JP5927583B2 - Contactless power supply system - Google Patents

Contactless power supply system Download PDF

Info

Publication number
JP5927583B2
JP5927583B2 JP2012242046A JP2012242046A JP5927583B2 JP 5927583 B2 JP5927583 B2 JP 5927583B2 JP 2012242046 A JP2012242046 A JP 2012242046A JP 2012242046 A JP2012242046 A JP 2012242046A JP 5927583 B2 JP5927583 B2 JP 5927583B2
Authority
JP
Japan
Prior art keywords
resonance
power supply
capacitor
resonance circuit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242046A
Other languages
Japanese (ja)
Other versions
JP2014093829A (en
Inventor
寺裏 浩一
浩一 寺裏
二畠 康
康 二畠
信次 原
信次 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012242046A priority Critical patent/JP5927583B2/en
Publication of JP2014093829A publication Critical patent/JP2014093829A/en
Application granted granted Critical
Publication of JP5927583B2 publication Critical patent/JP5927583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Inverter Devices (AREA)

Description

本発明は、非接触給電システムに関するものである。   The present invention relates to a non-contact power feeding system.

従来より、自走式の移動体等に対して非接触で電力を供給する非接触給電装置が提供されている(例えば特許文献1参照)。この非接触給電装置は、交流電源の交流出力を一定電圧の直流出力に変換する直流電源回路と、直流電源回路の直流出力を所定周波数の交流出力に変換するインバータと、インバータの出力側に接続されてインバータから所定周波数の交流電力が与えられる給電線と、給電線に直列に接続されて給電線とともに共振回路を構成するコンデンサとを備える。この非接触給電装置では、給電線とコンデンサとで構成される共振回路により、インバータの出力部に接続されるリアクタンス成分を小さくしつつ、給電線に与えられる有効電力を大きくすることができる。つまり、上記の共振回路により給電線のリアクタンスによる力率低下を補うことができる。   2. Description of the Related Art Conventionally, a non-contact power feeding device that supplies power in a non-contact manner to a self-propelled mobile body has been provided (see, for example, Patent Document 1). This non-contact power feeding device is connected to the DC power supply circuit that converts the AC output of the AC power supply into a DC output of a constant voltage, the inverter that converts the DC output of the DC power supply circuit to the AC output of a predetermined frequency, and the output side of the inverter And a power supply line to which AC power of a predetermined frequency is applied from the inverter, and a capacitor that is connected in series to the power supply line and forms a resonance circuit together with the power supply line. In this non-contact power supply device, the effective power given to the power supply line can be increased while reducing the reactance component connected to the output unit of the inverter by the resonance circuit including the power supply line and the capacitor. That is, the power factor reduction due to the reactance of the feeder line can be compensated for by the above-described resonance circuit.

特開平10−174206号公報JP-A-10-174206

上述の特許文献1に示した非接触給電装置では、上記の共振回路により給電線のリアクタンスによる力率低下を補うことができるものの、給電線の線路長や負荷によってリアクタンス成分が変化するため、それに応じてコンデンサの容量を変更しなければならず、コンデンサを交換する作業が必要であった。   In the non-contact power feeding device shown in the above-mentioned Patent Document 1, although the power factor decrease due to the reactance of the feed line can be compensated for by the above-described resonance circuit, the reactance component changes depending on the line length and load of the feed line. Accordingly, the capacity of the capacitor had to be changed, and it was necessary to replace the capacitor.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、共振回路の共振調整の作業性を向上させた非接触給電システムを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-contact power feeding system with improved workability of resonance adjustment of a resonance circuit.

