JP5928442B2 - Vehicle power supply - Google Patents

Vehicle power supply Download PDF

Info

Publication number
JP5928442B2
JP5928442B2 JP2013265264A JP2013265264A JP5928442B2 JP 5928442 B2 JP5928442 B2 JP 5928442B2 JP 2013265264 A JP2013265264 A JP 2013265264A JP 2013265264 A JP2013265264 A JP 2013265264A JP 5928442 B2 JP5928442 B2 JP 5928442B2
Authority
JP
Japan
Prior art keywords
voltage
converter
battery
boost
intermittent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265264A
Other languages
Japanese (ja)
Other versions
JP2015122874A (en
Inventor
卓 熊沢
卓 熊沢
英輝 鎌谷
英輝 鎌谷
亮次 佐藤
亮次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013265264A priority Critical patent/JP5928442B2/en
Priority to PCT/JP2014/006023 priority patent/WO2015097994A1/en
Publication of JP2015122874A publication Critical patent/JP2015122874A/en
Application granted granted Critical
Publication of JP5928442B2 publication Critical patent/JP5928442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、車両の電源装置に関する。   The present invention relates to a power supply device for a vehicle.

モータで駆動輪を駆動可能な車両において、バッテリの電圧を昇圧してモータを駆動するインバータに供給する構成が知られている。   2. Description of the Related Art In a vehicle capable of driving drive wheels with a motor, a configuration is known in which the voltage of a battery is boosted and supplied to an inverter that drives the motor.

特開2010−172139号公報(特許文献1)には、バッテリの温度が所定値よりも低い場合には、バッテリの温度が所定値よりも高い場合に比べて、昇圧コンバータの昇圧電圧目標値を低く制限する旨が記載されている。このように制御することによって、バッテリ低温時における昇圧電圧を平滑する平滑コンデンサに過電圧が印加されるのを防ぐことができる。   In JP 2010-172139 A (Patent Document 1), when the battery temperature is lower than a predetermined value, the boost voltage target value of the boost converter is set as compared with the case where the battery temperature is higher than the predetermined value. It is stated that the limit is low. By controlling in this way, it is possible to prevent an overvoltage from being applied to the smoothing capacitor that smoothes the boosted voltage when the battery is cold.

特開2010−172139号公報JP 2010-172139 A 特開2007−290478号公報JP 2007-290478 A

ところで、モータジェネレータでの電流消費が少ない場合に、昇圧コンバータの動作と停止を間欠的に行なうことによって、昇圧コンバータのスイッチングによる電力損失を低減する間欠昇圧制御を実行することが考えられる。この制御を行なう場合に、昇圧コンバータを通過する電流やバッテリに出入りする電流も、電流が流れる場合と流れない場合とが高速に切り替わり変動する。   By the way, when current consumption in the motor generator is small, it is conceivable to execute intermittent boost control for reducing power loss due to switching of the boost converter by intermittently operating and stopping the boost converter. When this control is performed, the current passing through the boost converter and the current flowing into and out of the battery are switched at high speed between when the current flows and when the current does not flow.

ところで、車両制御を行なうECU(Electric Control Unit)の構成によっては、制御に使用する電流のデータを計測する周期が遅いため、電流変化を精度よく観測できない場合が考えられる。この場合、電流の制御性が低下する可能性がある。   By the way, depending on the configuration of an ECU (Electric Control Unit) that performs vehicle control, there may be a case in which the current change cannot be observed with high accuracy because the cycle of measuring current data used for control is slow. In this case, the controllability of current may be reduced.

また、バッテリ温度が低いと一般に内部抵抗が大きくなるので、電流変動に対するバッテリ電圧変動も大きくなる。したがって、バッテリ温度が低い場合に、電流の制御性が低下した状態で間欠昇圧制御を行なうと、バッテリ電圧は制御性が低下した状態で大きく変動する。そのため、バッテリ電圧を限界電圧範囲内に収めるように制御できずに、バッテリ電圧が限界電圧値を超えてしまう可能性がある。その結果、電池性能が低下する可能性がある。   Further, since the internal resistance generally increases when the battery temperature is low, the battery voltage fluctuation with respect to the current fluctuation also increases. Therefore, when the battery voltage is low and the intermittent boost control is performed in a state where the current controllability is reduced, the battery voltage greatly fluctuates while the controllability is reduced. For this reason, there is a possibility that the battery voltage exceeds the limit voltage value without being able to control the battery voltage to be within the limit voltage range. As a result, battery performance may be reduced.

本発明の目的は、間欠昇圧制御による電力損失低減効果を生かしつつ、電池性能が低下することを防止することができる車両の電源装置を提供することである。   The objective of this invention is providing the power supply device of the vehicle which can prevent that battery performance falls, utilizing the power loss reduction effect by intermittent pressure | voltage rise control.

この発明は、要約すると、車両の電源装置であって、蓄電装置と、蓄電装置の電圧を昇圧して車両の電気負荷に供給する昇圧コンバータと、昇圧コンバータを連続的に作動させる連続昇圧モードと、昇圧コンバータを間欠的に作動させる間欠昇圧モードとで昇圧コンバータを制御する制御装置とを備える。制御装置は、蓄電装置の温度が所定値以下の場合には、間欠昇圧モードでの昇圧コンバータの動作を禁止する。   In summary, the present invention provides a power supply device for a vehicle, the power storage device, a boost converter that boosts the voltage of the power storage device and supplies the boosted voltage to an electric load of the vehicle, and a continuous boost mode that continuously operates the boost converter. And a control device for controlling the boost converter in an intermittent boost mode in which the boost converter is operated intermittently. The control device prohibits the operation of the boost converter in the intermittent boost mode when the temperature of the power storage device is equal to or lower than a predetermined value.

低温時には、蓄電装置の内部抵抗が増大するので、電流の変動が蓄電装置の電圧変動に与える影響が大きくなる。したがって、可能な場合には、間欠昇圧モードで昇圧コンバータを制御することによって、電力損失を低減させるとともに、蓄電装置の内部抵抗が増大する低温時に間欠昇圧モードでの昇圧コンバータの動作を禁止することによって、蓄電装置の保護の観点から決められている限界電圧値を確実に守ることができる。   When the temperature is low, the internal resistance of the power storage device increases, so that the influence of the current fluctuation on the voltage fluctuation of the power storage device increases. Therefore, if possible, control the boost converter in the intermittent boost mode to reduce power loss and prohibit the operation of the boost converter in the intermittent boost mode at low temperatures when the internal resistance of the power storage device increases. Thus, the limit voltage value determined from the viewpoint of protection of the power storage device can be reliably protected.

好ましくは、所定値は、間欠昇圧モードで昇圧コンバータが動作した場合における昇圧コンバータの通過電流の絶対値が最大値を示す時に蓄電装置の電圧が蓄電装置の上限電圧または下限電圧となる蓄電装置の温度に基づいて決定される。   Preferably, the predetermined value is the value of the power storage device in which the voltage of the power storage device becomes the upper limit voltage or the lower limit voltage of the power storage device when the absolute value of the passing current of the boost converter shows the maximum value when the boost converter operates in the intermittent boost mode. Determined based on temperature.

