JP5926130B2 - Method for producing diolefin compound and method for producing diepoxy compound containing the same - Google Patents

Method for producing diolefin compound and method for producing diepoxy compound containing the same Download PDF

Info

Publication number
JP5926130B2
JP5926130B2 JP2012138362A JP2012138362A JP5926130B2 JP 5926130 B2 JP5926130 B2 JP 5926130B2 JP 2012138362 A JP2012138362 A JP 2012138362A JP 2012138362 A JP2012138362 A JP 2012138362A JP 5926130 B2 JP5926130 B2 JP 5926130B2
Authority
JP
Japan
Prior art keywords
group
formula
following formula
reaction
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012138362A
Other languages
Japanese (ja)
Other versions
JP2014001174A (en
Inventor
大輔 油野
大輔 油野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2012138362A priority Critical patent/JP5926130B2/en
Priority to PCT/JP2013/065936 priority patent/WO2013191018A1/en
Priority to TW102121659A priority patent/TW201410641A/en
Publication of JP2014001174A publication Critical patent/JP2014001174A/en
Application granted granted Critical
Publication of JP5926130B2 publication Critical patent/JP5926130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/325Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom
    • C07C1/326Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a metal atom the hetero-atom being a magnesium atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、熱特性に優れる硬化物を形成可能なジエポキシ化合物の原料となるジオレフィン化合物の製造方法、及び前記ジオレフィン化合物の製造方法を含むジエポキシ化合物の製造方法に関する。   The present invention relates to a method for producing a diolefin compound as a raw material for a diepoxy compound capable of forming a cured product having excellent thermal characteristics, and a method for producing a diepoxy compound including the method for producing the diolefin compound.

エポキシ化合物は重合することにより、電気特性、耐湿性、耐熱性等に優れる硬化物を形成することが知られている。なかでも、ジエポキシ化合物は、コーティング剤、インク、接着剤、シーラント、封止剤、レジスト、複合材料、透明基材、透明フィルム又はシート、光学材料(例えば、光学レンズ等)、絶縁材料、光造形材料、電子材料(例えば、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等)などの用途を含む様々な方面で用いられている。   It is known that an epoxy compound is polymerized to form a cured product having excellent electrical characteristics, moisture resistance, heat resistance and the like. Among these, diepoxy compounds are coating agents, inks, adhesives, sealants, sealants, resists, composite materials, transparent substrates, transparent films or sheets, optical materials (for example, optical lenses), insulating materials, stereolithography. It is used in various fields including applications such as materials and electronic materials (for example, electronic paper, touch panel, solar cell substrate, optical waveguide, light guide plate, holographic memory, etc.).

ジエポキシ化合物としては、現在、様々な種類のものが市販されており、例えば、3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート、3,4,3',4’−ジエポキシビシクロヘキシル等が挙げられる。これらエポキシ化合物は種々の硬化剤又は硬化触媒の下で重合することにより硬化物を形成する。   Various types of diepoxy compounds are currently commercially available, such as 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, 3,4,3 ′, 4′-diepoxy. Bicyclohexyl and the like can be mentioned. These epoxy compounds form a cured product by polymerization under various curing agents or curing catalysts.

しかしながら、前記3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレートはオキシラン酸素濃度が低く架橋点が少ないため得られる硬化物の強度が低く、耐熱性が低いことが問題であった。   However, the 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate has a problem in that the cured product obtained has low strength and low heat resistance because the oxirane oxygen concentration is low and the number of crosslinking points is small. .

一方、3,4,3',4’−ジエポキシビシクロヘキシルは3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレートに比べるとオキシラン酸素濃度が高いため、得られる硬化物はより優れた耐熱性を有するが、温度上昇に伴い機械特性(例えば、弾性率など)が大きく低下し熱安定性が低い点で、未だ十分満足できるものではなかった。   On the other hand, since 3,4,3 ′, 4′-diepoxybicyclohexyl has a higher oxirane oxygen concentration than 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, the resulting cured product is more Although it has excellent heat resistance, it has not yet been sufficiently satisfactory in that mechanical properties (for example, elastic modulus, etc.) are greatly reduced and thermal stability is low as the temperature rises.

特開昭63−264625号公報JP-A 63-264625 特開昭63−012623号公報JP 63-012623 A 特開昭59−011317号公報JP 59-011317 A 特開2008−31424号公報JP 2008-31424 A

そして、3,4,3',4’−ジエポキシビシクロヘキシルは2つの脂環式エポキシ基(=脂環を構成する2つの炭素原子と1つの酸素原子とが互いに連結することにより形成される環式基である)が単結合で剛直に結合された構造を有するため、必ずしも2つの脂環式エポキシ基が架橋反応に適した位置に存在することができるわけでなく、架橋反応に関与できない脂環式エポキシ基が発生し、モノマーのオキシラン酸素濃度は高いにもかかわらず十分な耐熱性を有する硬化物が得られないことが分かった。そして、2つの脂環式エポキシ基を炭化水素鎖で結合して得られる化合物は、常に架橋反応に適した位置に脂環式エポキシ基を存在させることが可能となり、架橋反応に関与できない脂環式エポキシ基を著しく低減することができること、それにより、極めて優れた熱特性を有する(具体的には、極めて高い耐熱性を有し、高温環境下に曝しても優れた機械特性を維持できる熱安定性を有する)硬化物を形成することができることを見いだした。   And 3,4,3 ′, 4′-diepoxybicyclohexyl is formed by connecting two alicyclic epoxy groups (= two carbon atoms and one oxygen atom constituting the alicyclic ring to each other). (A cyclic group) has a structure in which a single bond is rigidly bonded, and therefore, two alicyclic epoxy groups cannot necessarily exist in a position suitable for the crosslinking reaction and cannot participate in the crosslinking reaction. An alicyclic epoxy group was generated, and it was found that a cured product having sufficient heat resistance could not be obtained although the oxirane oxygen concentration of the monomer was high. A compound obtained by bonding two alicyclic epoxy groups with a hydrocarbon chain can always have an alicyclic epoxy group at a position suitable for the crosslinking reaction, and the alicyclic cannot participate in the crosslinking reaction. The epoxy group can be significantly reduced, thereby having extremely excellent thermal properties (specifically, heat that has extremely high heat resistance and can maintain excellent mechanical properties even when exposed to high temperature environments) It has been found that a cured product can be formed.