本発明の非接触給電システムは、高周波電源及び高周波電源に直列に接続される給電線を具備した給電部と、給電線に対して非接触に配置され、給電線との電磁誘導により生じた起電力を負荷への供給電力とする受電部とを備える。高周波電源は、給電線のインダクタンスとともに共振回路を構成する容量性リアクタンスと、容量性リアクタンスの動作を制御する制御部とを具備する。容量性リアクタンスは、逆阻止能力を持たない4つの半導体素子により構成されるブリッジ回路と、ブリッジ回路の中点間に接続されて電流遮断時のスナバエネルギーを蓄積するコンデンサとを有する。そして制御部は、4つの半導体素子のうち、対角に位置するペアの半導体素子のオン/オフ動作がそれぞれ同時に行われるように制御し、且つ、一方のペアがオンのときは他方のペアがオフとなるように制御する。   The non-contact power feeding system of the present invention includes a high-frequency power source and a power feeding unit provided with a power feeding line connected in series to the high-frequency power source, and a non-contact arrangement with respect to the power feeding line, which is caused by electromagnetic induction with the feeding line. A power receiving unit that uses the power as the power supplied to the load. The high-frequency power source includes a capacitive reactance that forms a resonance circuit together with the inductance of the feeder line, and a control unit that controls the operation of the capacitive reactance. The capacitive reactance has a bridge circuit composed of four semiconductor elements that do not have reverse blocking capability, and a capacitor that is connected between the midpoints of the bridge circuit and accumulates snubber energy when current is interrupted. Then, the control unit controls the pair of semiconductor elements located on the diagonal among the four semiconductor elements so that the on / off operations are simultaneously performed, and when one pair is on, the other pair is Control to turn off.

この非接触給電システムにおいて、制御部は、4つの半導体素子のオン/オフの切換タイミングを調整してコンデンサの見かけ上の容量を変化させることにより、共振回路の共振調整を自動で行う自動共振調整機能を有しているのも好ましい。   In this non-contact power supply system, the control unit automatically adjusts the resonance of the resonance circuit by adjusting the on / off switching timing of the four semiconductor elements to change the apparent capacitance of the capacitor. It is also preferable to have a function.

また、この非接触給電システムにおいて、制御部は、システムが稼働している間は、自動共振調整機能により共振回路の共振調整を随時行うのも好ましい。   In this non-contact power supply system, it is also preferable that the control unit adjusts the resonance of the resonance circuit at any time by the automatic resonance adjustment function while the system is operating.

また、この非接触給電システムにおいて、制御部は、受電部の負荷が所定の変動範囲を下回る場合には、共振回路を共振からずらすことにより共振回路のインピーダンスを増加させるのも好ましい。   In this contactless power supply system, it is also preferable that the control unit increases the impedance of the resonance circuit by shifting the resonance circuit from resonance when the load of the power reception unit falls below a predetermined fluctuation range.

また、この非接触給電システムにおいて、制御部は、無負荷での高周波電源の出力電圧値により共振回路が共振状態か否かを判断するのも好ましい。   In this non-contact power supply system, it is also preferable that the control unit determines whether or not the resonance circuit is in a resonance state based on the output voltage value of the high frequency power supply with no load.

また、この非接触給電システムにおいて、制御部は、無負荷での高周波電源のリップル電流により共振回路が共振状態か否かを判断するのも好ましい。   In this non-contact power supply system, it is also preferable that the control unit determines whether or not the resonance circuit is in a resonance state based on a ripple current of the high-frequency power supply with no load.

共振回路の共振調整の作業性を向上させた非接触給電システムを提供することができるという効果がある。   There is an effect that it is possible to provide a non-contact power supply system in which the workability of resonance adjustment of the resonance circuit is improved.

本実施形態の非接触給電システムの給電部を示し、(a)はそのブロック図、(b)はその要部であるコンデンサ部の回路図である。The electric power feeding part of the non-contact electric power feeding system of this embodiment is shown, (a) is the block diagram, (b) is a circuit diagram of the capacitor | condenser part which is the principal part. 同上のシステム構成図である。It is a system block diagram same as the above. (a)〜(f)は同上の要部であるコンデンサ部の動作を説明する説明図である。(A)-(f) is explanatory drawing explaining operation | movement of the capacitor | condenser part which is a principal part same as the above. 同上の共振調整時の電流波形図である。It is a current waveform figure at the time of resonance adjustment same as the above.

以下に、非接触給電システムの実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a non-contact power feeding system will be described with reference to the drawings.

図2は本実施形態の非接触給電システムのシステム構成図であり、この非接触給電システムは給電部1と受電部2とを主要な構成として備え、例えば負荷である無人搬送車のモータ3に対して電力を供給する。なお、負荷はモータ3に限定されるものではなく、他のものでもよい。   FIG. 2 is a system configuration diagram of the contactless power supply system according to the present embodiment. This contactless power supply system includes a power supply unit 1 and a power reception unit 2 as main components, for example, a motor 3 of an automatic guided vehicle that is a load. In contrast, power is supplied. The load is not limited to the motor 3 and may be other.

