JP5929466B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP5929466B2
JP5929466B2 JP2012097637A JP2012097637A JP5929466B2 JP 5929466 B2 JP5929466 B2 JP 5929466B2 JP 2012097637 A JP2012097637 A JP 2012097637A JP 2012097637 A JP2012097637 A JP 2012097637A JP 5929466 B2 JP5929466 B2 JP 5929466B2
Authority
JP
Japan
Prior art keywords
resin composition
resin
mass
product
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012097637A
Other languages
Japanese (ja)
Other versions
JP2013224373A (en
Inventor
峰雄 野内
峰雄 野内
久志 田端
久志 田端
清敬 古田
清敬 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2012097637A priority Critical patent/JP5929466B2/en
Priority to KR1020130044245A priority patent/KR102075880B1/en
Priority to TW102114234A priority patent/TWI589614B/en
Priority to CN201310142091.8A priority patent/CN103374219B/en
Publication of JP2013224373A publication Critical patent/JP2013224373A/en
Application granted granted Critical
Publication of JP5929466B2 publication Critical patent/JP5929466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13069Thin film transistor [TFT]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

本発明は、樹脂組成物に関する。更には、フレキシブルプリント基板の電子回路表面を保護するオーバーコート剤、有機ELディスプレイ、電子ペーパー、その他タッチパネル等の各種表示装置の分野で使用する層間絶縁膜形成用部材、また有機TFT(thin film transistor)の分野で使用する部材等に関する。 The present invention relates to a resin composition. Furthermore, an overcoat agent for protecting the electronic circuit surface of a flexible printed circuit board, an organic EL display, electronic paper, other members for forming an interlayer insulating film used in the field of various display devices such as a touch panel, and an organic TFT (thin film transistor) ) Related to the members used in the field.

特に近年、有機ELディスプレイ、電子ペーパーなどの各種表示装置の分野において有機半導体層を用いた薄膜トランジスタ(TFT)が注目されており、有機TFTと呼ばれている。有機TFTは、無機半導体層を用いた従来の無機TFTに置き換わるデバイスとして有力視されており、その用途としては、前述の表示装置などの多様な電子機器が挙げられる。有機TFTでは、無機TFTと比較して蒸着法などよりも低い温度で有機半導体層を形成できるため、低耐熱性のプラスチックフィルムなどの基材に有機TFTを実装が可能になると期待されている。 Particularly in recent years, a thin film transistor (TFT) using an organic semiconductor layer has attracted attention in the field of various display devices such as an organic EL display and electronic paper, and is called an organic TFT. Organic TFTs are regarded as promising devices that can replace conventional inorganic TFTs using inorganic semiconductor layers, and their applications include various electronic devices such as the above-described display devices. In the organic TFT, since the organic semiconductor layer can be formed at a temperature lower than that of the vapor deposition method or the like as compared with the inorganic TFT, it is expected that the organic TFT can be mounted on a substrate such as a low heat-resistant plastic film.

特に、プラスチックフィルムなどの可撓性の基体に有機TFTを実装することで、その可撓性を活かして折り曲げ可能な電子機器を実現できる。この場合には、低い温度での有機半導体層の形成と同時に低温での絶縁膜形成により基材や有機TFT素子が熱的ダメージを受けることを防止できる。そこで、印刷法などを用いて有機半導体層や絶縁膜を形成することが提案されている。特許文献1のようにワニス状の樹脂組成物(オーバーコート剤)をスクリーン印刷によって所望のパターンに印刷し、これを硬化させる方法が知られているが、その性能は十分ではなかった。 In particular, by mounting an organic TFT on a flexible substrate such as a plastic film, it is possible to realize an electronic device that can be bent utilizing its flexibility. In this case, it is possible to prevent the base material and the organic TFT element from being thermally damaged by forming the organic semiconductor layer at a low temperature and simultaneously forming the insulating film at a low temperature. Therefore, it has been proposed to form an organic semiconductor layer or an insulating film using a printing method or the like. As in Patent Document 1, a method of printing a desired pattern by screen printing of a varnish-like resin composition (overcoat agent) and curing it is known, but its performance is not sufficient.

国際公開2009/051209号パンフレットInternational Publication No. 2009/051209 Pamphlet

本発明が解決しようとする課題は、低温硬化性、柔軟性、印刷性に優れた樹脂組成物を提供することである。 The problem to be solved by the present invention is to provide a resin composition excellent in low-temperature curability, flexibility and printability.

本発明者らは鋭意検討した結果、特定のポリブタジエン樹脂、及びチオール系硬化剤を含有する樹脂組成物において、上記課題が解決できることを見出し、本発明を完成させた。 As a result of intensive studies, the present inventors have found that the above problems can be solved in a resin composition containing a specific polybutadiene resin and a thiol-based curing agent, and have completed the present invention.

すなわち、本発明は以下の内容を含むものである。
〔1〕(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂、及び(B)チオール系硬化剤を含有する樹脂組成物であって、樹脂組成物の固形分全体を100質量%とした場合、(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が50〜95質量%であることを特徴とする樹脂組成物。
〔2〕(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が、数平均分子量500〜200000であることを特徴とする上記〔1〕記載の樹脂組成物。
〔3〕(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が、エポキシ当量300〜10000であることを特徴とする上記〔1〕又は〔2〕記載の樹脂組成物。
〔4〕(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が、(a)分子内に2以上の水酸基を有するポリジエンポリオール化合物、(b)分子内に1以上の水酸基と1以上のエポキシ基とを有するエポキシ化合物及び(c)分子内に2以上のイソシアネート基を有するポリイソシアネート化合物を反応させて得られることを特徴とする上記〔1〕〜〔3〕のいずれか記載の樹脂組成物。
〔5〕樹脂組成物の固形分全体を100質量%とした場合、(B)チオール系硬化剤が、0.5〜15質量%であることを特徴とする上記〔1〕〜〔4〕のいずれか記載の樹脂組成物。
〔6〕更に(C)無機充填材を含有することを特徴とする上記〔1〕〜〔5〕のいずれか記載の樹脂組成物。
〔7〕(C)無機充填材が、平均粒径0.005〜1μmであることを特徴とする上記〔6〕記載の樹脂組成物。
〔8〕更に(D)硬化促進剤を含有することを特徴とする上記〔1〕〜〔7〕のいずれか記載の樹脂組成物。
〔9〕オーバーコート剤用樹脂組成物又は層間絶縁膜形成用樹脂組成物であることを特徴とする上記〔1〕〜〔8〕のいずれか記載の樹脂組成物。
〔10〕有機TFT用素子を封止するためのオーバーコート剤用樹脂組成物であることを特徴とする上記〔9〕記載の樹脂組成物。
〔11〕上記〔1〕〜〔10〕のいずれか記載の樹脂組成物を用いることを特徴とする、液状樹脂組成物又はフィルム状樹脂組成物。
〔12〕上記〔1〕〜〔11〕のいずれか記載の樹脂組成物の硬化体であって、伸びが20%以上であり、弾性率が1000MPa以下であることを特徴とする硬化体。
〔13〕上記〔12〕に記載の樹脂組成物の硬化体を用いることを特徴とする、フレキシブルプリント配線板又は有機TFTデバイス。
〔14〕上記〔13〕記載のフレキシブルプリント配線板又は有機TFTデバイスを内蔵する電子機器。
That is, the present invention includes the following contents.
[1] A resin composition containing (A) a polybutadiene resin having an epoxy group and a urethane structure, and (B) a thiol-based curing agent, wherein the total solid content of the resin composition is 100% by mass, A) A polybutadiene resin having an epoxy group and a urethane structure is 50 to 95% by mass.
[2] The resin composition according to [1] above, wherein the polybutadiene resin (A) having an epoxy group and a urethane structure has a number average molecular weight of 500 to 200,000.
[3] The resin composition as described in [1] or [2] above, wherein the polybutadiene resin (A) having an epoxy group and a urethane structure has an epoxy equivalent of 300 to 10,000.
[4] (A) A polybutadiene resin having an epoxy group and a urethane structure is (a) a polydiene polyol compound having two or more hydroxyl groups in the molecule, and (b) one or more hydroxyl groups and one or more epoxy groups in the molecule. The resin composition as described in any one of [1] to [3] above, which is obtained by reacting an epoxy compound having a polyisocyanate compound having (c) two or more isocyanate groups in the molecule.
[5] When the total solid content of the resin composition is 100% by mass, the thiol-based curing agent (B) is 0.5 to 15% by mass, according to the above [1] to [4] Any resin composition.
[6] The resin composition as described in any one of [1] to [5] above, further comprising (C) an inorganic filler.
[7] The resin composition as described in [6] above, wherein the inorganic filler (C) has an average particle size of 0.005 to 1 μm.
[8] The resin composition as described in any one of [1] to [7] above, further comprising (D) a curing accelerator.
[9] The resin composition as described in any one of [1] to [8] above, which is a resin composition for an overcoat agent or a resin composition for forming an interlayer insulating film.
[10] The resin composition as described in [9] above, which is a resin composition for an overcoat agent for sealing an organic TFT element.
[11] A liquid resin composition or a film-like resin composition using the resin composition according to any one of [1] to [10].
[12] A cured product of the resin composition according to any one of [1] to [11], wherein the cured product has an elongation of 20% or more and an elastic modulus of 1000 MPa or less.
[13] A flexible printed wiring board or an organic TFT device using a cured product of the resin composition as described in [12] above.
[14] An electronic device incorporating the flexible printed wiring board or the organic TFT device according to [13].

特定のポリブタジエン樹脂、及びチオール系硬化剤を含有する樹脂組成物によって、低温硬化性、柔軟性、印刷性に優れた樹脂組成物を提供できるようになった。 A resin composition containing a specific polybutadiene resin and a thiol-based curing agent can provide a resin composition excellent in low-temperature curability, flexibility, and printability.

本発明は、(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂、及び(B)チオール系硬化剤を含有することを特徴とする樹脂組成物である。 The present invention is a resin composition comprising (A) a polybutadiene resin having an epoxy group and a urethane structure, and (B) a thiol-based curing agent.

<(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂>
(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂((A)成分という)は、特に制限されないが、例えば、(a)分子内に2以上の水酸基を有するポリジエンポリオール化合物(化合物(a)という。)、(b)分子内に1以上の水酸基と1以上のエポキシ基を有するエポキシ化合物(化合物(b)という。)、及び(c)分子内に2以上のイソシアネート基を有するポリイソシアネート化合物(化合物(c)という。)を反応させて得ることができる。
<(A) Polybutadiene resin having epoxy group and urethane structure>
(A) Polybutadiene resin having an epoxy group and a urethane structure (referred to as component (A)) is not particularly limited. For example, (a) a polydiene polyol compound having two or more hydroxyl groups in the molecule (referred to as compound (a)) ), (B) an epoxy compound having one or more hydroxyl groups and one or more epoxy groups in the molecule (referred to as compound (b)), and (c) a polyisocyanate compound having two or more isocyanate groups in the molecule ( Compound (c)) can be obtained by reaction.

化合物(a)としては、特に制限されないが、ポリブタジエンポリオール、ポリイソプレンポリオールなどが挙げられ、これらの水素化ポリジエンポリオールを用いることもできる。特に耐熱性向上、印刷性向上、絶縁信頼性向上という観点から、水素化ポリジエンポリオールが好ましい。ポリブタジエンポリオールとしては、1,4−結合を主に有する水酸基末端液状ポリブタジエン Poly bd R−45HT、R−15HT(以上 出光興産(株)製)、水酸基末端ポリブタジエン水素化物ポリテールH、ポリテールHA(以上 三菱化学(株)製)、1,2−結合を主に有する水酸基末端ポリブタジエンG−1000、G−2000、G−3000(以上 日本曹達(株)製)、1,2−結合を主に有する水酸基末端ポリブタジエンの水素化物GI−1000、GI−2000、GI−3000(以上 日本曹達(株)製)などが挙げられる。ポリイソプレンポリオールとしては、水酸基末端液状イソプレン Poly ip、エポール(以上 出光興産(株)製)などが挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。従って、耐熱性向上、印刷性向上、絶縁信頼性向上という観点から考慮すると、(A)成分としては、エポキシ基とウレタン構造を有する水素化ポリブタジエン樹脂が好ましいと言える。 Although it does not restrict | limit especially as a compound (a), A polybutadiene polyol, a polyisoprene polyol, etc. are mentioned, These hydrogenated polydiene polyols can also be used. In particular, hydrogenated polydiene polyol is preferable from the viewpoints of improving heat resistance, improving printability, and improving insulation reliability. As polybutadiene polyol, hydroxyl-terminated liquid polybutadiene mainly having 1,4-bonds, Poly bd R-45HT, R-15HT (manufactured by Idemitsu Kosan Co., Ltd.), hydroxyl-terminated polybutadiene hydride polytail H, polytail HA (Mitsubishi) Chemical Co., Ltd.), hydroxyl-terminated polybutadienes G-1000, G-2000, G-3000 (above Nippon Soda Co., Ltd.) mainly having 1,2-bonds, hydroxyl groups mainly having 1,2-bonds Examples include terminal polybutadiene hydrides GI-1000, GI-2000, GI-3000 (manufactured by Nippon Soda Co., Ltd.). Examples of the polyisoprene polyol include hydroxyl-terminated liquid isoprene Poly ip, Epol (manufactured by Idemitsu Kosan Co., Ltd.) and the like. These may be used alone or in combination of two or more. Therefore, considering from the viewpoints of improving heat resistance, improving printability, and improving insulation reliability, it can be said that (A) component is preferably a hydrogenated polybutadiene resin having an epoxy group and a urethane structure.

化合物(a)の数平均分子量は、有機溶剤への相溶性向上という観点から、10000以下が好ましく、7000以下がより好ましく、4000以下が更に好ましい。一方、樹脂組成物の硬化体の柔軟性向上という観点から、300以上が好ましく、600以上がより好ましく、900以上が更に好ましい。本発明において数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の値である。GPC法による数平均分子量は、具体的には、測定装置として昭和電工(株)製GPC−101を、カラムとして昭和電工(株)社製 Shodex KF−800RH/LF−804を、移動相としてテトラヒドロフランを用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。 The number average molecular weight of the compound (a) is preferably 10,000 or less, more preferably 7000 or less, and still more preferably 4000 or less, from the viewpoint of improving compatibility with an organic solvent. On the other hand, from the viewpoint of improving the flexibility of the cured product of the resin composition, 300 or more is preferable, 600 or more is more preferable, and 900 or more is even more preferable. In the present invention, the number average molecular weight is a value in terms of polystyrene measured by gel permeation chromatography (GPC). The number average molecular weight according to the GPC method is specifically shown by GPC-101 manufactured by Showa Denko KK as a measuring device, Shodex KF-800RH / LF-804 manufactured by Showa Denko KK as a column, and tetrahydrofuran as a mobile phase. Can be calculated at a column temperature of 40 ° C. using a standard polystyrene calibration curve.