このように温度のしきい値を定めることによって、間欠昇圧モードが適切な温度範囲で許可される。   By defining the temperature threshold in this way, the intermittent voltage boost mode is permitted in an appropriate temperature range.

本発明によれば、電動車両において、間欠昇圧制御による電力損失低減効果を生かしつつ、電池性能が低下することを防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can prevent that a battery performance falls, utilizing an electric power loss reduction effect by intermittent pressure | voltage rise control in an electric vehicle.

本発明の実施の形態による電動車両の代表例として示されるハイブリッド車両の構成例を説明するためのブロック図である。It is a block diagram for explaining a configuration example of a hybrid vehicle shown as a representative example of an electric vehicle according to an embodiment of the present invention. 図1に示したハイブリッド車両の電気システムの構成例を説明する回路図である。It is a circuit diagram explaining the structural example of the electric system of the hybrid vehicle shown in FIG. コンバータ200による昇圧制御の手順を表わすフローチャートである。3 is a flowchart showing a procedure for boost control by converter 200. 図3のフローチャートのステップST25の詳細を示すフローチャートである。It is a flowchart which shows the detail of step ST25 of the flowchart of FIG. 連続昇圧モードと間欠昇圧モードの動作を説明するための波形図である。It is a wave form diagram for demonstrating operation | movement of a continuous boost mode and an intermittent boost mode. 間欠昇圧モードでコンバータ200が制御されている場合の電池電流IBについて説明するための波形図である。It is a wave form diagram for demonstrating the battery current IB when the converter 200 is controlled by intermittent boosting mode.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、本発明の実施の形態による電動車両の代表例として示されるハイブリッド車両の構成例を説明するためのブロック図である。   FIG. 1 is a block diagram for explaining a configuration example of a hybrid vehicle shown as a representative example of an electric vehicle according to an embodiment of the present invention.

図1を参照して、ハイブリッド車両は、「内燃機関」に対応するエンジン100と、第1MG(Motor Generator)110と、第2MG120と、動力分割機構130と、減速機140と、バッテリ150と、駆動輪160と、制御装置500とを備える。制御装置500は、PM(Power Management)−ECU(Electronic Control Unit)170と、MG(Motor Generator)−ECU172とを含んで構成される。   Referring to FIG. 1, the hybrid vehicle includes an engine 100 corresponding to an “internal combustion engine”, a first MG (Motor Generator) 110, a second MG 120, a power split mechanism 130, a speed reducer 140, a battery 150, Drive wheel 160 and control device 500 are provided. The control device 500 includes a PM (Power Management) -ECU (Electronic Control Unit) 170 and an MG (Motor Generator) -ECU 172.

ハイブリッド車両は、エンジン100および第2MG120のうちの少なくともいずれか一方からの駆動力により走行する。エンジン100、第1MG110および第2MG120は、動力分割機構130を介して連結されている。   The hybrid vehicle travels by driving force from at least one of engine 100 and second MG 120. Engine 100, first MG 110, and second MG 120 are connected via power split mechanism 130.

動力分割機構130は、代表的には、遊星歯車機構として構成される。動力分割機構130は、外歯歯車のサンギヤ131と、このサンギヤ131と同心円上に配置された内歯歯車のリングギヤ132と、サンギヤ131に噛合するとともにリングギヤ132に噛合する複数のピニオンギヤ133と、キャリア134とを含む。キャリア134は、複数のピニオンギヤ133を自転かつ公転自在に保持するように構成される。   The power split mechanism 130 is typically configured as a planetary gear mechanism. The power split mechanism 130 includes an external gear sun gear 131, an internal gear ring gear 132 disposed concentrically with the sun gear 131, a plurality of pinion gears 133 that mesh with the sun gear 131 and mesh with the ring gear 132, and a carrier 134. The carrier 134 is configured to hold a plurality of pinion gears 133 so as to rotate and revolve freely.

動力分割機構130によって、エンジン100が発生する動力は、2経路に分割される。一方は減速機140を介して駆動輪160を駆動する経路である。もう一方は、第1MG110を駆動させて発電する経路である。   The power split mechanism 130 splits the power generated by the engine 100 into two paths. One is a path for driving the drive wheels 160 via the speed reducer 140. The other is a path for driving the first MG 110 to generate power.

第1MG110および第2MG120は、代表的には、永久磁石モータによって構成された、三相交流回転電機である。   The first MG 110 and the second MG 120 are typically three-phase AC rotating electric machines configured by permanent magnet motors.

第1MG110は、主に「発電機」として動作して、動力分割機構130により分割されたエンジン100からの駆動力により発電することができる。第1MG110により発電された電力は、車両の走行状態や、バッテリ150のSOC(State Of Charge)の状態に応じて使い分けられる。その後、この電力は、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。なお、第1MG110は、エンジン始動時にエンジン100をモータリングする場合等には、トルク制御の結果として電動機として動作することも可能である。   First MG 110 mainly operates as a “generator” and can generate electric power by the driving force from engine 100 divided by power split device 130. The electric power generated by first MG 110 is selectively used according to the running state of the vehicle and the state of charge (SOC) of battery 150. Thereafter, the electric power is adjusted in voltage by a converter described later and stored in the battery 150. First MG 110 can also operate as an electric motor as a result of torque control, for example, when motoring engine 100 at the time of engine start.

第2MG120は、主に「電動機」として動作して、バッテリ150に蓄えられた電力および第1MG110により発電された電力のうちの少なくともいずれかの電力を使用して駆動される。第2MG120が発生する動力は、駆動軸135へ伝達され、さらに減速機140を介して駆動輪160に伝達される。これにより、第2MG120は、エンジン100をアシストしたり、第2MG120からの駆動力により車両を走行させたりする。   Second MG 120 mainly operates as a “motor” and is driven using at least one of the electric power stored in battery 150 and the electric power generated by first MG 110. The power generated by the second MG 120 is transmitted to the drive shaft 135 and further transmitted to the drive wheel 160 via the speed reducer 140. Thereby, second MG 120 assists engine 100 or causes the vehicle to travel by the driving force from second MG 120.

ハイブリッド車両の回生制動時には、減速機140を介して駆動輪160により第2MG120が駆動される。この場合には、第2MG120は発電機として動作する。これにより第2MG120は、制動エネルギを電力に変換する回生ブレーキとして機能する。第2MG120により発電された電力は、バッテリ150に蓄えられる。   During regenerative braking of the hybrid vehicle, second MG 120 is driven by drive wheels 160 via reduction gear 140. In this case, the second MG 120 operates as a generator. Thus, second MG 120 functions as a regenerative brake that converts braking energy into electric power. The electric power generated by second MG 120 is stored in battery 150.

