観点から、より好ましい。 The total concentration of Cu source and Zn source in liquid B is preferably 1 to 40% by mass, and 2 to 30% by mass from the viewpoint of producing a homogeneous solution and increasing the efficiency of water evaporation in the next step. , more preferred.

第2工程は、第1工程で調製した原料混合液を攪拌しながら加熱することにより、ペースト状又は固体になるまで水溶媒を除去して反応前駆体を調製する工程である。
本工程においては、全ての水溶媒を除去して前記混合物を固体で得る必要はなく、少量の水溶媒を含んだペースト状であってもよい。なお、ペースト状とは粘性をかなり有する状態を指す。
The second step is a step of preparing a reaction precursor by heating the raw material mixture prepared in the first step while stirring to remove the water solvent until it becomes paste-like or solid.
In this step, it is not necessary to remove all the water solvent to obtain the mixture in solid form, and the mixture may be in the form of a paste containing a small amount of water solvent. Note that paste-like refers to a state with considerable viscosity.

第2工程に係る加熱温度は、水溶媒が除去できる温度であれば特に制限はないが、沸騰状態を維持できる温度が好ましく、通常は90~120℃が好ましく、100~120℃がより好ましい。
このようにして、前記一般式(1)で表されるバナジウム化合物の反応前駆体を得ることができる。
The heating temperature in the second step is not particularly limited as long as the water solvent can be removed, but it is preferably a temperature that can maintain a boiling state, usually 90 to 120°C, more preferably 100 to 120°C.
In this way, a reaction precursor of the vanadium compound represented by the general formula (1) can be obtained.

第3工程は、第2工程で調製した反応前駆体を焼成して、本発明で目的とするバナジウム化合物を製造する工程である。 The third step is a step of baking the reaction precursor prepared in the second step to produce the vanadium compound targeted by the present invention.

本工程における焼成温度は、580~700℃とすることが好ましく、600~680℃とすることがより好ましい。この理由は、焼成温度が580℃より低くなると前記一般式(1)で表されるバナジウム化合物の生成が不十分となる傾向があり、また、700℃より高くなると酸化バナジウム成分の揮発により組成が変動する傾向があるからである。 The firing temperature in this step is preferably 580 to 700°C, more preferably 600 to 680°C. The reason for this is that when the firing temperature is lower than 580°C, the production of the vanadium compound represented by the general formula (1) tends to be insufficient, and when the firing temperature is higher than 700°C, the composition changes due to volatilization of the vanadium oxide component. This is because it tends to fluctuate.

本工程における焼成時間は、特に制限されず、前記一般式(1)で表されるバナジウム化合物が生成するまで十分な時間反応を行う。前記バナジウム化合物の生成は、例えばX線回折分析で確認することができる。多くの場合、焼成時間が1時間以上、好ましくは2~20時間で、バナジウム化合物の反応前駆体のほぼ全てが前記バナジウム化合物となる。また、焼成雰囲気は、特に制限されず、不活性ガス雰囲気下、真空雰囲気下、酸化性ガス雰囲気下、大気中のいずれであってもよい。 The firing time in this step is not particularly limited, and the reaction is carried out for a sufficient time until the vanadium compound represented by the general formula (1) is produced. The production of the vanadium compound can be confirmed, for example, by X-ray diffraction analysis. In many cases, when the firing time is 1 hour or more, preferably 2 to 20 hours, almost all of the reaction precursor of the vanadium compound becomes the vanadium compound. Furthermore, the firing atmosphere is not particularly limited, and may be any of an inert gas atmosphere, a vacuum atmosphere, an oxidizing gas atmosphere, and the air.

本工程では、焼成は1回でもよいし、所望により複数回行ってもよい。例えば、粉体特性を均一にする目的で、一度焼成したものを粉砕し、粉砕物について更に焼成を行ってもよい。 In this step, firing may be performed once or multiple times as desired. For example, in order to make the powder properties uniform, the fired product may be ground, and the ground material may be further fired.