化合物(b)としては、特に制限されないが、分子内に1以上の水酸基と、グリシジルエーテル構造、グリシジルエステル構造、グリシジルアミン構造、脂環式エポキシ構造、オキシラン環構造からなる群より選ばれる1種以上のエポキシ基とを有するエポキシ化合物が挙げられる。市販されているものとしては、分子内に1以上の水酸基と1以上のグリシジルエーテル構造とを有するエポキシ化合物として、JER-1001、JER−1002、JER−1003、JER-1004(三菱化学(株)製)などが挙げられ、また分子内に1以上の水酸基と1以上のオキシラン環構造とを有するエポキシ化合物として、水酸基末端エポキシ化ポリブタジエンPB−3600(ダイセル化学工業(株))が挙げられる。 Although it does not restrict | limit especially as a compound (b), It is 1 type chosen from the group which consists of 1 or more hydroxyl groups in a molecule | numerator, a glycidyl ether structure, a glycidyl ester structure, a glycidyl amine structure, an alicyclic epoxy structure, and an oxirane ring structure. The epoxy compound which has the above epoxy group is mentioned. Examples of commercially available compounds include JER-1001, JER-1002, JER-1003, JER-1004 (Mitsubishi Chemical Corporation) as epoxy compounds having one or more hydroxyl groups and one or more glycidyl ether structures in the molecule. In addition, examples of the epoxy compound having one or more hydroxyl groups and one or more oxirane ring structures in the molecule include hydroxyl group-terminated epoxidized polybutadiene PB-3600 (Daicel Chemical Industries, Ltd.).

化合物(b)は、(d)分子内に2以上のエポキシ基を有するエポキシ化合物(化合物(d)という)と(e)分子内にエポキシ基と反応する1以上の活性水素基を有する化合物(化合物(e)という)とを反応させることによっても得ることができる。 Compound (b) includes (d) an epoxy compound having two or more epoxy groups in the molecule (referred to as compound (d)) and (e) a compound having at least one active hydrogen group that reacts with an epoxy group in the molecule ( It can also be obtained by reacting with compound (e).

化合物(d)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールとフェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、グリシジルアミン樹脂、グリシジルエステル樹脂、脂肪族ジオールのジグリシジルエーテル、脂環式ジオールのジグリシジルエーテルなどのエポキシ樹脂が挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。 As the compound (d), bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type Epoxy resin, dicyclopentadiene type epoxy resin, alkylphenol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, epoxidized product of condensation product of phenol and aromatic aldehyde having phenolic hydroxyl group, triglycidyl isocyanurate, Epoxy such as alicyclic epoxy resin, glycidylamine resin, glycidyl ester resin, diglycidyl ether of aliphatic diol, diglycidyl ether of alicyclic diol Resins. These may be used alone or in combination of two or more.

化合物(e)としては、フェノール性水酸基を1以上有する化合物、カルボキシル基を1以上有する化合物などが挙げられる。活性水素基の数は、化合物(d)との反応中にゲル化する可能性を低減させるため、化合物(e)としては1又は2つの活性水素基を有するものが好ましい。活性水素基を1つ有する化合物としては、フェノール化合物、チオフェノール化合物、カルボン酸化合物などが挙げられる。活性水素基を2つ有する化合物としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ハイドロキノン、アジピン酸、セバシン酸、ドデカン二酸、8,12−エイコサジエン二酸、エイコサ二酸などが挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。 Examples of the compound (e) include compounds having one or more phenolic hydroxyl groups and compounds having one or more carboxyl groups. Since the number of active hydrogen groups reduces the possibility of gelation during the reaction with the compound (d), the compound (e) preferably has 1 or 2 active hydrogen groups. Examples of the compound having one active hydrogen group include a phenol compound, a thiophenol compound, and a carboxylic acid compound. Examples of the compound having two active hydrogen groups include bisphenol A, bisphenol F, bisphenol S, biphenol, hydroquinone, adipic acid, sebacic acid, dodecanedioic acid, 8,12-eicosadienedioic acid, and eicosadioic acid. These may be used alone or in combination of two or more.

化合物(d)と化合物(e)は反応温度80℃〜180℃で1時間〜8時間の範囲で反応させることができる。反応には必要に応じて有機溶媒を加えても良く、また必要により触媒を加えて行っても良い。触媒としては、窒素系化合物、リン系化合物などが挙げられる。 Compound (d) and compound (e) can be reacted at a reaction temperature of 80 ° C. to 180 ° C. for 1 hour to 8 hours. An organic solvent may be added to the reaction as necessary, and a catalyst may be added if necessary. Examples of the catalyst include nitrogen compounds and phosphorus compounds.

化合物(c)としては、特に制限されないが、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、テトラメチレンキシリレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ノルボルネンジイソシアネートなどが挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。 The compound (c) is not particularly limited, but 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, hydrogenated xylylene. Examples include diisocyanate, tetramethylene xylylene diisocyanate, trimethylhexamethylene diisocyanate, and norbornene diisocyanate. These may be used alone or in combination of two or more.

化合物(a)、化合物(b)、及び化合物(c)の反応条件としては、例えば、有機溶媒中、反応温度が15℃〜120℃、反応時間が1〜8時間の範囲で反応させることができる。また、必要により触媒を加えて反応を行っても良い。 As the reaction conditions for the compound (a), the compound (b), and the compound (c), for example, the reaction is performed in an organic solvent at a reaction temperature of 15 ° C. to 120 ° C. and a reaction time of 1 to 8 hours. it can. Moreover, you may react by adding a catalyst if needed.

化合物(a)、化合物(b)、及び化合物(c)の反応割合は、化合物(a)の水酸基の数をXa、化合物(b)の水酸基の数をXb、化合物(c)のイソシアネート基の数をYとすると、(Xa+Xb)/Yの値が1〜3となる範囲が好ましく、さらに1.01〜2となる範囲がより好ましい。この比率が1以上であることにより、イソシアネート基が過剰になることを防止し、分子量の制御が易しくなる。また、3以下であることにより、分子量を高くしやすくなる。 The reaction ratio of the compound (a), the compound (b), and the compound (c) is such that the number of hydroxyl groups in the compound (a) is Xa, the number of hydroxyl groups in the compound (b) is Xb, and the number of hydroxyl groups in the compound (c) is When the number is Y, the range where the value of (Xa + Xb) / Y is 1 to 3 is preferable, and the range where 1.0 to 2 is more preferable. When this ratio is 1 or more, the isocyanate group is prevented from becoming excessive, and the molecular weight is easily controlled. Moreover, it becomes easy to make molecular weight high because it is 3 or less.

また、化合物(a)と化合物(b)は、質量比で化合物(a):化合物(b)=90:10〜10:90の範囲で用いるのが好ましく、80:20〜30:70の範囲で用いるのがより好ましい。化合物(a)の重量比が90:10よりも大きい場合、硬化体の耐熱性が低下する傾向があり、化合物(b)の重量比が10:90よりも大きい場合、硬化体の柔軟性が不十分となる傾向がある。 Further, the compound (a) and the compound (b) are preferably used in a mass ratio of the compound (a): the compound (b) = 90: 10 to 10:90, and the range of 80:20 to 30:70. It is more preferable to use it. When the weight ratio of the compound (a) is larger than 90:10, the heat resistance of the cured body tends to be lowered. When the weight ratio of the compound (b) is larger than 10:90, the flexibility of the cured body is increased. There is a tendency to become insufficient.

反応に使用される有機溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン、テトラメチルウレアなどの含窒素化合物系溶媒、ジメチルスルホキシド、ジエチルスルホキシドなどの含硫黄化合物系溶媒、γ−ブチロラクトンなどの環状エステル化合物系溶媒、シクロペンタノン、シクロヘキサノンなどのケトン系溶媒、ジグライム、トリグライムなどのエーテル系溶媒、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどエステル系溶媒などの極性溶媒を挙げることができる。これらは1種又は2種以上を組み合わせて用いてもよい。また、必要により芳香族炭化水素などの非極性溶媒を適宜混合して用いることもできる。 Examples of the organic solvent used in the reaction include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, and tetramethyl. Nitrogen-containing solvent such as urea, sulfur-containing compound solvent such as dimethyl sulfoxide and diethyl sulfoxide, cyclic ester compound solvent such as γ-butyrolactone, ketone solvent such as cyclopentanone and cyclohexanone, ether such as diglyme and triglyme Examples thereof include polar solvents such as ester solvents such as solvent based solvents, carbitol acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. These may be used alone or in combination of two or more. Further, if necessary, a nonpolar solvent such as an aromatic hydrocarbon can be appropriately mixed and used.

反応は必要に応じて触媒を加えて行ってもよく、触媒としては、テトラメチルブタンジアミン、ベンジルジメチルアミン、トリエタノールアミン、トリエチルアミン、N,N−ジメチルピペリジン、α−メチルベンジルジメチルアミン、N−メチルモルホリン、トリエチレンジエミン等の三級アミンや、ジブチル錫ラウレート、ジメチル錫ジクロライド、ナフテン酸コバルト、ナフテン酸亜鉛等の有機金属触媒などを挙げることができる。 The reaction may be carried out by adding a catalyst as necessary. Examples of the catalyst include tetramethylbutanediamine, benzyldimethylamine, triethanolamine, triethylamine, N, N-dimethylpiperidine, α-methylbenzyldimethylamine, N- Examples thereof include tertiary amines such as methylmorpholine and triethylenediemine, and organometallic catalysts such as dibutyltin laurate, dimethyltin dichloride, cobalt naphthenate and zinc naphthenate.

本発明における(A)成分の数平均分子量は樹脂組成物の粘度が上昇し、取り扱い性が低下するのを防止するという観点から、200000以下が好ましく、150000以下がより好ましく、100000以下が更に好ましく、80000以下が更に一層好ましく、60000以下が殊更好ましく、40000以下が特に好ましい。一方、硬化体の柔軟性を向上させるという観点から、500以上が好ましく、4000以上がより好ましく、8000以上が更に好ましく、12000以上が更に一層好ましく、16000以上が殊更好ましく、20000以上が特に好ましい。数平均分子量は上述した方法と同様にして測定することができる。 The number average molecular weight of the component (A) in the present invention is preferably 200000 or less, more preferably 150,000 or less, and even more preferably 100000 or less from the viewpoint of preventing the viscosity of the resin composition from increasing and handling properties from decreasing. 80,000 or less is still more preferable, 60000 or less is particularly preferable, and 40000 or less is particularly preferable. On the other hand, from the viewpoint of improving the flexibility of the cured product, 500 or more is preferable, 4000 or more is more preferable, 8000 or more is further preferable, 12000 or more is further more preferable, 16000 or more is particularly preferable, and 20000 or more is particularly preferable. The number average molecular weight can be measured in the same manner as described above.

本発明における(A)成分のエポキシ当量は、耐溶剤性を向上させるという観点から、10000以下が好ましく、7000以下がより好ましく、4000以下が更に好ましい。一方で、硬化体の架橋性が高くなりすぎて柔軟性が低下することを防止するという観点から、300以上が好ましく、500以上がより好ましく、1000以上が更に好ましい。なお、エポキシ当量(g/eq)とは、エポキシ基1個当たりのエポキシ樹脂の分子量のことであり、JIS K7236に従い測定される。 From the viewpoint of improving solvent resistance, the epoxy equivalent of the component (A) in the present invention is preferably 10,000 or less, more preferably 7000 or less, and still more preferably 4000 or less. On the other hand, 300 or more are preferable, 500 or more are more preferable, and 1000 or more are still more preferable from the viewpoint of preventing the crosslinkability of the cured body from becoming too high and reducing flexibility. The epoxy equivalent (g / eq) is the molecular weight of the epoxy resin per epoxy group, and is measured according to JIS K7236.

本発明における(A)成分の配合量は、硬化体の柔軟性向上という観点から、樹脂組成物の固形分全体を100質量%とした場合、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましく、65質量%以上が更に一層好ましい。一方、樹脂組成物の相溶性向上や印刷性向上という観点から、樹脂組成物の固形分全体を100質量%とした場合、95質量%以下が好ましく、93質量%以下がより好ましく、91質量%以下が更に好ましく、89質量%以下が更に一層好ましい。 In the present invention, the blending amount of the component (A) is preferably 50% by mass or more and more preferably 55% by mass or more when the total solid content of the resin composition is 100% by mass from the viewpoint of improving the flexibility of the cured product. Preferably, 60 mass% or more is further more preferable, and 65 mass% or more is still more preferable. On the other hand, from the viewpoint of improving the compatibility and printability of the resin composition, when the total solid content of the resin composition is 100% by mass, it is preferably 95% by mass or less, more preferably 93% by mass or less, and 91% by mass. The following is more preferable, and 89% by mass or less is even more preferable.

<(B)チオール系硬化剤>
本発明において、(B)チオール系硬化剤((B)成分という)を用いることにより、低温硬化性を向上させることが出来る。(B)成分はエポキシ基を架橋もしくは重合する化合物であれば特に限定されないが、たとえば、トリメチロールプロパントリス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)、トリス−[(3−メルカプトプロピオニルオキシ)−エチル]−イソシアヌレート、トリス(3−メルカプトプロピル)イソシアヌレートなどが挙げられる。市販品としては、淀化学株式会社製のOTG、EGTG、TMTG、PETG、3−MPA、TMTP、PETP、堺化学工業株式会社製のTEMP、PEMP、TEMPIC、DPMP、昭和電工株式会社製 PE−1、BD−1、NR−1、TPMB、TEMB、などが挙げられる。
<(B) Thiol-based curing agent>
In the present invention, low temperature curability can be improved by using (B) a thiol-based curing agent (referred to as component (B)). The component (B) is not particularly limited as long as it is a compound that crosslinks or polymerizes an epoxy group. For example, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipenta Examples include erythritol hexakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, tris (3-mercaptopropyl) isocyanurate, and the like. Commercially available products include OTG, EGTG, TMTG, PETG, 3-MPA, TMTP, PETP, Sakai Chemical Industry Co., Ltd. TEMP, PEMP, TEMPIC, DPMP, Showa Denko Corporation PE-1 , BD-1, NR-1, TPMB, TEMB, and the like.