給電部1は、商用電源4の交流電圧から高周波(例えば40kHz)の正弦波交流電圧を生成する高周波電源10と、高周波電源10に直列に接続されて高周波電源10の高周波出力が供給される給電線11とを具備する。給電線11は数十〜数百mの長さを有しておりインダクタンス成分が大きく、LR負荷となっている。なお本実施形態では、給電線11の行き帰りの線が平行に配置されており、互いに発生する磁界を打ち消しあっている(図2参照)。   The power supply unit 1 is connected to the high frequency power supply 10 in series to generate a high frequency (for example, 40 kHz) sinusoidal AC voltage from the AC voltage of the commercial power supply 4, and is supplied with the high frequency output of the high frequency power supply 10. And an electric wire 11. The feeder 11 has a length of several tens to several hundreds of meters, has a large inductance component, and is an LR load. In the present embodiment, the return lines of the feeder line 11 are arranged in parallel to cancel the magnetic fields generated from each other (see FIG. 2).

図1(a)は給電部1のブロック図である。高周波電源10は、給電線11に対して高周波の交流電力を出力する出力部10dと、出力部10dの出力電流を制御する出力電流制御部10bと、給電線11とともに共振回路を構成するコンデンサ部10eと、コンデンサ部10eの動作を制御する共振調整制御部10cと、全般的な制御を行う電源制御部10aとを備える。また、図1(b)はコンデンサ部10eの回路図であり、このコンデンサ部10eは、給電線11のリアクタンスによる力率低下を補うために設けられたものである。なお、コンデンサ部10eの出力端と給電線11の一端部との間にはコンデンサC2が接続されており、本実施形態ではコンデンサ部10eのコンデンサC1とコンデンサC2とで共振用のコンデンサが構成される。   FIG. 1A is a block diagram of the power feeding unit 1. The high-frequency power source 10 includes an output unit 10d that outputs high-frequency AC power to the power supply line 11, an output current control unit 10b that controls the output current of the output unit 10d, and a capacitor unit that forms a resonance circuit together with the power supply line 11. 10e, a resonance adjustment control unit 10c that controls the operation of the capacitor unit 10e, and a power supply control unit 10a that performs general control. FIG. 1B is a circuit diagram of the capacitor unit 10e. The capacitor unit 10e is provided to compensate for a power factor decrease due to reactance of the feeder line 11. A capacitor C2 is connected between the output end of the capacitor unit 10e and one end of the feeder line 11. In this embodiment, the capacitor C1 and the capacitor C2 of the capacitor unit 10e constitute a resonance capacitor. The

コンデンサ部10eは、図1(b)に示すように、逆阻止能力を持たない4つのIGBT12a〜12d(半導体素子)からなるブリッジ回路と、ブリッジ回路の中点間に接続されて電流遮断時のスナバエネルギーを蓄積するコンデンサC1とで構成される。各IGBT12a〜12dは、素子と並列且つ逆向きに接続されたダイオードで構成され、両方向(順逆両方向)に電流を流すことができる順逆両方向導通型の素子である。そして、このコンデンサ部10eは、図1(a)に示すように、給電線11及びコンデンサC2に直列に接続され、給電線11及びコンデンサC2とともに共振回路を構成する。なお、図示は省略しているが、各IGBT12a〜12dのゲート端子はそれぞれ共振調整制御部10cに接続されており、共振調整制御部10cからの制御信号に応じて各IGBT12a〜12dがオン/オフされる。ここに本実施形態では、コンデンサ部10e及びコンデンサC2により容量性リアクタンスが構成され、また共振調整制御部10cにより制御部が構成される。   As shown in FIG. 1 (b), the capacitor unit 10e is connected between a bridge circuit composed of four IGBTs 12a to 12d (semiconductor elements) having no reverse blocking capability and a midpoint of the bridge circuit to cut off the current. It is comprised with the capacitor | condenser C1 which accumulate | stores snubber energy. Each of the IGBTs 12a to 12d is a forward / reverse bidirectional conduction type element that is configured by a diode connected in parallel with the element in the opposite direction, and that allows current to flow in both directions (forward and reverse directions). And this capacitor | condenser part 10e is connected in series with the feeder 11 and the capacitor | condenser C2, as shown to Fig.1 (a), and comprises a resonance circuit with the feeder 11 and the capacitor | condenser C2. Although not shown, the gate terminals of the IGBTs 12a to 12d are connected to the resonance adjustment control unit 10c, and the IGBTs 12a to 12d are turned on / off according to a control signal from the resonance adjustment control unit 10c. Is done. In this embodiment, a capacitive reactance is configured by the capacitor unit 10e and the capacitor C2, and a control unit is configured by the resonance adjustment control unit 10c.