焼成後、適宜冷却し、必要に応じ粉砕、解砕、分級等を行い、目的とするバナジウム化合物を得る。 After firing, it is appropriately cooled, and if necessary, pulverization, crushing, classification, etc. are performed to obtain the desired vanadium compound.

本発明においては、粒子径が20μmを超える粗粒子を実質的に含有しないバナジウム化合物とするため、第3工程の後に、粉砕処理を行う粉砕工程を設けることが好ましい。 In the present invention, in order to obtain a vanadium compound that does not substantially contain coarse particles having a particle size exceeding 20 μm, it is preferable to provide a pulverization step after the third step.

粉砕処理は、乾式の粉砕処理であっても、湿式の粉砕処理であってもよい。湿式粉砕装置としては、例えば、ボールミル、ビーズミル等が挙げられる。乾式粉砕装置としては、例えば、ジェットミル、ピンミル、ロールミル、ボールミル、ビーズミル等の公知の粉砕装置が挙げられる。 The pulverization treatment may be a dry pulverization treatment or a wet pulverization treatment. Examples of the wet grinding device include a ball mill, a bead mill, and the like. Examples of the dry pulverizer include known pulverizers such as jet mills, pin mills, roll mills, ball mills, and bead mills.

本発明のバナジウム化合物の製造方法により得られるバナジウム化合物の平均粒子径は、好ましくは0.05~5μm、特に好ましくは0.05~3μmであり、また、バナジウム化合物のBET比表面積は、0.1~50m/g、特に好ましくは0.1~20m/gである。バナジウム化合物の平均粒子径、BET比表面積が、上記範囲にあることにより、バナジウム化合物を樹脂やガラス等へのフィラー用として用いる際に、取扱いが容易になる点で好ましい。
なお、平均粒子径は、走査型電子顕微鏡観察(SEM)において任意に抽出した粒子50個以上の平均値であり、粒子形状が球でない場合の粒子径は、各粒子の最大横断長さを粒子径としたものである。
The average particle diameter of the vanadium compound obtained by the method for producing a vanadium compound of the present invention is preferably 0.05 to 5 μm, particularly preferably 0.05 to 3 μm, and the BET specific surface area of the vanadium compound is 0.05 to 5 μm, particularly preferably 0.05 to 3 μm. 1 to 50 m 2 /g, particularly preferably 0.1 to 20 m 2 /g. It is preferable that the average particle diameter and BET specific surface area of the vanadium compound are within the above ranges, since the vanadium compound can be easily handled when used as a filler for resins, glasses, etc.
Note that the average particle diameter is the average value of 50 or more particles arbitrarily extracted through scanning electron microscopy (SEM), and when the particle shape is not spherical, the particle diameter is determined by the maximum transverse length of each particle. This is the diameter.

本製造方法で得られるバナジウム化合物は、特に負の熱膨張を示す負熱膨張材として有用であり、25~300℃の温度範囲における線膨張係数が-15×10-6/K~-1×10-6であることが好ましく、-15×10-6/K~-3×10-6/Kであることがより好ましい。 The vanadium compound obtained by this production method is particularly useful as a negative thermal expansion material exhibiting negative thermal expansion, and has a linear expansion coefficient of -15×10 -6 /K to -1× in the temperature range of 25 to 300°C. It is preferably 10 −6 , more preferably −15×10 −6 /K to −3×10 −6 /K.

本製造方法で得られるバナジウム化合物は、粉体又はペーストとして用いられる。得られたバナジウム化合物をペーストとして用いる場合には、粘性の低い液状樹脂とのペーストの状態で用いることができる。また、得られたバナジウム化合物を、粘性の低い液状樹脂に分散させ、更に必要により、バインダー、フラックス材及び分散剤等を含有させて、ペーストの状態で用いてもよい。 The vanadium compound obtained by this production method is used as a powder or paste. When the obtained vanadium compound is used as a paste, it can be used in a paste state with a liquid resin having low viscosity. Alternatively, the obtained vanadium compound may be dispersed in a liquid resin with low viscosity, and if necessary, a binder, a flux material, a dispersant, etc. may be added thereto, and used in the form of a paste.

