JP5534889B2 - Non-contact power feeding system and driving method thereof - Google Patents

Non-contact power feeding system and driving method thereof Download PDF

Info

Publication number
JP5534889B2
JP5534889B2 JP2010069515A JP2010069515A JP5534889B2 JP 5534889 B2 JP5534889 B2 JP 5534889B2 JP 2010069515 A JP2010069515 A JP 2010069515A JP 2010069515 A JP2010069515 A JP 2010069515A JP 5534889 B2 JP5534889 B2 JP 5534889B2
Authority
JP
Japan
Prior art keywords
power supply
power
contact
resonance
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010069515A
Other languages
Japanese (ja)
Other versions
JP2011205761A (en
Inventor
浩一 寺裏
博昭 小新
康 二畠
裕史 前田
信次 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010069515A priority Critical patent/JP5534889B2/en
Publication of JP2011205761A publication Critical patent/JP2011205761A/en
Application granted granted Critical
Publication of JP5534889B2 publication Critical patent/JP5534889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、非接触給電システムおよびその駆動方法に関する。   The present invention relates to a non-contact power feeding system and a driving method thereof.

近年、パワーデバイスの進歩によりその応用製品が現実のものとなってきており、人々が利用する電気製品への電力供給についても自由度が求められている。その要求に応える給電システムとして、幅広い分野で非接触給電技術の開発がおこなわれている。たとえば、工場の搬送ラインに用いられる移動体への給電に非接触給電方式を利用することにより、火花、粉塵のない安全でクリーンな電力伝送が可能となる。また、物理的な消耗部品も無くなり、極めて有効なシステムとして注目されている。   In recent years, with the advancement of power devices, applied products have become a reality, and there is a demand for flexibility in the supply of electric power to electric products used by people. As a power supply system that meets this demand, contactless power supply technology has been developed in a wide range of fields. For example, by using a non-contact power feeding method for power feeding to a moving body used in a factory transport line, safe and clean power transmission without sparks and dust can be achieved. In addition, there are no physical consumable parts, and it is attracting attention as an extremely effective system.

接触型の給電装置は、電源に接続されたレール上の固定接点に、負荷(移動体すなわち電力供給される対象)に接続された可動接点を摺動させて、移動体への電力供給を行うため、接触型の給電装置では、固定接点からの漏電や接点間の接触不良などが発生する。これに対し、非接触給電装置では、電源側に接続された1次側と、負荷側に接続された2次側との間で、誘導電圧を生成するものであり、このため1次側と、2次側とで接触することがないため、この接触型の給電装置において問題となる漏電や接触不良などの発生がない。   The contact-type power supply device supplies power to a moving body by sliding a movable contact connected to a load (moving body, that is, a power supply target), on a fixed contact on a rail connected to a power source. For this reason, in the contact-type power supply device, leakage from the fixed contact, poor contact between the contacts, or the like occurs. On the other hand, in the non-contact power feeding device, an induced voltage is generated between the primary side connected to the power source side and the secondary side connected to the load side. Since there is no contact on the secondary side, there are no problems such as leakage and poor contact which are problems in this contact-type power feeding device.

このような非接触給電装置は、一例を図9に示すように、高周波電源110に接続され高周波となる交流電流が供給される給電線120と、給電線120に沿って変位可能な不図示の移動体の負荷Zに電気的に接続される受電部200とを備える。受電部200は、給電線120を流れる高周波電流に基づく電磁誘導により誘導電流が流れるコイル3と、このコイル3が外周面に巻かれた腕部とこの腕部を連結する連結部とによって形成されるコア2とを有する。   As shown in FIG. 9, an example of such a non-contact power feeding device is a power supply line 120 connected to a high frequency power supply 110 and supplied with an alternating current having a high frequency, and a displacement not shown along the power supply line 120. And a power receiving unit 200 electrically connected to a load Z of the moving body. The power receiving unit 200 is formed by a coil 3 through which an induced current flows by electromagnetic induction based on a high-frequency current flowing through the feeder 120, an arm unit around which the coil 3 is wound, and a connecting unit that connects the arm unit. Core 2.

そして、コア2が、給電線120の外周を腕部と連結部とで囲むように設置されることで、高周波電流(例えば10kHz)が流れることにより発生する給電線120の外周側に磁界の向きに沿って、コアによる磁気回路が形成される。このように給電線120の外周にコアによる磁気回路が形成されることで、給電線120の外周側に発生する磁束がコア内に収束される。   Then, the core 2 is installed so as to surround the outer periphery of the power supply line 120 with the arm part and the connecting part, so that the direction of the magnetic field on the outer peripheral side of the power supply line 120 generated when a high-frequency current (for example, 10 kHz) flows. A magnetic circuit by the core is formed along the line. Thus, the magnetic circuit by a core is formed in the outer periphery of the feeder 120, and the magnetic flux generated on the outer periphery of the feeder 120 is converged in the core.