前記2つの脂環式エポキシ基を炭化水素鎖で結合して得られる化合物の製造方法としては、ルテニウム、ロジウム、パラジウム、イリジウム、白金、ニッケル、タングステン、モリブデン、チタン、バナジウム等の高価な金属元素を含む触媒を使用する方法を見いだしたが、コストが嵩むことが問題であった。   As a method for producing a compound obtained by bonding the two alicyclic epoxy groups with a hydrocarbon chain, an expensive metal element such as ruthenium, rhodium, palladium, iridium, platinum, nickel, tungsten, molybdenum, titanium, vanadium, etc. Although a method of using a catalyst containing the catalyst has been found, the problem is that the cost increases.

従って、本発明の目的は、硬化することにより極めて優れた熱特性を有する硬化物を形成することができるジエポキシ化合物の原料として有用な新規なジオレフィン化合物を安価に製造することができるジオレフィン化合物の製造方法を提供することにある。
本発明の他の目的は、新規なジオレフィン化合物を提供することにある。
本発明の更に他の目的は、硬化することにより極めて優れた熱特性を有する硬化物を形成することができるジエポキシ化合物を安価に製造することができるジエポキシ化合物の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a diolefin compound that can be produced at low cost as a novel diolefin compound that can be used as a raw material for a diepoxy compound that can form a cured product having extremely excellent thermal properties when cured. It is in providing the manufacturing method of.
Another object of the present invention is to provide a novel diolefin compound.
Still another object of the present invention is to provide a method for producing a diepoxy compound, which can produce a diepoxy compound capable of forming a cured product having extremely excellent thermal properties by curing at low cost.

本発明者は上記課題を解決するため鋭意検討した結果、特定のテトラヒドロベンジル化合物とGrignard試薬を反応させると、ルテニウム、ロジウム、パラジウム、イリジウム、白金、ニッケル、タングステン、モリブデン、チタン、バナジウム等の高価な金属元素を含む触媒を使用しなくても、銅化合物や鉄化合物などの安価な金属化合物を触媒として、効率よく且つ優れた収率でジオレフィン化合物を得ることができること、前記ジオレフィン化合物をエポキシ化することによって得られるジエポキシ化合物は、2つの脂環式エポキシ基がエチレン基等の炭化水素鎖を介して柔軟に結合された構造を有するため、脂環式エポキシ基を常に架橋反応に適した位置に存在させることが可能となり、架橋反応に関与できない脂環式エポキシ基を著しく低減することができ、極めて優れた熱特性を有する硬化物を形成することができることを見いだした。本発明はこれらの知見に基づいて完成させたものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that when a specific tetrahydrobenzyl compound and a Grignard reagent are reacted, expensive such as ruthenium, rhodium, palladium, iridium, platinum, nickel, tungsten, molybdenum, titanium, vanadium, etc. Even without using a catalyst containing various metal elements, a diolefin compound can be obtained efficiently and in an excellent yield using an inexpensive metal compound such as a copper compound or an iron compound as a catalyst. The diepoxy compound obtained by epoxidation has a structure in which two alicyclic epoxy groups are flexibly bonded via a hydrocarbon chain such as an ethylene group, so that the alicyclic epoxy group is always suitable for crosslinking reaction. Alicyclic epoxide that cannot be involved in the crosslinking reaction. It is possible to significantly reduce the group found that it is possible to form a cured product having excellent thermal properties. The present invention has been completed based on these findings.

すなわち、本発明は、下記式(1)

Figure 0005926130
(式中、R1〜R11はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示し、Xは塩素原子、臭素原子、ヨウ素原子、ベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、又はトリフルオロメタンスルホニルオキシ基を示す)
で表される化合物と、下記式(2)
Figure 0005926130
(式中、R12〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示し、Yは塩素原子、臭素原子、又はヨウ素原子を示す)
で表される化合物を反応させて、下記式(3)
Figure 0005926130
(式中、R1〜R22は前記に同じ)
で表されるジオレフィン化合物を得るジオレフィン化合物の製造方法を提供する。 That is, the present invention provides the following formula (1):
Figure 0005926130
(In the formula, R 1 to R 11 are each an independent group, and are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group, and X represents a chlorine atom, a bromine atom, an iodine atom, a benzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy group, or trifluoromethanesulfonyloxy group)
And a compound represented by the following formula (2)
Figure 0005926130
(Wherein R 12 to R 22 are each an independent group, the same or different, each representing a hydrogen atom, a methyl group, or an ethyl group, and Y represents a chlorine atom, a bromine atom, or an iodine atom)
And a compound represented by the following formula (3):
Figure 0005926130
(Wherein R 1 to R 22 are the same as above)
The manufacturing method of the diolefin compound which obtains the diolefin compound represented by these is provided.

前記反応は、鉄触媒の存在下、又は銅触媒と下記式(4)

Figure 0005926130
(式中、R23、R24は同一又は異なって、鎖状脂肪族炭化水素基、環状脂肪族炭化水素基、又は芳香族炭化水素基を示す)
で表されるアルキンの存在下で行うことが好ましい。 The reaction is carried out in the presence of an iron catalyst or a copper catalyst and the following formula (4)
Figure 0005926130
(Wherein R 23 and R 24 are the same or different and represent a chain aliphatic hydrocarbon group, a cyclic aliphatic hydrocarbon group, or an aromatic hydrocarbon group)
It is preferable to carry out in presence of alkyne represented by these.

本発明は、また、下記式(3)

Figure 0005926130
(式中、R1〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示す)
で表されるジオレフィン化合物を提供する。 The present invention also provides the following formula (3):
Figure 0005926130
(In the formula, R 1 to R 22 are each an independent group, and are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group)
The diolefin compound represented by these is provided.