本製造方法で得られるバナジウム化合物は、各種有機化合物又は無機化合物と併用して複合材料として用いることができる。有機化合物としては、特に限定されないが、ゴム、ポリオレフィン、ポリシクロオレフィン、ポリスチレン、ABS、ポリアクリレート、ポリフェニレンスルファイド、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタラート樹脂(PET樹脂)及びポリ塩化ビニル樹脂などを挙げることができる。また、無機化合物としては、二酸化ケイ素、グラファイト、サファイア、各種のガラス材料、コンクリート材料、各種のセラミック材料などが挙げられる。 The vanadium compound obtained by this production method can be used in combination with various organic compounds or inorganic compounds as a composite material. Examples of organic compounds include, but are not limited to, rubber, polyolefin, polycycloolefin, polystyrene, ABS, polyacrylate, polyphenylene sulfide, phenol resin, polyamide resin, polyimide resin, epoxy resin, silicone resin, polycarbonate resin, polyethylene resin, Examples include polypropylene resin, polyethylene terephthalate resin (PET resin), and polyvinyl chloride resin. Examples of inorganic compounds include silicon dioxide, graphite, sapphire, various glass materials, concrete materials, and various ceramic materials.

上記複合材料は、本発明に係る負熱膨張材となるバナジウム化合物を含んでいるため、他の化合物との配合比率によって、負熱膨張率、零熱膨張率又は低熱膨張率を実現することが可能である。 Since the above composite material contains a vanadium compound that becomes the negative thermal expansion material according to the present invention, it is possible to achieve a negative thermal expansion coefficient, zero thermal expansion coefficient, or low thermal expansion coefficient depending on the blending ratio with other compounds. It is possible.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

{実施例1}
(第1工程)
バナジン酸アンモニウム(NHVO)5g、アンモニア水10ml、純水50mlをビーカーに入れ、攪拌しながら60℃に加熱してA液を得た。次にグルコン酸銅(扶桑化学工業製)17.5gとグルコン酸亜鉛(扶桑化学工業製)2.2gを純水50mlに加えて攪拌して得たB液をA液に加えて均一溶液である原料混合液を得た。
(第2工程)
前記原料混合液を攪拌しながら沸騰状態を維持する温度に加熱して水を除去し、ペースト状のバナジウム化合物の反応前駆体を得た。
(第3工程)
前記ペースト状のバナジウム化合物の反応前駆体を坩堝中、大気下で、650℃で4時間焼成して焼成品を得た。なお、焼成後、坩堝を反転させることで目的物を容易に回収することができた。
得られた焼成品をX線回折分析したところ、Cu1.8Zn0.2の回析ピークが検出された。焼成品のX線回折図を図1に示す。
次いで、焼成品をA-Oジェットミル(セイシン企業製)で粉砕処理し、バナジウム化合物1を得た。バナジウム化合物1のSEM写真を図2に示す。
{Example 1}
(1st step)
5 g of ammonium vanadate (NH 4 VO 3 ), 10 ml of aqueous ammonia, and 50 ml of pure water were placed in a beaker and heated to 60° C. while stirring to obtain a solution A. Next, add 17.5 g of copper gluconate (manufactured by Fuso Chemical Industry Co., Ltd.) and 2.2 g of zinc gluconate (manufactured by Fuso Chemical Industry Co., Ltd.) to 50 ml of pure water and stir. Add solution B to solution A and make a homogeneous solution. A certain raw material mixture was obtained.
(Second process)
The raw material mixture was stirred and heated to a temperature that maintained a boiling state to remove water, thereby obtaining a paste-like reaction precursor of a vanadium compound.
(3rd step)
The paste-like reaction precursor of the vanadium compound was fired in a crucible in the atmosphere at 650° C. for 4 hours to obtain a fired product. Note that after firing, the target product could be easily recovered by inverting the crucible.
When the obtained fired product was subjected to X-ray diffraction analysis, a diffraction peak of Cu 1.8 Zn 0.2 V 2 O 7 was detected. The X-ray diffraction diagram of the fired product is shown in FIG.
Next, the fired product was pulverized using an AO jet mill (manufactured by Seishin Enterprises) to obtain vanadium compound 1. A SEM photograph of vanadium compound 1 is shown in FIG.