受電部2は、図2に示すように、給電線11を挟み込むようにして配置されたU字状のコアに巻線が巻回されたピックアップ20と、ピックアップ20と給電線11との間の電磁誘導により上記の巻線に生じた起電力を増大させるための共振回路21と、共振回路21の出力を安定化させる定電圧回路22とを備える。そして、定電圧回路22により安定化された電力が負荷であるモータ3に供給される。なお、上記のピックアップ20は、モータ3の動作に伴って給電部11と平行な方向(図2中の矢印A−B方向)に移動自在となっている。   As shown in FIG. 2, the power receiving unit 2 includes a pickup 20 in which a winding is wound around a U-shaped core disposed so as to sandwich the power supply line 11, and a space between the pickup 20 and the power supply line 11. A resonance circuit 21 for increasing the electromotive force generated in the winding by electromagnetic induction and a constant voltage circuit 22 for stabilizing the output of the resonance circuit 21 are provided. And the electric power stabilized by the constant voltage circuit 22 is supplied to the motor 3 which is a load. The pickup 20 is movable in a direction parallel to the power feeding unit 11 (in the direction of arrows AB in FIG. 2) as the motor 3 operates.

次に、コンデンサ部10eの動作について、図3(a)〜図3(f)を参照しながら説明する。図3(a)はコンデンサC1が充電された後に負荷電流が反転した状態を示し、反転前の期間にコンデンサC1に充電された電荷が放電される。このとき、IGBT12b,12cのペアがオンになっているので、IGBT12b→コンデンサC1→IGBT12cの経路(図3(a)中の矢印a1,a2の経路)でコンデンサC1の放電が行なわれる。コンデンサC1の放電が終了すると、コンデンサC1に電流が流れなくなって、IGBT12aのダイオード→IGBT12cの経路(図3(b)中の矢印a3の経路)と、IGBT12b→IGBT12dのダイオードの経路(図3(b)中の矢印a4の経路)にそれぞれバイパスされ、各経路に電流が流れる。そして、この状態で対角にあるIGBT12b,12cのペアがオフにされ、IGBT12a,12dのペアがオンにされると、IGBT12aのダイオード→コンデンサC1→IGBT12dのダイオードの経路(図3(c)中の矢印a5,a6の経路)でコンデンサC1の充電が行なわれる。   Next, the operation of the capacitor unit 10e will be described with reference to FIGS. 3 (a) to 3 (f). FIG. 3A shows a state in which the load current is inverted after the capacitor C1 is charged, and the charge charged in the capacitor C1 is discharged before the inversion. At this time, since the pair of IGBTs 12b and 12c is turned on, the capacitor C1 is discharged along the path of IGBT 12b → capacitor C1 → IGBT 12c (the path of arrows a1 and a2 in FIG. 3A). When the discharge of the capacitor C1 is completed, the current stops flowing to the capacitor C1, and the diode 12 → IGBT 12c path (the path indicated by the arrow a3 in FIG. 3B) and the IGBT 12b → IGBT 12d diode path (FIG. 3 (3)). b) in the path indicated by arrow a4 in FIG. When the pair of diagonal IGBTs 12b and 12c is turned off in this state and the pair of IGBTs 12a and 12d is turned on, the diode path of the IGBT 12a → the capacitor C1 → the diode of the IGBT 12d (in FIG. 3C). The path of the arrows a5 and a6) of the capacitor C1 is charged.