本発明は、更に、前記ジオレフィン化合物の製造方法により下記式(3)

Figure 0005926130
(式中、R1〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示す)
で表されるジオレフィン化合物を得、得られた上記式(3)で表されるジオレフィン化合物を過酸と反応させることにより下記式(5)
Figure 0005926130
(式中、R1〜R22は前記に同じ)
で表されるジエポキシ化合物を得るジエポキシ化合物の製造方法を提供する。 The present invention further includes the following formula (3) by the method for producing the diolefin compound.
Figure 0005926130
(In the formula, R 1 to R 22 are each an independent group, and are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group)
The diolefin compound represented by formula (5) is obtained, and the resulting diolefin compound represented by formula (3) is reacted with a peracid to give the following formula (5):
Figure 0005926130
(Wherein R 1 to R 22 are the same as above)
A process for producing a diepoxy compound is obtained.

本発明のジオレフィン化合物の製造方法によれば、硬化することにより極めて優れた熱特性を有する硬化物を形成することができるジエポキシ化合物の、原料として有用な新規なジオレフィン化合物を、安価に且つ効率よく製造することができる。
そして、本発明のジエポキシ化合物の製造方法によれば、硬化することにより極めて優れた熱特性を有する硬化物を形成することができるジエポキシ化合物を、安価に且つ効率よく製造することができる。
従って、本発明の上記製造方法は、前記ジオレフィン化合物及びジエポキシ化合物を工業的に製造する方法として極めて有用である。
According to the method for producing a diolefin compound of the present invention, a novel diolefin compound useful as a raw material of a diepoxy compound capable of forming a cured product having extremely excellent thermal properties by curing, at a low cost, and It can be manufactured efficiently.
And according to the manufacturing method of the diepoxy compound of this invention, the diepoxy compound which can form the hardened | cured material which has the very outstanding thermal characteristic by hardening can be manufactured cheaply and efficiently.
Therefore, the above production method of the present invention is extremely useful as a method for industrially producing the diolefin compound and diepoxy compound.

[ジオレフィン化合物の製造方法]
本発明のジオレフィン化合物の製造方法は、下記式(1)

Figure 0005926130
(式中、R1〜R11はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示し、Xは塩素原子、臭素原子、ヨウ素原子、ベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、又はトリフルオロメタンスルホニルオキシ基を示す)
で表される化合物と、下記式(2)
Figure 0005926130
(式中、R12〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示し、Yは塩素原子、臭素原子、又はヨウ素原子を示す)
で表される化合物を反応させて、下記式(3)
Figure 0005926130
(式中、R1〜R22は前記に同じ)
で表されるジオレフィン化合物を得ることを特徴とする。 [Method for producing diolefin compound]
The method for producing a diolefin compound of the present invention comprises the following formula (1):
Figure 0005926130
(In the formula, R 1 to R 11 are each an independent group, and are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group, and X represents a chlorine atom, a bromine atom, an iodine atom, a benzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy group, or trifluoromethanesulfonyloxy group)
And a compound represented by the following formula (2)
Figure 0005926130
(Wherein R 12 to R 22 are each an independent group, the same or different, each representing a hydrogen atom, a methyl group, or an ethyl group, and Y represents a chlorine atom, a bromine atom, or an iodine atom)
And a compound represented by the following formula (3):
Figure 0005926130
(Wherein R 1 to R 22 are the same as above)
It is characterized by obtaining the diolefin compound represented by these.

前記反応は触媒の存在下で行うことが好ましい。触媒としては、例えば、鉄触媒、銅触媒、ニッケル触媒等を挙げることができる。本発明においては、なかでも鉄触媒又は銅触媒を使用することが好ましい。   The reaction is preferably performed in the presence of a catalyst. Examples of the catalyst include an iron catalyst, a copper catalyst, and a nickel catalyst. In the present invention, it is particularly preferable to use an iron catalyst or a copper catalyst.

前記鉄触媒としては、例えば、鉄(III)とアセチルアセトン(=acac)、ジベンゾイルメタン(=DBM)等との有機キレート化合物[具体的には、Fe(acac)3、Fe(DBM)3等]や、FeCl3等のハロゲン化鉄等を挙げることができる。これらは単独で又は2種以上を組み合わせて使用することができる。 Examples of the iron catalyst include organic chelate compounds of iron (III) and acetylacetone (= acac), dibenzoylmethane (= DBM), etc. [specifically, Fe (acac) 3 , Fe (DBM) 3, etc. And iron halides such as FeCl 3 . These can be used alone or in combination of two or more.

鉄触媒の使用量としては、上記式(1)で表される化合物1モルに対して、例えば0.001〜0.3モル程度、好ましくは0.005〜0.2モル、特に好ましくは0.01〜0.1モルである。鉄触媒を上記範囲で使用すると、優れた収率でジオレフィン化合物を得ることができる。   The amount of the iron catalyst used is, for example, about 0.001 to 0.3 mol, preferably 0.005 to 0.2 mol, particularly preferably 0, relative to 1 mol of the compound represented by the above formula (1). 0.01 to 0.1 mol. If an iron catalyst is used in the said range, a diolefin compound can be obtained with the outstanding yield.

上記反応を鉄触媒の存在下で行う場合、鉄触媒と共にN−メチルピロリジノン(NMP)等の第3級カルボン酸アミドや、ヘキサメチルリン酸トリアミド(HMPA)等の第3級リン酸アミド等の第3級アミド類を使用することが、収率を著しく向上することができる点で好ましい。前記第3級アミド類の使用量としては、上記式(1)で表される化合物1モルに対して、例えば0.1〜5モル程度、好ましくは0.5〜3モル、特に好ましくは0.5〜2モルである。   When the above reaction is carried out in the presence of an iron catalyst, a tertiary carboxylic acid amide such as N-methylpyrrolidinone (NMP) and a tertiary phosphoric acid amide such as hexamethylphosphoric triamide (HMPA) are used together with the iron catalyst. The use of tertiary amides is preferable in that the yield can be remarkably improved. The amount of the tertiary amide used is, for example, about 0.1 to 5 mol, preferably 0.5 to 3 mol, particularly preferably 0, relative to 1 mol of the compound represented by the formula (1). .5 to 2 moles.

