JP5929673B2 - Titanium oxide vapor deposition material - Google Patents

Titanium oxide vapor deposition material Download PDF

Info

Publication number
JP5929673B2
JP5929673B2 JP2012215412A JP2012215412A JP5929673B2 JP 5929673 B2 JP5929673 B2 JP 5929673B2 JP 2012215412 A JP2012215412 A JP 2012215412A JP 2012215412 A JP2012215412 A JP 2012215412A JP 5929673 B2 JP5929673 B2 JP 5929673B2
Authority
JP
Japan
Prior art keywords
vapor deposition
subcomponent
oxide
deposition material
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012215412A
Other languages
Japanese (ja)
Other versions
JP2014070234A (en
Inventor
正一 山田
正一 山田
祐文 田中
祐文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2012215412A priority Critical patent/JP5929673B2/en
Publication of JP2014070234A publication Critical patent/JP2014070234A/en
Application granted granted Critical
Publication of JP5929673B2 publication Critical patent/JP5929673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はチタン酸化物を主成分とした蒸着材料に関するものである。   The present invention relates to a vapor deposition material mainly composed of titanium oxide.

真空蒸着は、真空チャンバー内で蒸着材料を電子銃や抵抗加熱によって蒸発させ、対象物に蒸着膜を形成する技術である。二酸化チタン(TiO)蒸着膜は、チタン酸化合物系の蒸着材料から真空蒸着によって形成されるが、屈折率が非常に高く耐熱性に優れるため、従来からダイクロイックフィルター、ダイクロイックミラー等に用いられている。 Vacuum deposition is a technique for forming a deposited film on an object by evaporating a deposition material by an electron gun or resistance heating in a vacuum chamber. Titanium dioxide (TiO 2 ) vapor-deposited film is formed from a titanate compound-based vapor-deposited material by vacuum vapor deposition, but has a very high refractive index and excellent heat resistance. Yes.

二酸化チタンを蒸着材料として二酸化チタン蒸着膜を形成しようとすると、気化した蒸着材料が凝固して膜になる際(蒸着膜形成時)に酸素ガスを放出するため、蒸着膜の品位はよくない。そのため、蒸着材料は二酸化チタン以外の形態をとることが一般的である。例えば他のチタン酸化物や金属チタンの内のいくつかを組み合わせた形態をとる。   If an attempt is made to form a titanium dioxide vapor deposition film using titanium dioxide as a vapor deposition material, oxygen gas is released when the vaporized vapor deposition material solidifies to form a film (during vapor deposition film formation), so the quality of the vapor deposition film is not good. Therefore, the vapor deposition material generally takes a form other than titanium dioxide. For example, it takes a form combining some of other titanium oxides and metal titanium.

あるいは各種目的のために、蒸着材料中に他元素を添加する技術も存在する。特許文献1では、プラスチックや樹脂等蒸着時に温度を上げられない基板に対しても屈折率が2.0以上の高屈折率な光学薄膜が得られるよう、酸化チタン(TiO、A=1.0〜1.75)と酸化ジルコニウムを所定比で混合し、焼結又は溶融固化する技術が提案されている。 Alternatively, there is a technique for adding other elements to the vapor deposition material for various purposes. In Patent Document 1, titanium oxide (TiO A , A = 1. 0 to 1.75) and zirconium oxide are mixed at a predetermined ratio, and a technique for sintering or melting and solidifying has been proposed.

特許文献2では、蒸着によって形成される層について、溶融及び蒸着中にその組成が変化せず、且つ屈折率が2.0以上となるように、酸化チタンと酸化イッテルビウムとを所定のモル比で含有したものを蒸着材料とする技術が提案されている。   In Patent Document 2, for a layer formed by vapor deposition, titanium oxide and ytterbium oxide are added at a predetermined molar ratio so that the composition does not change during melting and vapor deposition and the refractive index is 2.0 or more. Techniques have been proposed in which the contained materials are used as vapor deposition materials.

特許文献3では、二酸化チタンからなるスパッタリングターゲットの導電性を高め、且つスパッタリングによって付着される層の屈折率が2.3以上となるように、酸化アルミニウム、酸化ジルコニウム等を二酸化チタンにドーピングさせる技術が提案されている。   In Patent Document 3, a technique for doping titanium dioxide with aluminum oxide, zirconium oxide or the like so as to increase the conductivity of a sputtering target made of titanium dioxide and to make the refractive index of a layer deposited by sputtering to be 2.3 or more. Has been proposed.

特許文献4では、酸化チタンベースの焼結体蒸着材料の機械的強度を高めるために、酸化ジルコニウム、酸化ハフニウム、酸化イットリウム及び酸化イッテルビウムからなる群からの酸化物をTiO(x=1.4〜1.8)に含有させる技術が提案されている。具体的には二酸化チタン、金属チタン及び酸化ジルコニウムを所定量混合、造粒し、減圧下で焼結させたものが開示されている。 In Patent Document 4, an oxide from the group consisting of zirconium oxide, hafnium oxide, yttrium oxide and ytterbium oxide is added to TiO x (x = 1.4) in order to increase the mechanical strength of the titanium oxide-based sintered body deposition material. To 1.8) have been proposed. Specifically, titanium dioxide, titanium metal and zirconium oxide are mixed, granulated, and sintered under reduced pressure.

しかし、特許文献4の技術では機械的強度をある程度改善できるものの、蒸着時のスプラッシュ発生を十分抑制できる程ではなかった。本出願人は、このような事情を踏まえ、一般式TiO(x=1.4〜1.8)で表されるチタン酸化物(亜酸化チタン)にガーネット構造をとる化合物を含有させる技術、あるいは亜酸化チタンに酸化イットリウムを必須とした複数種の酸化物を含有させる技術を提案し、先に出願した(特許文献5)。 However, although the technique of Patent Document 4 can improve the mechanical strength to some extent, it has not been able to sufficiently suppress the occurrence of splash during vapor deposition. In view of such circumstances, the applicant of the present invention includes a technique for adding a compound having a garnet structure to a titanium oxide (titanium oxide) represented by a general formula TiO x (x = 1.4 to 1.8), Or the technique which makes the titanium suboxide contain the multiple types of oxide which made the yttrium oxide essential was proposed, and it applied for earlier (patent document 5).