やがて負荷電流が反転すると、図3(d)に示すように、IGBT12d→コンデンサC1→IGBT12aの経路(図3(d)中の矢印a7,a8の経路)でコンデンサC1の放電が行なわれる。コンデンサC1の放電が終了すると、コンデンサC1に電流が流れなくなって、IGBT12cのダイオード→IGBT12aの経路(図3(e)中の矢印a9の経路)と、IGBT12d→IGBT12bのダイオードの経路(図3(e)中の矢印a10の経路)にそれぞれバイパスされ、各経路に電流が流れる。そして、この状態でIGBT12a,12dのペアがオフにされ、IGBT12b,12cのペアがオンにされると、IGBT12cのダイオード→コンデンサC1→IGBT12bのダイオードの経路(図3(f)中の矢印a11,a12の経路)でコンデンサC1の充電が行なわれる。以上の動作を繰り返して行ない、位相制御を行うことにより、コンデンサC1を共振調整用可変コンデンサとして使用することが可能となる。ここに、全てのIGBT12a〜12dが同時にオフになるとコンデンサ部10eに電流が流れなくなるため、IGBT12a,12dのペアがオンにされるときはIGBT12b,12cのペアは同時にオフにされ、IGBT12a,12dのペアがオフにされるときはIGBT12b,12cのペアは同時にオンにされる。   When the load current is eventually reversed, as shown in FIG. 3 (d), the capacitor C1 is discharged along the path of IGBT 12d → capacitor C1 → IGBT 12a (paths of arrows a7 and a8 in FIG. 3 (d)). When the discharge of the capacitor C1 is completed, no current flows through the capacitor C1, and the diode 12 → IGBT 12a path (the path indicated by the arrow a9 in FIG. 3E) and the IGBT 12d → IGBT 12b diode path (FIG. 3 (3)). e) each is bypassed to a path indicated by an arrow a10), and a current flows through each path. In this state, when the pair of IGBTs 12a and 12d is turned off and the pair of IGBTs 12b and 12c is turned on, the diode path of the IGBT 12c → the capacitor C1 → the diode 12b of the IGBT 12b (arrows a11, The capacitor C1 is charged in the path a12). By repeating the above operation and performing phase control, the capacitor C1 can be used as a variable capacitor for resonance adjustment. Here, when all the IGBTs 12a to 12d are turned off at the same time, no current flows to the capacitor unit 10e. Therefore, when the pair of IGBTs 12a and 12d is turned on, the pair of IGBTs 12b and 12c is turned off at the same time. When the pair is turned off, the pair of IGBTs 12b and 12c are turned on simultaneously.

ここで、本実施形態のコンデンサ部10eは、各IGBT12a〜12dのオン/オフの切換タイミングを出力部10dの出力電圧位相に対してどの程度進めるかにより見かけ上のコンデンサ容量を変化させることができる。そして、LR負荷である給電線11、コンデンサ部10e及びコンデンサC2で構成される共振回路を共振状態にすることにより、給電線11のリアクタンスによる力率低下を補うことができるため、少なくともシステム導入時には上記の共振回路の共振調整が必要である。以下、共振調整について説明する。なお、共振調整時にはモータ3が受電部2に接続されておらず、つまり無負荷で共振調整が行われる。   Here, the capacitor unit 10e of the present embodiment can change the apparent capacitor capacity depending on how much the on / off switching timing of each of the IGBTs 12a to 12d is advanced with respect to the output voltage phase of the output unit 10d. . Since the resonance circuit composed of the feeder line 11, which is an LR load, the capacitor unit 10e, and the capacitor C2 is brought into a resonance state, the power factor decrease due to the reactance of the feeder line 11 can be compensated. Resonance adjustment of the above resonant circuit is necessary. Hereinafter, the resonance adjustment will be described. At the time of resonance adjustment, the motor 3 is not connected to the power receiving unit 2, that is, resonance adjustment is performed with no load.

作業者は、高周波電源10に接続される給電線11の線路長から上記の共振回路が共振状態となるコンデンサの容量を推定し、コンデンサ部10eのコンデンサC1とコンデンサC2の合成容量が推定した容量よりも大きくなるようにコンデンサC1の容量を設定する。その後、作業者は電源スイッチ(図示せず)をオンにして電源を投入し、高周波電源10の出力電流I1をモニターしながらコンデンサ部10eの位相を進めていき、コンデンサC1の見かけ上の容量を大きくする。なおこのとき、コンデンサC1の見かけ上の容量が大きくなることでコンデンサC1,C2の合成容量は小さくなる。そして、作業者は出力電流I1のリップル電流が所定の許容範囲d1(図4参照)内に収まるまでコンデンサ部10eの位相を進めていき、最後にコンデンサ部10eの位相をわずかに遅らせることで共振調整が完了する。   The operator estimates the capacitance of the capacitor in which the resonance circuit is in a resonance state from the line length of the feeder line 11 connected to the high frequency power supply 10, and the capacitance estimated by the combined capacitance of the capacitor C1 and the capacitor C2 of the capacitor unit 10e. The capacity of the capacitor C1 is set so as to be larger. Thereafter, the operator turns on the power switch (not shown) to turn on the power, and advances the phase of the capacitor unit 10e while monitoring the output current I1 of the high-frequency power source 10, thereby reducing the apparent capacity of the capacitor C1. Enlarge. At this time, the combined capacitance of the capacitors C1 and C2 is reduced by increasing the apparent capacitance of the capacitor C1. The operator advances the phase of the capacitor unit 10e until the ripple current of the output current I1 falls within a predetermined allowable range d1 (see FIG. 4), and finally resonates by slightly delaying the phase of the capacitor unit 10e. Adjustment is complete.