前記銅触媒としては、例えば、CuCl2等のハロゲン化銅、トリフルオロメタンスルホン酸銅(I)(Cu(OTf))等のスルホン酸銅を挙げることができる。これらは単独で又は2種以上を組み合わせて使用することができる。 Examples of the copper catalyst include copper halides such as CuCl 2 and copper sulfonates such as copper (I) trifluoromethanesulfonate (Cu (OTf)). These can be used alone or in combination of two or more.

銅触媒の使用量としては、上記式(1)で表される化合物1モルに対して、例えば0.005〜0.2モル程度、好ましくは0.005〜0.15モル、特に好ましくは0.01〜0.1モルである。銅触媒を上記範囲で使用すると、優れた収率でジオレフィン化合物を得ることができる。   As the usage-amount of a copper catalyst, it is about 0.005-0.2 mol with respect to 1 mol of compounds represented by the said Formula (1), Preferably it is 0.005-0.15 mol, Most preferably, it is 0. 0.01 to 0.1 mol. If a copper catalyst is used in the said range, a diolefin compound can be obtained with the outstanding yield.

上記反応を銅触媒の存在下で行う場合、銅触媒と共に下記式(4)で表されるアルキンを使用することが、収率を著しく向上することができる点で好ましい。式(4)中、R23、R24は同一又は異なって、鎖状脂肪族炭化水素基、環状脂肪族炭化水素基、又は芳香族炭化水素基を示す。

Figure 0005926130
When performing the said reaction in presence of a copper catalyst, it is preferable to use the alkyne represented by following formula (4) with a copper catalyst at the point which can improve a yield remarkably. In formula (4), R 23 and R 24 are the same or different and each represents a chain aliphatic hydrocarbon group, a cyclic aliphatic hydrocarbon group, or an aromatic hydrocarbon group.
Figure 0005926130

23、R24における鎖状脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、n−ブチル、イソブチル、s−ブチル、t−ブチル、ペンチル、ヘキシル、デシル、ドデシル基などの炭素数1〜20(好ましくは1〜10、さらに好ましくは1〜3)程度のアルキル基;ビニル、アリル、1−ブテニル基などの炭素数2〜20(好ましくは2〜10、さらに好ましくは2〜3)程度のアルケニル基;エチニル、プロピニル基などの炭素数2〜20(好ましくは2〜10、さらに好ましくは2〜3)程度のアルキニル基等を挙げることができる。 Examples of the chain aliphatic hydrocarbon group for R 23 and R 24 include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, decyl, and dodecyl groups. An alkyl group having about 1 to 20 carbon atoms (preferably 1 to 10, more preferably 1 to 3 carbon atoms); 2 to 20 carbon atoms (preferably 2 to 10 and more preferably 2) such as vinyl, allyl and 1-butenyl groups. ˜3) alkenyl group; alkynyl groups having about 2 to 20 carbon atoms (preferably 2 to 10 and more preferably 2 to 3) such as ethynyl and propynyl groups.

23、R24における環状脂肪族炭化水素基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロオクチル基などの3〜20員(好ましくは3〜15員、さらに好ましくは5〜8員)程度のシクロアルキル基;シクロペンテニル、シクロへキセニル基などの3〜20員(好ましくは3〜15員、さらに好ましくは5〜8員)程度のシクロアルケニル基;パーヒドロナフタレン−1−イル、ノルボルニル、アダマンチル、テトラシクロ[4.4.0.12,5.17,10]ドデカン−3−イル基などの橋かけ環式炭化水素基等を挙げることができる。 Examples of the cyclic aliphatic hydrocarbon group for R 23 and R 24 include 3 to 20 members (preferably 3 to 15 members, more preferably 5 to 8 members) such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl groups. ) About cycloalkyl group; about 3-20 membered (preferably 3-15 membered, more preferably 5-8 membered) cycloalkenyl group such as cyclopentenyl, cyclohexenyl group; perhydronaphthalen-1-yl, Norbornyl, adamantyl, tetracyclo [4.4.0.1 2,5 . And a bridged cyclic hydrocarbon group such as 1 7,10 ] dodecan-3-yl group.

23、R24における芳香族炭化水素基としては、例えば、フェニル、p−メチルフェニル、ナフチル基などの炭素数6〜14(好ましくは6〜10)程度の芳香族炭化水素基等を挙げることができる。 Examples of the aromatic hydrocarbon group in R 23 and R 24 include aromatic hydrocarbon groups having about 6 to 14 (preferably 6 to 10) carbon atoms such as phenyl, p-methylphenyl, and naphthyl groups. Can do.

本発明の式(4)で表されるアルキンとしては、なかでもR23、R24の一方が芳香族炭化水素基であることが好ましく、特に、1−フェニルプロピン、1−フェニルブチン、1−(p−メチルフェニル)プロピン、1−(p−メチルフェニル)ブチン等が好ましい。 As the alkyne represented by the formula (4) of the present invention, one of R 23 and R 24 is preferably an aromatic hydrocarbon group, and in particular, 1-phenylpropyne, 1-phenylbutyne, 1- (P-methylphenyl) propyne, 1- (p-methylphenyl) butyne and the like are preferable.

式(4)で表されるアルキンの使用量としては、上記式(1)で表される化合物1モルに対して、例えば0.01〜0.4モル程度、好ましくは0.01〜0.3モル、特に好ましくは0.02〜0.2モルである。式(4)で表されるアルキンの使用量が上記範囲を下回ると、反応が停止し、収率が低下する傾向がある。一方、式(4)で表されるアルキンの使用量が上記範囲を上回ると、精製の際に純度が低下する傾向がある。   As usage-amount of the alkyne represented by Formula (4), it is about 0.01-0.4 mol with respect to 1 mol of compounds represented by the said Formula (1), Preferably it is 0.01-0. 3 mol, particularly preferably 0.02 to 0.2 mol. When the usage-amount of the alkyne represented by Formula (4) is less than the said range, reaction will stop and there exists a tendency for a yield to fall. On the other hand, if the amount of the alkyne represented by formula (4) exceeds the above range, the purity tends to decrease during purification.