本発明における(B)成分の配合量は、樹脂組成物を効率的に低温硬化させるという観点から、樹脂組成物の固形分全体を100質量%とした場合、0.5質量%以上が好ましく、1質量%以上がより好ましく、1.5質量%以上が更に好ましく、2質量%以上が更に一層好ましい。一方、樹脂組成物の保存安定性を向上させるという観点から、樹脂組成物の固形分全体を100質量%とした場合、15質量%以下が好ましく、13質量%以下がより好ましく、10質量%以下が更に好ましく、7質量%以下が更に一層好ましく、5質量%以下が殊更好ましい。 The blending amount of the component (B) in the present invention is preferably 0.5% by mass or more when the total solid content of the resin composition is 100% by mass from the viewpoint of efficiently curing the resin composition at low temperature. 1 mass% or more is more preferable, 1.5 mass% or more is still more preferable, and 2 mass% or more is still more preferable. On the other hand, from the viewpoint of improving the storage stability of the resin composition, when the total solid content of the resin composition is 100% by mass, 15% by mass or less is preferable, 13% by mass or less is more preferable, and 10% by mass or less. Is more preferable, 7 mass% or less is still more preferable, and 5 mass% or less is especially preferable.

<(C)無機充填材>
本発明の樹脂組成物は、必要に応じて更に(C)無機充填材を含有させることにより、樹脂組成物の粘度を調整し取り扱い性を向上させることができる。無機充填材としては、特に限定されず、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でもヒュームドシリカが特に好適である。これらは1種または2種以上組み合わせて使用してもよい。市販されている無機充填材として、日本アエロジル(株)製「200」、「200CF」「300」、「300CF」、「380」などの親水性ヒュームドシリカや、「R−805」、「R−812」「RY−200」、「RY−300」、「RX−200」、「RX−300」などの疎水性ヒュームドシリカ、(株)アドマテックス製「SOC2」、「SOC1」等が挙げられる。
<(C) Inorganic filler>
The resin composition of this invention can adjust the viscosity of a resin composition and can improve a handleability by further containing (C) inorganic filler as needed. The inorganic filler is not particularly limited, and silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, titanium Examples thereof include barium oxide, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Among these, fumed silica is particularly preferable. You may use these 1 type or in combination of 2 or more types. As commercially available inorganic fillers, hydrophilic fumed silica such as “200”, “200CF”, “300”, “300CF”, “380” manufactured by Nippon Aerosil Co., Ltd., “R-805”, “R” Hydrophobic fumed silica such as “-812”, “RY-200”, “RY-300”, “RX-200”, “RX-300”, “SOC2”, “SOC1” manufactured by ADMATEX It is done.

本発明における(C)無機充填材の平均粒径は、絶縁信頼性向上、樹脂組成物の粘度調整を容易にするという点から1μm以下であるのが好ましく、0.7μm以下がより好ましく、0.5μm以下が更に好ましく、0.3μm以下が更に一層好ましく、0.1μm以下が殊更好ましい。一方、無機充填材の凝集を防止するという点から0.005μm以上であるのが好ましい。(C)無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、(株)堀場製作所製 LA−500等を使用することができる。なお、無機充填材は耐湿性、分散性を向上させるため、シランカップリング剤(エポキシシラン系カップリング剤、アミノシラン系カップリング剤、メルカプトシラン系カップリング剤等)、チタネート系カップリング剤、シラザン化合物等の表面処理剤で表面処理してあるものが好ましい。これらは1種または2種以上組み合わせて使用してもよい。 The average particle size of the inorganic filler (C) in the present invention is preferably 1 μm or less, more preferably 0.7 μm or less, from the viewpoint of improving the insulation reliability and facilitating the viscosity adjustment of the resin composition. 0.5 μm or less is more preferable, 0.3 μm or less is even more preferable, and 0.1 μm or less is particularly preferable. On the other hand, it is preferably 0.005 μm or more from the viewpoint of preventing aggregation of the inorganic filler. (C) The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction scattering type particle size distribution measuring apparatus, LA-500 manufactured by Horiba Ltd. can be used. In addition, in order to improve moisture resistance and dispersibility, inorganic fillers have silane coupling agents (epoxysilane coupling agents, aminosilane coupling agents, mercaptosilane coupling agents, etc.), titanate coupling agents, and silazanes. Those that have been surface treated with a surface treating agent such as a compound are preferred. You may use these 1 type or in combination of 2 or more types.

エポキシシラン系カップリング剤としてはグリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられ、アミノシラン系カップリング剤としてはアミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)アミノプロピルトリメトキシシラン等が挙げられ、メルカプトシラン系カップリング剤としてはメルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Epoxysilane coupling agents include glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxy Examples of aminosilane coupling agents include aminopropylmethoxysilane, aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-2 (aminoethyl) aminopropyltrimethoxysilane. Examples of the mercaptosilane coupling agent include mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane. You may use these 1 type or in combination of 2 or more types.

チタン系カップリング剤としてはブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリ−n−ブトキシチタンモノステアレート、テトラ−n−ブチルチタネート、テトラ(2−エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミドエチル・アミノエチル)チタネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Titanium coupling agents include butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, bis (dioctyl pyrophosphate) ethylene titanate, bis (Dioctyl pyrophosphate) oxyacetate titanate, tri-n-butoxy titanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl) Phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite tita Isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tridodecylbenzene sulfonyl titanate, Examples thereof include isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-amidoethyl / aminoethyl) titanate, and the like. You may use these 1 type or in combination of 2 or more types.

シラザン化合物としては、ヘキサメチルジシラザン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、オクタメチルトリシラザン、ヘキサ(t−ブチル)ジシラザン、ヘキサブチルジシラザン、ヘキサオクチルジシラザン、1,3−ジエチルテトラメチルジシラザン、1,3−ジ−n−オクチルテトラメチルジシラザン、1,3−ジフェニルテトラメチルジシラザン、1,3−ジメチルテトラフェニルジシラザン、1,3−ジエチルテトラメチルジシラザン、1,1,3,3−テトラフェニル−1,3−ジメチルジシラザン、1,3−ジプロピルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5−ヘキサメチルシクロトリシラザン等を挙げることができ、特にヘキサメチルジシラザンが好ましい。これらは1種または2種以上組み合わせて使用してもよい。 Examples of the silazane compound include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexaoctyldi Silazane, 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1,3- Diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane, hexaphenyldisilazane, dimethylaminotrimethyl Silazane, trisilazane, cyclotrisilazane, 1,1,3,3 , 5,5-hexamethylcyclotrisilazane and the like, with hexamethyldisilazane being particularly preferred. You may use these 1 type or in combination of 2 or more types.

上記表面処理剤の処理量は、無機充填材を100質量%とした場合、0.1〜6質量%が好ましく、0.3〜4質量%がより好ましい。 The treatment amount of the surface treatment agent is preferably 0.1 to 6% by mass, more preferably 0.3 to 4% by mass, when the inorganic filler is 100% by mass.

(C)無機充填材を配合する場合の含有量は、樹脂組成物の粘度調整を容易にするという観点から、樹脂組成物の固形分全体を100質量%とした場合、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましい。一方、樹脂組成物の硬化体の弾性率や伸びが低下するのを防止するという観点から、樹脂組成物の固形分全体を100質量%とした場合、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましい。 (C) The content in the case of blending the inorganic filler is preferably 1% by mass or more when the total solid content of the resin composition is 100% by mass from the viewpoint of facilitating the viscosity adjustment of the resin composition. 3 mass% or more is more preferable, and 5 mass% or more is still more preferable. On the other hand, from the viewpoint of preventing a decrease in the elastic modulus and elongation of the cured product of the resin composition, the total solid content of the resin composition is 100% by mass, preferably 30% by mass or less, and 25% by mass or less. Is more preferable, and 20 mass% or less is still more preferable.

<(D)硬化促進剤>
本発明の樹脂組成物は、必要に応じて更に(D)硬化促進剤を含有させることにより、硬化体の耐熱性、接着性、耐薬品性等を向上させることができる。硬化促進剤としては、特に限定されないが、アミン系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、ホスホニウム系硬化促進剤、等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
<(D) Curing accelerator>
The resin composition of this invention can improve the heat resistance, adhesiveness, chemical resistance, etc. of a hardening body by further containing (D) hardening accelerator as needed. Although it does not specifically limit as a hardening accelerator, An amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, etc. are mentioned. These may be used alone or in combination of two or more.

アミン系硬化促進剤としては、特に限定されるものではないが、トリエチルアミン、トリブチルアミンなどのトリアルキルアミン、4−ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)−ウンデセン(以下、DBUと略記する。)などのアミン化合物などが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The amine curing accelerator is not particularly limited, but trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl). And amine compounds such as phenol and 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU). You may use these 1 type or in combination of 2 or more types.

グアニジン系硬化促進剤としては、特に限定されるものではないが、ジシアンジアミド、1−メチルグアニジン、1−エチルグアニジン、1−シクロヘキシルグアニジン、1−フェニルグアニジン、1−(o−トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、7−メチル−1,5,7−トリアザビシクロ[4.4.0]デカ−5−エン、1−メチルビグアニド、1−エチルビグアニド、1−n−ブチルビグアニド、1−n−オクタデシルビグアニド、1,1−ジメチルビグアニド、1,1−ジエチルビグアニド、1−シクロヘキシルビグアニド、1−アリルビグアニド、1−フェニルビグアニド、1−(o−トリル)ビグアニド等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Although it does not specifically limit as a guanidine type hardening accelerator, Dicyandiamide, 1-methyl guanidine, 1-ethyl guanidine, 1-cyclohexyl guanidine, 1-phenyl guanidine, 1- (o-tolyl) guanidine, dimethyl guanidine , Diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide 1-cyclohexyl biguanide, 1-allyl biguanide, 1-phenyl Rubiguanido, 1-(o-tolyl) biguanide, and the like. You may use these 1 type or in combination of 2 or more types.

イミダゾール系硬化促進剤としては、特に限定されるものではないが、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、 1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、2−メチルイミダゾリン、2−フェニルイミダゾリン、1−(2−ヒドロキシ)−3−フェノキシプロピル-2-メチルイミダゾール等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s -Triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2- Examples thereof include imidazole compounds such as methylimidazoline, 2-phenylimidazoline, 1- (2-hydroxy) -3-phenoxypropyl-2-methylimidazole, and adducts of imidazole compounds and epoxy resins. You may use these 1 type or in combination of 2 or more types.

ホスホニウム系硬化促進剤としては、特に限定されるものではないが、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n−ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4−メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Although it does not specifically limit as a phosphonium type hardening accelerator, Triphenylphosphine, a phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like. You may use these 1 type or in combination of 2 or more types.

本発明の樹脂組成物において、硬化促進剤の含有量は、樹脂組成物の固形分全体を100質量%とした場合、樹脂組成物の保存安定性を向上させるという観点から、7質量%以下が好ましく、6質量%以下がより好ましく、5質量%以下が更に好ましい。一方で、効率的に樹脂組成物を硬化させ、低温硬化性を向上させるという観点から、樹脂組成物の固形分全体を100質量%とした場合、0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.1質量%以上が更に好ましい。 In the resin composition of the present invention, the content of the curing accelerator is 7% by mass or less from the viewpoint of improving the storage stability of the resin composition when the total solid content of the resin composition is 100% by mass. Preferably, 6 mass% or less is more preferable, and 5 mass% or less is still more preferable. On the other hand, from the viewpoint of efficiently curing the resin composition and improving the low-temperature curability, when the total solid content of the resin composition is 100% by mass, 0.005% by mass or more is preferable, and 0.01 More preferably, it is more preferably 0.1% by mass or more.

<その他の成分>
本発明の樹脂組成物は、シリコーン系消泡剤、フッ素系消泡剤、アクリル重合物系消泡剤等の消泡剤、酸化チタン、酸化亜鉛などの無機顔料、フタロシアニンブルー、フタロシアニングリーン、アイオジングリーン、ジスアゾイエロー、カーボンブラックなどの有機顔料、有機染料などの着色剤、ヒンダードフェノール系化合物、リン系化合物、イオウ系化合物、ヒドラジド系化合物などの酸化防止剤、ベンゾトリアゾール系化合物、ヒンダードアミン系化合物などの紫外線吸収剤、リン系化合物、水酸化アルミニウム、水酸化マグネシウム等の難燃剤、レベリング剤、チキソ性付与剤、2,4,6−トリメルカプト−s−トリアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどの密着向上剤などが挙げられる。
<Other ingredients>
The resin composition of the present invention comprises an antifoaming agent such as a silicone-based antifoaming agent, a fluorine-based antifoaming agent, an acrylic polymer-based antifoaming agent, an inorganic pigment such as titanium oxide or zinc oxide, phthalocyanine blue, phthalocyanine green, eye Odin green, disazo yellow, carbon black and other organic pigments, organic dyes and other colorants, hindered phenolic compounds, phosphorus compounds, sulfur compounds, hydrazide compounds and other antioxidants, benzotriazole compounds, hindered amines UV absorbers such as compounds, phosphorus compounds, flame retardants such as aluminum hydroxide and magnesium hydroxide, leveling agents, thixotropic agents, 2,4,6-trimercapto-s-triazole, 2,5-dimercapto- Examples thereof include adhesion improvers such as 1,3,4-thiadiazole.

本発明の樹脂組成物の硬化体の弾性率は、後述の<柔軟性の評価>により測定することができる。弾性率は、硬化体の機械的強度を向上させ、デバイスの使用時間を延長させられるという観点から、5MPa以上が好ましく、10MPa以上がより好ましく、15MPa以上が更に好ましい。また、柔軟性向上、耐折り曲げ性向上により、フレキシブル用途に適用しやすくなるという観点から、1000MPa以下が好ましく、600MPa以下が好ましく、400MPa以下が更に好ましい。 The elastic modulus of the cured product of the resin composition of the present invention can be measured by <evaluation of flexibility> described later. The elastic modulus is preferably 5 MPa or more, more preferably 10 MPa or more, and still more preferably 15 MPa or more from the viewpoint of improving the mechanical strength of the cured body and extending the usage time of the device. Moreover, 1000 MPa or less is preferable, 600 MPa or less is preferable, and 400 MPa or less is still more preferable from a viewpoint that it becomes easy to apply to a flexible use by improvement in a softness | flexibility and bending resistance.