而して本実施形態によれば、4つのIGBT12a〜12dのオン/オフの切換タイミングを調整することによりコンデンサC1の見かけ上の容量を変化させることができるので、給電線11の線路長や負荷によってリアクタンス成分が変化した場合でもコンデンサを交換することなく見かけ上の容量を調整することができ、従来例に比べて共振回路の共振調整の作業性を向上させることができる。また、高周波電源10のリップル電流が所定の許容範囲d1内に収まるように共振調整を行うことにより共振回路を共振状態にすることができ、その結果、高周波電源10の出力部に接続されるリアクタンス成分を小さくしつつ、給電線11に与えられる有効電力を大きくすることができる。   Thus, according to the present embodiment, the apparent capacitance of the capacitor C1 can be changed by adjusting the on / off switching timing of the four IGBTs 12a to 12d. Thus, even when the reactance component changes, the apparent capacity can be adjusted without replacing the capacitor, and the workability of resonance adjustment of the resonance circuit can be improved as compared with the conventional example. Further, the resonance circuit can be brought into a resonance state by performing resonance adjustment so that the ripple current of the high frequency power supply 10 is within a predetermined allowable range d1, and as a result, the reactance connected to the output unit of the high frequency power supply 10 It is possible to increase the effective power given to the feeder line 11 while reducing the component.

ところで本実施形態では、作業者が高周波電源10の出力電流I1をモニターしながらリップル電流が所定の許容範囲d1内に収まるように調整したが、例えば高周波電源10に共振調整モードを設け、この共振調整モードに設定されると上述の共振調整を自動的に行うようにしてもよく、これにより施工時間を短縮できるとともにそれに伴う低コスト化を実現できる。また、システムが稼動している間は上記の自動共振調整を随時行うようにしてもよく、これによりシステムの稼動中に負荷変動が生じてリアクタンスが変化しても、その都度共振調整を行うことにより共振回路を共振状態に維持することができる。   In the present embodiment, the operator adjusts the ripple current to fall within a predetermined allowable range d1 while monitoring the output current I1 of the high-frequency power supply 10. For example, the resonance adjustment mode is provided in the high-frequency power supply 10 and this resonance is achieved. When the adjustment mode is set, the above-described resonance adjustment may be automatically performed, whereby the construction time can be shortened and the associated cost reduction can be realized. In addition, the automatic resonance adjustment described above may be performed at any time while the system is in operation, so that the resonance adjustment is performed every time the load changes during the system operation and the reactance changes. Thus, the resonance circuit can be maintained in a resonance state.

さらに、受電部2の負荷が予め設定された所定の変動範囲を下回る場合には、上記の共振回路を共振からずらすように制御してもよい。これにより、インピーダンスの低下を補うことができるので、インピーダンスの低下により過大な電流が回路に流れるのを抑制できる。なお所定の変動範囲とは、受電部2の負荷が通常取り得る範囲のことをいい、負荷に応じて設定される。   Furthermore, when the load of the power receiving unit 2 falls below a predetermined fluctuation range set in advance, the above resonance circuit may be controlled to shift from resonance. As a result, a drop in impedance can be compensated for, so that an excessive current can be prevented from flowing in the circuit due to the drop in impedance. The predetermined fluctuation range refers to a range that can be normally taken by the load of the power receiving unit 2, and is set according to the load.