上記反応は溶媒の存在下、又は非存在下で行うことができる。溶媒としては反応の進行を阻害しないものであれば特に限定されることがなく使用することができ、例えば、炭化水素類(例えば、ヘキサン、シクロヘキサン、ヘプタン、トルエンなど)、エーテル類(例えば、ジエチルエーテル、テトラヒドロフラン(THF)など)等が挙げられる。溶媒の使用量としては、式(1)で表される化合物の、例えば1〜10重量倍程度である。   The above reaction can be carried out in the presence or absence of a solvent. The solvent is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons (for example, hexane, cyclohexane, heptane, toluene, etc.), ethers (for example, diethyl) Ether, tetrahydrofuran (THF) and the like. The amount of the solvent used is, for example, about 1 to 10 times the weight of the compound represented by the formula (1).

上記反応は常圧下で行ってもよく、減圧下又は加圧下で行ってもよい。また、反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気などの何れであってもよい。反応温度は例えば20〜100℃程度である。反応時間は例えば2〜10時間程度である。また、反応はバッチ式、セミバッチ式、連続式などの何れの方法で行うこともできる。   The above reaction may be performed under normal pressure, or may be performed under reduced pressure or under pressure. Further, the reaction atmosphere is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like. The reaction temperature is, for example, about 20 to 100 ° C. The reaction time is, for example, about 2 to 10 hours. Further, the reaction can be carried out by any method such as batch, semi-batch and continuous methods.

反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、吸着、カラムクロマトグラフィーなどの分離精製手段やこれらを組み合わせた手段により分離精製できる。   After completion of the reaction, the reaction product can be separated and purified by separation / purification means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, adsorption, column chromatography, or a combination of these.

また、上記式(1)で表される化合物は、例えば、1,2,5,6−テトラヒドロベンジルアルコールとHX(Xは前記に同じ)とを反応させることにより得られる。   The compound represented by the above formula (1) can be obtained, for example, by reacting 1,2,5,6-tetrahydrobenzyl alcohol and HX (X is the same as above).

上記1,2,5,6−テトラヒドロベンジルアルコールとHXの反応は溶媒の存在下で行うことが好ましい。溶媒としては反応の進行を阻害しないものであれば特に限定されることがなく使用することができ、例えば、炭化水素類(例えば、ヘキサン、シクロヘキサン、ヘプタン、トルエンなど)、エーテル類(例えば、ジエチルエーテル、テトラヒドロフラン(THF)など)等が挙げられる。溶媒の使用量としては、1,2,5,6−テトラヒドロベンジルアルコールの、例えば1〜10重量倍程度である。   The reaction between 1,2,5,6-tetrahydrobenzyl alcohol and HX is preferably performed in the presence of a solvent. The solvent is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons (for example, hexane, cyclohexane, heptane, toluene, etc.), ethers (for example, diethyl) Ether, tetrahydrofuran (THF) and the like. The amount of the solvent used is, for example, about 1 to 10 times the weight of 1,2,5,6-tetrahydrobenzyl alcohol.

上記1,2,5,6−テトラヒドロベンジルアルコールとHXの反応は常圧下で行ってもよく、減圧下又は加圧下で行ってもよい。また、反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気などの何れであってもよい。反応温度は例えば20〜130℃程度である。反応時間は例えば1〜50時間程度である。また、反応はバッチ式、セミバッチ式、連続式などの何れの方法で行うこともできる。   The reaction between the 1,2,5,6-tetrahydrobenzyl alcohol and HX may be performed under normal pressure, or may be performed under reduced pressure or under pressure. Further, the reaction atmosphere is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like. The reaction temperature is, for example, about 20 to 130 ° C. The reaction time is, for example, about 1 to 50 hours. Further, the reaction can be carried out by any method such as batch, semi-batch and continuous methods.

上記式(2)で表される化合物(=Grignard試薬)は、例えば、1,2,5,6−テトラヒドロベンジルアルコールとHX(Xは塩素原子、臭素原子、ヨウ素原子を示し、好ましくは塩素又は臭素原子である)とを反応させることにより得られる式(1)で表される化合物に、更にマグネシウムとヨウ素(I2)を反応させることにより得られる。 The compound represented by the above formula (2) (= Grignard reagent) is, for example, 1,2,5,6-tetrahydrobenzyl alcohol and HX (X represents a chlorine atom, a bromine atom or an iodine atom, preferably chlorine or It is obtained by further reacting magnesium and iodine (I 2 ) with the compound represented by the formula (1) obtained by reacting with (a bromine atom).

上記式(1)で表される化合物とマグネシウムとヨウ素(I2)の反応は溶媒の存在下で行うことが好ましい。溶媒としては反応の進行を阻害しないものであれば特に限定されることがなく使用することができ、例えば、炭化水素類(例えば、ヘキサン、ヘプタン、トルエンなど)、エーテル類(例えば、ジエチルエーテル、テトラヒドロフラン(THF)など)等が挙げられる。溶媒の使用量としては、式(1)で表される化合物の、例えば2〜10重量倍程度である。 The reaction of the compound represented by the above formula (1), magnesium and iodine (I 2 ) is preferably performed in the presence of a solvent. The solvent is not particularly limited as long as it does not inhibit the progress of the reaction. For example, hydrocarbons (eg, hexane, heptane, toluene, etc.), ethers (eg, diethyl ether, Tetrahydrofuran (THF) and the like. The amount of the solvent used is, for example, about 2 to 10 times the weight of the compound represented by the formula (1).