よって、コア2の腕部に巻回されたコイル3に電流が誘起して、不図示の移動体のモータや制御回路などで構成される駆動装置300などの負荷に供給される。このとき、コイル3で発生した電流は、負荷側に設けられた電力変換回路で電力変換された後に負荷Zに供給されることで、安定した電力が負荷に供給される。このように構成される非接触給電装置において、給電線120を流れる高周波電流に基づく電磁誘導により受電動作を行う受電部200では、その受電効率を高めるために、コア及びコイル3に対して様々な設計が成されている。
このような非接触給電装置において、負荷回路は、伝送効率を向上するため図10に示すように、直列共振回路を採用している。給電線は、電線であり、インダクタンス成分Lと抵抗成分Rとで構成される。従って、共振コンデンサCを追加し、給電線のインダクタンスLと共振回路を構成する(非特許文献1)。
非接触給電装置では、給電線の長さや、負荷の状態によっても、給電線のインダクタンス成分や抵抗成分は変化する。このため、非接触給電装置の製造に際しては、給電線を流れる電流成分と電圧成分とを測定し、共振コンデンサを付加し、力率が1に近くなるように調整している。“力率が1となる”ということは、給電線のインダクタンス成分をLとし、共振コンデンサの容量をCとしたとき、共振周波数fに対して、
ωL−1/ωC≒0 (式1)
であることである。
例えば給電線の往路と復路とに対となるコの字状のピックアップを、一方の脚部同士が一方向に対して重なるようにして、給電線の往路と復路との中心間距離を減少し、インダクタンスを低減して給電効率を上げるようにした非接触給電装置も提案されている(特許文献1)
Therefore, an electric current is induced in the coil 3 wound around the arm portion of the core 2 and is supplied to a load such as a driving device 300 including a motor or a control circuit of a moving body (not shown). At this time, the current generated in the coil 3 is converted into power by a power conversion circuit provided on the load side and then supplied to the load Z, so that stable power is supplied to the load. In the non-contact power feeding device configured as described above, in the power receiving unit 200 that performs a power receiving operation by electromagnetic induction based on the high-frequency current flowing through the power supply line 120, there are various types of the core and the coil 3 in order to increase power receiving efficiency The design is made.
In such a non-contact power feeding apparatus, the load circuit employs a series resonance circuit as shown in FIG. 10 in order to improve transmission efficiency. The power supply line is an electric wire and includes an inductance component L and a resistance component R. Thus, by adding a resonant capacitor C 0, to an inductance L and the resonance circuit of the power supply line (Non-Patent Document 1).
In the non-contact power supply device, the inductance component and resistance component of the power supply line also change depending on the length of the power supply line and the state of the load. For this reason, when manufacturing the non-contact power supply device, the current component and the voltage component flowing through the power supply line are measured, a resonance capacitor is added, and the power factor is adjusted to be close to unity. “The power factor is 1” means that when the inductance component of the feeder line is L and the capacitance of the resonance capacitor is C 0 , the resonance frequency f is
ωL−1 / ωC 0 ≒ 0 (Formula 1)
It is to be.
For example, a pair of U-shaped pickups that are paired with the forward and return paths of the feeder line so that one leg overlaps in one direction to reduce the center-to-center distance between the forward and return paths of the feeder line. In addition, a non-contact power feeding device that reduces inductance and increases power feeding efficiency has also been proposed (Patent Document 1).

特開2003−61268号公報JP 2003-61268 A

島田理化技報 No.20(2008)P47−50非接触給電用インバータShimada Rika Technical Report No.20 (2008) P47-50 Inverter for contactless power feeding

特許文献1に示された非接触給電装置のように、給電線の往路と復路との中心間距離を減少し、インダクタンスを低減するための構成が提案されているが、力率を高めるために、共振周波数となるように、共振コンデンサの容量の決定および装着には、高度の熟練を要する上、作業性の低下を招く。
また、使用時間の増大に伴い、給電線の経年変化や、負荷の変動を免れることはできない。このため、給電線自体のインダクタンス成分や抵抗成分の変化に対し、対策はなく、力率の低下を免れ得ないという問題もあった。
In order to increase the power factor, a configuration for reducing the distance between the centers of the forward path and the return path of the feeder line and reducing the inductance is proposed as in the non-contact power feeder shown in Patent Document 1. In order to achieve the resonance frequency, determination and mounting of the capacity of the resonance capacitor requires a high degree of skill and causes a decrease in workability.
In addition, with the increase in use time, it is not possible to avoid the secular change of the feeder line and the fluctuation of the load. For this reason, there has been a problem that there is no countermeasure against changes in the inductance component and the resistance component of the feeder line itself, and a reduction in power factor cannot be avoided.

本発明は、前記実情に鑑みてなされたもので、取扱が容易で高力率の非接触給電システムおよびその駆動方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact power feeding system that is easy to handle and has a high power factor, and a driving method thereof.

そこで本発明の非接触給電システムは、高周波電源と、高周波電源に直列に接続される給電線とを備えた給電部と、給電線の外周で非接触に設置される受電部とを具備し、受電部が給電線との電磁誘導により受電した電力を受電部に接続された負荷に供給し、給電部は、そのリアクタンス成分を増減可能な共振要素と、共振要素のパラメータを自動的に可変させることにより共振調整を行う共振調整部とを備え、前記給電線は、円筒形状の内管部と、前記内管部の外側に配置された円筒形状の外管部と、前記内管部と前記外管部を互いに同心となるように連結する連結部とで構成された導体を、角筒状の合成樹脂成形品からなる絶縁体で被覆して構成されていることを特徴とする。
また本発明は上記非接触給電システムにおいて、共振調整部を、所定時間駆動後に共振調整を行うことができるように構成したことを特徴とする。
また本発明は、上記非接触給電システムにおいて、共振調整部を、高周波電源に接続される電線間の電圧(V)と共振要素の両端電圧(V)との差を測定する測定部を備え、この差が、所定の値となるように共振要素のパラメータを制御するように構成したことを特徴とする
た本発明は、上記非接触給電システムにおいて、共振要素は、可変容量コンデンサであることを特徴とする。
また本発明は、上記非接触給電システムにおいて、共振調整部は、高周波電源の電圧電流位相をモニターするモニタ部を備え、この位相差が所望の値となるように共振要素を調整することを特徴とする。
また本発明は、上記非接触給電システムにおいて、共振要素は、電極間距離を変化可能に構成されたコンデンサであり、共振調整部はモニタ部の出力に応じて電極間距離を調整することを特徴とする。
また本発明は、上記非接触給電システムにおいて、可変容量コンデンサは、複数の電極を備え、電極から2枚を選択することで容量を変化させるようにしたことを特徴とする。
また本発明の非接触給電システムの駆動方法は、高周波電源と、高周波電源に直列に接続される給電線と、給電部と、給電線の外周で非接触に設置される受電部とを具備し、受電部が給電線との電磁誘導により受電した電力を受電部に接続された負荷に供給する非接触給電システムの駆動方法であって、給電線に高周波電源から電流を流し、給電線との電磁誘導により受電した電力を受電部に接続された負荷に供給する工程と、給電線のリアクタンス成分を測定する工程と、リアクタンス成分の大きさに応じて、共振要素のパラメータを自動的に可変させる共振調整工程とを含み、前記給電線は、円筒形状の内管部と、前記内管部の外側に配置された円筒形状の外管部と、前記内管部と前記外管部を互いに同心となるように連結する連結部とで構成された導体を、角筒状の合成樹脂成形品からなる絶縁体で被覆して構成されている
Therefore, the non-contact power feeding system of the present invention includes a high-frequency power source, a power feeding unit including a power feeding line connected in series to the high-frequency power source, and a power receiving unit installed in a non-contact manner on the outer periphery of the power feeding line, The power receiving unit supplies the power received by electromagnetic induction with the power supply line to the load connected to the power receiving unit, and the power supply unit automatically varies the resonance element whose reactance component can be increased and decreased and the parameters of the resonance element A resonance adjustment unit that performs resonance adjustment, and the power supply line includes a cylindrical inner pipe part, a cylindrical outer pipe part arranged outside the inner pipe part, the inner pipe part, and the The present invention is characterized in that a conductor formed by a connecting portion that connects the outer tube portions so as to be concentric with each other is covered with an insulator made of a synthetic resin molded product having a rectangular tube shape .
Further, the present invention is characterized in that in the above non-contact power feeding system, the resonance adjustment unit is configured to perform resonance adjustment after driving for a predetermined time.
According to the present invention, in the contactless power supply system, the resonance adjustment unit includes a measurement unit that measures the difference between the voltage (V L ) between the wires connected to the high-frequency power source and the voltage across the resonance element (V C ). And the resonance element parameter is controlled so that the difference becomes a predetermined value .
Or the present invention, in the contactless power supply system, the resonant element, characterized in that it is a variable capacitor.
In the wireless power supply system according to the present invention, the resonance adjustment unit includes a monitor unit that monitors a voltage-current phase of the high-frequency power source, and adjusts the resonance element so that the phase difference becomes a desired value. And
According to the present invention, in the contactless power supply system, the resonance element is a capacitor configured such that the distance between the electrodes can be changed, and the resonance adjustment unit adjusts the distance between the electrodes according to the output of the monitor unit. And
In the wireless power supply system according to the present invention, the variable capacitor includes a plurality of electrodes, and the capacitance is changed by selecting two of the electrodes.
The driving method of the non-contact power feeding system of the present invention includes a high frequency power source, a power feeding line connected in series to the high frequency power source, a power feeding unit, and a power receiving unit installed in a non-contact manner on the outer periphery of the power feeding line. A method of driving a non-contact power feeding system in which a power receiving unit receives power received by electromagnetic induction with a power feeding line to a load connected to the power receiving unit. The process of supplying the power received by electromagnetic induction to the load connected to the power receiving unit, the process of measuring the reactance component of the feeder line, and automatically changing the parameters of the resonance element according to the magnitude of the reactance component look including a resonance adjustment step, the feed line, together with the inner tubular part of the cylindrical, and the outer tube portion of the arranged cylindrical outside of the inner tube portion, the outer tube portion and the inner tube portion A connecting part that connects concentrically and The configured conductors are constructed by coating an insulator made of rectangular tube-like synthetic resin molded product.