本発明の樹脂組成物の硬化体の伸びも、後述の<柔軟性の評価>により測定することができる。伸びは、硬化体のクラック防止の観点から、20%以上が好ましく、30%以上がより好ましく、40%以上が更に好ましく、60%以上が更に一層好ましく、80%以上が殊更好ましい。また、上限値に特に制限は無いが、取り扱い性の観点から、500%以下が好ましく、400%以下がより好ましく、300%以下が更に好ましい。 The elongation of the cured product of the resin composition of the present invention can also be measured by <evaluation of flexibility> described later. The elongation is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, still more preferably 60% or more, and particularly preferably 80% or more from the viewpoint of preventing cracks in the cured product. Moreover, although there is no restriction | limiting in particular in an upper limit, from a viewpoint of handleability, 500% or less is preferable, 400% or less is more preferable, and 300% or less is still more preferable.

本発明の樹脂組成物の形態は、特に限定されないが、液状樹脂組成物、フィルム状樹脂組成物として用いるのが好適である。 Although the form of the resin composition of this invention is not specifically limited, It is suitable to use as a liquid resin composition and a film-form resin composition.

本発明の樹脂組成物の用途は、オーバーコート剤、層間絶縁膜形成、プリプレグ、ソルダーレジスト、アンダ−フィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂、TAB用途、COF用途等、樹脂組成物が必要とされる絶縁用途の広範囲に使用することができる。特に、オーバーコート剤用樹脂組成物又は層間絶縁膜形成用樹脂組成物が好ましく、フレキシブルプリント配線板用オーバーコート剤や表示装置の層間絶縁膜形成用樹脂組成物として用いることが好適である。なかでも、本発明の樹脂組成物の硬化体は、優れた柔軟性を有することから、有機TFT用素子を封止するためのオーバーコート剤用樹脂組成物や、有機ELディスプレイ、電子ペーパー、その他タッチパネル等の各種表示装置の分野で使用する層間絶縁膜形成用部材として用いることがより好適である。そして、本発明の樹脂組成物の硬化体を用いることでフレキシブルプリント配線板又は有機TFTデバイスが優れた性能を有し、これらのフレキシブルプリント配線板又は有機TFTデバイスを内蔵する電子機器を使用することが好ましく、例えば、携帯電話、デジタルカメラ、ビデオカメラ、ゲーム機器、パーソナルコンピューター、プリンター、ハードディスクドライブ、プラズマテレビ、液晶テレビ、液晶ディスプレイ、カー・ナビゲーション・システム、複写機、ファックス、AV機器、計測機器、医療機器、有機ELディスプレイ、電子ペーパーなどが挙げられる。 Applications of the resin composition of the present invention include overcoat agent, interlayer insulating film formation, prepreg, solder resist, underfill material, die bonding material, semiconductor sealing material, hole filling resin, component embedding resin, TAB use, COF use Etc., and can be used in a wide range of insulating applications where a resin composition is required. In particular, a resin composition for an overcoat agent or a resin composition for forming an interlayer insulating film is preferable, and is preferably used as an overcoat agent for a flexible printed wiring board or a resin composition for forming an interlayer insulating film of a display device. Especially, since the cured body of the resin composition of the present invention has excellent flexibility, it is a resin composition for an overcoat agent for sealing an organic TFT element, an organic EL display, electronic paper, and others. More preferably, it is used as a member for forming an interlayer insulating film used in the field of various display devices such as a touch panel. And by using the cured body of the resin composition of the present invention, the flexible printed wiring board or the organic TFT device has excellent performance, and an electronic device incorporating these flexible printed wiring board or organic TFT device is used. For example, mobile phones, digital cameras, video cameras, game machines, personal computers, printers, hard disk drives, plasma televisions, liquid crystal televisions, liquid crystal displays, car navigation systems, copiers, fax machines, AV equipment, measuring equipment , Medical equipment, organic EL display, electronic paper and the like.

本発明の樹脂組成物は(A)成分及び(B)成分を含有する配合成分を混合し、3本ロール、ボールミル、ビーズミル、サンドミル等の混錬手段、あるいはスーパーミキサー、プラネタリーミキサー等の撹拌手段により溶解または分散することによって樹脂ワニスを調製することができる。調製において、必要により粘度調整のための有機溶剤を使用してもよい。有機溶剤としては、例えば、エチルメチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類、オクタン、デカンなどの脂肪族炭化水素類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられる。これらは1種又は2種以上を組み合わせて使用してもよい。 The resin composition of the present invention is a mixture of components (A) and (B), and kneading means such as a three roll, ball mill, bead mill, sand mill, or agitation such as a super mixer or planetary mixer. A resin varnish can be prepared by dissolving or dispersing by means. In the preparation, if necessary, an organic solvent for adjusting the viscosity may be used. Examples of the organic solvent include ketones such as ethyl methyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, Glycol ethers such as dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether, esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate, aliphatic carbonization such as octane and decane Examples thereof include petroleum solvents such as hydrogen, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha. These may be used alone or in combination of two or more.

<液状樹脂組成物>
本発明の樹脂組成物を、上述のとおりにして種々の有機溶剤中に溶解または分散して液状にすることで、プリント配線板の絶縁保護膜を形成するために必要な液状樹脂組成物を作製することができる。ここで用いる有機溶剤は特に限定されるものではないが、溶剤の揮発を抑制し、印刷性を向上させるという点で、沸点が100℃以上の溶剤を用いることが好ましく、さらには、沸点が120℃以上の溶剤を用いることがより好ましい。特に、フレキシブルプリント配線板のオーバーコート用として用いる場合は、液状樹脂組成物として調製することが好ましい。
<Liquid resin composition>
The resin composition of the present invention is dissolved or dispersed in various organic solvents as described above to obtain a liquid resin composition necessary for forming an insulating protective film of a printed wiring board. can do. Although the organic solvent used here is not particularly limited, it is preferable to use a solvent having a boiling point of 100 ° C. or higher in terms of suppressing the volatilization of the solvent and improving the printability. It is more preferable to use a solvent having a temperature of at least ° C. In particular, when used as an overcoat for a flexible printed wiring board, it is preferably prepared as a liquid resin composition.

<フィルム状樹脂組成物>
本発明の樹脂組成物は、当業者に公知の方法に従って、フィルム状樹脂組成物を作製することができる。例えば、上述のとおりにして調整された樹脂ワニスを、支持体上に塗布し、加熱または熱風吹きつけ等により有機溶剤を乾燥させて、フィルム状樹脂組成物を形成させることにより、フィルム状樹脂組成物(A層)及び支持体(B層)という支持体付きフィルム状樹脂組成物を製造することができる。支持体は、フィルム状樹脂組成物を製造する際の支持体となるものであり、回路基板の製造において、最終的には剥離または除去されるものである。支持体としては、例えば、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下、「PET」と略称することがある)、ポリエチレンナフタレート等のポリエステル、ポリイミドフィルム、更には離型紙や銅箔等の金属箔などを挙げることができる。
<Film-like resin composition>
The resin composition of the present invention can be used to produce a film-shaped resin composition according to a method known to those skilled in the art. For example, the resin resin varnish prepared as described above is applied onto a support, and the organic solvent is dried by heating or hot air blowing to form a film resin composition. A film-like resin composition with a support called a product (A layer) and a support (B layer) can be produced. The support serves as a support when the film-shaped resin composition is produced, and is finally peeled off or removed in the production of the circuit board. Examples of the support include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, polyimide films, and release paper and copper foil. The metal foil can be mentioned.

樹脂ワニスの乾燥条件は特に限定はされないが、接着能力を保持するため、乾燥時に樹脂組成物の硬化をできる限り進行させないことが重要となる。また、フィルム状樹脂組成物内に有機溶剤が多く残留すると、硬化後に膨れが発生する原因となるため、フィルム状樹脂組成物中の有機溶剤の割合が、5質量%以下、好ましくは3質量%以下となるように乾燥させる。具体的な乾燥条件は、例えば50〜120℃で3〜15分で乾燥させることが好ましい。 The drying conditions of the resin varnish are not particularly limited, but it is important that the resin composition is not cured as much as possible during drying in order to maintain the adhesive ability. In addition, if a large amount of the organic solvent remains in the film-shaped resin composition, it may cause swelling after curing. Therefore, the ratio of the organic solvent in the film-shaped resin composition is 5% by mass or less, preferably 3% by mass. Dry to: Specific drying conditions are preferably dried at, for example, 50 to 120 ° C. for 3 to 15 minutes.

また、フィルム状樹脂組成物(A層)の厚みは、特に限定されないが、硬化体の耐折り曲げ性を向上させるという点で、100μm以下が好ましく、80μm以下がより好ましく、60μm以下が更に好ましい。また、取り扱い性向上の点から、1μm以上が好ましく、3μm以上がより好ましく、10μm以上が更に好ましい。 The thickness of the film-like resin composition (A layer) is not particularly limited, but is preferably 100 μm or less, more preferably 80 μm or less, and still more preferably 60 μm or less in terms of improving the bending resistance of the cured product. Moreover, 1 micrometer or more is preferable from the point of a handleability improvement, 3 micrometers or more are more preferable, and 10 micrometers or more are still more preferable.

<フレキシブルプリント配線板又は有機TFTデバイス>
本発明の液状樹脂組成物をフレキシブルプリント配線板又は有機TFTデバイスの所定の部分に塗布し、塗布面を硬化させることで、全表面または一部表面が本発明の樹脂組成物で保護されたフレキシブルプリント配線板又は有機TFTデバイスを得ることができる。硬化条件は、少なくとも、液状樹脂組成物を構成する溶剤が十分に乾燥し、かつ、樹脂組成物が十分に熱硬化する条件であることが必要であるので、80〜200℃で1〜120分乾燥させることが好ましい。形成される表面保護膜の厚みは特に限定されないが、1〜100μmが好ましい。
<Flexible printed wiring board or organic TFT device>
The liquid resin composition of the present invention is applied to a predetermined portion of a flexible printed wiring board or an organic TFT device, and the coated surface is cured, so that the entire surface or a part of the surface is protected with the resin composition of the present invention. A printed wiring board or an organic TFT device can be obtained. The curing condition is that at least the solvent constituting the liquid resin composition is sufficiently dried and the resin composition is sufficiently heat-cured, so that the curing condition is 80 to 200 ° C. for 1 to 120 minutes. It is preferable to dry. Although the thickness of the surface protective film formed is not specifically limited, 1-100 micrometers is preferable.

また、フィルム状樹脂組成物をフレキシブルプリント配線板又は有機TFTデバイスの所定の部分に、真空ラミネータにより積層し、樹脂組成物を硬化することにより、全表面または一部表面が本発明の樹脂組成物で保護されたフレキシブルプリント配線板又は有機TFTデバイスを得ることができる。この際、支持体付きフィルム状樹脂組成物を用いることで、積層装置を汚さずに済む。このときの積層条件は、使用するフィルム状樹脂組成物の種類により、当業者が適宜容易に設定することができるが、温度を80〜200℃、圧力を1〜40kgf/cm、時間を5〜180秒、空気圧20mmHg以下の減圧下でラミネートするのが好ましい。また、ラミネートの方式は、バッチ式であってもロールでの連続式であってもよい。また、硬化条件は、使用するフィルム状樹脂組成物(A層)の種類により、当業者が適宜容易に設定することができるが、少なくとも、樹脂組成物が十分に熱硬化する条件であることが必要である。特に、素子が配置されている場合には、基板上に配置された素子を劣化させないために、150℃以下が好ましく、130℃以下がより好ましく、110℃以下が更に好ましい。一方で、硬化体の耐薬品性を向上させるという観点から、40℃以上が好ましく、45℃以上がより好ましく、50℃以上が更に好ましい。 In addition, the resin composition of the present invention is obtained by laminating a film-like resin composition on a predetermined portion of a flexible printed wiring board or an organic TFT device with a vacuum laminator and curing the resin composition so that the entire surface or a part of the surface is the resin composition of the present invention. A flexible printed wiring board or an organic TFT device protected with can be obtained. At this time, by using the film-shaped resin composition with a support, the laminating apparatus can be prevented from being soiled. The lamination conditions at this time can be easily set as appropriate by those skilled in the art depending on the type of the film-like resin composition to be used, but the temperature is 80 to 200 ° C., the pressure is 1 to 40 kgf / cm 2 , and the time is 5 Lamination is preferably performed under a reduced pressure of ˜180 seconds and an air pressure of 20 mmHg or less. The laminating method may be a batch method or a continuous method using a roll. The curing conditions can be appropriately set by those skilled in the art depending on the type of the film-shaped resin composition (layer A) to be used, but at least the conditions for the resin composition to be sufficiently heat-cured. is necessary. In particular, when elements are disposed, in order not to deteriorate the elements disposed on the substrate, 150 ° C. or lower is preferable, 130 ° C. or lower is more preferable, and 110 ° C. or lower is even more preferable. On the other hand, from the viewpoint of improving the chemical resistance of the cured body, 40 ° C. or higher is preferable, 45 ° C. or higher is more preferable, and 50 ° C. or higher is even more preferable.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の記載中の「部」は「質量部」を意味する。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. In the following description, “part” means “part by mass”.