上記式(1)で表される化合物とマグネシウムとヨウ素(I2)の反応は常圧下で行ってもよく、減圧下又は加圧下で行ってもよい。また、上記反応の反応雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気などの何れであってもよい。反応温度は例えば10〜100℃程度である。反応時間は例えば1〜3時間程度である。また、反応はバッチ式、セミバッチ式、連続式などの何れの方法で行うこともできる。 The reaction of the compound represented by the formula (1), magnesium and iodine (I 2 ) may be performed under normal pressure, or may be performed under reduced pressure or under pressure. In addition, the reaction atmosphere of the above reaction is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like. The reaction temperature is, for example, about 10 to 100 ° C. The reaction time is, for example, about 1 to 3 hours. Further, the reaction can be carried out by any method such as batch, semi-batch and continuous methods.

本発明のジオレフィン化合物の製造方法は上記構成を有するため、安価な触媒(鉄触媒、銅触媒)を使用することにより、優れた収率(例えば20%以上、好ましくは50%以上、更に好ましくは55%以上、特に好ましくは70%以上)で効率よく目的とするジオレフィン化合物を得ることができる。本発明ではルテニウム、ロジウム、パラジウム、イリジウム、白金、ニッケル、タングステン、モリブデン、チタン、バナジウム等の高価な金属元素を含む触媒を使用する必要はなく、前記高価な金属元素を含む触媒の使用量は、上記式(1)で表される化合物1モルに対して、例えば0.1モル以下、好ましくは0.05モル以下であり、実質的に使用しないことが特に好ましい。また、本発明のジオレフィン化合物の製造方法により得られるジオレフィン化合物は熱特性に優れる硬化物を形成することができるジエポキシ化合物の原料として特に有用である。   Since the method for producing a diolefin compound of the present invention has the above-described structure, an excellent yield (for example, 20% or more, preferably 50% or more, more preferably, by using an inexpensive catalyst (iron catalyst, copper catalyst). Is 55% or more, particularly preferably 70% or more), and the desired diolefin compound can be obtained efficiently. In the present invention, it is not necessary to use a catalyst containing an expensive metal element such as ruthenium, rhodium, palladium, iridium, platinum, nickel, tungsten, molybdenum, titanium, vanadium, and the amount of the catalyst containing the expensive metal element is The amount of the compound represented by the formula (1) is 1 mol or less, for example, 0.1 mol or less, preferably 0.05 mol or less, and it is particularly preferable not to use it substantially. Moreover, the diolefin compound obtained by the manufacturing method of the diolefin compound of this invention is especially useful as a raw material of the diepoxy compound which can form the hardened | cured material which is excellent in a thermal characteristic.

[ジエポキシ化合物の製造方法]
本発明のジエポキシ化合物の製造方法は、前記ジオレフィン化合物の製造方法により得られた式(3)で表されるジオレフィン化合物を過酸と反応させてエポキシ化することにより下記式(5)で表されるジエポキシ化合物を得ることを特徴とする。式(5)中、R1〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示す。式(5)中のR1〜R22はそれぞれ、式(3)中のR1〜R22に対応する。
[Method for producing diepoxy compound]
The method for producing a diepoxy compound of the present invention comprises the following formula (5) by reacting a diolefin compound represented by the formula (3) obtained by the method for producing a diolefin compound with a peracid to epoxidize. It is characterized by obtaining the diepoxy compound represented. In formula (5), R < 1 > -R < 22 > is respectively independent group, and is the same or different and shows a hydrogen atom, a methyl group, or an ethyl group. R 1 to R 22 in the formula (5) respectively correspond to R 1 to R 22 in the formula (3).

Figure 0005926130
Figure 0005926130

前記過酸としては、例えば、過ギ酸、過酢酸、過安息香酸、メタクロロ過安息香酸、トリフルオロ過酢酸等を用いることができる。本発明においては、なかでも、入手が容易な点でメタクロロ過安息香酸を使用することが好ましい。   As the peracid, formic acid, peracetic acid, perbenzoic acid, metachloroperbenzoic acid, trifluoroperacetic acid and the like can be used, for example. In the present invention, it is preferable to use metachloroperbenzoic acid because it is easily available.

過酸の使用量は、式(3)で表されるジオレフィン化合物1モルに対して例えば3.0モル以下、好ましくは2.2〜2.6モルである。   The usage-amount of a peracid is 3.0 mol or less with respect to 1 mol of diolefin compounds represented by Formula (3), Preferably it is 2.2-2.6 mol.

エポキシ化反応は溶媒の存在下で行うことができる。溶媒としては反応の進行を阻害しないものであれば特に限定されることがなく、例えば、トルエン、ベンゼン等の芳香族化合物、ヘキサン、シクロヘキサン等の脂肪族炭化水素、酢酸エチル等のエステル類などを挙げることができる。溶媒の使用量としては、式(3)で表されるジオレフィン化合物の、例えば3〜10重量倍程度である。   The epoxidation reaction can be performed in the presence of a solvent. The solvent is not particularly limited as long as it does not inhibit the progress of the reaction, and examples thereof include aromatic compounds such as toluene and benzene, aliphatic hydrocarbons such as hexane and cyclohexane, esters such as ethyl acetate, and the like. Can be mentioned. As a usage-amount of a solvent, it is about 3-10 weight times of the diolefin compound represented by Formula (3), for example.

エポキシ化反応における反応温度は、例えば0〜60℃程度、好ましくは10〜50℃、特に好ましくは20〜40℃である。反応温度が0℃を下回ると反応が遅くなる場合がある。一方、反応温度が60℃を上回るとエポキシ化剤の分解が起こる場合がある。反応は、例えば、上記の混合物を1〜5時間程度撹拌することにより行うことができる。   The reaction temperature in the epoxidation reaction is, for example, about 0 to 60 ° C., preferably 10 to 50 ° C., particularly preferably 20 to 40 ° C. If the reaction temperature is below 0 ° C, the reaction may be slow. On the other hand, when the reaction temperature exceeds 60 ° C., the epoxidizing agent may be decomposed. The reaction can be carried out, for example, by stirring the above mixture for about 1 to 5 hours.