本発明によれば、リアクタンス成分を容易に変化可能な共振要素を自動的に可変としているため、極めて作業性よく、力率の向上を図ることができ、給電線から受電部への電力伝達の効率を向上することができる。   According to the present invention, since the resonant element whose reactance component can be easily changed is automatically variable, the power factor can be improved with extremely good workability, and the power transmission from the power supply line to the power receiving unit can be improved. Efficiency can be improved.

本発明の実施の形態1の非接触給電システムの概要図Schematic diagram of the non-contact power feeding system of Embodiment 1 of the present invention 本発明の実施の形態1の非接触給電システムの等価回路図FIG. 3 is an equivalent circuit diagram of the contactless power feeding system according to the first embodiment of the present invention. 本発明の実施の形態1の非接触給電システムにおけるモニタ装置の出力の一例を示す説明図Explanatory drawing which shows an example of the output of the monitor apparatus in the non-contact electric power feeding system of Embodiment 1 of this invention 本発明の実施の形態1の非接触給電システムで用いられる可変容量コンデンサの一例を示す図であり、(a)、(b)は各状態の電極選択状態を示す図It is a figure which shows an example of the variable capacitor used with the non-contact electric power feeding system of Embodiment 1 of this invention, (a), (b) is a figure which shows the electrode selection state of each state 本発明の実施の形態1の非接触給電システムの給電線の断面図Sectional drawing of the feeder of the non-contact electric power feeding system of Embodiment 1 of this invention 本発明の実施の形態1の非接触給電システムのピックアップ部の断面図Sectional drawing of the pick-up part of the non-contact electric power feeding system of Embodiment 1 of this invention 本発明の実施の形態2の非接触給電システムを用いた調整方法の等価回路図を示す説明図Explanatory drawing which shows the equivalent circuit schematic of the adjustment method using the non-contact electric power feeding system of Embodiment 2 of this invention 本発明の実施の形態3の非接触給電システムを用いた調整方法の等価回路図を示す説明図Explanatory drawing which shows the equivalent circuit schematic of the adjustment method using the non-contact electric power feeding system of Embodiment 3 of this invention 従来例の非接触給電システムの概要図Overview of conventional contactless power supply system 従来例の非接触給電システムの等価回路図Equivalent circuit diagram of conventional contactless power supply system

以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1の非接触式給電システムを示す概要図である。図2は、この非接触式給電システムの等価回路図、図3は同非接触給電システムにおけるモニタ装置の出力の一例を示す説明図である。また、図4は同非接触給電システムで用いられる可変容量コンデンサの一例を示す図であり、(a)、(b)に各状態の電極選択状態を示す。図5は給電線の断面図、図6は給電装置のピックアップ部の断面図である。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a non-contact power supply system according to Embodiment 1 of the present invention. FIG. 2 is an equivalent circuit diagram of the non-contact power feeding system, and FIG. 3 is an explanatory diagram illustrating an example of an output of the monitor device in the non-contact power feeding system. FIG. 4 is a view showing an example of a variable capacitor used in the non-contact power feeding system, and FIGS. 4A and 4B show electrode selection states in each state. FIG. 5 is a cross-sectional view of the power supply line, and FIG. 6 is a cross-sectional view of the pickup portion of the power supply apparatus.