特開平5−264804号公報JP-A-5-264804 特表2006−519305号公報JP-T-2006-519305 特開2003−073820号公報JP 2003-073820 A 特開平9−241830号公報JP-A-9-241830 特開2012−107276号公報JP 2012-107276 A

特許文献5の技術により、亜酸化チタンの蒸着材料と同等の性能を持ち、且つ機械的強度が改善され、蒸着時のスプラッシュの発生も抑止できるチタン酸化物系の蒸着材料が得られるようになった。しかし、その後の研究で本発明者らは、蒸着対象が樹脂等のように基板温度を高くできない材料の場合、得られる蒸着膜の屈折率が想定した値より低くなり得ることを発見した。蒸着される材料の用途によっては、求められる屈折率の規格が厳しいこともあり、依然改良の余地が残されていた。   With the technique of Patent Document 5, a titanium oxide-based vapor deposition material having performance equivalent to that of a titanium suboxide vapor deposition material, improved mechanical strength, and capable of suppressing the occurrence of splash during vapor deposition can be obtained. It was. However, in subsequent studies, the present inventors have discovered that when the deposition target is a material such as a resin that cannot increase the substrate temperature, the refractive index of the deposited film obtained can be lower than the assumed value. Depending on the application of the material to be deposited, the required standard for refractive index may be strict, and there is still room for improvement.

本発明は上記の事情に鑑みてなされたものである。本発明の目的は、亜酸化チタンの蒸着材料と同等の性能を持ち、十分な機械的強度を有し、スプラッシュの発生が抑制され、さらに、蒸着対象を問わず屈折率の高い二酸化チタン蒸着膜を安定して得ることができるチタン酸化物系蒸着材料を提供することである。   The present invention has been made in view of the above circumstances. An object of the present invention is to provide a titanium dioxide vapor-deposited film having performance equivalent to that of a titanium suboxide vapor deposition material, sufficient mechanical strength, suppression of splash, and a high refractive index regardless of the vapor deposition target. It is providing the titanium oxide type vapor deposition material which can obtain stably.

本発明者らは、鋭意検討を重ね、本発明を完成するに至った。本発明者らは、特定組成のチタン酸化物に、特定の酸化物と、チタン酸塩とを含有させた焼結体を含む蒸着材料が、取り扱い時に破砕しにくく、破砕しても微粉がほとんど発生せず、且つ蒸着条件による屈折率の低下を防止できることを見出した。   The inventors of the present invention have made extensive studies and have completed the present invention. The present inventors have found that a vapor deposition material including a sintered body containing a specific oxide and a titanate in a specific composition of titanium oxide is not easily crushed during handling, and even if crushed, fine powder is hardly present. It has been found that no reduction in refractive index due to vapor deposition conditions can be prevented.

本発明の蒸着材料は、組成式TiO(1.4≦x≦1.8)で表されるチタン酸化物からなる主成分と、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムからなる群より選択される少なくとも一種からなる第1の副成分と、ガーネット構造をとる化合物及び酸化イットリウムからなる群より選択される少なくとも一種からなる第2の副成分と、少なくとも一種のチタン酸塩からなる第3の副成分からなる焼結体であることを特徴とする。 The vapor deposition material of the present invention includes a main component composed of a titanium oxide represented by a composition formula TiO x (1.4 ≦ x ≦ 1.8) and a group composed of aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide. A first subcomponent consisting of at least one selected, a second subcomponent consisting of at least one selected from the group consisting of a compound having a garnet structure and yttrium oxide, and a third consisting of at least one titanate. It is characterized by being a sintered body comprising the subcomponents of

前記第1の副成分は酸化アルミニウムであることが好ましい。   The first subcomponent is preferably aluminum oxide.

前記第3の副成分において、前記チタン酸塩は少なくとも一種のアルカリ土類金属チタン酸塩であることが好ましい。   In the third subcomponent, the titanate is preferably at least one alkaline earth metal titanate.

前記第1の副成分、第2の副成分及び第3の副成分の合計は、前記焼結体に対して1重量%以上10重量%以下であることが好ましい。   The total of the first subcomponent, the second subcomponent, and the third subcomponent is preferably 1 wt% or more and 10 wt% or less with respect to the sintered body.

前記蒸着材料は、0.1Pa〜1.0×10−4Paの圧力下、1300℃〜1750℃で焼成されてなる焼結体であることが好ましい。 The vapor deposition material is preferably a sintered body that is fired at 1300 ° C. to 1750 ° C. under a pressure of 0.1 Pa to 1.0 × 10 −4 Pa.

本発明のチタン酸化物系蒸着材料は上記の特徴を備えているので、亜酸化チタンの性能と、機械的強度及びスプラッシュ抑止能力を維持しつつ、さらに、蒸着対象を問わず屈折率の高い二酸化チタン蒸着膜を安定して得ることができる。   Since the titanium oxide-based vapor deposition material of the present invention has the above-mentioned characteristics, it maintains the performance of titanium suboxide, mechanical strength, and splash suppression capability, and further has a high refractive index regardless of the vapor deposition target. A titanium vapor deposition film can be obtained stably.

以下、本発明の蒸着材料及びその製造方法について説明する。但し、本発明は以下の説明によって制限されるものではない。   Hereinafter, the vapor deposition material of the present invention and the manufacturing method thereof will be described. However, the present invention is not limited by the following description.

本発明の蒸着材料は、主成分と、3種の副成分からなる焼結体を含む。以下、これらを中心に説明する。   The vapor deposition material of this invention contains the sintered compact which consists of a main component and 3 types of subcomponents. Hereinafter, these will be mainly described.