バッテリ150は、複数のバッテリセルを一体化したバッテリモジュールを、さらに複数直列に接続して構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150は、第1MG110もしくは第2MG120により発電された電力によって充電することができる。バッテリ150の温度・電圧・電流は、電池センサ152により検出される。電池センサ152は、温度センサ、電圧センサ、電流センサを包括的に標記するものである。   The battery 150 is an assembled battery configured by connecting a plurality of battery modules in which a plurality of battery cells are integrated in series. The voltage of the battery 150 is about 200V, for example. Battery 150 can be charged with the electric power generated by first MG 110 or second MG 120. The temperature, voltage, and current of the battery 150 are detected by the battery sensor 152. The battery sensor 152 comprehensively indicates a temperature sensor, a voltage sensor, and a current sensor.

PM−ECU170およびMG−ECU172は、図示しないCPU(Central Processing Unit)およびメモリを内蔵して構成され、当該メモリに記憶されたマップおよびプログラムに従うソフトウェア処理によって、各センサによる検出値に基づく演算処理を実行するように構成される。あるいは、PM−ECU170およびMG−ECU172の少なくとも一部は、専用の電子回路等によるハードウェア処理によって、所定の数値演算処理および/または論理演算処理を実行するように構成されてもよい。   PM-ECU 170 and MG-ECU 172 are configured to include a CPU (Central Processing Unit) and a memory (not shown), and perform a calculation process based on a detection value by each sensor by a software process according to a map and a program stored in the memory. Configured to run. Alternatively, at least a part of the PM-ECU 170 and the MG-ECU 172 may be configured to execute predetermined numerical operation processing and / or logical operation processing by hardware processing using a dedicated electronic circuit or the like.

エンジン100は、PM−ECU170からの動作指令値に従って制御される。第1MG110、第2MG120、コンバータ200、インバータ210,220は、MG−ECU172によって制御される。PM−ECU170とMG−ECU172とは双方向に通信可能に接続される。   Engine 100 is controlled in accordance with an operation command value from PM-ECU 170. First MG 110, second MG 120, converter 200, and inverters 210 and 220 are controlled by MG-ECU 172. PM-ECU 170 and MG-ECU 172 are connected so that they can communicate in both directions.

なお、本実施の形態では、PM−ECU170およびMG−ECU172を別個のECUによって構成するが、両者の機能を包括する単一のECUを設けてもよい。   In this embodiment, PM-ECU 170 and MG-ECU 172 are configured by separate ECUs, but a single ECU that includes both functions may be provided.

図2は、図1に示したハイブリッド車両の電気システムの構成例を説明する回路図である。   FIG. 2 is a circuit diagram illustrating a configuration example of the electric system of the hybrid vehicle illustrated in FIG.

図2を参照して、ハイブリッド車両の電気システムには、コンバータ200と、第1MG110に対応するインバータ210と、第2MG120に対応するインバータ220と、SMR(System Main Relay)230と、コンデンサC1,C2とが設けられる。   Referring to FIG. 2, the electric system of the hybrid vehicle includes a converter 200, an inverter 210 corresponding to the first MG 110, an inverter 220 corresponding to the second MG 120, an SMR (System Main Relay) 230, and capacitors C1, C2. And are provided.

コンバータ200は、直列接続された2個の電力用半導体スイッチング素子Q1,Q2(以下、単に「スイッチング素子」とも称する)と、各スイッチング素子Q1,Q2に対応して設けられたダイオードD1,D2と、リアクトルLを含む。   Converter 200 includes two power semiconductor switching elements Q1 and Q2 (hereinafter also simply referred to as “switching elements”) connected in series, and diodes D1 and D2 provided corresponding to the switching elements Q1 and Q2, respectively. , Including reactor L.

スイッチング素子Q1,Q2は、正極線PL2とバッテリ150の負極に接続される接地線GLとの間に直列に接続される。スイッチング素子Q1のコレクタは正極線PL2に接続され、スイッチング素子Q2のエミッタは接地線GLに接続される。ダイオードD1,D2は、それぞれスイッチング素子Q1,Q2に逆並列に接続される。そして、スイッチング素子Q1およびダイオードD1は、コンバータ200の上アームを構成し、スイッチング素子Q2およびダイオードD2は、コンバータ200の下アームを構成する。   Switching elements Q1, Q2 are connected in series between positive electrode line PL2 and ground line GL connected to the negative electrode of battery 150. Switching element Q1 has a collector connected to positive line PL2, and switching element Q2 has an emitter connected to ground line GL. Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively. Switching element Q1 and diode D1 constitute the upper arm of converter 200, and switching element Q2 and diode D2 constitute the lower arm of converter 200.

電力用半導体スイッチング素子Q1,Q2としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタ、電力用バイポーラトランジスタ等を適宜採用することができる。各スイッチング素子Q1,Q2のオン/オフは、MG−ECU172からのスイッチング制御信号によって制御される。   As the power semiconductor switching elements Q1 and Q2, an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor) transistor, a power bipolar transistor, or the like can be appropriately employed. On / off of each switching element Q1, Q2 is controlled by a switching control signal from MG-ECU 172.

リアクトルLの一方端は、バッテリ150の正極に接続される正極線PL1に接続され、他方端は、スイッチング素子Q1,Q2の接続ノード、すなわち、スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとの接続点に接続される。   Reactor L has one end connected to positive line PL1 connected to the positive electrode of battery 150, and the other end connected to a connection node of switching elements Q1, Q2, that is, an emitter of switching element Q1 and a collector of switching element Q2. Connected to the connection point.

コンデンサC2は、正極線PL2と接地線GLとの間に接続される。コンデンサC2は、正極線PL2および接地線GL間の電圧変動の交流成分を平滑化する。コンデンサC1は、正極線PL1と接地線GLとの間に接続される。コンデンサC1は、正極線PL1および接地線GL間の電圧変動の交流成分を平滑化する。   Capacitor C2 is connected between positive electrode line PL2 and ground line GL. Capacitor C2 smoothes the AC component of the voltage fluctuation between positive line PL2 and ground line GL. Capacitor C1 is connected between positive electrode line PL1 and ground line GL. Capacitor C1 smoothes the AC component of voltage fluctuation between positive line PL1 and ground line GL.

リアクトルLに流れる電流(以下、リアクトル電流)ILは、電流センサSEILによって検出される。電圧センサ180は、コンバータ200の出力電圧であるコンデンサC2の端子間電圧、すなわち正極線PL2と接地線GLとの間の電圧VH(システム電圧)を検出し、その検出値をMG−ECU172へ出力する
コンバータ200と、インバータ210およびインバータ220とは、正極線PL2および接地線GLを介して、互いに電気的に接続される。
A current (hereinafter referred to as a reactor current) IL flowing through the reactor L is detected by a current sensor SEIL. Voltage sensor 180 detects the voltage across capacitor C2, which is the output voltage of converter 200, that is, voltage VH (system voltage) between positive line PL2 and ground line GL, and outputs the detected value to MG-ECU 172. Converter 200, inverter 210 and inverter 220 are electrically connected to each other through positive line PL2 and ground line GL.