<製造例1>
攪拌装置、温度計、コンデンサーを備えた500mlフラスコにポリジエンポリオール「GI−1000」(日本曹達(株)製、水酸基価70mgKOH/g)157.8g、「スワゾール♯1000」(有機溶媒、ダイセル化学工業(株)製)26.2g、エチルジグリコールアセテート17.1gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」 (2,4−トリレンジイソシアネート、日本ポリウレタン工業(株)製)34.4gとエチルジグリコールアセテート23.0gを混合したものを加え、室温で45分間反応させた。次いで、更に「ネオスタンU−810」(ジオクチルスズジラウレート、日東化成(株)製)のスワゾール♯1000の1%溶液を2.74g加え、品温を45℃とし1時間反応させた。その後、室温まで冷却後、攪拌しながら1,4−ブタンジオール17.8g、エチルジグリコールアセテート21gを混合したものを加え、品温を80℃に昇温して90分間反応させた。赤外分光分析によりイソシアネート基に基づく吸収(2274cm−1)が消失したことを確認し、反応物1を得た。
続いて、攪拌装置、温度計、コンデンサーを備えた1lフラスコに反応物1を229.5g、エチルジグリコールアセテート28.5g、「スワゾール♯1000」23.4gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」26.3g、エチルジグリコールアセテート20.1g、「スワゾール♯1000」11.7gを混合したものを加え、品温を45℃まで昇温し、1時間反応させた。室温まで冷却後、攪拌しながらエチルジグリコールアセテートに70%溶解させた「JER−1001」(三菱化学(株)製)を固形分換算で59.8g、1,4−ブタンジオール3.4g、エチルジグリコールアセテート44.4g、「スワゾール♯1000」10.9gを混合したものを加え、品温を45℃まで昇温し、45分反応させた。その後、イソブチルアルコール0.84g、エチルジグリコールアセテート13.4gを混合したものを加え、品温45℃で更に1時間反応させた。最後に「ネオスタンU−810」の「スワゾール♯1000」1%溶液1.3gを加え、品温を110℃まで昇温し、赤外分光分析により、イソシアネート基に基づく吸収が消失したことを確認して反応を終了させ、エポキシ基とウレタン構造を有するポリブタジエン樹脂(製造物1)を得た。
<Production Example 1>
A polydiene polyol “GI-1000” (manufactured by Nippon Soda Co., Ltd., hydroxyl value 70 mg KOH / g) 157.8 g, “Swazole # 1000” (organic solvent, Daicel Chemical) 26.2 g manufactured by Kogyo Co., Ltd. and 17.1 g ethyl diglycol acetate were added and stirred under a nitrogen atmosphere at room temperature, “Coronate T-100” (2,4-tolylene diisocyanate, Nippon Polyurethane Industry Co., Ltd.) A mixture of 34.4 g and 23.0 g of ethyl diglycol acetate was added and reacted at room temperature for 45 minutes. Next, 2.74 g of a 1% solution of Swazol # 1000 of “Neostan U-810” (dioctyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) was added, and the reaction was carried out at 45 ° C. for 1 hour. Then, after cooling to room temperature, a mixture of 17.8 g of 1,4-butanediol and 21 g of ethyl diglycol acetate was added with stirring, and the product temperature was raised to 80 ° C. and reacted for 90 minutes. It was confirmed by infrared spectroscopic analysis that absorption based on isocyanate groups (2274 cm-1) had disappeared, and reaction product 1 was obtained.
Subsequently, 229.5 g of the reaction product 1, 28.5 g of ethyl diglycol acetate, and 23.4 g of “Swazole # 1000” were charged into a 1 liter flask equipped with a stirrer, a thermometer, and a condenser, and stirred at room temperature in a nitrogen atmosphere. While adding 26.3 g of “Coronate T-100”, 20.1 g of ethyl diglycol acetate and 11.7 g of “Swazole # 1000”, the temperature of the product was raised to 45 ° C. and reacted for 1 hour. . After cooling to room temperature, “JER-1001” (manufactured by Mitsubishi Chemical Corporation) dissolved in 70% ethyl diglycol acetate with stirring was 59.8 g in terms of solid content, 3.4 g of 1,4-butanediol, A mixture of 44.4 g of ethyl diglycol acetate and 10.9 g of “Swazole # 1000” was added, the temperature of the product was raised to 45 ° C., and the mixture was reacted for 45 minutes. Thereafter, a mixture of 0.84 g of isobutyl alcohol and 13.4 g of ethyl diglycol acetate was added, and the mixture was further reacted at a product temperature of 45 ° C. for 1 hour. Finally, 1.3 g of “Neostan U-810” “swazol # 1000” 1% solution was added, the product temperature was raised to 110 ° C., and infrared spectroscopic analysis confirmed that absorption based on isocyanate groups had disappeared. Thus, the reaction was terminated to obtain a polybutadiene resin (Product 1) having an epoxy group and a urethane structure.

製造物1の性状
固形分 50.2%
数平均分子量 9975
エポキシ当量 1957
Properties of product 1 Solid content 50.2%
Number average molecular weight 9975
Epoxy equivalent 1957

<製造例2>
攪拌装置、温度計、コンデンサーを備えた500mlフラスコに水素化ポリジエンポリオール「G−1000」(日本曹達(株)製、水酸基価73mgKOH/g)157.8g、「スワゾール♯1000」(ダイセル化学工業(株)製)26.2g、エチルジグリコールアセテート17.1gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」(日本ポリウレタン工業(株)製)34.4gとエチルジグリコールアセテート23.0gを混合したものを加え、室温で45分間反応させた。次いで、更に「ネオスタンU−810」のスワゾール♯1000の1%溶液を2.74g加え、品温を45℃とし1時間反応させた。その後、室温まで冷却後、攪拌しながら「GI−1000」17.8g、エチルジグリコールアセテート21gを混合したものを加え、品温を80℃に昇温して90分間反応させた。赤外分光分析によりイソシアネート基に基づく吸収(2274cm−1)が消失したことを確認し、反応物2を得た。
続いて、攪拌装置、温度計、コンデンサーを備えた1lフラスコに反応物1を229.5g、エチルジグリコールアセテート28.5g、「スワゾール♯1000」23.4gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」26.3g、エチルジグリコールアセテート20.1g、「スワゾール♯1000」11.7gを混合したものを加え、品温を45℃まで昇温し、1時間反応させた。室温まで冷却後、攪拌しながらエチルジグリコールアセテートに70%溶解させた「JER−1001」を固形分換算で59.8g、1,4−ブタンジオール3.4g、エチルジグリコールアセテート44.4g、「スワゾール♯1000」10.9gを混合したものを加え、品温を45℃まで昇温し、45分反応させた。その後、イソブチルアルコール0.84g、エチルジグリコールアセテート13.4を混合したものを加え、品温45℃で更に1時間反応させた。最後に「ネオスタンU−810」の「スワゾール♯1000」1%溶液1.3gを加え、品温を110℃まで昇温し、赤外分光分析により、イソシアネート基に基づく吸収が消失したことを確認して反応を終了させ、エポキシ基とウレタン構造を有するポリブタジエン樹脂(製造物2)を得た。
<Production Example 2>
Hydrogenated polydiene polyol “G-1000” (manufactured by Nippon Soda Co., Ltd., hydroxyl value 73 mgKOH / g) 157.8 g, “Swazole # 1000” (Daicel Chemical Industries, Ltd.) in a 500 ml flask equipped with a stirrer, thermometer and condenser 26.2 g, manufactured by Co., Ltd. and 17.1 g of ethyl diglycol acetate, 34.4 g of “Coronate T-100” (manufactured by Nippon Polyurethane Industry Co., Ltd.) and ethyl diglycol while stirring at room temperature in a nitrogen atmosphere A mixture of 23.0 g of acetate was added and reacted at room temperature for 45 minutes. Subsequently, 2.74 g of a 1% solution of Swazol # 1000 of “Neostan U-810” was further added, and the reaction was carried out at 45 ° C. for 1 hour. Then, after cooling to room temperature, a mixture of 17.8 g of “GI-1000” and 21 g of ethyl diglycol acetate was added with stirring, and the product temperature was raised to 80 ° C. and reacted for 90 minutes. It was confirmed that the absorption (2274 cm-1) based on the isocyanate group disappeared by infrared spectroscopic analysis, and a reaction product 2 was obtained.
Subsequently, 229.5 g of the reaction product 1, 28.5 g of ethyl diglycol acetate, and 23.4 g of “Swazole # 1000” were charged into a 1 liter flask equipped with a stirrer, a thermometer, and a condenser, and stirred at room temperature in a nitrogen atmosphere. While adding 26.3 g of “Coronate T-100”, 20.1 g of ethyl diglycol acetate and 11.7 g of “Swazole # 1000”, the temperature of the product was raised to 45 ° C. and reacted for 1 hour. . After cooling to room temperature, “JER-1001” dissolved in ethyl diglycol acetate 70% with stirring was 59.8 g in terms of solids, 3.4 g of 1,4-butanediol, 44.4 g of ethyl diglycol acetate, A mixture of 10.9 g of “Swazole # 1000” was added, the product temperature was raised to 45 ° C., and the mixture was reacted for 45 minutes. Thereafter, a mixture of 0.84 g of isobutyl alcohol and 13.4 of ethyl diglycol acetate was added, and the mixture was further reacted at a product temperature of 45 ° C. for 1 hour. Finally, 1.3 g of “Neostan U-810” “swazol # 1000” 1% solution was added, the product temperature was raised to 110 ° C., and infrared spectroscopic analysis confirmed that absorption based on isocyanate groups had disappeared. Thus, the reaction was terminated to obtain a polybutadiene resin (Product 2) having an epoxy group and a urethane structure.

製造物2の性状
固形分 49.9%
数平均分子量 10468
エポキシ当量 1974
Properties of product 2
49.9% solids
Number average molecular weight 10468
Epoxy equivalent 1974

<製造例3>
攪拌装置、温度計、コンデンサーを備えた500mlフラスコに「コロネートT−100」 36.8g、エチルジグリコールアセテート15.0g、「スワゾール♯1000」28.8gを仕込み、窒素雰囲気下、室温で攪拌した。そこに1,4−ブタンジオール 9.5g、エチルジグリコールアセテート15.0gを混合したものを加え、更に「ネオスタンU−810」の「スワゾール♯1000」1%溶液を0.78g加えて、品温を80℃まで昇温し、90分間反応させた。60℃以下まで冷却した後、水素化ポリブタジエン「GI−2000」(日本曹達株式会社製、水酸基価=47mgKOH/g)124.1、エチルジグリコールアセテート15.0g、「スワゾール♯1000」28.8gを混合したものを加え、更に「ネオスタンU−810」の「スワゾール♯1000」1%溶液を1.56g加え、品温を45℃まで昇温し90分間反応させた。そこに1,4−ブタンジオール9.5g、エチルジグリコールアセテート15.0gを混合したものを加え、品温を80℃まで昇温し、更に90分間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認し、反応物3を得た。
続いて、攪拌装置、温度計、コンデンサーを備えた1lフラスコに合成した反応物3を265.5g、エチルジグリコールアセテート8.1g、「スワゾール♯1000」69.2gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」16.3g、エチルジグリコールアセテート6.1g、「スワゾール♯1000」4.1gを混合したものを加え、品温を80℃まで昇温し、90分間反応させた。室温まで冷却後、攪拌しながらエチルジグリコールアセテートに70%溶解させた「JER−1001」を固形分換算で74.0g、エチルジグリコールアセテート19.0gを混合したものを加え、品温を45℃まで昇温し、60分間反応させた。次にイソブチルアルコール1.0g、エチルジグリコールアセテート3.2gを混合したものを加え、品温45℃のまま20分間反応させ、更に「ネオスタンU−810」の「スワゾール♯1000」1%溶液1.2gを加え、品温を110℃まで昇温し、90分間反応させた。
赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認して反応を終了させ、エポキシ基とウレタン構造を有するポリブタジエン樹脂(製造物3)を得た。
<Production Example 3>
A 500 ml flask equipped with a stirrer, thermometer and condenser was charged with 36.8 g of “Coronate T-100”, 15.0 g of ethyl diglycol acetate, and 28.8 g of “Swazole # 1000” and stirred at room temperature in a nitrogen atmosphere. . To this was added a mixture of 9.5 g of 1,4-butanediol and 15.0 g of ethyl diglycol acetate, and 0.78 g of a 1% solution of “Swazole # 1000” of “Neostan U-810” was added. The temperature was raised to 80 ° C. and reacted for 90 minutes. After cooling to 60 ° C. or lower, hydrogenated polybutadiene “GI-2000” (manufactured by Nippon Soda Co., Ltd., hydroxyl value = 47 mg KOH / g) 124.1, ethyl diglycol acetate 15.0 g, “Swazole # 1000” 28.8 g Then, 1.56 g of a 1% solution of “Swazole # 1000” of “Neostan U-810” was added, and the product temperature was raised to 45 ° C. and reacted for 90 minutes. A mixture of 9.5 g of 1,4-butanediol and 15.0 g of ethyl diglycol acetate was added thereto, the product temperature was raised to 80 ° C., and the mixture was further reacted for 90 minutes. Infrared spectroscopic analysis confirmed that the absorption based on the isocyanate group (2274 cm-1) had disappeared, and reaction product 3 was obtained.
Subsequently, 265.5 g of the reaction product 3 synthesized in a 1 liter flask equipped with a stirrer, a thermometer, and a condenser was charged with 265.5 g of ethyl diglycol acetate, and 69.2 g of “Swazole # 1000”. A mixture of 16.3 g of “Coronate T-100”, 6.1 g of ethyl diglycol acetate and 4.1 g of “Swazol # 1000” was added with stirring, and the temperature was raised to 80 ° C. for 90 minutes. I let you. After cooling to room temperature, “JER-1001”, 70% dissolved in ethyl diglycol acetate with stirring, was added with a mixture of 74.0 g in terms of solid content and 19.0 g of ethyl diglycol acetate, and the product temperature was 45 The temperature was raised to ° C. and reacted for 60 minutes. Next, a mixture of 1.0 g of isobutyl alcohol and 3.2 g of ethyl diglycol acetate was added and allowed to react for 20 minutes while maintaining the product temperature at 45 ° C. Further, a 1% solution of “Swazole # 1000” of “Neostan U-810” 1 .2 g was added and the product temperature was raised to 110 ° C. and reacted for 90 minutes.
Infrared spectroscopic analysis confirmed that the absorption based on the isocyanate group (2274 cm-1) had disappeared, and terminated the reaction to obtain a polybutadiene resin (Product 3) having an epoxy group and a urethane structure.