エポキシ化反応は、例えば、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸アンモニウム、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、チオ硫酸カリウムなどの還元剤を反応系に添加して前記エポキシ化剤をクエンチすることで、終了させることができる。反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、吸着、カラムクロマトグラフィーなどの分離精製手段やこれらを組み合わせた手段により分離精製できる。   In the epoxidation reaction, for example, a reducing agent such as sodium sulfite, potassium sulfite, ammonium sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, ammonium hydrogen sulfite, sodium thiosulfate, potassium thiosulfate is added to the reaction system, and the epoxidizing agent is added. Can be terminated by quenching. After completion of the reaction, the reaction product can be separated and purified by separation / purification means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, adsorption, column chromatography, or a combination of these.

上記方法により得られる式(5)で表されるジエポキシ化合物は、2つの脂環式エポキシ基がエチレン基等の炭化水素鎖を介して結合された構造を有するため、該脂環式エポキシ基は架橋反応に適した位置に適宜移動することができ、架橋反応に関与しない脂環式エポキシ基を極めて低く低減することができる。そのため、架橋構造を密に構成することができ、優れた耐熱性を有し、高温環境下に曝しても優れた機械特性を維持することができる、熱安定性に優れた硬化物を形成することができる。   Since the diepoxy compound represented by the formula (5) obtained by the above method has a structure in which two alicyclic epoxy groups are bonded via a hydrocarbon chain such as an ethylene group, the alicyclic epoxy group is It can be appropriately moved to a position suitable for the crosslinking reaction, and the alicyclic epoxy groups not involved in the crosslinking reaction can be reduced to a very low level. Therefore, a crosslinked structure can be formed densely, has excellent heat resistance, can maintain excellent mechanical properties even when exposed to high temperature environments, and forms a cured product with excellent thermal stability. be able to.

式(5)で表されるジエポキシ化合物は、上記のように優れた熱特性を有する硬化物を形成することができるため、コーティング剤、インク、接着剤、シーラント、封止剤、レジスト、複合材料、透明基材、透明フィルム又はシート、光学材料(例えば、光学レンズ等)、絶縁材料、光造形材料、電子材料(例えば、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等)などの用途を含む様々な方面で用いられる。   Since the diepoxy compound represented by the formula (5) can form a cured product having excellent thermal characteristics as described above, the coating agent, ink, adhesive, sealant, sealant, resist, composite material , Transparent substrate, transparent film or sheet, optical material (eg, optical lens), insulating material, stereolithography material, electronic material (eg, electronic paper, touch panel, solar cell substrate, optical waveguide, light guide plate, holographic memory) It is used in various fields including applications such as.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

調製例1(Grignard試薬の調製)
マグネシウム(0.414g、0.0171mol)、ヨウ素(0.043g、0.17mmol)をテトラヒドロフラン(8.5mL)に加え、窒素雰囲気下40℃で30分撹拌した。下記式(1-1)で表されるテトラヒドロベンジルクロリド(2.23g、0.171mol)を40℃で1時間かけて滴下後、2時間還流させて下記式(2-1)で表されるGrignard試薬を調製した。
Preparation Example 1 (Preparation of Grignard reagent)
Magnesium (0.414 g, 0.0171 mol) and iodine (0.043 g, 0.17 mmol) were added to tetrahydrofuran (8.5 mL), and the mixture was stirred at 40 ° C. for 30 minutes in a nitrogen atmosphere. Tetrahydrobenzyl chloride (2.23 g, 0.171 mol) represented by the following formula (1-1) is added dropwise at 40 ° C. over 1 hour, then refluxed for 2 hours, and represented by the following formula (2-1). Grignard reagent was prepared.

Figure 0005926130
Figure 0005926130

実施例1(1,2―ビス(シクロヘキサ−3−エニル)エタンの合成)
下記式(1-2)で表されるテトラヒドロベンジルブロミド(2.00g,0.0114mol)、1−フェニルプロピン(0.066g、0.571mmol、テトラヒドロベンジルブロミドの0.05mol倍)、塩化銅(II)(0.031g、0.224mmol、テトラヒドロベンジルブロミドの0.02mol倍)の混合液に調製例1で得られた下記式(2-1)で表されるGrignard試薬を氷冷下で30分かけて滴下した。反応液を30℃に昇温して3時間撹拌後、10%塩酸を加えて反応を停止し、分液した。
有機層を水で2回洗浄後、濃縮して下記式(3-1)で表される1,2―ビス(シクロヘキサ−3−エニル)エタンを含む粗生成物を得た。粗生成物をガスクロマトグラフィーで定量した結果、テトラヒドロベンジルブロミド基準の収率は87%であった。
1H-NMR(CDCl3):5.66(s,4H), 2.12-2.03(m,6H), 1.76-1.72(m,2H), 1.67-1.61(m,2H), 1.52-1.47(m,2H), 1.31-1.17(m,6H)
Example 1 (Synthesis of 1,2-bis (cyclohex-3-enyl) ethane)
Tetrahydrobenzyl bromide (2.00 g, 0.0114 mol) represented by the following formula (1-2), 1-phenylpropyne (0.066 g, 0.571 mmol, 0.05 mol times tetrahydrobenzyl bromide), copper chloride ( II) Grignard reagent represented by the following formula (2-1) obtained in Preparation Example 1 in a mixed solution of (0.031 g, 0.224 mmol, 0.02 mol times tetrahydrobenzyl bromide) under ice-cooling. It was added dropwise over a period of minutes. The reaction solution was warmed to 30 ° C. and stirred for 3 hours, and then 10% hydrochloric acid was added to stop the reaction, followed by liquid separation.
The organic layer was washed twice with water and then concentrated to obtain a crude product containing 1,2-bis (cyclohex-3-enyl) ethane represented by the following formula (3-1). As a result of quantifying the crude product by gas chromatography, the yield based on tetrahydrobenzyl bromide was 87%.
1 H-NMR (CDCl 3 ): 5.66 (s, 4H), 2.12-2.03 (m, 6H), 1.76-1.72 (m, 2H), 1.67-1.61 (m, 2H), 1.52-1.47 (m, 2H ), 1.31-1.17 (m, 6H)