なお本実施形態では、高周波電源10のリップル電流が所定の許容範囲d1内に収まるように共振調整を行ったが、例えば高周波電源10の出力電圧V1(図1(a)参照)が予め設定された値になるように共振調整を行ってもよく、同様に高周波電源10の出力部に接続されるリアクタンス成分を小さくしつつ、給電線11に与えられる有効電力を大きくすることができる。また本実施形態では、逆阻止能力を持たない半導体素子としてIGBT12a〜12dを例に説明したが、例えばMOSFETを用いてもよく、本実施形態に限定されない。   In the present embodiment, the resonance adjustment is performed so that the ripple current of the high-frequency power supply 10 is within the predetermined allowable range d1, but for example, the output voltage V1 (see FIG. 1A) of the high-frequency power supply 10 is set in advance. Resonance adjustment may be performed so that the effective power is applied to the power supply line 11 while reducing the reactance component connected to the output unit of the high-frequency power supply 10. In the present embodiment, the IGBTs 12a to 12d have been described as examples of semiconductor elements having no reverse blocking capability. However, for example, MOSFETs may be used, and the present invention is not limited to this embodiment.

1 給電部
10 高周波電源
11 給電線
10c 共振調整制御部(制御部)
10e コンデンサ部(容量性リアクタンス)
12a〜12d IGBT(半導体素子)
C1 コンデンサ
C2 コンデンサ(容量性リアクタンス)
DESCRIPTION OF SYMBOLS 1 Feed part 10 High frequency power supply 11 Feed line 10c Resonance adjustment control part (control part)
10e Capacitor section (capacitive reactance)
12a to 12d IGBT (semiconductor element)
C1 capacitor C2 capacitor (capacitive reactance)

Claims (6)

高周波電源及び前記高周波電源に直列に接続される給電線を具備した給電部と、
前記給電線に対して非接触に配置され、前記給電線との電磁誘導により生じた起電力を負荷への供給電力とする受電部とを備え、
前記高周波電源は、前記給電線のインダクタンスとともに共振回路を構成する容量性リアクタンスと、前記容量性リアクタンスの動作を制御する制御部とを具備し、
前記容量性リアクタンスは、逆阻止能力を持たない4つの半導体素子により構成されるブリッジ回路と、前記ブリッジ回路の中点間に接続されて電流遮断時のスナバエネルギーを蓄積するコンデンサとを有し、
前記制御部は、4つの前記半導体素子のうち、対角に位置するペアの前記半導体素子のオン/オフ動作がそれぞれ同時に行われるように制御し、且つ、一方のペアがオンのときは他方のペアがオフとなるように制御することを特徴とする非接触給電システム。
A power supply unit including a high-frequency power supply and a power supply line connected in series to the high-frequency power supply;
A power receiving unit that is disposed in a non-contact manner with respect to the power supply line and uses electromotive force generated by electromagnetic induction with the power supply line as power supplied to a load;
The high-frequency power source includes a capacitive reactance that forms a resonance circuit together with an inductance of the feeder line, and a control unit that controls the operation of the capacitive reactance,
The capacitive reactance includes a bridge circuit configured by four semiconductor elements having no reverse blocking capability, and a capacitor that is connected between the midpoints of the bridge circuit and accumulates snubber energy at the time of current interruption,
The control unit performs control so that the on / off operations of the pair of diagonally located semiconductor elements among the four semiconductor elements are simultaneously performed, and when one pair is on, the other A non-contact power feeding system that controls the pair to be turned off.
前記制御部は、4つの前記半導体素子のオン/オフの切換タイミングを調整して前記コンデンサの見かけ上の容量を変化させることにより、前記共振回路の共振調整を自動で行う自動共振調整機能を有していることを特徴とする請求項1記載の非接触給電システム。   The controller has an automatic resonance adjustment function that automatically adjusts the resonance of the resonance circuit by adjusting the on / off switching timing of the four semiconductor elements to change the apparent capacitance of the capacitor. The contactless power feeding system according to claim 1, wherein 前記制御部は、システムが稼働している間は、前記自動共振調整機能により前記共振回路の共振調整を随時行うことを特徴とする請求項2記載の非接触給電システム。   The contactless power feeding system according to claim 2, wherein the control unit performs resonance adjustment of the resonance circuit as needed by the automatic resonance adjustment function while the system is operating. 前記制御部は、前記受電部の負荷が所定の変動範囲を下回る場合には、前記共振回路を共振からずらすことにより前記共振回路のインピーダンスを増加させることを特徴とする請求項2又は3記載の非接触給電システム。   The said control part increases the impedance of the said resonance circuit by shifting the said resonance circuit from resonance, when the load of the said power receiving part is less than the predetermined fluctuation | variation range. Contactless power supply system. 前記制御部は、無負荷での前記高周波電源の出力電圧値により前記共振回路が共振状態か否かを判断することを特徴とする請求項1〜4の何れか1項に記載の非接触給電システム。   5. The contactless power supply according to claim 1, wherein the control unit determines whether or not the resonance circuit is in a resonance state based on an output voltage value of the high-frequency power source with no load. system. 前記制御部は、無負荷での前記高周波電源のリップル電流により前記共振回路が共振状態か否かを判断することを特徴とする請求項1〜4の何れか1項に記載の非接触給電システム。   The non-contact power feeding system according to claim 1, wherein the control unit determines whether or not the resonance circuit is in a resonance state based on a ripple current of the high-frequency power source without a load. .
JP2012242046A 2012-11-01 2012-11-01 Contactless power supply system Active JP5927583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242046A JP5927583B2 (en) 2012-11-01 2012-11-01 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242046A JP5927583B2 (en) 2012-11-01 2012-11-01 Contactless power supply system