本実施の形態1の非接触給電システムは、図1に概要図、図2に等価回路図を示すように、リアクタンス成分を増減可能な共振要素として可変容量コンデンサ140を設け、自動的に容量調整を実現できるようにしたことを特徴としている。これは、高周波電源110の電圧位相と電流位相とをモニタ部130でモニターし、図3に示すように、得られたこの位相差Gが所望の値となるように、共振調整部150によって、可変容量コンデンサ140を自動的に可変させることにより共振調整を行う。   As shown in the schematic diagram of FIG. 1 and the equivalent circuit diagram of FIG. 2, the non-contact power feeding system of the first embodiment is provided with a variable capacitor 140 as a resonance element capable of increasing or decreasing the reactance component, and automatically adjusts the capacitance. The feature is that it can be realized. This is because the voltage phase and current phase of the high-frequency power supply 110 are monitored by the monitor unit 130, and as shown in FIG. 3, the resonance adjustment unit 150 adjusts the obtained phase difference G to a desired value. Resonance adjustment is performed by automatically varying the variable capacitor 140.

つまり、共振調整部150は、非接触給電システムの給電線120を流れる電流成分と電圧成分から、可変容量コンデンサ140の容量Cを調整することで、力率が1に近くなるように調整する。つまり“力率が1となる”ということは、給電線のインダクタンス成分をLとし、可変容量コンデンサの容量をCとしたとき、共振周波数fに対して、前述した式(1)と同様、
ωL−1/ωC≒0 (式2)
が成立する場合である。
従って、C≒1/ωLとなるように調整する。
That is, the resonance adjustment unit 150 adjusts the capacitance C of the variable capacitor 140 from the current component and the voltage component flowing through the power supply line 120 of the non-contact power supply system so that the power factor is adjusted to be close to unity. In other words, “the power factor is 1” means that the inductance component of the feeder line is L and the capacitance of the variable capacitor is C, with respect to the resonance frequency f, as in the above-described equation (1).
ωL-1 / ωC ≒ 0 (Formula 2)
Is true.
Therefore, adjustment is performed so that C≈1 / ω 2 L.

モニタ部130は、CTなどの電流測定装置と、電圧測定装置とを用いて、電圧位相と電流位相と をモニタし、共振調整部150で、上記式2を満たすように容量Cを決定する。たとえば電流測定や電圧測定に際しては、磁性体薄膜を用いた電流センサあるいは電力センサなど適宜選択して使用することが可能である。   The monitor unit 130 monitors the voltage phase and the current phase using a current measuring device such as a CT and a voltage measuring device, and the resonance adjusting unit 150 determines the capacitance C so as to satisfy the above equation 2. For example, in current measurement or voltage measurement, a current sensor or a power sensor using a magnetic thin film can be appropriately selected and used.

すなわちこの非接触給電システムは、高周波電源110と、この高周波電源110に直列に接続される給電線120とを備えた給電部100と、給電線の外周で非接触に設置される受電部200とを具備し、受電部200が給電線120との電磁誘導により受電した電力を受電部200に接続された駆動装置300などの負荷に供給するものである。   That is, this non-contact power feeding system includes a power feeding unit 100 including a high-frequency power source 110, a power feeding line 120 connected in series to the high-frequency power source 110, and a power receiving unit 200 installed in a non-contact manner on the outer periphery of the power feeding line. The power receiving unit 200 supplies the power received by electromagnetic induction with the power supply line 120 to a load such as the driving device 300 connected to the power receiving unit 200.

実際には、共振調整部150を、所定時間ごとに動作させるようにし、所定時間駆動後に共振調整を行うことで、経時変化に対応した調整ができるように構成することができる。すなわち、負荷の状況などに対応して、受電部側のシステム全体の状態を考慮し、共振周波数fに対応するように可変容量コンデンサの容量Cを調整する。   Actually, the resonance adjustment unit 150 can be operated at predetermined time intervals, and the resonance adjustment can be performed after driving for a predetermined time, so that adjustment corresponding to a change with time can be performed. That is, the capacitance C of the variable capacitor is adjusted so as to correspond to the resonance frequency f in consideration of the state of the entire system on the power receiving unit side in accordance with the load condition and the like.

給電線120のもつインダクタンス成分により、図3に示すように電流位相Iは電圧位相VよりもGだけ遅れている。この遅れを最大限に小さくするように可変容量コンデンサの容量Cを調整する。つまり、電流位相Iは電圧位相Vに限りなく近くなるようにすることで、力率がほぼ1となる。   Due to the inductance component of the feeder 120, the current phase I is delayed by G from the voltage phase V as shown in FIG. The capacitance C of the variable capacitor is adjusted so as to minimize this delay. That is, by making the current phase I as close as possible to the voltage phase V, the power factor becomes approximately 1.

また、可変容量コンデンサ140は、固定電極131と移動電極133とで構成され、図示しないアクチュエータにより、選択されて移動側端子Tmが所望の位置にある電極に接続されることで固定側端子Tsに接続された固定電極131との間の電極間距離が可変となり、所望の容量値を持つように設定される。たとえば図4(a)に示すように移動電極133のうち、固定電極131に近い側の電極片133aを選択した場合よりも、図4(b)に示すように固定電極131から離れた側の電極片133bを選択した場合の方が電極間距離が大きくなり、容量が大きくなる。このようにしてアクチュエータにより移動電極133が選択されて容量が可変となる。   The variable capacitor 140 is composed of a fixed electrode 131 and a moving electrode 133, and is selected by an actuator (not shown) so that the moving side terminal Tm is connected to an electrode at a desired position so that the fixed side terminal Ts is connected. The distance between the electrodes connected to the fixed electrode 131 is variable and is set to have a desired capacitance value. For example, as shown in FIG. 4A, the moving electrode 133 is located on the side farther from the fixed electrode 131 as shown in FIG. 4B than when the electrode piece 133a closer to the fixed electrode 131 is selected. When the electrode piece 133b is selected, the distance between the electrodes is increased and the capacity is increased. In this way, the moving electrode 133 is selected by the actuator, and the capacitance becomes variable.

ここでは、駆動装置300としてのモータに給電する受電部200とを具備している。そして、この受電部200が、高周波電流が流れる給電線120と、給電線120に誘導結合されるコア2を備えたピックアップ部1とを具備し、このピックアップ部1に誘起される誘導起電力によって駆動装置300に給電することで、負荷(図示せず)が駆動されるように構成されている。なおこの給電線120は、図示しない冶具によって、壁に固定されており、この給電線120に沿ってピックアップ部1が移動しながら、受電を行うようになっている。このように可変容量コンデンサ140を設けた他は、通例の非接触給電システムと同様である。   Here, a power receiving unit 200 that supplies power to a motor as the driving device 300 is provided. The power receiving unit 200 includes a power supply line 120 through which a high-frequency current flows and a pickup unit 1 including the core 2 that is inductively coupled to the power supply line 120, and the induced electromotive force induced in the pickup unit 1 By supplying power to the driving device 300, a load (not shown) is driven. The power supply line 120 is fixed to a wall by a jig (not shown), and power is received while the pickup unit 1 moves along the power supply line 120. Except for providing the variable capacitor 140 as described above, the configuration is the same as that of a typical non-contact power feeding system.