製造物3の性状
固形分 51.1%
数平均分子量 26833
エポキシ当量 1405
Property of product 3 Solid content 51.1%
Number average molecular weight 26833
Epoxy equivalent 1405

<製造例4>
攪拌装置、温度計、コンデンサーを備えた1lフラスコに「コロネートT−100」23.6g、エチルジグリコールアセテート13.3g、「スワゾール♯1000」31.9gを仕込み、窒素雰囲気下、室温で攪拌した。そこに1,4−ブタンジオール 6.1g、エチルジグリコールアセテート13.3gを混合したものを加え、更に「ネオスタンU−810」の「スワゾール♯1000」1%溶液を0.7g加えて、品温を80℃まで昇温し、90分間反応させた。60℃以下まで冷却した後、水素化ポリブタジエン「GI−3000」(日本曹達株式会社製、水酸基価=30mgKOH/g)129.1g、エチルジグリコールアセテート13.3g、「スワゾール♯1000」47.8gを混合したものを加え、更に「ネオスタンU−810」の「スワゾール♯1000」1%溶液を1.4g加え、品温を80℃まで昇温し80分間反応させた。40℃まで冷却した後、1,4−ブタンジオール6.1g、エチルジグリコールアセテート13.3gを混合したものを加え、品温を80℃まで昇温し、更に90分間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認して反応終了し反応物4を得た。
続いて、攪拌装置、温度計、コンデンサーを備えた1lフラスコに反応物4を311.1g、エチルジグリコールアセテート7.4g、「スワゾール♯1000」55.8gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」12.3g、エチルジグリコールアセテート9.3g、を混合したものを加え、品温を80℃まで昇温し、90分間反応させた。室温まで冷却後、攪拌しながらエチルジグリコールアセテートに70%溶解させた「JER−1001」を固形分換算で55.9g、エチルジグリコールアセテート17.5gを混合したものを加え、品温を45℃まで昇温し、1時間反応させた。その後イソブチルアルコール0.78g、エチルジグリコールアセテート3.0gを加え、30分間反応させた後、「ネオスタンU−810」の「スワゾール♯1000」1%溶液3.1gを加え、品温を110℃まで昇温し、2時間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認して反応を終了させ、エポキシ基とウレタン構造を有するポリブタジエン樹脂(製造物4)を得た。
<Production Example 4>
A 1-liter flask equipped with a stirrer, a thermometer, and a condenser was charged with 23.6 g of “Coronate T-100”, 13.3 g of ethyl diglycol acetate, and 31.9 g of “Swazole # 1000” and stirred at room temperature in a nitrogen atmosphere. . A mixture of 6.1 g of 1,4-butanediol and 13.3 g of ethyl diglycol acetate was added thereto, and 0.7 g of a 1% solution of “Swazole # 1000” of “Neostan U-810” was further added. The temperature was raised to 80 ° C. and reacted for 90 minutes. After cooling to 60 ° C. or lower, hydrogenated polybutadiene “GI-3000” (manufactured by Nippon Soda Co., Ltd., hydroxyl value = 30 mg KOH / g) 129.1 g, ethyl diglycol acetate 13.3 g, “Swazole # 1000” 47.8 g In addition, 1.4 g of a 1% “Swazole # 1000” solution of “Neostan U-810” was added, the product temperature was raised to 80 ° C., and the mixture was reacted for 80 minutes. After cooling to 40 ° C., a mixture of 6.1 g of 1,4-butanediol and 13.3 g of ethyl diglycol acetate was added, the product temperature was raised to 80 ° C., and the mixture was further reacted for 90 minutes. Infrared spectroscopic analysis confirmed that the absorption (2274 cm-1) based on the isocyanate group had disappeared, and the reaction was completed to obtain a reaction product 4.
Subsequently, 311.1 g of the reaction product 4, 7.4 g of ethyl diglycol acetate, and 55.8 g of “Swazole # 1000” were charged into a 1 liter flask equipped with a stirrer, a thermometer, and a condenser, and stirred at room temperature in a nitrogen atmosphere. While adding 12.3 g of “Coronate T-100” and 9.3 g of ethyl diglycol acetate, the product temperature was raised to 80 ° C. and reacted for 90 minutes. After cooling to room temperature, “JER-1001” dissolved in ethyl diglycol acetate 70% with stirring was added to a mixture of 55.9 g in terms of solid content and 17.5 g of ethyl diglycol acetate, and the product temperature was 45. The temperature was raised to 0 ° C. and reacted for 1 hour. Thereafter, 0.78 g of isobutyl alcohol and 3.0 g of ethyl diglycol acetate were added and reacted for 30 minutes. Then, 3.1 g of a 1% solution of “Swazole # 1000” of “Neostan U-810” was added, and the product temperature was changed to 110 ° C. The mixture was heated up to react for 2 hours. Infrared spectroscopic analysis confirmed that absorption based on isocyanate groups (2274 cm −1) had disappeared, and terminated the reaction to obtain a polybutadiene resin (Product 4) having an epoxy group and a urethane structure.

製造物4の性状
固形分 47.8%
数平均分子量 20859
エポキシ当量 1999
Property of product 4 Solid content 47.8%
Number average molecular weight 20859
Epoxy equivalent 1999

<製造例5>
攪拌装置、温度計、コンデンサーを備えた1lフラスコに反応物1を205.1g、エチルジグリコールアセテート16.9g、「スワゾール♯1000」45.9gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」23.5g、エチルジグリコールアセテート10.1gを混合したものを加え、品温を80℃まで昇温し、90分間反応させた。室温まで冷却後、攪拌しながらエチルジグリコールアセテートに70%溶解させた「JER−1001」を固形分換算で107.1g、エチルジグリコールアセテート29.0gを混合したものを加え、品温を45℃まで昇温し、1時間反応させた。その後、イソブチルアルコール1.5g、エチルジグリコールアセテート4.7gを混合したものを加え、品温45℃で更に30分間反応させた。最後に「ネオスタンU−810」の「スワゾール♯1000」1%溶液1.3gを加え、品温を110℃まで昇温し、90分間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認して反応を終了させ、エポキシ基とウレタン構造を有するポリブタジエン樹脂(製造物5)を得た。
<Production Example 5>
A 1 l flask equipped with a stirrer, a thermometer and a condenser was charged with 205.1 g of the reaction product 1, 16.9 g of ethyl diglycol acetate and 45.9 g of “Swazole # 1000”, and stirred at room temperature in a nitrogen atmosphere. A mixture of 23.5 g of Coronate T-100 and 10.1 g of ethyl diglycol acetate was added, and the product temperature was raised to 80 ° C. and reacted for 90 minutes. After cooling to room temperature, a mixture of 107.1 g in terms of solid content and 29.0 g of ethyl diglycol acetate dissolved in 70% of ethyl diglycol acetate with stirring was added, and the product temperature was 45. The temperature was raised to ° C. and reacted for 1 hour. Thereafter, a mixture of 1.5 g of isobutyl alcohol and 4.7 g of ethyl diglycol acetate was added, and the mixture was further reacted at a product temperature of 45 ° C. for 30 minutes. Finally, 1.3 g of a 1% solution of “Neostan U-810” “Swazole # 1000” was added, the temperature of the product was raised to 110 ° C., and the mixture was reacted for 90 minutes. Infrared spectroscopic analysis confirmed that the absorption based on the isocyanate group (2274 cm-1) had disappeared, and terminated the reaction to obtain a polybutadiene resin (Product 5) having an epoxy group and a urethane structure.

製造物5の性状
固形分 56.1%
数平均分子量 6343
エポキシ当量 1202
Property of product 5 Solid content 56.1%
Number average molecular weight 6343
Epoxy equivalent 1202

<製造例6>
攪拌装置、温度計、コンデンサーを備えた1lフラスコに反応物1を253.2g、エチルジグリコールアセテート31.8、「スワゾール♯1000」29.0gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」29.0g、エチルジグリコールアセテート27.9gを混合したものを加え、品温を40℃まで昇温し、2時間反応させた。室温まで冷却後、攪拌しながらエチルジグリコールアセテートに70%溶解させた「JER−1001」を固形分換算で51.8g、1,4−ブタンジオール5.0g、エチルジグリコールアセテート19.9g、「スワゾール♯1000」29.0gを混合したものを加え、品温を80℃まで昇温し、90分間反応させた。その後「ネオスタンU−810」の「スワゾール♯1000」1%溶液1.1gを加え、品温を110℃まで昇温し、90分間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認して反応を終了させ、エポキシ基とウレタン構造を有するポリブタジエン樹脂(製造物6)を得た。
<Production Example 6>
A 1-liter flask equipped with a stirrer, a thermometer, and a condenser was charged with 253.2 g of the reaction product 1, 31.8 ethyl diglycol acetate, and 29.0 g of “Swazole # 1000” and stirred at room temperature under a nitrogen atmosphere. A mixture of 29.0 g of Coronate T-100 and 27.9 g of ethyl diglycol acetate was added, and the product temperature was raised to 40 ° C. and reacted for 2 hours. After cooling to room temperature, “JER-1001” dissolved in ethyl diglycol acetate 70% with stirring was 51.8 g in terms of solid content, 5.0 g of 1,4-butanediol, 19.9 g of ethyl diglycol acetate, A mixture of 29.0 g of “Swazole # 1000” was added, the product temperature was raised to 80 ° C., and the mixture was reacted for 90 minutes. Thereafter, 1.1 g of a 1% solution of “Swazole # 1000” of “Neostan U-810” was added, the product temperature was raised to 110 ° C., and the mixture was reacted for 90 minutes. Infrared spectroscopic analysis confirmed that the absorption based on the isocyanate group (2274 cm-1) had disappeared, and terminated the reaction to obtain a polybutadiene resin (Product 6) having an epoxy group and a urethane structure.

製造物6の性状
固形分 54.1%
数平均分子量 19967
エポキシ当量 2369
Properties of product 6 Solid content 54.1%
Number average molecular weight 19967
Epoxy equivalent 2369

<製造例7>
攪拌装置、温度計、コンデンサーを備えた1lフラスコにポリブタジエン「G−3000」 (日本曹達株式会社性、水酸基価=30mgKOH/g)197.4g、「スワゾール♯1000」90、6gを仕込み、窒素雰囲気下、品温=60℃まで昇温し、均一になるまで攪拌した。そこにコロネートT−100 19.4gを加え、10分程攪拌を続けた後、更にネオスタンU−100(ジブチルスズジラウレート、日東化成株式会社製)の「スワゾール#1000」1%溶液2.2gを加え、品温を75℃まで昇温し、2時間反応させた。反応後、品温75℃の状態で、四塩基酸二無水物BTDA(ダイセル(株)製)35.8gをエチルジグリコールアセテート157.1gに懸濁したものを加え、10分間攪拌した後、トリエチレンジアミンを10%溶解したエチルジグリコールアセテートを固形分換算で0.25g加え、品温を140℃まで昇温し、180分間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認し、酸無水物基とウレタン構造を有するポリブタジエン樹脂(製造物7)を得た。
<Production Example 7>
A 1 liter flask equipped with a stirrer, a thermometer, and a condenser was charged with 197.4 g of polybutadiene “G-3000” (Nippon Soda Co., Ltd., hydroxyl value = 30 mg KOH / g), “Swazole # 1000” 90, 6 g, nitrogen atmosphere The product temperature was raised to 60 ° C. and stirred until uniform. 19.4 g of Coronate T-100 was added thereto, and stirring was continued for about 10 minutes. Then, 2.2 g of a 1% solution of “Swazole # 1000” of Neostan U-100 (dibutyltin dilaurate, manufactured by Nitto Kasei Co., Ltd.) was added. The product temperature was raised to 75 ° C. and reacted for 2 hours. After the reaction, a suspension of 35.8 g of tetrabasic acid dianhydride BTDA (manufactured by Daicel Corporation) in 157.1 g of ethyl diglycol acetate was added at a product temperature of 75 ° C. and stirred for 10 minutes. Ethyl diglycol acetate in which 10% of triethylenediamine was dissolved was added in an amount of 0.25 g in terms of solid content, and the product temperature was raised to 140 ° C. and reacted for 180 minutes. Infrared spectroscopic analysis confirmed that absorption based on isocyanate groups (2274 cm-1) had disappeared, and a polybutadiene resin (Product 7) having an acid anhydride group and a urethane structure was obtained.

製造物7の性状
固形分 50.8%
数平均分子量 10369
酸無水物基当量 1136
Properties of product 7 Solid content 50.8%
Number average molecular weight 10369
Acid anhydride group equivalent 1136

<製造例8>
攪拌装置、温度計、コンデンサーを備えた1lフラスコにポリカーボネートジオール「UM−90(1/1)」 (宇部興産水酸基価=126mgKOH/g)132.3g、エチルジグリコールアセテート18.9g、「スワゾール♯1000」27.0gを仕込み、窒素雰囲気下、室温で攪拌した。そこに「コロネートT−100」51.2g、エチルジグリコールアセテート22.0gを混合したものを加え、品温を80℃まで昇温し、2時間反応させた。30℃まで冷却した後、1,4−ブタンジオール26.5g、エチルジグリコールアセテート22.0gを混合したものを加え、品温を120℃まで昇温し、90分間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認し、反応物6を得た。
続いて、攪拌装置、温度計、コンデンサーを備えた1lフラスコに反応物6を194.2g、エチルジグリコールアセテート30.6g、「スワゾール♯1000」26.7gを仕込み、窒素雰囲気下、室温で攪拌しながら「コロネートT−100」33.1g、エチルジグリコールアセテート20.4g、「スワゾール♯1000」13.4gを混合したものを加え、品温を70℃まで昇温し、2時間反応させた。40℃まで冷却後、攪拌しながらエチルジグリコールアセテートに70%溶解させた「JER−1001」75.5g、1,4−ブタンジオール4.3g、エチルジグリコールアセテート40.7g、「スワゾール♯1000」13.4gを混合したものを加え、品温を80℃まで昇温し、1時間反応させた。その後イソブチルアルコール1.1g、エチルジグリコールアセテート10.2gを混合したものを加え、80℃で更に1時間反応させた。最後に「ネオスタンU−810」の「スワゾール♯1000」1%溶液4.1gを加え、品温を80℃で1時間反応させた。赤外分光分析により、イソシアネート基に基づく吸収(2274cm−1)が消失したことを確認して反応を終了させ、エポキシ基とウレタン構造を有するポリカーボネート樹脂(製造物8)を得た。
<Production Example 8>
Polycarbonate diol “UM-90 (1/1)” (Ube Industries hydroxyl value = 126 mg KOH / g) 132.3 g, ethyl diglycol acetate 18.9 g, “Swazole #” in a 1 l flask equipped with a stirrer, thermometer and condenser 1000 ”27.0 g was charged and stirred at room temperature under a nitrogen atmosphere. A solution prepared by mixing 51.2 g of “Coronate T-100” and 22.0 g of ethyl diglycol acetate was added thereto, and the product temperature was raised to 80 ° C. and reacted for 2 hours. After cooling to 30 ° C., a mixture of 26.5 g of 1,4-butanediol and 22.0 g of ethyl diglycol acetate was added, and the product temperature was raised to 120 ° C. and reacted for 90 minutes. Infrared spectroscopic analysis confirmed that absorption based on the isocyanate group (2274 cm-1) had disappeared, and reaction product 6 was obtained.
Subsequently, 194.2 g of the reaction product 6, 30.6 g of ethyl diglycol acetate, and 26.7 g of “Swazole # 1000” were charged into a 1 liter flask equipped with a stirrer, a thermometer, and a condenser, and stirred at room temperature in a nitrogen atmosphere. While adding 33.1 g of “Coronate T-100”, 20.4 g of ethyl diglycol acetate, and 13.4 g of “Swazole # 1000”, the product temperature was raised to 70 ° C. and reacted for 2 hours. . After cooling to 40 ° C., 75.5 g of “JER-1001” dissolved in ethyl diglycol acetate with stirring, 4.3 g of 1,4-butanediol, 40.7 g of ethyl diglycol acetate, “Swazole # 1000 13.4 g of the mixture was added, the product temperature was raised to 80 ° C., and the mixture was reacted for 1 hour. Thereafter, a mixture of 1.1 g of isobutyl alcohol and 10.2 g of ethyl diglycol acetate was added, and the mixture was further reacted at 80 ° C. for 1 hour. Lastly, 4.1 g of a 1% solution of “Swazole # 1000” of “Neostan U-810” was added, and the product temperature was reacted at 80 ° C. for 1 hour. Infrared spectroscopic analysis confirmed that the absorption (2274 cm −1) based on the isocyanate group had disappeared, and terminated the reaction to obtain a polycarbonate resin (Product 8) having an epoxy group and a urethane structure.