{実施例2}
(第1工程)
五酸化バナジウム(V)4g、ラクトース2g、グルコン酸50%溶液40g、純水60mlをビーカーに入れ、攪拌しながら80℃で3時間加熱してA液を得た。次にグルコン酸銅(扶桑化学工業製)17.5gとグルコン酸亜鉛(扶桑化学工業製)2.2gを純水50mlに加えて攪拌して得たB液をA液に加えて均一溶液である原料混合液を得た。
(第2工程)
前記原料混合液を攪拌しながら沸騰状態を維持する温度に加熱して水を除去し、ペースト状のバナジウム化合物の反応前駆体を得た。
(第3工程)
前記ペースト状のバナジウム化合物の反応前駆体を坩堝中、大気下で、650℃で4時間焼成して焼成品を得た。なお、焼成後、坩堝を反転させることで目的物を容易に回収することができた。
得られた焼成品をX線回折分析したところ、実施例1と同様なCu1.8Zn0.2の回析ピークが検出された。
次いで、焼成品をA-Oジェットミル(セイシン企業製)で粉砕処理し、バナジウム化合物2を得た。
{Example 2}
(1st step)
4 g of vanadium pentoxide (V 2 O 5 ), 2 g of lactose, 40 g of 50% gluconic acid solution, and 60 ml of pure water were placed in a beaker and heated at 80° C. for 3 hours with stirring to obtain Solution A. Next, add 17.5 g of copper gluconate (manufactured by Fuso Chemical Industry Co., Ltd.) and 2.2 g of zinc gluconate (manufactured by Fuso Chemical Industry Co., Ltd.) to 50 ml of pure water and stir. Add solution B to solution A and make a homogeneous solution. A certain raw material mixture was obtained.
(Second process)
The raw material mixture was stirred and heated to a temperature that maintained a boiling state to remove water, thereby obtaining a paste-like reaction precursor of a vanadium compound.
(Third step)
The paste-like reaction precursor of the vanadium compound was fired in a crucible in the atmosphere at 650° C. for 4 hours to obtain a fired product. Note that after firing, the target product could be easily recovered by inverting the crucible.
When the obtained fired product was subjected to X-ray diffraction analysis, a diffraction peak of Cu 1.8 Zn 0.2 V 2 O 7 similar to that in Example 1 was detected.
Next, the fired product was pulverized using an AO jet mill (manufactured by Seishin Enterprises) to obtain vanadium compound 2.

{比較例1}
五酸化バナジウム(V)10gとシュウ酸二水和物30gをビーカーに入れ、純水200mlを加えて攪拌して溶解液1を得た。溶解液1に、グルコン酸亜鉛5.6gを純水100mlに加えて攪拌して得た溶解液2を加え、更に水酸化銅9.7g及び分散剤としてポリカルボン酸アンモニウム塩を0.1g加えて原料混合物を調製した。次いで直径5mmのジルコニアボールを媒体としたボールミルを用いて、12時間粉砕混合を行って原料混合スラリーを得た。レーザー回折・散乱法により求めた原料混合スラリー中の固形分のD50は1μm以下であった。
得られた原料混合スラリー全量を、大気下、200℃で24時間乾燥を行って、バナジウム化合物(Cu1.8Zn0.2)の反応前駆体を得た。
次いで、反応前駆体を坩堝中、大気下で、650℃で4時間焼成したところ、坩堝に強固に付着した焼結体となり、坩堝を反転させても目的物が強固に付着しており、容易に回収することができなかった。
焼結体をスパチュラで剥がしてX線回折分析したところ、単相のCu1.8Zn0.2であった(図3参照)。
{Comparative example 1}
10 g of vanadium pentoxide (V 2 O 5 ) and 30 g of oxalic acid dihydrate were placed in a beaker, and 200 ml of pure water was added and stirred to obtain a solution 1. To solution 1, add solution 2 obtained by adding 5.6 g of zinc gluconate to 100 ml of pure water and stirring, and further add 9.7 g of copper hydroxide and 0.1 g of polycarboxylic acid ammonium salt as a dispersant. A raw material mixture was prepared. Next, using a ball mill using zirconia balls with a diameter of 5 mm as a medium, pulverization and mixing were performed for 12 hours to obtain a raw material mixed slurry. D50 of the solid content in the raw material mixed slurry determined by laser diffraction/scattering method was 1 μm or less.
The entire amount of the obtained raw material mixed slurry was dried in the atmosphere at 200° C. for 24 hours to obtain a reaction precursor of a vanadium compound (Cu 1.8 Zn 0.2 V 2 O 7 ).
Next, the reaction precursor was fired in a crucible in the atmosphere at 650°C for 4 hours, resulting in a sintered body that firmly adhered to the crucible, and even when the crucible was turned over, the target object remained firmly attached and was easily removed. could not be recovered.
When the sintered body was peeled off with a spatula and analyzed by X-ray diffraction, it was found to be single-phase Cu 1.8 Zn 0.2 V 2 O 7 (see FIG. 3).