給電線120は、図5に示すように、円筒形状の内管部101と、内管部101の外側に配置された円筒形状の外管部102と、内管部101と外管部102を互いに同心となるように連結する4本の連結部103とで構成された導体を、角筒状の合成樹脂成形品からなる絶縁体104で被覆して構成されている。なお、給電線は必ずしもこの構造に限定されるものではなく、製造方法についても、外管部102内に、連結部103を備えた内管部101を圧入するなどの方法のほか、曲げ加工あるいは、金属の押し出し成型などによっても製造可能である。このように二重管構造の導体を給電線120に用いることで、円柱形状の導体に比較して高周波抵抗を低減し且つ損失を減少させることができるものの、高周波電流が流れる給電線においては、導体の材料(金属板)が有する電気抵抗以外に表皮効果と近接効果による抵抗成分(高周波抵抗)やインダクタンス成分がわずかに存在する。この給電線120による抵抗成分やインダクタンス成分の変化を含めて、周辺状況の変化に応じて可変容量コンデンサの容量値を変化させる。   As shown in FIG. 5, the feeder 120 includes a cylindrical inner tube portion 101, a cylindrical outer tube portion 102 disposed outside the inner tube portion 101, and the inner tube portion 101 and the outer tube portion 102. A conductor constituted by four connecting portions 103 connected so as to be concentric with each other is covered with an insulator 104 made of a synthetic resin molded product having a rectangular tube shape. Note that the feeder line is not necessarily limited to this structure, and the manufacturing method is not limited to the method of press-fitting the inner tube portion 101 having the connecting portion 103 into the outer tube portion 102, or bending or It can also be manufactured by metal extrusion. By using a double-pipe structure conductor for the feeder line 120 in this way, it is possible to reduce high-frequency resistance and loss compared to a cylindrical conductor, but in a feeder line through which a high-frequency current flows, In addition to the electrical resistance of the conductor material (metal plate), there are slight resistance components (high frequency resistance) and inductance components due to the skin effect and proximity effect. The capacitance value of the variable capacitor is changed according to the change in the surrounding situation, including the change in the resistance component and the inductance component due to the power supply line 120.

ここで、受電部200はピックアップ部1と受電回路部6とを有している。ピックアップ部1は、図6に詳細を示すようにコア2、コイル3、ボビン4、磁気シールド体5(受電回路部6)を有している。受電回路部6は、コイル3とともに共振回路を形成するコンデンサ、コイル3並びにコンデンサの共振回路から出力される共振電圧を定電圧化する定電圧回路などを有している。   Here, the power receiving unit 200 includes the pickup unit 1 and the power receiving circuit unit 6. As shown in detail in FIG. 6, the pickup unit 1 includes a core 2, a coil 3, a bobbin 4, and a magnetic shield body 5 (power receiving circuit unit 6). The power receiving circuit unit 6 includes a capacitor that forms a resonance circuit together with the coil 3, a constant voltage circuit that makes the resonance voltage output from the resonance circuit of the coil 3 and the capacitor constant, and the like.

また、コア2は、図6に示すように内周面及び外周面の双方が曲面(円筒面)で構成され且つ軸方向(紙面に垂直な方向)に交差する断面形状が略C形に形成されている。ここで、開口溝2aを挟んで対向するコア2の両端部20は、コア2の当該両端部20を除く部位(以下、「胴体部」と呼ぶ。)21よりも、軸方向に沿った断面の面積が大きく形成されている。   Further, as shown in FIG. 6, the core 2 has both an inner peripheral surface and an outer peripheral surface formed of curved surfaces (cylindrical surfaces), and a cross-sectional shape that intersects the axial direction (perpendicular to the paper surface) has a substantially C shape. Has been. Here, both end portions 20 of the core 2 facing each other with the opening groove 2a interposed therebetween are cross sections along the axial direction, rather than portions (hereinafter referred to as “body portions”) 21 excluding the both end portions 20 of the core 2. The area is formed large.

さらに、ボビン4は、円弧状に湾曲した筒形状の樹脂成形品からなり、軸方向の両端部に外鍔40が設けられている。尚、コア2は開口溝2aと反対側の箇所で胴体部21が二分割されており、それぞれの胴体部21にボビン4が外挿された後に胴体部21の端部同士が接合されることによって、図6に示すコア2が構成されている。また、コイル3は、絶縁被覆を有する巻線がボビン4に単層巻きされることで形成されている。   Further, the bobbin 4 is formed of a cylindrical resin molded product curved in an arc shape, and outer casings 40 are provided at both ends in the axial direction. The core 2 is divided into two body parts 21 at the opposite side of the opening groove 2a, and the end parts of the body part 21 are joined to each other after the bobbin 4 is extrapolated to each body part 21. Thus, the core 2 shown in FIG. 6 is configured. The coil 3 is formed by winding a winding having an insulating coating around the bobbin 4 in a single layer.

磁気シールド体5は、高透磁率である金属磁性材料により略円筒形状に形成されてコア2並びにコイル3に外挿される。但し、磁気シールド体5にはコア2の開口溝2aと連通する溝5aが軸方向に沿って設けられている。なお、この磁気シールド体5は必須ではなく、省略してもよい。   The magnetic shield body 5 is formed in a substantially cylindrical shape by a metal magnetic material having a high magnetic permeability, and is extrapolated to the core 2 and the coil 3. However, the magnetic shield body 5 is provided with a groove 5a communicating with the opening groove 2a of the core 2 along the axial direction. The magnetic shield 5 is not essential and may be omitted.