<主成分>
主成分は、組成式TiO(1.4≦x≦1.8)で表される亜酸化チタンである。亜酸化チタンを蒸着材料とし、適度な酸素分圧下で蒸着すると、蒸着膜形成時のガス発生が抑えられ、品位の高い蒸着膜が得られる。蒸着材料が二酸化チタンの場合、ガス発生により、例えば蒸着膜内部に空孔が形成される等の不具合が生じ、蒸着膜の品位が劣る。
<Main component>
The main component is titanium suboxide represented by the composition formula TiO x (1.4 ≦ x ≦ 1.8). When titanium suboxide is used as a vapor deposition material and vapor deposition is performed under an appropriate oxygen partial pressure, gas generation during vapor deposition film formation is suppressed, and a high quality vapor deposition film can be obtained. When the vapor deposition material is titanium dioxide, problems such as formation of vacancies in the vapor deposition film occur due to gas generation, resulting in poor quality of the vapor deposition film.

xの値は、1.4を下回ると蒸着膜が着色する傾向が、1.8を上回ると蒸着膜形成時のガス発生が増える傾向にあるので、1.4≦x≦1.8である必要がある。1.5≦x≦1.7であると、蒸着材料を気化させるのに必要なエネルギーが低くなるので好ましい。1.6≦x≦1.7(ほぼTiに相当する)であると、特に必要なエネルギーが低くなるのでより好ましい。 If the value of x is less than 1.4, the vapor deposition film tends to be colored, whereas if it exceeds 1.8, gas generation tends to increase when the vapor deposition film is formed, so 1.4 ≦ x ≦ 1.8. There is a need. It is preferable that 1.5 ≦ x ≦ 1.7 because energy required for vaporizing the vapor deposition material becomes low. It is more preferable that 1.6 ≦ x ≦ 1.7 (corresponding substantially to Ti 3 O 5 ) because particularly necessary energy is reduced.

<第1の副成分>
第1の副成分は、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムからなる群より選択される少なくとも一種からなる。これらは、得られる焼結体の粒子間の結合強度を高める。その結果、亜酸化チタンの焼結体であるにも拘わらず容易に破砕して微粉を生じる不具合が抑制される。チタン酸化物系の焼結体においては、特に酸化アルミニウムがこれらの効果が高く、好ましい。但し、第1の副成分は焼成時に粒子成長を促し、焼結体中に粒界が増えることになる。この粒界は蒸着時のスプラッシュ発生の原因となるので、後述の第2の副成分が必要となる。
<First subcomponent>
The first subcomponent consists of at least one selected from the group consisting of aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide. These increase the bond strength between particles of the obtained sintered body. As a result, in spite of being a sintered body of titanium suboxide, a problem of easily crushing and generating fine powder is suppressed. In the titanium oxide-based sintered body, aluminum oxide is particularly preferable because of its high effects. However, the first subcomponent promotes particle growth during firing and increases grain boundaries in the sintered body. Since this grain boundary causes the occurrence of splash during vapor deposition, a second subcomponent described later is required.

第1の副成分の含有量は、少なすぎればその効果が表れず、多すぎれば他の副成分の調整が必要になるので、適宜調節する。好ましい範囲は焼結体に対して0.5重量%以上2.0重量%以下であり、各種課題を克服し易い。より好ましい範囲は0.7重量%以上1.5重量%以下である。   If the content of the first subcomponent is too small, the effect does not appear. If the content is too high, the adjustment of other subcomponents is necessary, and is adjusted accordingly. A preferable range is 0.5% by weight or more and 2.0% by weight or less with respect to the sintered body, and it is easy to overcome various problems. A more preferable range is 0.7 wt% or more and 1.5 wt% or less.

<第2の副成分>
第2の副成分は、ガーネット構造をとる化合物及び酸化イットリウムからなる群より選択される少なくとも一種からなる。これらは得られる焼結体の粒子間の結合強度を高めると共に、焼成時の粒子成長を抑制する効果を有する。そのため、第1及び第2の副成分が存在することで、得られる焼結体の機械的強度が格段に高められると共に、蒸着時のスプラッシュ発生を抑制することができる。
<Second subcomponent>
The second subcomponent is at least one selected from the group consisting of a compound having a garnet structure and yttrium oxide. These have the effect of increasing the bond strength between the particles of the obtained sintered body and suppressing the particle growth during firing. Therefore, the presence of the first and second subcomponents can significantly increase the mechanical strength of the obtained sintered body and suppress the occurrence of splash during vapor deposition.

ガーネット構造をとる化合物には、A(SiO(AはCa、Fe、Mn、Mgなど、BはAl、Cr、Tiなど)で表されるオルトケイ酸塩(いわゆる柘榴石)、イットリウム鉄ガーネット(YIG)に代表される希土類鉄ガーネット、イットリウムアルミニウムガーネット(YAG)に代表される希土類アルミニウムガーネットなどがある。中でも希土類アルミニウムガーネットが適度な強度の焼結体を得やすいので好ましい。 For compounds having a garnet structure, orthosilicate (so-called meteorite) represented by A 3 B 2 (SiO 4 ) 3 (A is Ca, Fe, Mn, Mg, etc., B is Al, Cr, Ti, etc.) , Rare earth iron garnet represented by yttrium iron garnet (YIG), rare earth aluminum garnet represented by yttrium aluminum garnet (YAG), and the like. Among these, rare earth aluminum garnet is preferable because it is easy to obtain a sintered body having an appropriate strength.

前記希土類アルミニウムガーネットの中でも、イットリウム、ランタン、ガドリニウム及びルテチウムからなる群より選択される少なくとも一種の元素を希土類元素としたものは焼結体の特性を制御しやすいのでより好ましい。中でもYAGあるいは希土類元素の主成分がイットリウムであるものは製造バラツキが少なく特に好ましい。   Among the rare earth aluminum garnets, those in which at least one element selected from the group consisting of yttrium, lanthanum, gadolinium and lutetium is a rare earth element are more preferable because the properties of the sintered body can be easily controlled. Among them, YAG or a rare earth element whose main component is yttrium is particularly preferable because of little manufacturing variation.

前述のガーネット構造をとる化合物と同様の効果を有する単純酸化物として、酸化イットリウムがある。そのため、ガーネット構造をとる化合物、酸化イットリウムあるいは両者を用いることができる。   As a simple oxide having the same effect as the compound having the garnet structure described above, there is yttrium oxide. Therefore, a compound having a garnet structure, yttrium oxide, or both can be used.

第2の副成分についても、第1の副成分と同様の理由で、好ましい含有量の範囲は、焼結体に対して0.5重量%以上2.0重量%以下である。より好ましくは0.7重量%以上1.5重量%以下である。   Also for the second subcomponent, for the same reason as the first subcomponent, the preferable content range is 0.5 wt% or more and 2.0 wt% or less with respect to the sintered body. More preferably, they are 0.7 weight% or more and 1.5 weight% or less.