<物性評価>
実施例で得られたバナジウム化合物について、平均粒子径、BET比表面積及び熱膨張係数を測定した。また、比較例で得られた焼結体(Cu1.8Zn0.2)について、熱膨張係数を測定した。結果を表1に示す。
測定方法は以下の通りである。
<Physical property evaluation>
The average particle diameter, BET specific surface area, and thermal expansion coefficient of the vanadium compounds obtained in Examples were measured. Further, the thermal expansion coefficient of the sintered body (Cu 1.8 Zn 0.2 V 2 O 7 ) obtained in the comparative example was measured. The results are shown in Table 1.
The measurement method is as follows.

[平均粒子径]
走査型電子顕微鏡観察(SEM)において任意に抽出した粒子50個以上の平均値として求めた。なお、粒子形状が球でない場合の粒子径は、各粒子の最大横断長さを粒子径とした。
[BET比表面積]
マウンテック製比表面積測定装置Macsorbを用いてBET比表面積を測定した。
[Average particle diameter]
It was determined as the average value of 50 or more particles arbitrarily extracted by scanning electron microscopy (SEM). In addition, when the particle shape was not spherical, the particle diameter was defined as the maximum transverse length of each particle.
[BET specific surface area]
The BET specific surface area was measured using a specific surface area measuring device Macsorb manufactured by Mountech.

[熱膨張係数の測定]
(成型体の作製)
試料0.15gを乳鉢で3分間粉砕し、φ6mmの金型に全量充填した。次いで、ハンドプレスを用いて1tの圧力で成型して粉末成型体を作製した。得られた粉末成型体を電気炉にて600℃で2時間焼成してセラミック成型体を作製した。
(熱膨張係数の測定)
作製したセラミック成形体について、熱機械測定装置(NETZSCH JAPAN製 TMA4000SE)を用いて熱膨張係数を測定した。測定条件は、窒素雰囲気、荷重10g、温度範囲50℃~250℃とした。
[Measurement of thermal expansion coefficient]
(Preparation of molded body)
0.15 g of the sample was ground in a mortar for 3 minutes, and the entire amount was filled into a φ6 mm mold. Next, a powder molded body was produced by molding using a hand press at a pressure of 1 ton. The obtained powder molded body was fired in an electric furnace at 600° C. for 2 hours to produce a ceramic molded body.
(Measurement of thermal expansion coefficient)
The thermal expansion coefficient of the produced ceramic molded body was measured using a thermomechanical measuring device (TMA4000SE manufactured by NETZSCH JAPAN). The measurement conditions were a nitrogen atmosphere, a load of 10 g, and a temperature range of 50°C to 250°C.

Figure 0007383446000001
Figure 0007383446000001

実施例に示したように、本発明の製造方法によれば、焼成時にバナジウム成分が坩堝等の反応容器に付着するのを抑制することができ、焼成後に容易に反応容器からバナジウム化合物を回収できるため、バナジウム化合物を粉体として得ることが容易であることが確認できた。


As shown in the examples, according to the production method of the present invention, it is possible to suppress adhesion of vanadium components to a reaction vessel such as a crucible during firing, and it is possible to easily recover the vanadium compound from the reaction vessel after firing. Therefore, it was confirmed that it is easy to obtain a vanadium compound as a powder.