製造物8の性状
固形分 51.8%
数平均分子量 20101
エポキシ当量 1545
Property of product 8 Solid content 51.8%
Number average molecular weight 20101
Epoxy equivalent 1545

<チオール化合物の製造>
トリス(3−メルカプトプロピル)イソシアヌレートは、特開1981−120671に記載した方法により合成したものを、そのまま用いた。すなわち、トリアリルイソシアヌレート(日本化成株式会社製)とチオールプロピオン酸(City Chemical LLC製)をアセトン、酢酸の混合溶媒中で紫外線照射し、反応させた。溶媒を減圧除去後、反応溶液の残渣を濃塩酸中で煮沸し、無水炭酸ナトリウムを加えて中和した。その後中活性アルミナカラムに通し、溶剤を除去することで、トリス(3−メルカプトプロピル)イソシアヌレートを得た。
<Manufacture of thiol compounds>
As tris (3-mercaptopropyl) isocyanurate, the one synthesized by the method described in JP-A-1981-120671 was used as it was. That is, triallyl isocyanurate (manufactured by Nippon Kasei Chemical Co., Ltd.) and thiolpropionic acid (manufactured by City Chemical LLC) were reacted by irradiation with ultraviolet rays in a mixed solvent of acetone and acetic acid. After removing the solvent under reduced pressure, the residue of the reaction solution was boiled in concentrated hydrochloric acid and neutralized with anhydrous sodium carbonate. Thereafter, the solution was passed through a medium activated alumina column and the solvent was removed to obtain tris (3-mercaptopropyl) isocyanurate.

<実施例1>
製造物1を固形分換算で44.4部、合成したトリス(3−メルカプトプロピル)イソシアヌレート2.6部、無機充填材として疎水性シリカ「R−805」(日本アエロジル(株)製、平均粒径0.012μm)4.6部を混合し、三本ロールミルにて混練を行った後、「スワゾール♯1000」2.0部を加えて粘度を約35Pa・sに調整した。最後に硬化触媒として「ニチゴーイミダゾール1,2-DMI」(日本合成化学工業株式会社)2.2部を加え、練太郎AR−100「シンキー(株)製」にて攪拌し、樹脂ワニスを作製した。
<Example 1>
44.4 parts of product 1 in terms of solid content, 2.6 parts of synthesized tris (3-mercaptopropyl) isocyanurate, hydrophobic silica “R-805” (manufactured by Nippon Aerosil Co., Ltd., average) After mixing 4.6 parts of a particle size of 0.012 μm and kneading with a three-roll mill, 2.0 parts of “Swazole # 1000” was added to adjust the viscosity to about 35 Pa · s. Finally, 2.2 parts of “Nichigoimidazole 1,2-DMI” (Nippon Gosei Kagaku Kogyo Co., Ltd.) was added as a curing catalyst and stirred with Nertaro AR-100 “Sinky Co., Ltd.” to prepare a resin varnish. did.

<実施例2>
実施例1の製造物1を製造物2に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 2>
A resin varnish was prepared in exactly the same manner as in Example 1, except that the product 1 of Example 1 was changed to the product 2.

<実施例3>
実施例1の製造物1を製造物3に、トリス(3−メルカプトプロピル)イソシアヌレートの配合量を3.7部、「R−805」の配合量を6.2部に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 3>
Except that the product 1 of Example 1 was changed to the product 3, the blending amount of tris (3-mercaptopropyl) isocyanurate was 3.7 parts, and the blending amount of “R-805” was 6.2 parts, A resin varnish was prepared in exactly the same manner as in Example 1.

<実施例4>
実施例1の製造物1を製造物4に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 4>
A resin varnish was prepared in exactly the same manner as in Example 1 except that the product 1 of Example 1 was changed to the product 4.

<実施例5>
実施例1の製造物1を製造物5に、トリス(3−メルカプトプロピル)イソシアヌレートの配合量を4.4部、「R−805」の配合量を7.6部に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 5>
Except that the product 1 of Example 1 was changed to the product 5, the blending amount of tris (3-mercaptopropyl) isocyanurate was 4.4 parts, and the blending amount of “R-805” was 7.6 parts, A resin varnish was prepared in exactly the same manner as in Example 1.

<実施例6>
実施例1の製造物1を製造物6とし、その配合量を49部とし、トリス(3−メルカプトプロピル)イソシアヌレートの配合量を2.2部、「R−805」の配合量を3.7部に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 6>
The product 1 of Example 1 is the product 6, the blending amount is 49 parts, the blending amount of tris (3-mercaptopropyl) isocyanurate is 2.2 parts, and the blending amount of “R-805” is 3. A resin varnish was produced in the same manner as in Example 1 except that the content was changed to 7 parts.

<実施例7>
実施例1のトリス(3−メルカプトプロピル)イソシアヌレートの配合量を 9.6部に、「R−805」の配合量を16.3部に、「ニチゴーイミダゾール1,2-DMI」の配合量を3.7部に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 7>
The amount of tris (3-mercaptopropyl) isocyanurate of Example 1 is 9.6 parts, the amount of “R-805” is 16.3 parts, and the amount of “Nitgoimidazole 1,2-DMI” A resin varnish was prepared in exactly the same manner as in Example 1 except that was changed to 3.7 parts.

<実施例8>
実施例1のトリス(3−メルカプトプロピル)イソシアヌレートの配合量を 1.6部に、「R−805」の配合量を2.7部に、「ニチゴーイミダゾール1,2-DMI」の配合量を0.56部に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 8>
The amount of tris (3-mercaptopropyl) isocyanurate of Example 1 is 1.6 parts, the amount of “R-805” is 2.7 parts, and the amount of “Nitgoimidazole 1,2-DMI” is 1. A resin varnish was produced in the same manner as in Example 1 except that the content was changed to 0.56 part.

<実施例9>
実施例1のトリス(3−メルカプトプロピル)イソシアヌレート2.6gを、「TMTP」(淀化学(株)製)3.0gに変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Example 9>
A resin varnish was prepared in exactly the same manner as in Example 1, except that 2.6 g of tris (3-mercaptopropyl) isocyanurate in Example 1 was changed to 3.0 g of “TMTP” (manufactured by Sakai Chemical Co., Ltd.). did.

<比較例1>
実施例1のトリス(3−メルカプトプロピル)イソシアヌレート2.6部を、「TD2090」(DIC(株)製、MEK溶液)2.4部(固形分換算)に変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Comparative Example 1>
Example 1 except that 2.6 parts of tris (3-mercaptopropyl) isocyanurate in Example 1 was changed to 2.4 parts (in terms of solid content) of “TD2090” (manufactured by DIC Corporation, MEK solution). A resin varnish was prepared in the same manner as described above.

<比較例2>
製造物7を固形分換算で44.4g、無機充填材として疎水性シリカ「R−805」7.8gを混合し、三本ロールミルにて混練を行った後、硬化剤としてエチルジグリコールアセテートに溶かしたJER−1001を固形分換算で 18.6g、「ニチゴーイミダゾール1,2-DMI」を2.2g加え、練太郎AR−100「シンキー(株)製」にて攪拌し、樹脂ワニスを作製した。
<Comparative Example 2>
44.4 g of product 7 in terms of solid content, 7.8 g of hydrophobic silica “R-805” as an inorganic filler were mixed, kneaded with a three-roll mill, and then ethyl diglycol acetate as a curing agent. Add 18.6 g of dissolved JER-1001 in terms of solid content and 2.2 g of “Nitgoimidazole 1,2-DMI” and stir with Nertaro AR-100 “Sinky Corp.” to prepare a resin varnish did.

<比較例3>
実施例1の製造物1を製造物8に、トリス(3−メルカプトプロピル)イソシアヌレートの配合量を3.3g、「R−805」の配合量を5.7gに変更した以外は、実施例1と全く同様にして樹脂ワニスを作製した。
<Comparative Example 3>
Example 1 except that product 1 of Example 1 was changed to product 8, the amount of tris (3-mercaptopropyl) isocyanurate was changed to 3.3 g, and the amount of “R-805” was changed to 5.7 g. A resin varnish was prepared in exactly the same manner as in Example 1.

次に、物性評価における測定方法・評価方法について説明する。 Next, measurement methods and evaluation methods in physical property evaluation will be described.

<低温硬化性の評価>
実施例及び比較例で調製した樹脂ワニスを50μm厚ポリイミドフィルム(ユーピレックス50S:宇部興産(株)製)上に200メッシュ版を用いてスクリーン印刷し、80℃60分で硬化させた。硬化面を、アセトンを浸み込ませた綿棒を用いて、秤が10gの加重を示す力で5階往復ラビングさせ、硬化面の表面の観察をした。変色がないものを「◎」、ほとんど変色がないものを「○」、変色が明らかなものを「△」、硬化体が溶けてフィルムが露出してしまったものを「×」と評価した。なお、比較例2では室温で反応が進み、ゲル化が見られたため評価することができなかった。同じ理由により、以降の評価も行うことが出来なかった。結果を表1に示す。
<Evaluation of low temperature curability>
The resin varnishes prepared in Examples and Comparative Examples were screen printed using a 200 mesh plate on a 50 μm thick polyimide film (Upilex 50S: manufactured by Ube Industries, Ltd.) and cured at 80 ° C. for 60 minutes. Using a cotton swab soaked with acetone, the cured surface was rubbed on the fifth floor with a force indicating a weight of 10 g, and the surface of the cured surface was observed. A sample with no discoloration was evaluated as “◎”, a sample with almost no discoloration was evaluated as “◯”, a sample with clear discoloration was evaluated as “Δ”, and a cured product was melted and the film was exposed as “x”. In Comparative Example 2, the reaction proceeded at room temperature, and gelation was observed, so evaluation could not be performed. For the same reason, further evaluations could not be performed. The results are shown in Table 1.

<印刷性の評価>
実施例及び比較例で調製した樹脂ワニスを50μm厚ポリイミドフィルム(ユーピレックス50S:宇部興産(株)製)上に200メッシュ版を用いて、L/S=15/15μm、回路厚さ8μmのくし型電極パターンが形成された38μm厚ポリイミドフィルム上に、くし型電極パターンの全面を覆うようにスクリーン印刷した。20℃で10分間静置後、80℃60分(比較例1のみ、130℃60分)で硬化させた。硬化体の厚みは50μmであった。印刷直後〜10分までの印刷部表面、及び硬化後の硬化体表面を金属顕微鏡(MF−UD2017B、ミツトヨ株式会社製、対物レンズ×5、合計倍率×150)で観察した。印刷直後〜5分以内に気泡が無くなる場合を「◎」、5分〜10分以内に気泡が無くなる場合を「○」とし、硬化後に気泡が残る場合を「×」とした。結果を表1に示す。
<Evaluation of printability>
The resin varnishes prepared in Examples and Comparative Examples were combed with a L / S = 15/15 μm and a circuit thickness of 8 μm on a 50 μm thick polyimide film (Upilex 50S: manufactured by Ube Industries) using a 200 mesh plate. Screen printing was performed on the 38 μm-thick polyimide film on which the electrode pattern was formed so as to cover the entire surface of the comb-shaped electrode pattern. After standing at 20 ° C. for 10 minutes, it was cured at 80 ° C. for 60 minutes (only Comparative Example 1, 130 ° C. for 60 minutes). The thickness of the cured body was 50 μm. Immediately after printing, the surface of the printed part up to 10 minutes and the cured body surface after curing were observed with a metal microscope (MF-UD2017B, manufactured by Mitutoyo Corporation, objective lens × 5, total magnification × 150). The case where bubbles disappeared within 5 minutes immediately after printing was indicated as “◎”, the case where bubbles disappeared within 5 minutes to 10 minutes, and “X” when bubbles remained after curing. The results are shown in Table 1.