<第3の副成分>
第3の副成分は、少なくとも一種のチタン酸塩からなる。チタン酸塩は二酸化チタンと同等あるいはそれ以上の屈折率を有す傾向にあり、なおかつ第1及び第2の副成分と効果を相殺することがない。そのため、これらを第3の副成分として用いると、比較的低温でも安定して高屈折率膜を維持させることができ、第1の副成分と第2の副成分により低下する屈折率を抑制する。チタン酸塩としては、アルカリ金属、アルカリ土類金属、希土類金属等のチタン酸塩が選択可能であるが、中でもアルカリ土類金属チタン酸塩は、第2の副成分と共存することでスプラッシュ抑制効果を相乗的に高め、さらに価格も安いので好ましい。特に、アルカリ土類金属がバリウム又はストロンチウムのいずれか、又は両方であると、安定して成膜できるのでより好ましい。
<Third subcomponent>
The third subcomponent is composed of at least one titanate. Titanate tends to have a refractive index equal to or higher than that of titanium dioxide, and does not offset the effects of the first and second subcomponents. Therefore, when these are used as the third subcomponent, the high refractive index film can be stably maintained even at a relatively low temperature, and the refractive index lowered by the first subcomponent and the second subcomponent is suppressed. . As titanates, titanates such as alkali metals, alkaline earth metals, and rare earth metals can be selected. Among them, alkaline earth metal titanates suppress splash by coexisting with the second subcomponent. It is preferable because the effect is increased synergistically and the price is low. In particular, it is more preferable that the alkaline earth metal is either barium or strontium, or both because a stable film can be formed.

第3の副成分の含有量は、少なすぎればその効果が得られず、多すぎればスプラッシュ抑制効果が低下するので、適宜調節する。第3の副成分は、高屈折率膜を安定して成膜する鍵を握るため、第1及び第2の副成分に比べて好ましい範囲が多めである。好ましい範囲は焼結体に対して1.0重量%以上5.0重量%以下であり、各種課題を克服し易い。より好ましくは1.5重量%以上3.0重量%以下である。   If the content of the third subcomponent is too small, the effect cannot be obtained. If the content is too large, the splash suppressing effect is lowered. Since the third subcomponent holds the key for stably forming the high refractive index film, the preferred range is larger than the first and second subcomponents. A preferable range is 1.0% by weight or more and 5.0% by weight or less with respect to the sintered body, and it is easy to overcome various problems. More preferably, it is 1.5 weight% or more and 3.0 weight% or less.

<主成分及び副成分の割合>
本発明の蒸着材料において、主成分は蒸着材料としての基本的な特性を決めるものである。そのため、蒸着材料全体に対しておおよそ80重量%以上存在していれば主成分たるものとする。一方、副成分は多すぎると主成分の特性を損なう虞が、少なすぎると副成分による効果が発現しないので、適宜調整する。本発明において、副成分の合計が焼結体に対して1重量%以上10重量%以下なら、蒸着材料としての基本的な特性を維持しつつ亜酸化チタン特有の課題を解決できるので好ましい。より好ましい範囲は3重量%以上5重量%以下である。なお、目的に応じて、あるいは製造工程、蒸着工程等における混入によって、上記主成分、副成分以外の成分が含まれていてもよい。但し主成分が主成分として機能する程度までの範囲とする。
<Ratio of main component and subcomponent>
In the vapor deposition material of the present invention, the main component determines basic characteristics as the vapor deposition material. Therefore, if it is present at approximately 80% by weight or more with respect to the entire vapor deposition material, it is assumed to be a main component. On the other hand, if there are too many subcomponents, the characteristics of the main component may be impaired. If there are too few subcomponents, the effects of the subcomponents will not be manifested. In the present invention, it is preferable that the total of the subcomponents is 1% by weight or more and 10% by weight or less with respect to the sintered body because the problems specific to titanium suboxide can be solved while maintaining the basic characteristics as the vapor deposition material. A more preferable range is 3% by weight or more and 5% by weight or less. In addition, components other than the main component and the subcomponent may be included depending on the purpose or by mixing in a manufacturing process, a vapor deposition process, or the like. However, the range is such that the main component functions as the main component.

<副成分間の関係>
第1の副成分と第2の副成分について、その重量比が1:1に近いと微粉発生とスプラッシュ発生を共に効果的に抑制できるので好ましい。実質的にはその比が1:0.85から1:1.15程度の間なら十分効果的に抑制できる。第1及び第2の副成分と、第3の副成分について、高屈折率の蒸着膜を安定して得るには、第1及び第2の副成分の合計に対して第3の副成分が多い方が好ましい。両者の重量比が1:1.5〜1:3.0程度の間ならその効果が特に高く、且つ各種課題を克服し易いので特に好ましい。
<Relationship between subcomponents>
About the 1st subcomponent and the 2nd subcomponent, when the weight ratio is close to 1: 1, since both fine powder generation | occurrence | production and splash generation | occurrence | production can be suppressed effectively, it is preferable. If the ratio is substantially between 1: 0.85 and 1: 1.15, it can be suppressed sufficiently effectively. For the first and second subcomponents and the third subcomponent, in order to stably obtain a high refractive index deposited film, the third subcomponent is added to the total of the first and second subcomponents. More is preferable. If the weight ratio of the two is between about 1: 1.5 and 1: 3.0, the effect is particularly high, and various problems are easily overcome, which is particularly preferable.

<蒸着材料の製造方法>
次に、本発明の蒸着材料の製造方法について説明する。
<Method for producing vapor deposition material>
Next, the manufacturing method of the vapor deposition material of this invention is demonstrated.

本発明の蒸着材料は、混合工程及び焼成工程を含む工程を経て得られる焼結体を含む。以下、焼結体の製造方法を中心に説明する。   The vapor deposition material of this invention contains the sintered compact obtained through the process including a mixing process and a baking process. Hereinafter, the method for producing a sintered body will be mainly described.

<混合工程>
主成分の原料と、副成分の原料を公知の方法で混合し、混合原料を得る。混合原料はさらに造粒、加圧成形等を施してもよい。
<Mixing process>
The raw material of the main component and the raw material of the subcomponent are mixed by a known method to obtain a mixed raw material. The mixed raw material may be further subjected to granulation, pressure molding and the like.