Publications (2)

Publication Number Publication Date
JP2014093829A JP2014093829A (en) 2014-05-19
JP5927583B2 true JP5927583B2 (en) 2016-06-01

Family

ID=50937566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242046A Active JP5927583B2 (en) 2012-11-01 2012-11-01 Contactless power supply system

Country Status (1)

Country Link
JP (1) JP5927583B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123699A (en) * 2014-05-07 2017-07-13 パナソニックIpマネジメント株式会社 Non-contact power supply device and non-contact power supply system using the same
JP6395096B2 (en) 2015-03-31 2018-09-26 パナソニックIpマネジメント株式会社 Non-contact power supply apparatus, program, control method for non-contact power supply apparatus, and non-contact power transmission system
CN107735923B (en) 2015-06-04 2021-02-05 富士通株式会社 Power receiver and power transmission system
CN116783795A (en) 2021-02-05 2023-09-19 三菱电机株式会社 Power receiving device and wireless power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534889B2 (en) * 2010-03-25 2014-07-02 パナソニック株式会社 Non-contact power feeding system and driving method thereof
EP2677627B1 (en) * 2011-02-15 2018-04-25 Toyota Jidosha Kabushiki Kaisha Non-contact power receiving apparatus, vehicle having the non-contact power receiving apparatus mounted therein and non-contact power supply equipment
JP5010061B1 (en) * 2011-09-21 2012-08-29 パイオニア株式会社 Non-contact power transmission device, non-contact power reception device, and non-contact power supply system

Also Published As

Publication number Publication date
JP2014093829A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
US9287790B2 (en) Electric power converter
JP5816308B2 (en) Non-contact power receiving apparatus and operation method thereof
EP1801960B1 (en) Bi-directional DC-DC converter and control method
WO2014103105A1 (en) Dc-to-dc converter
WO2013186991A1 (en) Electric power conversion device
EP2838187A2 (en) Resonant converter and method of operating the same
US9396869B2 (en) Inductively coupled power transfer system and device
US20060290295A1 (en) Electric power supply apparatus and induction heating apparatus
JP5927583B2 (en) Contactless power supply system
KR20140002686A (en) Contactless power feed equipment
US9809124B2 (en) Circuit arrangement and method of operating a circuit arrangement
KR20040023752A (en) Power supply for induction heating or melting
KR101654490B1 (en) Converter and bi-directional converter
JP2016116365A (en) Power reception device for non-contact power supply system
WO2015104779A1 (en) Wireless power supply device and wireless power supply device start-up method
CN103403819A (en) Dynamically biased inductor
WO2012098867A1 (en) Power supply device for non-contact charging device
WO2015072009A1 (en) Bidirectional converter
JP2011188676A (en) Power supply
JP6269375B2 (en) Non-contact power supply device and non-contact power supply system
JP5419842B2 (en) Power processing device
JP6777524B2 (en) Power transmission device
JP6782474B2 (en) Thermoelectric conversion element output control device
JP6937432B2 (en) Control method of resonance type power conversion device and resonance type power conversion device
JP6369792B2 (en) Non-contact power supply device and non-contact power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160325

R151 Written notification of patent or utility model registration

Ref document number: 5927583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151