コア2は、図1に示したように、給電線120を側方から跨るように断面ほぼU字状の外郭を有し、その外郭の内部には、給電線120の両側方に位置するように一対のコイルが対向配置されて電磁ピックアップが構成される。ここで、コイルは、給電線120に可能な限り近接させることが好ましい。そして、高周波電源110から給電線120に高周波の電流が供給されることにより、給電線120の周囲に、供給された高周波の電流の周波数に応じた磁界MFの発生・減衰現象が発生し、それが磁束密度の変化となってコイルに誘導電流が発生する(電磁誘導)。
そして、図1に示す受電回路部6では、このようにしてコイルに発生した電流を、共振回路(図示せず)で安定化した後、負荷に送る。
このように受電回路部6を含む受電部200や駆動装置300を含む負荷の状態などにより、給電線120のインダクタンス成分や抵抗成分が変化することもあるが、これらの変化についても考慮して共振調整部で容量を調整する。
As shown in FIG. 1, the core 2 has a substantially U-shaped outer section so as to straddle the power supply line 120 from the side, and the core 2 is located on both sides of the power supply line 120 inside the outer structure. A pair of coils are arranged opposite to each other to constitute an electromagnetic pickup. Here, the coil is preferably as close as possible to the feeder 120. Then, when a high-frequency current is supplied from the high-frequency power source 110 to the power supply line 120, a magnetic field MF is generated and attenuated according to the frequency of the supplied high-frequency current around the power supply line 120. Becomes a change in magnetic flux density, and an induced current is generated in the coil (electromagnetic induction).
In the power receiving circuit unit 6 shown in FIG. 1, the current generated in the coil in this way is stabilized by a resonance circuit (not shown) and then sent to the load.
As described above, the inductance component and the resistance component of the feeder 120 may change depending on the state of the load including the power receiving unit 200 including the power receiving circuit unit 6 and the driving device 300. Adjust the volume with the adjustment unit.

以上説明してきたように、本実施の形態の非接触給電システムによれば、高力率での、非接触給電を極めて容易に実現することが可能となる。また、実際に使用現場で自動的に調整することができるため、微調整も可能で、力率の向上を図ることができる。
さらにまた設置時あるいは使用中に給電線の長さや状態が変わったり、負荷の状態が変わったりした場合にも、現場での調整が容易となる。
このようにして摺動部無しに給電することができ、ピックアップ部1に誘起される誘導起電力によって駆動装置に給電することで、負荷が駆動され、摩耗粉の発生もなく、クリーンな環境でメンテナンス頻度を低減することができる。
As described above, according to the contactless power supply system of the present embodiment, it is possible to realize contactless power supply with a high power factor very easily. In addition, since the actual adjustment can be automatically performed at the site of use, fine adjustment is possible and the power factor can be improved.
Furthermore, when the length or state of the power supply line is changed or the load state is changed during installation or use, adjustment on the site is facilitated.
In this way, power can be supplied without the sliding portion, and by supplying power to the driving device by the induced electromotive force induced in the pickup portion 1, the load is driven, no wear powder is generated, and in a clean environment. Maintenance frequency can be reduced.

なお、前記実施の形態では、可変容量コンデンサを用いたが、これに限定されることなく、バリキャップなど他の可変容量生成回路を用いてもよいことはいうまでもない。   In the above embodiment, the variable capacitor is used. However, the present invention is not limited to this, and it goes without saying that another variable capacitor generating circuit such as a varicap may be used.

(実施の形態2)
前記実施の形態1では電流位相をモニタし、この位相差を0にすべく調整するという方法をとったのに対し、本実施の形態では高周波電源110に接続される給電線120間の電圧(V)と共振要素である可変容量コンデンサ140の両端電圧(V)との差を測定し、この差に応じて容量を調整する。
(Embodiment 2)
In the first embodiment, the current phase is monitored and the method of adjusting the phase difference to zero is adopted. In the present embodiment, the voltage between the feeder lines 120 connected to the high frequency power supply 110 ( The difference between V L ) and the voltage (V C ) across the variable capacitor 140, which is a resonance element, is measured, and the capacitance is adjusted according to this difference.

すなわち、図7に示すように、共振調整部150が、高周波電源110に接続される給電線120間の電圧(V)と共振要素である可変容量コンデンサ140の両端電圧(V)との差を測定する測定部を具備している。ここで給電線120間の電圧Vは、高周波電源110の近傍で電圧計により測定する。 そしてこの測定部で得られた、電圧差V−Vをモニタ部に導き、出力し、この差が、所定の値(α)となるように可変容量コンデンサ140の容量値(パラメータ)を制御する。ここでαはシステム固定の定数である。
−V=α (式3)
That is, as shown in FIG. 7, the resonance adjustment unit 150 calculates a voltage (V L ) between the power supply lines 120 connected to the high frequency power supply 110 and a voltage (V C ) across the variable capacitor 140 that is a resonance element. A measuring unit for measuring the difference is provided. Here, the voltage VL between the feeder lines 120 is measured by a voltmeter in the vicinity of the high-frequency power source 110. Then, the voltage difference V L -V C obtained by this measurement unit is guided to the monitor unit and output, and the capacitance value (parameter) of the variable capacitor 140 is set so that this difference becomes a predetermined value (α). Control. Here, α is a system-fixed constant.
V L −V C = α (Formula 3)

この方法の場合にも、実際には、共振調整部150を、所定時間ごとに動作させるようにし、所定時間駆動後に共振調整を行うことで、経時変化に対応した調整ができるように構成することができる。負荷の状況などに対応して、受電部側のシステム全体の状態を考慮し、共振周波数fに近い共振周波数をもつように可変容量コンデンサ140の容量を調整することができる。   Even in this method, in practice, the resonance adjustment unit 150 is operated every predetermined time, and the resonance adjustment is performed after the predetermined time drive so that the adjustment corresponding to the change with time can be performed. Can do. The capacity of the variable capacitor 140 can be adjusted so as to have a resonance frequency close to the resonance frequency f in consideration of the state of the entire system on the power receiving unit side in accordance with the load condition and the like.