主成分の原料は、目的組成である市販の主成分を用いてもよいし、金属チタン及び各種チタン酸化物を目的組成に応じて適宜選択し、混合して用いてもよい。例えば金属チタンと二酸化チタン、一酸化チタンと二酸化チタン、金属チタンと一酸化チタンと五酸化三チタン、三酸化二チタンと二酸化チタン、等様々な組み合わせが可能である。原料入手のし易さ、価格、取り扱い易さ等を考慮すると、金属チタンと二酸化チタンを混合するのが好ましい。   As the main component material, a commercially available main component having the target composition may be used, or metallic titanium and various titanium oxides may be appropriately selected according to the target composition and used in combination. For example, various combinations such as titanium metal and titanium dioxide, titanium monoxide and titanium dioxide, metal titanium and titanium monoxide and trititanium oxide, and dititanium trioxide and titanium dioxide are possible. In consideration of easy availability of raw materials, price, ease of handling, etc., it is preferable to mix titanium metal and titanium dioxide.

副成分の原料は、目的組成の化合物を用いる。焼成時の予期せぬ反応を防ぐため、他の形態(例えばハロゲン化物、硫酸塩等)の原料は用いない。   A compound having a target composition is used as a raw material for the accessory component. In order to prevent an unexpected reaction during firing, raw materials in other forms (for example, halides, sulfates, etc.) are not used.

<焼成工程>
混合工程で得られる混合原料を焼成し、焼結体を得る。焼成手法は炉内の雰囲気をチタンと反応しないように調整して電気炉等で焼成してもよいし、炉内の真空度を高めて(排気、減圧して)真空炉で焼成してもよい。後者の方が現実的な手法と言えて好ましい。前者の場合は、例えばアルゴン等の希ガス雰囲気を用いる。
<Baking process>
The mixed raw material obtained in the mixing step is fired to obtain a sintered body. The firing method may be such that the atmosphere in the furnace is adjusted so as not to react with titanium and fired in an electric furnace or the like, or the degree of vacuum in the furnace is increased (exhaust and depressurized) and fired in a vacuum furnace. Good. The latter is preferable because it is a realistic method. In the former case, a rare gas atmosphere such as argon is used.

焼成温度は、炉の構造、雰囲気等によって適宜決定する。低すぎれば焼結が不十分に、高すぎれば焼結体が堅くなりすぎたり粒子成長が起こりすぎたりする傾向にあるので注意が必要である。雰囲気焼成の場合は1200℃〜1500℃であればよく、好ましくは1300℃〜1400℃である。真空焼成の場合は、1300〜1750℃であればよく、好ましくは1650℃〜1720℃である。真空焼成は、雰囲気焼成に比べると、チタンが酸素以外の元素と反応するのをほぼ確実に防止できるのでより好ましい。   The firing temperature is appropriately determined depending on the furnace structure, atmosphere, and the like. If it is too low, the sintering is insufficient, and if it is too high, the sintered body tends to be too stiff or grain growth tends to occur. In the case of atmospheric firing, it may be 1200 ° C to 1500 ° C, and preferably 1300 ° C to 1400 ° C. In the case of vacuum firing, the temperature may be 1300 to 1750 ° C, and preferably 1650 to 1720 ° C. Vacuum firing is more preferable than atmosphere firing because titanium can be almost certainly prevented from reacting with elements other than oxygen.

真空焼成する場合、10Pa以下の圧力範囲で焼成することで真空焼成としての意味をなす。真空度は高ければ高いに越したことはないが、コストや手間考慮すると、1.0×10−1Pa〜1.0×10−4Paの圧力範囲が現実的であり好ましい。 In the case of vacuum firing, firing as a pressure range of 10 Pa or less makes sense as vacuum firing. If the degree of vacuum is high, the pressure is never high, but considering the cost and labor, a pressure range of 1.0 × 10 −1 Pa to 1.0 × 10 −4 Pa is realistic and preferable.

<その他の工程>
得られた焼結体は使用目的に応じて適宜粉砕工程を設けて粒度調整を行ってもよい。あるいは高水圧切断機等で特定の大きさの断片に切り分けてもよい。本発明の蒸着材料に含まれる焼結体は、通常の取り扱い中に意図しない破砕はほとんど起こらず、また、粉砕工程においても微粉がほとんど発生しない。
<Other processes>
The obtained sintered body may be adjusted in particle size by appropriately providing a pulverization step according to the purpose of use. Or you may cut | divide into the fragment | piece of a specific magnitude | size with a high hydraulic-pressure cutting machine etc. The sintered body contained in the vapor deposition material of the present invention hardly causes unintentional crushing during normal handling, and hardly generates fine powder in the pulverization process.

これらの工程を経て得られる焼結体は、主成分及び各副成分がそれぞれ独立して存在している。このことは粉末X線回折(XRD)によって確認できる。すなわち、XRDスペクトルの形状はおおよそ主成分のものと同等である。但し、バックグラウンドのノイズが増加し、スペクトルのピークは半値幅が広がり、ややブロードになる。このことから、化学的には変化が生じていないが、結晶的な特性に変化が生じていることが分かる。なお、相対的な量の少なさ故に、各副成分に係るスペクトルのピークははっきりとは観察できない。   In the sintered body obtained through these steps, the main component and each subcomponent are present independently. This can be confirmed by powder X-ray diffraction (XRD). That is, the shape of the XRD spectrum is approximately the same as that of the main component. However, the background noise increases, and the peak of the spectrum has a half-width that is slightly broadened. From this, it can be seen that although no change has occurred chemically, a change has occurred in the crystalline characteristics. In addition, since the relative amount is small, the peak of the spectrum related to each subcomponent cannot be clearly observed.

以下、実施例を用いてより具体的に説明する。もちろん本発明は実施例にのみ限定されるものではない。   Hereinafter, it demonstrates more concretely using an Example. Of course, the present invention is not limited to the examples.