コンバータ200は、昇圧動作時には、バッテリ150から供給された直流電圧VB(コンデンサC1の両端の電圧)を昇圧し、昇圧されたシステム電圧VHをインバータ210,220へ供給する。より具体的には、MG−ECU172からのスイッチング制御信号に応答して、スイッチング素子Q1のオン期間およびQ2のオン期間が交互に設けられ、昇圧比は、これらのオン期間の比に応じたものとなる。   Converter 200 boosts DC voltage VB (voltage across capacitor C1) supplied from battery 150 and supplies boosted system voltage VH to inverters 210 and 220 during the boosting operation. More specifically, in response to a switching control signal from MG-ECU 172, an ON period of switching element Q1 and an ON period of Q2 are alternately provided, and the step-up ratio corresponds to the ratio of these ON periods. It becomes.

コンバータ200は、降圧動作時には、コンデンサC2を介してインバータ210,220から供給されたシステム電圧VHを降圧してバッテリ150を充電する。より具体的には、MG−ECU172からのスイッチング制御信号に応答して、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1,Q2の両方がオフする期間とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。   During the step-down operation, converter 200 steps down system voltage VH supplied from inverters 210 and 220 via capacitor C2 and charges battery 150. More specifically, in response to the switching control signal from MG-ECU 172, a period in which only switching element Q1 is turned on and a period in which both switching elements Q1, Q2 are turned off are alternately provided, and the step-down ratio is This is in accordance with the duty ratio of the ON period.

コンバータ200の昇降圧停止時には、スイッチング素子Q1がオン固定に設定され、スイッチング素子Q2がオフ固定に設定される。   When the converter 200 stops the step-up / step-down operation, the switching element Q1 is set to be on and the switching element Q2 is set to be off.

インバータ210は、一般的な三相インバータで構成され、U相アーム15と、V相アーム16と、W相アーム17とを含む。アーム15〜17は、スイッチング素子Q3〜Q8と、逆並列ダイオードD3〜D8とを含む。   Inverter 210 is formed of a general three-phase inverter, and includes U-phase arm 15, V-phase arm 16, and W-phase arm 17. Arms 15-17 include switching elements Q3-Q8 and antiparallel diodes D3-D8.

インバータ210は、車両走行時には、車両走行に要求される駆動力(車両駆動トルク、発電トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第1MG110が動作するように、第1MG110の各相コイルの電流または電圧を制御する。すなわち、インバータ210は、正極線PL2および第1MG110の間で双方向のDC/AC電力変換を実行する。   Inverter 210 operates when first MG 110 operates according to an operation command value (typically torque command value) set to generate a driving force (vehicle driving torque, power generation torque, etc.) required for vehicle traveling. As described above, the current or voltage of each phase coil of the first MG 110 is controlled. That is, inverter 210 performs bidirectional DC / AC power conversion between positive electrode line PL2 and first MG 110.

インバータ220は、インバータ210と同様に、一般的な三相インバータで構成される。インバータ220は、車両走行時には、車両走行に要求される駆動力(車両駆動トルク、回生制動トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第2MG120が動作するように、第2MG120の各相コイルの電流または電圧を制御する。すなわち、インバータ220は、正極線PL2および第2MG120の間で双方向のDC/AC電力変換を実行する。   Inverter 220 is formed of a general three-phase inverter, similarly to inverter 210. When the vehicle is traveling, the inverter 220 sets the second MG 120 according to an operation command value (typically a torque command value) set to generate a driving force (vehicle driving torque, regenerative braking torque, etc.) required for vehicle traveling. The current or voltage of each phase coil of the second MG 120 is controlled so as to operate. In other words, inverter 220 performs bidirectional DC / AC power conversion between positive line PL2 and second MG 120.

PM−ECU170は、アクセル開度Accおよびハイブリッド車両の車速Vに基づいて、第1MG110のトルク指令値TR1、および第2MG120のトルク指令値TR2を算出する。   PM-ECU 170 calculates torque command value TR1 of first MG 110 and torque command value TR2 of second MG 120 based on accelerator opening Acc and vehicle speed V of the hybrid vehicle.

MG−ECU172は、PM−ECU170で算出された第1MG110のトルク指令値TR1、第2MG120のトルク指令値TR2、第1MG110のモータ回転数MRN1,第2MG120のモータ回転数MRN2に基づいて、コンバータ200の出力電圧(システム電圧)VHの最適値(目標値)、すなわち指令電圧VH*を算出する。MG−ECU172は、電圧センサ180によって検出されるコンバータ200の出力電圧VHと、指令電圧VH*とに基づいて、出力電圧VHを指令電圧VH*に制御するためデューティ比を計算し、コンバータ200を制御する。   Based on torque command value TR1 of first MG 110, torque command value TR2 of second MG 120, motor rotational speed MRN1 of first MG 110, and motor rotational speed MRN2 of second MG 120, MG-ECU 172 The optimum value (target value) of the output voltage (system voltage) VH, that is, the command voltage VH * is calculated. MG-ECU 172 calculates a duty ratio to control output voltage VH to command voltage VH * based on output voltage VH of converter 200 detected by voltage sensor 180 and command voltage VH *, and Control.

MG−ECU172は、コンバータ200を連続昇圧モードと、間欠昇圧モードのいずれかに設定して制御する。連続昇圧モードは、コンバータ200が昇圧動作を停止することなく実行するモードである。間欠昇圧モードは、コンバータ200が昇圧動作と、昇圧動作の停止とを間欠的に繰り返すモードである。コンバータ200が昇圧動作を実行するときには、スイッチング素子Q1,Q2のオン/オフが切り換えられる。コンバータ200が昇圧動作を停止するときには、スイッチング素子Q1がオン固定に設定され、スイッチング素子Q2がオフ固定に設定される。   MG-ECU 172 sets and controls converter 200 in either a continuous boost mode or an intermittent boost mode. The continuous boost mode is a mode in which the converter 200 executes without stopping the boost operation. The intermittent boost mode is a mode in which converter 200 intermittently repeats the boost operation and the stop of the boost operation. When converter 200 performs the boosting operation, switching elements Q1, Q2 are switched on / off. When converter 200 stops the boosting operation, switching element Q1 is set to be on and switching element Q2 is set to be off.

連続昇圧モードでコンバータ200が昇圧しない場合と、間欠昇圧モードでコンバータ200が昇圧を停止する場合とは、以下の点で相違する。   The case where converter 200 does not boost in the continuous boost mode and the case where converter 200 stops boosting in intermittent boost mode are different in the following points.

連続昇圧モードは、コンバータ200を停止することなく動作を行なうモードである。コンバータ200が動作中であるときは、バッテリ150の電圧がコンバータ200を介してインバータ210,220へ供給される。たとえば、デューティ比が1でコンバータ200が昇圧をせずにバッテリ150の電圧がそのままインバータ210,220へ供給される場合も、連続昇圧モードの動作に含まれる。   Continuous boost mode is a mode in which operation is performed without stopping converter 200. When converter 200 is in operation, the voltage of battery 150 is supplied to inverters 210 and 220 via converter 200. For example, a case where the duty ratio is 1 and the voltage of battery 150 is supplied as it is to inverters 210 and 220 without boosting converter 200 is also included in the operation of the continuous boosting mode.