Claims (8)

下記の第1工程~第3工程を含む、下記一般式(1)で表されるバナジウム化合物の製造方法。
(Cu2-xZn)V (1)
(式中、xは、0<x<2である。)
第1工程:有機カルボン及び鉱酸の銅塩から選ばれるCu源、有機カルボン酸の亜鉛塩及び亜鉛のハロゲン化物から選ばれるZn源、並びにバナジン酸、バナジン酸のナトリウム塩、バナジン酸のカリウム塩、バナジン酸のアンモニウム塩及びカルボン酸のバナジウム塩から選ばれるV源を水溶媒に溶解した原料混合液を調製する工程。
第2工程:前記原料混合液から水溶媒を除去して、前記一般式(1)で表されるバナジウム化合物の反応前駆体を調製する工程。
第3工程:前記反応前駆体を焼成する工程。
A method for producing a vanadium compound represented by the following general formula (1), including the following first to third steps.
(Cu 2-x Zn x )V 2 O 7 (1)
(In the formula, x is 0<x<2.)
First step: Cu source selected from organic carboxylic acids and copper salts of mineral acids , Zn source selected from zinc salts of organic carboxylic acids and zinc halides , vanadic acid, sodium salt of vanadic acid, potassium salt of vanadic acid. , a step of preparing a raw material mixture solution in which a V source selected from ammonium salts of vanadate and vanadium salts of carboxylic acids is dissolved in a water solvent.
Second step: a step of removing the water solvent from the raw material mixture to prepare a reaction precursor of the vanadium compound represented by the general formula (1).
Third step: a step of firing the reaction precursor.
第1工程が、V源を水溶媒に溶解した溶液(A液)と、Cu源とZn源とを溶解した(B液)とを調製し、A液とB液を混合して原料混合液を得る請求項1に記載のバナジウム化合物の製造方法。 The first step is to prepare a solution (solution A) in which a V source is dissolved in an aqueous solvent and a solution (solution B) in which a Cu source and a Zn source are dissolved, and to mix solutions A and B to prepare a raw material mixture solution. The method for producing a vanadium compound according to claim 1, wherein the vanadium compound is obtained. V源が、バナジン酸アンモニウムである請求項1又は2に記載のバナジウム化合物の製造方法。 The method for producing a vanadium compound according to claim 1 or 2, wherein the V source is ammonium vanadate. V源が、カルボン酸のバナジウム塩である請求項1又は2に記載のバナジウム化合物の製造方法。 The method for producing a vanadium compound according to claim 1 or 2, wherein the V source is a vanadium salt of a carboxylic acid. A液がカルボン酸のバナジウム塩を水溶媒に溶解した溶液である請求項2に記載のバナジウム化合物の製造方法。 3. The method for producing a vanadium compound according to claim 2, wherein liquid A is a solution in which a vanadium salt of carboxylic acid is dissolved in an aqueous solvent. A液が、五酸化バナジウム、還元剤及びカルボン酸を混合し、加熱処理して得られるカルボン酸のバナジウム塩を含む請求項2に記載のバナジウム化合物の製造方法。 3. The method for producing a vanadium compound according to claim 2, wherein the liquid A contains a vanadium salt of a carboxylic acid obtained by mixing vanadium pentoxide, a reducing agent, and a carboxylic acid and heat-treating the mixture. 還元剤が、還元糖である請求項6に記載のバナジウム化合物の製造方法。 7. The method for producing a vanadium compound according to claim 6, wherein the reducing agent is a reducing sugar. 第3工程の後に、粉砕工程を設ける請求項1~7のいずれか1項に記載のバナジウム化合物の製造方法。 The method for producing a vanadium compound according to claim 1, wherein a pulverization step is provided after the third step.
JP2019189432A 2019-10-16 2019-10-16 Manufacturing method of vanadium compound Active JP7383446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019189432A JP7383446B2 (en) 2019-10-16 2019-10-16 Manufacturing method of vanadium compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019189432A JP7383446B2 (en) 2019-10-16 2019-10-16 Manufacturing method of vanadium compound