平均粒径0.5μmの二酸化チタン粉末85.3重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.2重量%、チタン酸ストロンチウム2.5重量%、酸化アルミニウム粉末1.0重量%及びYAG粉末1.0重量%を撹拌混合機で混合して混合原料を得た。混合原料は造粒機で粒径0.5mm〜3.0mm程度の顆粒状に造粒した。得られた造粒品を、1Pa以下の減圧下、1700℃で2時間焼成し、焼結体を得た。得られた焼結体を粗粉砕し、粒径0.5mm〜3.0mm程度の焼結顆粒を得た。   85.3% by weight of titanium dioxide powder having an average particle size of 0.5 μm, 10.2% by weight of titanium metal powder with coarse particles removed by a metal mesh screen having a nominal opening of 45 μm, 2.5% by weight of strontium titanate, A mixed raw material was obtained by mixing 1.0% by weight of aluminum oxide powder and 1.0% by weight of YAG powder with a stirring mixer. The mixed raw material was granulated into granules having a particle size of about 0.5 mm to 3.0 mm with a granulator. The obtained granulated product was fired at 1700 ° C. for 2 hours under a reduced pressure of 1 Pa or less to obtain a sintered body. The obtained sintered body was coarsely pulverized to obtain sintered granules having a particle size of about 0.5 mm to 3.0 mm.

二酸化チタン粉末85.7重量%、金属チタン粉末10.3重量%、チタン酸ストロンチウム2.0重量%を混合した以外は実施例1と同様にし、焼結顆粒を得た。   Sintered granules were obtained in the same manner as in Example 1 except that 85.7% by weight of titanium dioxide powder, 10.3% by weight of titanium metal powder, and 2.0% by weight of strontium titanate were mixed.

チタン酸ストロンチウムに代わり、チタン酸バリウム2.0重量%を混合した以外は実施例2と同様にし、焼結顆粒を得た。   Sintered granules were obtained in the same manner as in Example 2 except that 2.0% by weight of barium titanate was mixed instead of strontium titanate.

[比較例1]
平均粒径0.5μmの二酸化チタン粉末86.6重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.4重量%、酸化アルミニウム粉末1.0重量%及びYAG粉末2.0重量%を撹拌混合機で混合し、造粒機で粒径0.5mm〜3.0mm程度の顆粒状に造粒した。得られた造粒品を、1Pa以下の減圧下、1700℃で2時間焼成し、焼結体を得た。得られた焼結体を粗粉砕し、粒径0.5mm〜3.0mm程度の焼結顆粒を得た。
[Comparative Example 1]
Titanium dioxide powder with an average particle diameter of 0.5 μm, 86.6% by weight, titanium metal powder with coarse particles removed by a metal screen having a nominal opening of 45 μm, 10.4% by weight, aluminum oxide powder 1.0% by weight and 2.0% by weight of YAG powder was mixed with a stirring mixer and granulated into granules having a particle size of about 0.5 mm to 3.0 mm with a granulator. The obtained granulated product was fired at 1700 ° C. for 2 hours under a reduced pressure of 1 Pa or less to obtain a sintered body. The obtained sintered body was coarsely pulverized to obtain sintered granules having a particle size of about 0.5 mm to 3.0 mm.

[比較例2]
平均粒径0.5μmの二酸化チタン粉末89.3重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.7重量%とを撹拌混合機で混合し、造粒機で粒径0.5mm〜3.0mm程度の顆粒状に造粒した。得られた造粒品を、1Pa以下の減圧下、1700℃で2時間焼成し、焼結体を得た。得られた焼結体を粗粉砕し、粒径0.5mm〜3.0mm程度の焼結顆粒を得た。
[Comparative Example 2]
A mixture of 89.3 wt% titanium dioxide powder having an average particle size of 0.5 μm and 10.7 wt% of metal titanium powder from which coarse particles have been removed by a metal mesh sieve having a nominal aperture of 45 μm is mixed with a stirring mixer. It was granulated into granules having a particle size of about 0.5 mm to 3.0 mm with a granulator. The obtained granulated product was fired at 1700 ° C. for 2 hours under a reduced pressure of 1 Pa or less to obtain a sintered body. The obtained sintered body was coarsely pulverized to obtain sintered granules having a particle size of about 0.5 mm to 3.0 mm.

[比較例3]
比較例2と同様にして混合原料を顆粒状に造粒した。得られた造粒品を、1Pa以下の減圧下、1800℃で2時間焼成し、溶融体を得た。得られた溶融体を粗粉砕し、粒径0.5mm〜3.0mm程度の顆粒を得た。
[Comparative Example 3]
The mixed raw material was granulated in the same manner as in Comparative Example 2. The obtained granulated product was fired at 1800 ° C. for 2 hours under a reduced pressure of 1 Pa or less to obtain a melt. The obtained melt was coarsely pulverized to obtain granules having a particle size of about 0.5 mm to 3.0 mm.

[比較例4]
平均粒径0.5μmの二酸化チタン粉末86.6重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.4重量%及びチタン酸ストロンチウム3.0重量%を撹拌混合機で混合し、造粒機で粒径0.5〜3.0mm程度の顆粒状に造粒した。以下実施例1と同様にして焼結顆粒を得た。
[Comparative Example 4]
86.6% by weight of titanium dioxide powder having an average particle diameter of 0.5 μm, 10.4% by weight of metal titanium powder from which coarse particles have been removed by a metal mesh screen having a nominal opening of 45 μm, and 3.0% by weight of strontium titanate The mixture was mixed with a stirring mixer and granulated into granules having a particle size of about 0.5 to 3.0 mm with a granulator. Thereafter, sintered granules were obtained in the same manner as in Example 1.

<微粉発生率>
実施例1〜3及び比較例1〜4の焼結顆粒を保管用ナイロン袋に梱包し、蒸着装置まで移動させた後、保管用ナイロン袋から取り出し、蒸着装置に設置した。焼結顆粒を蒸着装置に設置するまでに発生した微粉は保管用ナイロン袋から分取し、公称目開き0.1mmの金属製網篩で篩分けた。篩分けられた微粉の焼結顆粒に対する割合(重量比)を微粉発生率とした。微粉発生率が大きいほど得られた焼結体は脆く、取り扱いにくい(ハンドリングが悪い)と言える。微粉発生率が0.5%程度に達すると、焼結体の取り扱いにくさが非常によく実感できる。
<Fine powder generation rate>
The sintered granules of Examples 1 to 3 and Comparative Examples 1 to 4 were packed in a storage nylon bag, moved to a vapor deposition apparatus, then taken out from the storage nylon bag and installed in the vapor deposition apparatus. Fine powder generated until the sintered granules were installed in the vapor deposition apparatus was collected from a nylon bag for storage and sieved with a metal mesh screen having a nominal opening of 0.1 mm. The ratio (weight ratio) of the sieved fine powder to the sintered granules was defined as the fine powder generation rate. It can be said that the larger the fine powder generation rate, the more the sintered body obtained is brittle and difficult to handle (poor handling). When the fine powder generation rate reaches about 0.5%, it is very easy to handle the sintered body.