一方、間欠昇圧モードでコンバータ200が昇圧を停止するときには、バッテリ150の電圧がコンバータ200を介してインバータ210,220へ供給されることがない。   On the other hand, when converter 200 stops boosting in the intermittent boost mode, the voltage of battery 150 is not supplied to inverters 210 and 220 via converter 200.

図3は、コンバータ200による昇圧制御の手順を表わすフローチャートである。図5は、連続昇圧モードと間欠昇圧モードの動作を説明するための波形図である。   FIG. 3 is a flowchart showing the procedure of boost control by converter 200. FIG. 5 is a waveform diagram for explaining operations in the continuous boost mode and the intermittent boost mode.

なお、図5(a)は、連続昇圧モードと間欠昇圧モードにおけるコンバータ200の出力電圧(システム電圧)VHを表わす図である。図5(b)は、連続昇圧モードと間欠昇圧モードにおけるリアクトル電流ILを表わす図である。リアクトル電流ILは、実際には、コンバータ200のスイッチングによって変動するが、図5(b)では、スイッチングによる変動成分を平滑化したものが示されている。図5(c)は、連続昇圧モードと間欠昇圧モードにおけるスイッチングによる昇圧損失電力量LPを表わす図である。   FIG. 5A shows output voltage (system voltage) VH of converter 200 in the continuous boost mode and the intermittent boost mode. FIG. 5B shows reactor current IL in the continuous boost mode and the intermittent boost mode. Reactor current IL actually fluctuates due to switching of converter 200, but FIG. 5B shows a smoothed fluctuation component due to switching. FIG. 5C is a diagram showing the boost loss power LP due to switching in the continuous boost mode and the intermittent boost mode.

図2、図3を参照して、ステップST10において、制御装置500は、コンバータ200を連続昇圧モードに設定する。コンバータ200は、昇圧動作を停止することなく昇圧動作を実行する。   2 and 3, in step ST10, control device 500 sets converter 200 in the continuous boost mode. Converter 200 performs the boosting operation without stopping the boosting operation.

その後、ステップST20において、制御装置500は、過去の所定期間のリアクトル電流ILの平均値ILMがしきい値TH1未満になると、処理をステップST25に進ませる。ステップST25では、制御装置500は、間欠昇圧モードに設定するか否かを判断するために、電池条件を確認する。   Thereafter, in step ST20, control device 500 causes the process to proceed to step ST25 when average value ILM of reactor current IL in the past predetermined period becomes less than threshold value TH1. In step ST25, control device 500 checks the battery condition in order to determine whether or not to set the intermittent boost mode.

図4は、図3のフローチャートのステップST25の詳細を示すフローチャートである。図2、図4を参照して、ステップST25の処理が開始されると、ステップST100において、制御装置500は、電池温度TBを電池センサ152から取得し、電池温度TBがしきい値よりも低いか否かを判断する。   FIG. 4 is a flowchart showing details of step ST25 in the flowchart of FIG. 2 and 4, when the process of step ST25 is started, in step ST100, control device 500 acquires battery temperature TB from battery sensor 152, and battery temperature TB is lower than the threshold value. Determine whether or not.

ステップST100において、電池温度TBがしきい値よりも低い場合には、制御装置500は、ステップST110に処理を進ませて、間欠昇圧モードを禁止する旨判定して、図2のフローチャートのステップST10に処理を戻す。この場合には、コンバータ200は、連続昇圧モードに設定され、動作を行なう。   In step ST100, when battery temperature TB is lower than the threshold value, control device 500 proceeds to step ST110 to determine that the intermittent boost mode is prohibited, and step ST10 in the flowchart of FIG. Return processing to. In this case, converter 200 is set to the continuous boost mode and operates.

ステップST100において、電池温度TBがしきい値以上である場合には、制御装置500は、ステップST120に処理を進ませて、間欠昇圧モードを許可する旨判定して、図2のフローチャートのステップST30に処理を進ませる。この場合には、コンバータ200は、間欠昇圧モードに設定され、動作を行なう。   In step ST100, when battery temperature TB is equal to or higher than the threshold value, control device 500 advances the process to step ST120, determines that the intermittent boost mode is permitted, and performs step ST30 in the flowchart of FIG. Proceed with the process. In this case, converter 200 is set to the intermittent boost mode and operates.

ステップST30において、制御装置500は、コンバータ200を間欠昇圧モードに設定する。間欠昇圧モードに設定した場合、制御装置500は、まず、コンバータ200による昇圧動作を停止させる(たとえば、図5の(1)の時点を参照)。   In step ST30, control device 500 sets converter 200 in the intermittent boost mode. When the intermittent boost mode is set, control device 500 first stops the boost operation by converter 200 (see, for example, time point (1) in FIG. 5).

コンバータ200の昇圧動作が停止すると、バッテリ150から電流が出力されないのでリアクトル電流ILが0となり、昇圧損失電力量LPは0となる。コンバータ200の昇圧動作が停止されているときには、コンデンサC2に蓄積された電力で、第1MG110および/または第2MG120が駆動される。コンデンサC2から電荷が放出されることによって、システム電圧VHが減少することになる。   When the boosting operation of converter 200 is stopped, no current is output from battery 150, reactor current IL becomes zero, and boosting loss energy LP becomes zero. When the boosting operation of converter 200 is stopped, first MG 110 and / or second MG 120 is driven by the electric power stored in capacitor C2. As the electric charge is discharged from the capacitor C2, the system voltage VH is decreased.

その後、ステップST40において、制御装置500は、システム電圧VHと指令電圧VH*との乖離量|VH*−VH|が限界値ΔVH以上となったときには、処理をステップST50に進ませる。ステップST50において、制御装置500は、コンバータ200による昇圧動作を再開させる(たとえば、図5の(2)の時点を参照)。   Thereafter, in step ST40, control device 500 causes the process to proceed to step ST50 when the amount of deviation | VH * −VH | between system voltage VH and command voltage VH * is equal to or greater than limit value ΔVH. In step ST50, control device 500 restarts the boosting operation by converter 200 (see, for example, the time point (2) in FIG. 5).

コンバータ200の昇圧動作が再開すると、コンデンサC2を充電しながら第1MG110および/または第2MG120を駆動するのに必要な電流(復帰電流)がバッテリ150から供給されるため、リアクトル電流ILが増加し、昇圧損失電力量LPが増加する。   When the boosting operation of converter 200 is resumed, current (recovery current) necessary for driving first MG 110 and / or second MG 120 while charging capacitor C2 is supplied from battery 150, and thus reactor current IL increases. The step-up loss power LP increases.