(実施の形態3)
前記実施の形態1では電流位相をモニタし、この位相差を0にすべく調整するという方法をとったのに対し、本実施の形態では高周波電源110の出力電圧(Vout)を測定し、この測定値をモニタしつつ、可変容量コンデンサの容量を調整するものである。
すなわち、図8に説明図を示すように、共振調整部(150)では、高周波電源の出力電圧(Vout)があらかじめ決定された所定の電圧βより小さくならない程度に最小となるように、共振要素である可変容量コンデンサのパラメータを制御する。
つまり高周波電源の出力電圧(Vout)が
Vout >β (式4)
(Embodiment 3)
In the first embodiment, the current phase is monitored and the method of adjusting the phase difference to zero is adopted, whereas in the present embodiment, the output voltage (Vout) of the high frequency power supply 110 is measured, and this The capacitance of the variable capacitor is adjusted while monitoring the measured value.
That is, as shown in the explanatory diagram of FIG. 8, in the resonance adjustment unit (150), the resonance element (150) is minimized so that the output voltage (Vout) of the high-frequency power supply does not become smaller than a predetermined voltage β. Control the parameters of the variable capacitor.
In other words, the output voltage (Vout) of the high frequency power supply is Vout> β (Equation 4)

この方法の場合にも、実施の形態1及び2と同様、実際には、共振調整部(150)を、所定時間ごとに動作させるようにし、所定時間駆動後に共振調整を行うことで、経時変化に対応した調整ができるように構成することができる。負荷の状況などに対応して、受電部側のシステム全体の状態を考慮し、共振周波数fに近い共振周波数をもつように可変容量コンデンサの容量を調整することができる。   Also in this method, as with the first and second embodiments, in practice, the resonance adjustment unit (150) is operated every predetermined time, and the resonance adjustment is performed after driving for a predetermined time. It can be configured to be able to adjust in accordance with The capacity of the variable capacitor can be adjusted so as to have a resonance frequency close to the resonance frequency f in consideration of the state of the entire system on the power reception unit side in accordance with the load condition and the like.

なお、前記実施の形態では、可変容量コンデンサを用いて容量を調整したが、容量に限定されることなく、コイルなど、リアクタンス成分を調整できる共振要素を変化させるようにすればよい。   In the above embodiment, the capacitance is adjusted using the variable capacitor. However, the resonance element such as a coil that can adjust the reactance component may be changed without being limited to the capacitance.

なお、本発明は、前記各実施の形態に例をとって説明したが、これら実施の形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施の形態を各種採用することができる。   In addition, although this invention was demonstrated taking the said each embodiment as an example, various other embodiment can be employ | adopted in the range which is not restricted to these embodiments and does not deviate from the summary of this invention.

1 ピックアップ部
2 コア
3 コイル
100 給電部
101 内管部
102 外管部
103 連結部
104 絶縁体
110 高周波電源
120 給電線
130 モニタ部
140 可変容量コンデンサ
150 共振調整部
200 受電部
300 駆動装置
DESCRIPTION OF SYMBOLS 1 Pickup part 2 Core 3 Coil 100 Feeding part 101 Inner pipe part 102 Outer pipe part 103 Connection part 104 Insulator 110 High frequency power supply 120 Feed line 130 Monitor part 140 Variable capacity capacitor 150 Resonance adjustment part 200 Power receiving part 300 Drive device

Claims (8)

高周波電源と、前記高周波電源に直列に接続される給電線とを備えた給電部と、
前記給電線の外周で非接触に設置される受電部とを具備し、
前記受電部が前記給電線との電磁誘導により受電した電力を前記受電部に接続された負荷に供給する非接触給電システムであって、
前記給電部は、そのリアクタンス成分を増減可能な共振要素と、前記共振要素のパラメータを自動的に可変させることにより共振調整を行う共振調整部とを備え
前記給電線は、円筒形状の内管部と、前記内管部の外側に配置された円筒形状の外管部と、前記内管部と前記外管部を互いに同心となるように連結する連結部とで構成された導体を、角筒状の合成樹脂成形品からなる絶縁体で被覆して構成されている非接触給電システム。
A power supply unit comprising a high-frequency power supply and a power supply line connected in series to the high-frequency power supply;
A power receiving unit installed in a non-contact manner on the outer periphery of the feeder line;
A non-contact power feeding system that supplies power received by the power receiving unit by electromagnetic induction with the power feeding line to a load connected to the power receiving unit,
The power supply unit includes a resonance element that can increase or decrease its reactance component, and a resonance adjustment unit that performs resonance adjustment by automatically changing a parameter of the resonance element ,
The power supply line includes a cylindrical inner tube portion, a cylindrical outer tube portion disposed outside the inner tube portion, and a connection that connects the inner tube portion and the outer tube portion so as to be concentric with each other. A non-contact power feeding system configured by covering a conductor configured with a portion with an insulator made of a synthetic resin molded product having a rectangular tube shape .
請求項1に記載の非接触給電システムであって、
前記共振調整部は、所定時間駆動後に共振調整を行うことができるように構成された非接触給電システム。
The contactless power supply system according to claim 1,
The resonance adjustment unit is a non-contact power feeding system configured to be able to perform resonance adjustment after driving for a predetermined time.
請求項1または2に記載の非接触給電システムであって、
前記共振調整部は、前記高周波電源に接続される電線間の電圧(VL)と共振要素の両端電圧(VC)との差を測定する測定部を備え、
前記差が、所定の値となるように前記共振要素のパラメータを制御するように構成された非接触給電システム。
It is a non-contact electric power feeding system according to claim 1 or 2,
The resonance adjustment unit includes a measurement unit that measures a difference between a voltage (VL) between electric wires connected to the high-frequency power source and a voltage across the resonance element (VC),
A non-contact power feeding system configured to control a parameter of the resonance element so that the difference becomes a predetermined value.
請求項1乃至のいずれか一項に記載の非接触給電システムであって、
前記共振要素は、可変容量コンデンサである非接触給電システム。
It is a non-contact electric supply system according to any one of claims 1 to 3 ,
The resonance element is a non-contact power feeding system which is a variable capacitor.
請求項1乃至のいずれか一項に記載の非接触給電システムであって、
前記共振調整部は、前記高周波電源の電圧電流位相をモニターするモニタ部を備え、
この位相差が所望の値となるように前記共振要素を調整する非接触給電システム。
It is a non-contact electric supply system according to any one of claims 1 to 3 ,
The resonance adjustment unit includes a monitor unit that monitors a voltage-current phase of the high-frequency power source,
A non-contact power feeding system that adjusts the resonance element so that the phase difference becomes a desired value.
請求項に記載の非接触給電システムであって、
前記共振要素は、電極間距離を変化可能に構成された可変容量コンデンサであり、前記共振調整部は前記モニタ部の出力に応じて前記電極間距離を調整する非接触給電システム。
The contactless power supply system according to claim 5 ,
The resonance element is a variable capacitor configured such that a distance between electrodes can be changed, and the resonance adjustment unit adjusts the distance between the electrodes in accordance with an output of the monitor unit.
請求項4または6に記載の非接触給電システムであって、
前記可変容量コンデンサは、複数の電極を備え、前記電極から2枚を選択することで容量を変化させるようにした非接触給電システム。
The contactless power supply system according to claim 4 or 6 ,
The variable capacitance capacitor includes a plurality of electrodes, and the capacitance is changed by selecting two from the electrodes.
高周波電源と、前記高周波電源に直列に接続される給電線と、給電部と、前記給電線の外周で非接触に設置される受電部とを具備し、
前記受電部が前記給電線との電磁誘導により受電した電力を前記受電部に接続された負荷に供給する非接触給電システムの駆動方法であって、
前記給電線に前記高周波電源から電流を流し、前記給電線との電磁誘導により受電した電力を前記受電部に接続された負荷に供給する工程と、
前記給電線のリアクタンス成分を測定する工程と、
前記リアクタンス成分の大きさに応じて、共振要素のパラメータを自動的に可変させる共振調整工程とを含み、
前記給電線は、円筒形状の内管部と、前記内管部の外側に配置された円筒形状の外管部と、前記内管部と前記外管部を互いに同心となるように連結する連結部とで構成された導体を、角筒状の合成樹脂成形品からなる絶縁体で被覆して構成されている非接触給電システムの駆動方法。
A high-frequency power supply, a power supply line connected in series to the high-frequency power supply, a power supply unit, and a power reception unit installed in a non-contact manner on the outer periphery of the power supply line,
A method of driving a non-contact power supply system that supplies power received by the power receiving unit by electromagnetic induction with the power supply line to a load connected to the power receiving unit,
Passing a current from the high-frequency power source to the power supply line and supplying power received by electromagnetic induction with the power supply line to a load connected to the power receiving unit;
Measuring a reactance component of the feeder line;
Depending on the magnitude of the reactance component, seen including a resonance adjustment step of automatically varying the parameters of the resonant element,
The power supply line includes a cylindrical inner tube portion, a cylindrical outer tube portion disposed outside the inner tube portion, and a connection that connects the inner tube portion and the outer tube portion so as to be concentric with each other. A driving method of a non-contact power feeding system configured by covering a conductor constituted by a portion with an insulator made of a synthetic resin molded product having a rectangular tube shape .
JP2010069515A 2010-03-25 2010-03-25 Non-contact power feeding system and driving method thereof Active JP5534889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069515A JP5534889B2 (en) 2010-03-25 2010-03-25 Non-contact power feeding system and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069515A JP5534889B2 (en) 2010-03-25 2010-03-25 Non-contact power feeding system and driving method thereof