微粉が取り除かれた焼結顆粒を用い、電子ビーム蒸着装置で以下の要領でスプラッシュ発と蒸着膜の評価とを行った。   Using the sintered granule from which fine powder was removed, splashing and evaluation of the deposited film were performed with an electron beam deposition apparatus in the following manner.

<スプラッシュ評価>
電子ビーム蒸着装置の銅製ハース(ルツボ)内に焼結顆粒を、試料台にガラス基板を設置し、装置内を5.0×10−4Paまで排気、減圧した。減圧後、加速電圧6kVで電子銃から250mAの電子ビームを発生させ、焼結顆粒を加熱、溶解した。焼結顆粒の加熱開始から、焼結顆粒全体が溶融するまでの間、電子ビーム蒸着装置の窓から銅製ハースを目視で観察し、スプラッシュの発生頻度を比較した。
<Splash evaluation>
The sintered granules were placed in a copper hearth (crucible) of an electron beam evaporation apparatus, a glass substrate was placed on the sample stage, and the inside of the apparatus was evacuated to 5.0 × 10 −4 Pa and decompressed. After decompression, a 250 mA electron beam was generated from an electron gun at an acceleration voltage of 6 kV, and the sintered granules were heated and melted. From the start of heating the sintered granules to the melting of the entire sintered granules, the copper hearth was visually observed from the window of the electron beam deposition apparatus, and the frequency of occurrence of splash was compared.

<蒸着膜の評価>
焼結顆粒全体の溶解を確認した後、装置内部を1.4×10−2Paの酸素雰囲気に調整し、電子ビームの電流値を成膜速度0.3nm/secとなるような値に調整し、ガラス基板を80℃に保ちながら光学膜厚2λの蒸着膜を生成した。得られた蒸着膜について、分光光度計で透過・反射のピークを求めて波長分散特性を算出し、波長560nm付近における屈折率を求めた。なお、ガラス基板の温度は、樹脂基板に蒸着膜を生成する時の温度に合わせて低くしてある(通常は250℃)。
<Evaluation of vapor deposition film>
After confirming the dissolution of the entire sintered granule, the inside of the apparatus is adjusted to an oxygen atmosphere of 1.4 × 10 −2 Pa, and the current value of the electron beam is adjusted to a value at which the film formation rate is 0.3 nm / sec. And the vapor deposition film | membrane with an optical film thickness of 2lambda was produced | generated, keeping a glass substrate at 80 degreeC. About the obtained vapor deposition film, the peak of transmission / reflection was calculated | required with the spectrophotometer, the wavelength dispersion characteristic was calculated, and the refractive index in wavelength 560nm vicinity was calculated | required. In addition, the temperature of the glass substrate is lowered according to the temperature when the vapor deposition film is formed on the resin substrate (usually 250 ° C.).

実施例1〜3及び比較例1〜4における、各原料の重量比を表1に、微粉発生率、スプラッシュ及び蒸着膜の評価結果、並びに焼結顆粒あるいは溶融体の嵩密度を表2に示す。   The weight ratio of each raw material in Examples 1 to 3 and Comparative Examples 1 to 4 is shown in Table 1, and the fine powder generation rate, the splash and the evaluation results of the deposited film, and the bulk density of the sintered granules or the melt are shown in Table 2. .

Figure 0005929673
Figure 0005929673

Figure 0005929673
Figure 0005929673

表1及び2より、第3の副成分を含むことで、得られる蒸着膜の屈折率が安定して2.24以上となっており、高屈折率の蒸着膜を安定して得られることが分かる。一方、第1あるいは第2の副成分が存在しないと、微粉発生率が高くなる、あるいはスプラッシュが多くなる、といった弊害が生じることが分かる。本発明の蒸着材料は、第1〜第3の副成分を含んでいるので、焼結体系の蒸着材料でありながら溶融体なみの性能を有する。一方、焼結体系の蒸着材料なので、溶融体のように、熱膨張差由来のルツボ破損リスクや、ルツボへの癒着による収率低下といったデメリットがない。
From Tables 1 and 2, by including the third subcomponent, the refractive index of the obtained vapor deposition film is stably 2.24 or more, and a high refractive index vapor deposition film can be obtained stably. I understand. On the other hand, it can be seen that when the first or second subcomponent is not present, there is a problem that the fine powder generation rate is increased or the splash is increased. Since the vapor deposition material of the present invention includes the first to third subcomponents, it has a performance similar to that of a melt while being a vapor deposition material of a sintered system. On the other hand, since it is a sintered vapor deposition material, there is no demerit such as the risk of crucible breakage due to differential thermal expansion or a decrease in yield due to adhesion to the crucible unlike a melt.

本発明の蒸着材料を用いることで、膜品位の高い二酸化チタン蒸着膜を、比較的低温でも形成することができる。そのため、本発明の蒸着材料は、蒸着対象の材質を問わず適用することができる。また、本発明の蒸着材料はその歩留まりが高く、ハンドリングがよいので、膜品位の高い二酸化チタン蒸着膜を多岐に渡る材料に安価に且つ安定して形成することができる。その結果、高屈折率で耐熱性の高い多様な光学機器が安価にかつ安定して製造できる。   By using the vapor deposition material of the present invention, a titanium dioxide vapor deposition film having high film quality can be formed even at a relatively low temperature. Therefore, the vapor deposition material of the present invention can be applied regardless of the material to be vapor deposited. Further, since the vapor deposition material of the present invention has a high yield and good handling, it is possible to form a titanium dioxide vapor deposition film with high film quality on a wide variety of materials at low cost and stably. As a result, various optical devices having a high refractive index and high heat resistance can be manufactured inexpensively and stably.