その後、ステップST60において、制御装置500は、システム電圧VHが指令電圧VH*と等しくなると、処理をステップST70に進ませる。ステップST70において、制御装置500は、コンバータ200による昇圧動作を停止させる(たとえば、図5の(3)の時点を参照)。ステップST70の次には、再びステップST40以降の処理が実行される。   Thereafter, in step ST60, when system voltage VH becomes equal to command voltage VH *, control device 500 causes the process to proceed to step ST70. In step ST70, control device 500 stops the boosting operation by converter 200 (see, for example, the time point (3) in FIG. 5). After step ST70, the processes after step ST40 are executed again.

一方、ステップST80において、制御装置500は、過去の所定期間のリアクトル電流ILの平均値ILMがしきい値TH2を超えるようになると、ステップST90に処理を進めてコンバータ200を連続昇圧モードに設定する。コンバータ200は、停止することなく昇圧動作を実行する(たとえば、図5の(4)の時点を参照)。図5の(4)の時点では、指令電圧VH*が増加し、リアクトル電流ILが増加していることが示されている。ステップST90が実行された後にはこのフローチャートの処理は終了する。   On the other hand, in step ST80, when average value ILM of reactor current IL in the past predetermined period exceeds threshold value TH2, control device 500 proceeds to step ST90 to set converter 200 in the continuous boost mode. . Converter 200 performs the boosting operation without stopping (see, for example, the time point (4) in FIG. 5). It is shown that the command voltage VH * increases and the reactor current IL increases at the time point (4) in FIG. After step ST90 is executed, the process of this flowchart ends.

図5(c)では、間欠昇圧モードの1つの昇圧停止期間と後続の昇圧期間を1組としたときに、昇圧損失電力量LPがどれだけ低減したかが示されている。基準損失電力BSよりも上側にある昇圧損失電力量LPを表わす線と基準損失電力BSを表わす線の間の領域の面積P3は、連続昇圧モードで動作するよりも増加した昇圧損失電力量LPの合計を表わす。基準損失電力BSよりも下側にある昇圧損失電力量LPを表わす線と基準損失電力BSを表わす線の間の領域の面積P0は、連続昇圧モードで動作するよりも減少した昇圧損失電力量の合計を表わす。P0からP2(=P3)を減算した値P1が、1組の昇圧停止期間と後続の昇圧期間において、間欠昇圧モードで動作させることによって連続昇圧モードで動作させるよりも低減した昇圧損失電力量の合計である。   FIG. 5C shows how much the boost loss power LP is reduced when one boost stop period and the subsequent boost period in the intermittent boost mode are set as one set. The area P3 of the region between the line representing the boost loss power LP above the reference loss power BS and the line representing the reference loss power BS is equal to the boost loss power LP increased compared to the operation in the continuous boost mode. Represents the total. The area P0 of the region between the line representing the step-up loss power LP below the reference loss power BS and the line representing the reference loss power BS is smaller than that in the continuous step-up mode. Represents the total. A value P1 obtained by subtracting P2 (= P3) from P0 has a reduced boosting loss energy amount in one set of boost stop periods and subsequent boost periods, compared to operating in the continuous boost mode by operating in the intermittent boost mode. It is the sum.

図5(c)に示されるように、間欠昇圧モードに設定することによって、昇圧損失電力量を減少させることができる。また、昇圧停止期間が長いほど、損失低減効果が大きくなる。   As shown in FIG. 5C, by setting the intermittent boost mode, the boost loss power can be reduced. In addition, the longer the boost stop period, the greater the loss reduction effect.

以上のように、電流ILの平均値ILMがしきい値TH2より大きい場合には、間欠昇圧モードから連続昇圧モードに変更され、電流ILの平均値ILMがしきい値TH1より小さい場合には、連続昇圧モードから間欠昇圧モードに変更される。頻繁なモード変更を抑制するためには、TH1>TH2であることが好ましい。   As described above, when the average value ILM of the current IL is larger than the threshold value TH2, the intermittent boost mode is changed to the continuous boost mode, and when the average value ILM of the current IL is smaller than the threshold value TH1, The continuous boost mode is changed to the intermittent boost mode. In order to suppress frequent mode changes, it is preferable that TH1> TH2.

ここで、ステップST25において、電池条件を判断して間欠昇圧モードに移行するか否かを決定しているのは、電池温度が低い場合に間欠昇圧モードでコンバータ200を制御すると、電池電圧VBの変動が許容値を超える恐れがあるためである。そこで、電池温度TBがしきい値よりも低い場合には、間欠昇圧モードを実行すべきでないと判断し、間欠昇圧モードへの移行を禁止している。これにより、可能な場合には間欠昇圧モードでコンバータ200を制御して燃費を改善しつつ、電池温度が低い場合には電池の保護を確実に行なうことができる。   Here, in step ST25, it is determined whether or not to shift to the intermittent boost mode by judging the battery condition when the converter 200 is controlled in the intermittent boost mode when the battery temperature is low. This is because the fluctuation may exceed the allowable value. Therefore, when the battery temperature TB is lower than the threshold value, it is determined that the intermittent boost mode should not be executed, and the transition to the intermittent boost mode is prohibited. Thus, when possible, the converter 200 is controlled in the intermittent boost mode to improve fuel efficiency, and when the battery temperature is low, the battery can be reliably protected.

次に、図4のステップS100で用いられる判定しきい値の決定方法について以下に説明する。   Next, a determination threshold value determination method used in step S100 of FIG. 4 will be described below.

図6は、間欠昇圧モードでコンバータ200が制御されている場合の電池電流IBについて説明するための波形図である。図6を参照して、電池電流IBには、図5に示した時点(2)〜(3)の間の復帰電流に対応したパルス状の電流ピークが生じる。このピーク電流IBmaxが流れた場合に電池電圧VBが上限値を超えず、下限値を下回らないことが電池保護の観点から大切である。   FIG. 6 is a waveform diagram for explaining battery current IB when converter 200 is controlled in the intermittent boost mode. Referring to FIG. 6, a pulse-like current peak corresponding to the return current between time points (2) to (3) shown in FIG. 5 is generated in battery current IB. From the viewpoint of battery protection, it is important that the battery voltage VB does not exceed the upper limit value and does not fall below the lower limit value when the peak current IBmax flows.

電池電圧VBは以下の式で表される。
VB=OCV−(IB×R)
ここで、OCVは、解放端電圧を示し、IBは電池電流を示し、Rは電池の内部抵抗を示す。なおIBは、放電時に正の値となり、充電時には負の値となる。電池温度が低い場合には内部抵抗Rは大きくなる。上式でわかるように、電池温度が低く内部抵抗Rが大きくなっている場合には、電池電流IBの変動に対して電池電圧VBの変動も大きくなる。
The battery voltage VB is expressed by the following formula.
VB = OCV− (IB × R)
Here, OCV indicates the open circuit voltage, IB indicates the battery current, and R indicates the internal resistance of the battery. Note that IB takes a positive value during discharging, and takes a negative value during charging. When the battery temperature is low, the internal resistance R increases. As can be seen from the above equation, when the battery temperature is low and the internal resistance R is large, the variation in the battery voltage VB also increases with respect to the variation in the battery current IB.