Publications (2)

Publication Number Publication Date
JP2011205761A JP2011205761A (en) 2011-10-13
JP5534889B2 true JP5534889B2 (en) 2014-07-02

Family

ID=44881791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069515A Active JP5534889B2 (en) 2010-03-25 2010-03-25 Non-contact power feeding system and driving method thereof

Country Status (1)

Country Link
JP (1) JP5534889B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2817861B1 (en) 2012-02-02 2021-11-17 Auckland UniServices Limited Var control for inductive power transfer systems
EP2912744B1 (en) 2012-10-29 2018-09-19 Apple Inc. A receiver for an inductive power transfer system and a method for controlling the receiver
JP5927583B2 (en) * 2012-11-01 2016-06-01 パナソニックIpマネジメント株式会社 Contactless power supply system
KR102434241B1 (en) 2014-11-05 2022-08-18 애플 인크. An inductive power receiver
US10355532B2 (en) 2016-11-02 2019-07-16 Apple Inc. Inductive power transfer
US10447090B1 (en) 2016-11-17 2019-10-15 Apple Inc. Inductive power receiver
JP2019154216A (en) * 2018-02-28 2019-09-12 忠 高野 Non-contact slip ring device
JPWO2022004050A1 (en) * 2020-06-29 2022-01-06

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213282A (en) * 1995-02-01 1996-08-20 Murata Mfg Co Ltd Variable capacitance capacitor
JP3840765B2 (en) * 1997-11-21 2006-11-01 神鋼電機株式会社 Primary power supply side power supply device for contactless power transfer system
JP2009201211A (en) * 2008-02-20 2009-09-03 Asyst Technologies Japan Inc Power supply system

Also Published As

Publication number Publication date
JP2011205761A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5534889B2 (en) Non-contact power feeding system and driving method thereof
JP6371364B2 (en) Non-contact power supply device
KR102234457B1 (en) Induction coil with dynamically variable coil geometry
KR101783727B1 (en) Power-receiving device and power-feeding system
JP2011142748A (en) Wireless power supply system
US10204731B2 (en) Transmitting coil structure and wireless power transmitting terminal using the same
WO2000052967A1 (en) Induction heating apparatus and transformer
JP6655165B2 (en) Inductors and inductor assemblies
JP6858151B2 (en) Wireless power supply device and its impedance adjustment method
JP2016076645A (en) Planar coil
JP2019507461A (en) High frequency power supply system with fine-tuned output for heating the workpiece
KR101467093B1 (en) Inner-type linear antenna, antenna assembly to adjust plasma density and plasma apparatus using thereof
JP2004071584A (en) Electromagnetic induction apparatus
JP2009240121A (en) Non-contact power feeding apparatus
KR101293592B1 (en) Adjustable inductor device using carbon fiber wire
JP2013161546A (en) Induction heating apparatus
US10340736B2 (en) Wireless power transmission device and wireless power charging system including the same
KR101401493B1 (en) Adjustable inductor device using carbon fiber wire
US20230291106A1 (en) Antenna device
WO2022244729A1 (en) Wireless power supply system and method, and wireless power receiving system
CN110506379B (en) System for wireless power transfer between low and high potentials, and high voltage circuit breaker
KR101408378B1 (en) Adjustable inductor device using carbon fiber wire
JP5461277B2 (en) Antenna device, power transmission device, power reception device, and non-contact power transmission system
TWM554169U (en) RF sensor and impedance matching device with RF sensor
JP2014175586A (en) Magnetic field resonance coil device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R151 Written notification of patent or utility model registration

Ref document number: 5534889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151