Publications (2)

Publication Number Publication Date
JP2021062995A JP2021062995A (en) 2021-04-22
JP7383446B2 true JP7383446B2 (en) 2023-11-20

Family

ID=75487510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019189432A Active JP7383446B2 (en) 2019-10-16 2019-10-16 Manufacturing method of vanadium compound

Country Status (1)

Country Link
JP (1) JP7383446B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453599B1 (en) 2022-04-06 2022-09-27 King Fahd University Of Petroleum And Minerals Hybrid photoactive heterojunction and method of preparation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648248A (en) 2016-01-06 2016-06-08 郑州大学 Controllable thermal expansion composite conductive ceramic material alpha-Cu2V2O7-Al
JP2019210198A (en) 2018-06-08 2019-12-12 国立大学法人名古屋大学 Negative thermal expansion material and composite
WO2020095518A1 (en) 2018-11-09 2020-05-14 国立大学法人名古屋大学 Method for producing negative thermal expansion material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648248A (en) 2016-01-06 2016-06-08 郑州大学 Controllable thermal expansion composite conductive ceramic material alpha-Cu2V2O7-Al
JP2019210198A (en) 2018-06-08 2019-12-12 国立大学法人名古屋大学 Negative thermal expansion material and composite
WO2020095518A1 (en) 2018-11-09 2020-05-14 国立大学法人名古屋大学 Method for producing negative thermal expansion material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. V. Slobodin, et al.,Inorganic Materials,2010年,Vol. 46, No. 2,pp. 196-200
CHATTOPADHYAY, Bidisa et al.,Magnetic ordering induced ferroelectricity in α-Cu2V2O7 studied through non-magnetic Zn doping,JOURNAL OF APPLIED PHYSICS,2017年,Vol.121,pp.094103-1~094103-7
LIU, Huilian et al.,Properties of Cu and V co-doped ZnO nanoparticles annealed in different atmospheres,Superlattices and Microstructures,2012年,Vol.52,pp.1171-1177

Also Published As

Publication number Publication date
JP2021062995A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6190023B1 (en) Method for producing zirconium tungstate phosphate
TWI750137B (en) Method for manufacturing zirconium tungstate phosphate
TWI803653B (en) Negative thermal expansion material, method of manufacturing the same and composite material
JP6194618B2 (en) Trimanganese tetraoxide and method for producing the same
JPWO2020031690A1 (en) Method for Producing Lithium Cobalt Pyrophosphate and Method for Producing Lithium cobalt Pyrophosphate Carbon Composite
JP7383446B2 (en) Manufacturing method of vanadium compound
JP5588815B2 (en) Gallium oxide powder
TWI778400B (en) Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5729926B2 (en) Gallium oxide powder
JP5968917B2 (en) Pure-phase multi-component production method, ceramic material based on pure-phase multi-component system, and molded bodies and composites formed therefrom
TWI804647B (en) Method of manufacturing lithium cobalt phosphate and method of manufacturing carbon composite of lithium cobalt phosphate
JP7427058B2 (en) Negative thermal expansion material, its manufacturing method and composite material
JP7408721B2 (en) Negative thermal expansion materials and composite materials
JP7410249B2 (en) Negative thermal expansion material, its manufacturing method and composite material
WO2023181781A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
WO2023163058A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP7364418B2 (en) Thermal expansion suppressing filler, method for producing the same, and composite material containing the same
WO2023163057A1 (en) Negative thermal expansion material and composite material
JP2023123327A (en) Negative thermal expansion material and composite material
JP2023123340A (en) Negative thermal expansion material and composite material
JP2023123341A (en) Negative thermal expansion material and composite material
JP2006213573A (en) Mixed liquid and method of manufacturing ceramic microparticle
JP2023007429A (en) Lithium silicophosphate powder and method for producing the same
JP2021187704A (en) Method for producing lithium germanium phosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R150 Certificate of patent or registration of utility model

Ref document number: 7383446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150