<柔軟性の評価>
(弾性率及び伸び)
実施例及び比較例で調製した樹脂ワニスを、離型PTFEフィルム(アフレックス50N:旭硝子(株)製)上にバーコーターを用いて塗布し、80℃60分(比較例1のみ、130℃60分)にて硬化した。硬化体の厚みは50μmであった。その後、PTFEフィルムを剥離した。日本工業規格(JIS K7161)に準拠し、温度25℃、湿度40%RH、引っ張り速度50mm/分にてテンシロン万能試験機((株)エー・アンド・デイ製)を用いて引っ張り試験を行った。弾性率及び伸びの測定は、評価サンプルの降伏点を測定した。結果を表1に示す。
(折り曲げ性)
実施例及び比較例で調製した樹脂ワニスを50μm厚ポリイミドフィルム(ユーピレックス50S:宇部興産(株)製)上にバーコーターを用いて塗布し、80℃60分(比較例1のみ、130℃60分)で硬化させた。硬化体の厚みは50μmであった。硬化面を外側にして180度折り曲げ、逆方向に360度折り曲げた。硬化面に白化も亀裂も起こらなかったものを「○」、硬化面に白化が見られたものを「△」、硬化面に白化及び亀裂が観察されたものを「×」とした。結果を表1に示す。
<Evaluation of flexibility>
(Elastic modulus and elongation)
The resin varnishes prepared in Examples and Comparative Examples were applied on a release PTFE film (Aflex 50N: manufactured by Asahi Glass Co., Ltd.) using a bar coater, and 80 ° C. for 60 minutes (Comparative Example 1 only, 130 ° C. 60 Cured). The thickness of the cured body was 50 μm. Thereafter, the PTFE film was peeled off. In accordance with Japanese Industrial Standard (JIS K7161), a tensile test was conducted using a Tensilon universal testing machine (manufactured by A & D Co., Ltd.) at a temperature of 25 ° C., a humidity of 40% RH, and a pulling speed of 50 mm / min. . The elastic modulus and elongation were measured by measuring the yield point of the evaluation sample. The results are shown in Table 1.
(Bendability)
The resin varnishes prepared in Examples and Comparative Examples were coated on a 50 μm thick polyimide film (Upilex 50S: Ube Industries, Ltd.) using a bar coater, and 80 ° C. for 60 minutes (Comparative Example 1 only, 130 ° C. for 60 minutes). ). The thickness of the cured body was 50 μm. The cured surface was bent outward by 180 degrees and 360 degrees in the opposite direction. The case where no whitening or cracking occurred on the hardened surface was indicated as “◯”, the case where whitening was observed on the hardened surface was indicated as “Δ”, and the case where whitening and cracking was observed on the hardened surface was indicated as “X”. The results are shown in Table 1.

<絶縁信頼性の評価>
実施例及び比較例で調製した樹脂ワニスを、200メッシュ版を用いて、L/S=15/15μm、回路厚さ8μmのくし型電極パターンが形成された38μm厚ポリイミドフィルム上に、くし型電極パターンの全面を覆うようにスクリーン印刷し、80℃で60分間(比較例1のみ、130℃60分)硬化させた。これに100Vの電圧を印加しつつ、85℃、相対湿度85%の雰囲気下に、1000時間放置した。イオンマイグレーションや絶縁抵抗値の低下(10Ω以下まで)が観察されるまでの保持時間を測定し、これをHHBT耐久時間とした。HHBT耐久時間が1000時間以上のものを○、500時間以上のものを△、500時間未満のものを×とした。結果を表1に示す。
<Evaluation of insulation reliability>
The resin varnishes prepared in Examples and Comparative Examples were used on a 38 μm thick polyimide film on which a comb electrode pattern with L / S = 15/15 μm and circuit thickness of 8 μm was formed using a 200 mesh plate. Screen printing was performed so as to cover the entire surface of the pattern, and curing was performed at 80 ° C. for 60 minutes (only Comparative Example 1, 130 ° C. for 60 minutes). While applying a voltage of 100 V to this, it was left for 1000 hours in an atmosphere of 85 ° C. and a relative humidity of 85%. The holding time until ion migration or a decrease in insulation resistance value (up to 10 6 Ω or less) was observed was measured, and this was defined as the HHBT durability time. The HHBT endurance time of 1000 hours or more was evaluated as ◯, the 500 hours or more as Δ, and the less than 500 hours as X. The results are shown in Table 1.

Figure 0005929466
Figure 0005929466

表1から分かるように、実施例は80℃という低温で硬化可能な樹脂組成物であり、その硬化膜は優れた柔軟性、印刷性、及び絶縁信頼性を兼ね備えていることが分かった。一方、比較例1は低温における硬化が不十分であり、硬化膜の伸びが劣っていた。比較例2は直ぐにゲル化してしまい、可使時間の面で使用に耐えるものではなかった。比較例3の硬化膜は柔軟性に欠け、印刷性、絶縁信頼性も劣っていた。   As can be seen from Table 1, the examples are resin compositions that can be cured at a low temperature of 80 ° C., and it was found that the cured film has excellent flexibility, printability, and insulation reliability. On the other hand, in Comparative Example 1, curing at low temperature was insufficient and the elongation of the cured film was inferior. Comparative Example 2 gelled immediately and could not be used in terms of pot life. The cured film of Comparative Example 3 lacked flexibility and was inferior in printability and insulation reliability.

低温硬化性、柔軟性、印刷性に優れた樹脂組成物を提供できるようになった。更にそれを用いたオーバーコート剤、フレキシブルプリント配線板、半導体装置を提供できるようになった。更にこれらを搭載した、携帯電話、デジタルカメラ、ビデオカメラ、ゲーム機器、パーソナルコンピューター、プリンター、ハードディスクドライブ、プラズマテレビ、液晶テレビ、液晶ディスプレイ、カー・ナビゲーション・システム、複写機、ファックス、AV機器、計測機器、医療機器等や、自動二輪車、自動車、電車、船舶、航空機、等の乗物も提供できるようになった。   A resin composition having excellent low-temperature curability, flexibility, and printability can be provided. Furthermore, an overcoat agent, a flexible printed wiring board, and a semiconductor device using the same can be provided. In addition, mobile phones, digital cameras, video cameras, game machines, personal computers, printers, hard disk drives, plasma TVs, liquid crystal TVs, liquid crystal displays, car navigation systems, copiers, fax machines, AV equipment, measurement equipment Vehicles such as equipment, medical equipment, motorcycles, automobiles, trains, ships, airplanes, etc. can now be provided.

Claims (12)

(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂、及び(B)チオール系硬化剤を含有する樹脂組成物であって、樹脂組成物の固形分全体を100質量%とした場合、(A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が50〜95質量%であることを特徴とする、有機TFT用素子を封止するためのオーバーコート剤用樹脂組成物。 (A) A resin composition containing a polybutadiene resin having an epoxy group and a urethane structure, and (B) a thiol-based curing agent, and when the total solid content of the resin composition is 100% by mass, (A) epoxy A resin composition for an overcoat agent for sealing an organic TFT element, wherein the polybutadiene resin having a group and a urethane structure is 50 to 95% by mass. (A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が、数平均分子量500〜200000であることを特徴とする請求項1記載の樹脂組成物。 (A) The polybutadiene resin which has an epoxy group and a urethane structure is number average molecular weight 500-200000, The resin composition of Claim 1 characterized by the above-mentioned. (A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が、エポキシ当量300〜10000であることを特徴とする請求項1又は2記載の樹脂組成物。 (A) Polybutadiene resin which has an epoxy group and a urethane structure is epoxy equivalent 300-10000, The resin composition of Claim 1 or 2 characterized by the above-mentioned. (A)エポキシ基とウレタン構造を有するポリブタジエン樹脂が、(a)分子内に2以上の水酸基を有するポリジエンポリオール化合物、(b)分子内に1以上の水酸基と1以上のエポキシ基とを有するエポキシ化合物及び(c)分子内に2以上のイソシアネート基を有するポリイソシアネート化合物を反応させて得られることを特徴とする請求項1〜3のいずれか1項記載の樹脂組成物。 (A) A polybutadiene resin having an epoxy group and a urethane structure has (a) a polydiene polyol compound having two or more hydroxyl groups in the molecule, and (b) one or more hydroxyl groups and one or more epoxy groups in the molecule. The resin composition according to any one of claims 1 to 3, which is obtained by reacting an epoxy compound and (c) a polyisocyanate compound having two or more isocyanate groups in the molecule. 樹脂組成物の固形分全体を100質量%とした場合、(B)チオール系硬化剤が、0.5〜15質量%であることを特徴とする請求項1〜4のいずれか1項記載の樹脂組成物。 When the whole solid content of a resin composition is 100 mass%, (B) thiol type hardening | curing agent is 0.5-15 mass%, The any one of Claims 1-4 characterized by the above-mentioned. Resin composition. 更に(C)無機充填材を含有することを特徴とする請求項1〜5のいずれか1項記載の樹脂組成物。 Furthermore, (C) inorganic filler is contained, The resin composition of any one of Claims 1-5 characterized by the above-mentioned. (C)無機充填材が、平均粒径0.005〜1μmであることを特徴とする請求項6記載の樹脂組成物。 The resin composition according to claim 6, wherein the inorganic filler (C) has an average particle size of 0.005 to 1 µm. 更に(D)硬化促進剤を含有することを特徴とする請求項1〜7のいずれか1項記載の樹脂組成物。 Furthermore, (D) hardening accelerator is contained, The resin composition of any one of Claims 1-7 characterized by the above-mentioned. 請求項1〜のいずれか1項記載の樹脂組成物を用いることを特徴とする、液状樹脂組成物又はフィルム状樹脂組成物。 Which comprises using the resin composition of any one of claims 1-8, the liquid resin composition or a film-like resin composition. 請求項1〜のいずれか1項記載の樹脂組成物の硬化体であって、伸びが20%以上であり、弾性率が1000MPa以下であることを特徴とする硬化体。 A cured body of the resin composition according to any one of claims 1 to 9 , wherein the cured body has an elongation of 20% or more and an elastic modulus of 1000 MPa or less. 請求項10に記載の樹脂組成物の硬化体を用いることを特徴とする、有機TFTデバイス。 Which comprises using a cured product of the resin composition according to claim 10, organic TFT device. 請求項11記載の有機TFTデバイスを内蔵する電子機器。 Electronic equipment incorporating the organic TFT device of claim 11, wherein.
JP2012097637A 2012-04-23 2012-04-23 Resin composition Active JP5929466B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012097637A JP5929466B2 (en) 2012-04-23 2012-04-23 Resin composition
KR1020130044245A KR102075880B1 (en) 2012-04-23 2013-04-22 Resin composition
TW102114234A TWI589614B (en) 2012-04-23 2013-04-22 Resin composition
CN201310142091.8A CN103374219B (en) 2012-04-23 2013-04-23 Resin combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012097637A JP5929466B2 (en) 2012-04-23 2012-04-23 Resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015256456A Division JP6225983B2 (en) 2015-12-28 2015-12-28 Resin composition

Publications (2)

Publication Number Publication Date
JP2013224373A JP2013224373A (en) 2013-10-31
JP5929466B2 true JP5929466B2 (en) 2016-06-08

Family

ID=49460087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012097637A Active JP5929466B2 (en) 2012-04-23 2012-04-23 Resin composition

Country Status (4)

Country Link
JP (1) JP5929466B2 (en)
KR (1) KR102075880B1 (en)
CN (1) CN103374219B (en)
TW (1) TWI589614B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104875A (en) * 2015-12-28 2016-06-09 味の素株式会社 Resin composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162911A (en) * 2013-02-27 2014-09-08 Sekisui Chem Co Ltd Curable resin composition, sealing material, vertical conduction material, photoelectric converter, dye-sensitized solar cell and dye-sensitized solar cell module
CN105473634B (en) * 2013-10-25 2017-08-04 味之素株式会社 Flexible-epoxy composition
KR102359684B1 (en) 2014-11-12 2022-02-07 쓰리본드 화인 케미칼 가부시키가이샤 Epoxy resin composition
WO2018016524A1 (en) * 2016-07-20 2018-01-25 日立化成株式会社 Thermosetting resin composition, interlayer insulation resin film, composite film, printed wiring board, and production method thereof
JP6801279B2 (en) * 2016-07-20 2020-12-16 昭和電工マテリアルズ株式会社 Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and its manufacturing method
JP6897026B2 (en) * 2016-08-10 2021-06-30 味の素株式会社 Resin composition
EP3732245A4 (en) * 2017-12-28 2021-07-07 Henkel AG & Co. KGaA Epoxy based composition
CN111040709B (en) * 2019-12-28 2022-03-22 广东生益科技股份有限公司 Resin composition and flexible copper-clad plate using same
CN115101238A (en) * 2022-07-12 2022-09-23 山东慧凯电器有限公司 10kVRTPME insulating spray coating material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554864B1 (en) * 1999-04-22 2006-02-24 아지노모토 가부시키가이샤 A thermosetting resin composition and flexible-circuit overcoating material, a flim carrier and a film carrier device using the same
JP2006137943A (en) * 2004-10-15 2006-06-01 Ajinomoto Co Inc Resin composition
CN1803923A (en) * 2004-10-15 2006-07-19 味之素株式会社 Resin composition
EP1741734A1 (en) * 2005-07-05 2007-01-10 Sika Technology AG Heat curable epoxy resin composition having low temperature impact strength comprising solid epoxy resins
TWI453253B (en) * 2007-10-18 2014-09-21 Ajinomoto Kk Resin composition
CN102010494B (en) * 2010-09-30 2012-06-27 烟台德邦电子材料有限公司 Light-cured resin with low water absorption and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104875A (en) * 2015-12-28 2016-06-09 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
TW201345941A (en) 2013-11-16
CN103374219A (en) 2013-10-30
JP2013224373A (en) 2013-10-31
KR20130119365A (en) 2013-10-31
TWI589614B (en) 2017-07-01
CN103374219B (en) 2017-09-08
KR102075880B1 (en) 2020-02-11

Similar Documents

Publication Publication Date Title
JP5929466B2 (en) Resin composition
JP6712402B2 (en) Coated particles
JP5743042B1 (en) Polyurethane resin composition, adhesive composition using the same, laminate and printed wiring board
JP6225983B2 (en) Resin composition
JP5392088B2 (en) Resin composition
JP2009096940A (en) Flame-retardant adhesive composition, coverlay, adhesive sheet, and flexible printed wiring board
TW202116912A (en) Resin composition capable of lowering tackiness in spite of low blending of inorganic fillers
US11441015B2 (en) Coated particle
KR20140109340A (en) Electromagnetic interference shielding film and method for manufacturing electromagnetic interference shielding film
TW202111001A (en) Resin composition, laminate having resin composition layer, laminate, and electromagnetic wave shielding film
TW202222977A (en) Resin composition, bonding film, laminate having resin composition layer, laminate, and electromagnetic shielding film
JP7396443B2 (en) resin composition
US20220306859A1 (en) Resin composition, bonding film, layered body including resin composition layer, layered body, and electromagnetic wave shielding film
JP2012193279A (en) Thermosetting resin composition
JP2020147731A (en) Resin composition
TW201035238A (en) Heat-curable ink composition
JP2007070471A (en) Plastic film having adhesive layer, flexible printed circuit board having cover film and method for producing the same
WO2018159564A1 (en) Resin composition
TW202411390A (en) Adhesive composition, bonding films, laminates with adhesive composition layer, laminates, and electromagnetic wave shielding film
US20220411630A1 (en) Resin composition, layered body including resin composition layer, layered body, flexible copper-clad laminate, flexible flat cable, and electromagnetic wave shielding film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250