Claims (4)

組成式TiO(1.4≦x≦1.8)で表されるチタン酸化物からなる主成分と、
酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムからなる群より選択される少なくとも一種からなる第1の副成分と、
ガーネット構造をとる化合物及び酸化イットリウムからなる群より選択される少なくとも一種からなる第2の副成分と、
少なくとも一種のアルカリ土類金属チタン酸塩からなる第3の副成分と、
からなる焼結体を含む蒸着材料。
A main component composed of a titanium oxide represented by a composition formula TiO x (1.4 ≦ x ≦ 1.8);
A first subcomponent consisting of at least one selected from the group consisting of aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide;
A second subcomponent consisting of at least one selected from the group consisting of a compound having a garnet structure and yttrium oxide;
A third subcomponent comprising at least one alkaline earth metal titanate;
Vapor deposition material including a sintered body made of
前記第1の副成分が酸化アルミニウムである、請求項1に記載の蒸着材料。   The vapor deposition material according to claim 1, wherein the first subcomponent is aluminum oxide. 前記第3の副成分において、前記アルカリ土類金属チタン酸塩がチタン酸ストロンチウム及びチタン酸バリウムからなる群より選択される少なくとも一種である、請求項1または2に記載の蒸着材料。 The vapor deposition material according to claim 1 or 2 , wherein, in the third subcomponent, the alkaline earth metal titanate is at least one selected from the group consisting of strontium titanate and barium titanate. 前記第1の副成分、前記第2の副成分及び前記第3の副成分の合計が、前記焼結体に対して1重量%以上10重量%以下である、請求項1乃至のいずれか一項に記載の蒸着材料。 The first subcomponent, the sum of the second subcomponent and the third subcomponent is not more than 10 wt% 1 wt% or more with respect to the sintered body, any one of claims 1 to 3 The vapor deposition material according to one item.
JP2012215412A 2012-09-28 2012-09-28 Titanium oxide vapor deposition material Active JP5929673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215412A JP5929673B2 (en) 2012-09-28 2012-09-28 Titanium oxide vapor deposition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215412A JP5929673B2 (en) 2012-09-28 2012-09-28 Titanium oxide vapor deposition material

Publications (2)

Publication Number Publication Date
JP2014070234A JP2014070234A (en) 2014-04-21
JP5929673B2 true JP5929673B2 (en) 2016-06-08

Family

ID=50745734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215412A Active JP5929673B2 (en) 2012-09-28 2012-09-28 Titanium oxide vapor deposition material

Country Status (1)

Country Link
JP (1) JP5929673B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189464A (en) * 2016-08-26 2019-10-31 Agc株式会社 Dititanium trioxide type ceramic bulk body and method of producing the same
CN109503149A (en) * 2018-11-27 2019-03-22 北京富兴凯永兴光电技术有限公司 A kind of high refractive index optical filming material and preparation method, optical anti-reflective film
CN115893864B (en) * 2022-10-28 2023-11-14 苏州晶生新材料有限公司 Antistatic wear-resistant coating substrate and coating method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641729A (en) * 1992-07-27 1994-02-15 Oputoron:Kk Material for vapor deposition
JPH06264231A (en) * 1993-03-11 1994-09-20 Mitsubishi Materials Corp Target material for producing thin high dielectric film and its production
DE19607833A1 (en) * 1996-03-01 1997-09-04 Merck Patent Gmbh Stabilized evaporation materials based on titanium oxide
JP3708429B2 (en) * 2000-11-30 2005-10-19 Hoya株式会社 Method for manufacturing vapor deposition composition, method for manufacturing optical component having vapor deposition composition and antireflection film
WO2004052786A1 (en) * 2002-12-09 2004-06-24 Tayca Corporation Titanium oxide particles having useful properties and method for production thereof
JP2004300580A (en) * 2004-05-20 2004-10-28 Hoya Corp Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
JP4178190B2 (en) * 2006-08-25 2008-11-12 ナルックス株式会社 Optical element having multilayer film and method for producing the same
FR2913116B1 (en) * 2007-02-23 2009-08-28 Essilor Int METHOD FOR MANUFACTURING OPTICAL ARTICLE COATED WITH AN ANTI-REFLECTIVE OR REFLECTIVE COATING HAVING IMPROVED ADHESION AND ABRASION RESISTANCE PROPERTIES
CN102933496B (en) * 2010-06-08 2014-10-22 住友金属矿山株式会社 Method for producing metal oxide film, metal oxide film, element using the metal oxide film, substrate with metal oxide film, and device using the substrate with metal oxide film
JP5287834B2 (en) * 2010-11-16 2013-09-11 日亜化学工業株式会社 Titanium oxide-based vapor deposition material and method for producing the same

Also Published As

Publication number Publication date
JP2014070234A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP5169888B2 (en) Composite tungsten oxide target material and manufacturing method thereof
JP5024226B2 (en) Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film
KR101390039B1 (en) Process for preparing ceramics, ceramics thus obtained and uses thereof, especially as a sputtering target
US8569192B2 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP5682112B2 (en) Zinc oxide sintered body and manufacturing method thereof, sputtering target, and electrode formed using this sputtering target
WO2011016387A1 (en) Tablet for ion plating, method for producing same, and transparent conductive film
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP2008063214A (en) Zinc oxide sintered compact, process for producing the same, and sputtering target
WO2015146394A1 (en) Sputtering target of sintered sb-te-based alloy
JPH11302835A (en) Production of zinc oxide base sintered compact
JP5929673B2 (en) Titanium oxide vapor deposition material
JP5287834B2 (en) Titanium oxide-based vapor deposition material and method for producing the same
CN104684867A (en) Method for producing conductive mayenite compound having high-electron-density
JP2011057548A (en) Method for making heating element of molybdenum silicide type
JP2009504557A (en) SiOx: Si composite object and manufacturing method thereof
JPH10158826A (en) Mgo target and its production
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5993700B2 (en) Method for producing zinc oxide-based sintered body
JP5425457B2 (en) Deposition material for protective film of plasma display panel
JP6414527B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP6551683B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP6459830B2 (en) Oxide sintered body, method for producing the same, and method for producing oxide film
KR101693122B1 (en) METHOD FOR FABRICATING NANO-POWDERS USING Al-BASED AMORPHOUS ALLOY
KR101702791B1 (en) Sintered compact and amorphous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250