加えて、間欠昇圧制御を行なうと、電池電流IBが高速に変動する。電池電流IBの絶対値が大きくなった時には、モータに制限を掛けるなどすれば、間欠制御を行なうこともできるが、電流を観測する時間間隔が電流の変動の間隔に比べて十分小さくないと正確な電流の観測ができない。しかし、電流を観測する時間間隔を小さくすると高速CPUを使用したり、通信頻度を上げるなどしなくてはならず、コスト上昇の要因となる。   In addition, when intermittent boost control is performed, battery current IB fluctuates at high speed. When the absolute value of the battery current IB increases, intermittent control can be performed by limiting the motor. However, if the time interval for observing the current is not sufficiently small compared to the current fluctuation interval, it is accurate. Cannot observe the current. However, if the time interval for observing the current is reduced, a high-speed CPU must be used or the communication frequency must be increased, which causes an increase in cost.

本実施の形態では、電池温度TBがしきい値よりも低い場合には、間欠昇圧モードに移行しないように制御している。このときのしきい値は、図5に示した時点(2)〜(3)の復帰電流の絶対値が最大の時に、電池の電圧が、電池保護の観点から定められている上限電圧を超える電池温度または下限電圧を下回る電池温度をしきい値として設定する。   In the present embodiment, when the battery temperature TB is lower than the threshold value, control is performed so as not to shift to the intermittent boost mode. The threshold value at this time is such that when the absolute value of the return current at the time points (2) to (3) shown in FIG. 5 is maximum, the battery voltage exceeds the upper limit voltage determined from the viewpoint of battery protection. The battery temperature or the battery temperature below the lower limit voltage is set as the threshold value.

図6の電流IBmaxは、復帰電流IL最大値に対して、予想される補機消費電流やエアコン電流を加算して推定することができる。そして推定したIBmaxとOCVとから電池電圧VBが上限値または下限値と等しくなる電池抵抗Rが算出できる。   The current IBmax in FIG. 6 can be estimated by adding the expected auxiliary machine current consumption or air conditioner current to the return current IL maximum value. The battery resistance R at which the battery voltage VB is equal to the upper limit value or the lower limit value can be calculated from the estimated IBmax and OCV.

この電池抵抗Rとなる電池温度を間欠昇圧モードを許可するか否かのしきい値とすることができる。   The battery temperature at which the battery resistance R is obtained can be used as a threshold value for determining whether or not the intermittent boost mode is permitted.

なお、OCVや、IBmaxは、電池の充電状態SOCや、負荷の消費電流によって変動し得るが、たとえば、電池電圧上限値、電池電圧下限値に対して最も厳しい条件の場合の値を使用することができる。また、SOCや負荷の消費電流を変数とするマップをあらかじめ実験的に求めて用意しておいても良い。   The OCV and IBmax may vary depending on the state of charge SOC of the battery and the current consumption of the load. For example, the values in the case of the strictest conditions for the battery voltage upper limit value and the battery voltage lower limit value should be used. Can do. Further, a map having SOC and load current consumption as variables may be experimentally obtained in advance and prepared.

最後に、再び図2を参照して本実施の形態について総括する。車両の電源装置は、蓄電装置(バッテリ150)と、バッテリ150の電圧を昇圧して車両の電気負荷に供給する昇圧コンバータ200と、昇圧コンバータ200を連続的に作動させる連続昇圧モードと、昇圧コンバータ200を間欠的に作動させる間欠昇圧モードとで昇圧コンバータ200を制御する制御装置500とを備える。図4に示すように、制御装置500は、バッテリ150の温度が所定値以下の場合には、間欠昇圧モードでの昇圧コンバータ200の動作を禁止する。   Finally, this embodiment will be summarized with reference to FIG. 2 again. The power supply device of the vehicle includes a power storage device (battery 150), a boost converter 200 that boosts the voltage of the battery 150 and supplies the boosted voltage to an electric load of the vehicle, a continuous boost mode that continuously operates the boost converter 200, and a boost converter And a control device 500 that controls the boost converter 200 in an intermittent boost mode in which 200 is intermittently operated. As shown in FIG. 4, control device 500 prohibits operation of boost converter 200 in the intermittent boost mode when the temperature of battery 150 is equal to or lower than a predetermined value.

好ましくは、所定値は、間欠昇圧モードで昇圧コンバータ200が動作した場合における昇圧コンバータ200の通過電流の絶対値が最大値を示す時にバッテリ150の電圧VBがバッテリ150の上限電圧または下限電圧となるバッテリ150の温度TBに基づいて決定される。   Preferably, the predetermined value is the upper limit voltage or the lower limit voltage of battery 150 when the absolute value of the passing current of boost converter 200 shows the maximum value when boost converter 200 operates in the intermittent boost mode. It is determined based on temperature TB of battery 150.

なお、本発明の実施形態では、連続昇圧モードと間欠昇圧モードを設けたが、連続降圧モードと間欠降圧モードを設けることとしてもよい。すなわち、MG−ECU172は、コンバータ200を連続降圧モードと、間欠降圧モードのいずれかに設定する。連続降圧モードは、コンバータ200が降圧動作を停止することなく実行するモードである。間欠降圧モードは、コンバータ200が降圧動作と、降圧動作の停止とを間欠的に繰り返すモードである。コンバータ200が降圧動作を実行するときには、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1,Q2の両方がオフする期間とが交互に切り換えられる。コンバータ200が降圧動作を停止するときには、スイッチング素子Q1がオン固定に設定され、スイッチング素子Q2がオフ固定に設定される。   In the embodiment of the present invention, the continuous voltage step-up mode and the intermittent voltage step-up mode are provided, but a continuous voltage step-down mode and an intermittent voltage step-down mode may be provided. That is, MG-ECU 172 sets converter 200 in either the continuous voltage step-down mode or the intermittent voltage step-down mode. The continuous step-down mode is a mode in which converter 200 executes the step-down operation without stopping. The intermittent step-down mode is a mode in which converter 200 intermittently repeats the step-down operation and the stop of the step-down operation. When converter 200 performs the step-down operation, a period in which only switching element Q1 is turned on and a period in which both switching elements Q1, Q2 are turned off are alternately switched. When converter 200 stops the step-down operation, switching element Q1 is set to fixed on and switching element Q2 is set to fixed off.

このような間欠降圧モード時においても電池温度が低いと電池電圧が上限値を上回ったり下限値を下回ったりする可能性が生じる。したがって、電池温度がしきい値よりも低い場合に間欠降圧モードでの動作を禁止することによって、電池の保護が良好に行なえる。   Even in such an intermittent voltage step-down mode, if the battery temperature is low, there is a possibility that the battery voltage may exceed the upper limit value or lower than the lower limit value. Therefore, when the battery temperature is lower than the threshold value, the battery can be well protected by prohibiting the operation in the intermittent step-down mode.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100 エンジン、110 第1MG、120 第2MG、112,122 中性点、130 動力分割機構、131 サンギヤ、132 リングギヤ、133 ピニオンギヤ、134 キャリア、135 リングギヤ軸(駆動軸)、140 減速機、150 バッテリ、152 電池センサ、160 駆動輪、170 PM−ECU、172 MG−ECU、180 電圧センサ、200 コンバータ、210,220 インバータ、230 SMR、500 制御装置、PL1,PL2 正極線、GL 接地線、Q1〜Q8 スイッチング素子、D1〜D8 ダイオード、C1,C2 コンデンサ、L リアクトル。   100 Engine, 110 1st MG, 120 2nd MG, 112, 122 Neutral point, 130 Power split mechanism, 131 Sun gear, 132 Ring gear, 133 Pinion gear, 134 Carrier, 135 Ring gear shaft (drive shaft), 140 Reducer, 150 Battery, 152 battery sensor, 160 driving wheel, 170 PM-ECU, 172 MG-ECU, 180 voltage sensor, 200 converter, 210, 220 inverter, 230 SMR, 500 control device, PL1, PL2 positive line, GL ground line, Q1-Q8 Switching element, D1-D8 diode, C1, C2 capacitor, L reactor.

Claims (2)

蓄電装置と、
前記蓄電装置の電圧を昇圧して車両の電気負荷に供給する昇圧コンバータと、
前記昇圧コンバータを連続的に作動させる連続昇圧モードと、前記昇圧コンバータを間欠的に作動させる間欠昇圧モードとで前記昇圧コンバータを制御する制御装置とを備え、
前記制御装置は、前記蓄電装置の温度が所定値以下の場合には、前記間欠昇圧モードでの前記昇圧コンバータの動作を禁止し、前記連続昇圧モードで前記昇圧コンバータを動作させる、車両の電源装置。
A power storage device;
A boost converter that boosts the voltage of the power storage device and supplies the boosted voltage to an electric load of the vehicle;
A controller for controlling the boost converter in a continuous boost mode for continuously operating the boost converter and an intermittent boost mode for intermittently operating the boost converter;
The control device prohibits the operation of the boost converter in the intermittent boost mode and operates the boost converter in the continuous boost mode when the temperature of the power storage device is equal to or lower than a predetermined value. .
前記所定値は、前記間欠昇圧モードで前記昇圧コンバータが動作した場合における前記昇圧コンバータの通過電流の絶対値が最大値を示す時に前記蓄電装置の電圧が前記蓄電装置の上限電圧または下限電圧となる蓄電装置の温度に基づいて決定される、請求項1に記載の車両の電源装置。   The predetermined value is such that the voltage of the power storage device becomes the upper limit voltage or the lower limit voltage of the power storage device when the absolute value of the passing current of the boost converter shows a maximum value when the boost converter operates in the intermittent boost mode. The power supply device for a vehicle according to claim 1, which is determined based on a temperature of the power storage device.
JP2013265264A 2013-12-24 2013-12-24 Vehicle power supply Active JP5928442B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013265264A JP5928442B2 (en) 2013-12-24 2013-12-24 Vehicle power supply
PCT/JP2014/006023 WO2015097994A1 (en) 2013-12-24 2014-12-02 Power supply apparatus of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265264A JP5928442B2 (en) 2013-12-24 2013-12-24 Vehicle power supply

Publications (2)

Publication Number Publication Date
JP2015122874A JP2015122874A (en) 2015-07-02
JP5928442B2 true JP5928442B2 (en) 2016-06-01

Family

ID=52273456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265264A Active JP5928442B2 (en) 2013-12-24 2013-12-24 Vehicle power supply

Country Status (2)

Country Link
JP (1) JP5928442B2 (en)
WO (1) WO2015097994A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900522B2 (en) * 2014-01-22 2016-04-06 トヨタ自動車株式会社 Vehicle power supply
JP6310888B2 (en) * 2015-09-04 2018-04-11 本田技研工業株式会社 Control method for fuel cell system and fuel cell vehicle
JP6451692B2 (en) * 2016-05-13 2019-01-16 トヨタ自動車株式会社 Automobile
CN109995240A (en) 2018-01-02 2019-07-09 通用电气公司 Power adapter and power conversion method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166874A (en) * 2005-12-16 2007-06-28 Toyota Motor Corp Voltage converter
JP4325637B2 (en) 2006-04-24 2009-09-02 トヨタ自動車株式会社 Load driving device and vehicle equipped with the same
JP4449940B2 (en) * 2006-05-16 2010-04-14 トヨタ自動車株式会社 Dual power supply system for vehicles
JP2009027774A (en) * 2007-07-17 2009-02-05 Toyota Motor Corp Vehicle
JP5428353B2 (en) 2009-01-23 2014-02-26 日産自動車株式会社 Vehicle drive control device and vehicle drive control method
JP2010272395A (en) * 2009-05-22 2010-12-02 Nissan Motor Co Ltd Motor control device for electric vehicle
JP5504117B2 (en) * 2010-09-28 2014-05-28 本田技研工業株式会社 Electric vehicle control device
JP2012147538A (en) * 2011-01-11 2012-08-02 Panasonic Corp Vehicle power supply device
JP5264940B2 (en) * 2011-01-21 2013-08-14 本田技研工業株式会社 Electric vehicle power supply
JP6048278B2 (en) * 2013-03-28 2016-12-21 マツダ株式会社 Vehicle charging control device

Also Published As

Publication number Publication date
JP2015122874A (en) 2015-07-02
WO2015097994A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5892182B2 (en) Vehicle power supply
JP4179351B2 (en) Power supply system, vehicle equipped with the same, method for controlling power supply system, and computer-readable recording medium recording a program for causing computer to execute control of power supply system
JP5900522B2 (en) Vehicle power supply
JP2013207914A (en) Controller of voltage converter
JP2007290483A (en) Stop control device and stop control method of internal combustion engine
JP2007290478A (en) Load driving device and vehicle equipped therewith
JP2009189181A (en) Motor driving system, its control method, and electric vehicle
JP5928326B2 (en) Electric vehicle and control method of electric vehicle
WO2013051152A1 (en) Voltage conversion device control device and method
JP2011072067A (en) Power supply system for vehicle and electric vehicle equipped with the same
JP6117680B2 (en) Vehicle power supply
JP5807524B2 (en) Control device for voltage converter
JP5928442B2 (en) Vehicle power supply
JP2011211839A (en) Drive unit of electric vehicle
JP2013219886A (en) Voltage conversion device
US9694696B2 (en) Power supply device of vehicle
JP2010200582A (en) Vehicle
EP2808989B1 (en) Control apparatus for voltage conversion apparatus
JP2008154371A (en) Drive unit for vehicle, control method for drive unit of vehicle, program for making computer execute control method for drive unit of vehicle, and recording medium having recorded that program computer-readably
JP2013207915A (en) Controller of voltage converter
JP2015133862A (en) Vehicular power supply apparatus
JP2010115056A (en) Power supply system and vehicle
JP2008022640A (en) Vehicle driving device, its control method, program for making computer perform the same and computer readable recording medium recording the program
JP6323323B2 (en) Boost control device
JP2014147161A (en) Vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5928442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250