Figure 0005926130
Figure 0005926130

実施例2(1,2―ビス(シクロヘキサ−3−エニル)エタンの合成)
式(1-2)で表されるテトラヒドロベンジルブロミドに代えて下記式(1-1)で表されるテトラヒドロベンジルクロリドを使用し、反応液を68℃において10時間環流させた以外は実施例1と同様にして下記式(3-1)で表される1,2―ビス(シクロヘキサ−3−エニル)エタンを得た。テトラヒドロベンジルクロリド基準の収率は51%、未反応のテトラヒドロベンジルクロリド量は21%であった。
Example 2 (Synthesis of 1,2-bis (cyclohex-3-enyl) ethane)
Example 1 except that tetrahydrobenzyl chloride represented by the following formula (1-1) was used instead of tetrahydrobenzyl bromide represented by the formula (1-2), and the reaction solution was refluxed at 68 ° C. for 10 hours. In the same manner, 1,2-bis (cyclohex-3-enyl) ethane represented by the following formula (3-1) was obtained. The yield based on tetrahydrobenzyl chloride was 51%, and the amount of unreacted tetrahydrobenzyl chloride was 21%.

Figure 0005926130
Figure 0005926130

実施例3(1,2―ビス(シクロヘキサ−3−エニル)エタンの合成)
式(1-2)で表されるテトラヒドロベンジルブロミドに代えて下記式(1-3)で表されるメタンスルホン酸テトラヒドロベンジルを使用し、反応液を68℃において5時間環流させた以外は実施例1と同様にして下記式(3-1)で表される1,2―ビス(シクロヘキサ−3−エニル)エタンを得た。メタンスルホン酸テトラヒドロベンジル基準の収率は65%であった。
Example 3 (Synthesis of 1,2-bis (cyclohex-3-enyl) ethane)
Implemented except that tetrahydrobenzyl methanesulfonate represented by the following formula (1-3) was used instead of tetrahydrobenzyl bromide represented by the formula (1-2) and the reaction solution was refluxed at 68 ° C. for 5 hours. In the same manner as in Example 1, 1,2-bis (cyclohex-3-enyl) ethane represented by the following formula (3-1) was obtained. The yield based on tetrahydrobenzyl methanesulfonate was 65%.

Figure 0005926130
Figure 0005926130

実施例4(1,2―ビス(シクロヘキサ−3−エニル)エタンの合成)
下記式(1-1)で表されるテトラヒドロベンジルクロリド(0.50g、0.0038mol)、Fe(acac)3(0.135g,0.00038mmol、テトラヒドロベンジルクロリドの0.1mol倍)、N−メチルピロリジノン(NMP)(0.45g、0.0049mmol、テトラヒドロベンジルクロリドの1.2mol倍)のテトラヒドロフラン溶液(2.5g)に調製例1で得られた下記式(2-1)で表されるGrignard試薬を氷冷下で30分かけて滴下した。反応液を68℃において10時間還流後、10%塩酸を加えて反応を停止し、分液した。有機層を水で2回洗浄後、濃縮して下記式(3-1)で表される1,2―ビス(シクロヘキサ−3−エニル)エタンを含む粗生成物を得た。粗生成物をガスクロマトグラフィーで定量した結果、テトラヒドロベンジルクロリド基準の収率は24%であった。
Example 4 (Synthesis of 1,2-bis (cyclohex-3-enyl) ethane)
Tetrahydrobenzyl chloride (0.50 g, 0.0038 mol) represented by the following formula (1-1), Fe (acac) 3 (0.135 g, 0.00038 mmol, 0.1 mol times tetrahydrobenzyl chloride), N- It is represented by the following formula (2-1) obtained in Preparation Example 1 in a tetrahydrofuran solution (2.5 g) of methylpyrrolidinone (NMP) (0.45 g, 0.0049 mmol, 1.2 mol times tetrahydrobenzyl chloride). The Grignard reagent was added dropwise over 30 minutes under ice cooling. The reaction solution was refluxed at 68 ° C. for 10 hours, 10% hydrochloric acid was added to stop the reaction, and the solution was separated. The organic layer was washed twice with water and then concentrated to obtain a crude product containing 1,2-bis (cyclohex-3-enyl) ethane represented by the following formula (3-1). As a result of quantifying the crude product by gas chromatography, the yield based on tetrahydrobenzyl chloride was 24%.

Figure 0005926130
Figure 0005926130

実施例5(1,2−ビス(3,4−エポキシシクロヘキサニル)エタンの合成)
30℃で、下記式(3-1)で表される1,2―ビス(シクロヘキサ−3−エニル)エタン1.00g(5.24mmol)のトルエン(5.0g)溶液に、含水のメタクロロ過安息香酸3.16g(純度:70%、12.6mmol、1,2―ビス(シクロヘキサ−3−エニル)エタンの2.4mol倍)を3回に分けて添加し、30℃で2時間撹拌した後、酢酸エチルで希釈し、さらにチオ硫酸ナトリウム水溶液を加えて30分撹拌した。
水層を酢酸エチルで抽出して、得られた有機層を炭酸水素ナトリウム水溶液で2回、水で1回洗浄した後濃縮した。濃縮後の残渣をシリカゲルカラムクロマトグラフィーで精製して下記式(5-1)で表される1,2−ビス(3,4−エポキシシクロヘキサニル)エタン0.689gを透明液体として得た。1,2―ビス(シクロヘキサ−3−エニル)エタン基準の収率は59%だった。オキシラン酸素濃度(HBr法)は、14.4%(計算値)、13.9%(実測値)であった。
1H-NMR(CDCl3):3.15-3.11(m,4H), 2.15-2.11(m,2H), 2.03-1.98(m,2H), 1.85-1.78(m,1H), 1.73-1.67(m,1H), 1.45-1.28(m,5H), 1.13-1.07(m,6H), 0.91-0.88(m,1H)
Example 5 (Synthesis of 1,2-bis (3,4-epoxycyclohexanyl) ethane)
To a toluene (5.0 g) solution of 1.00 g (5.24 mmol) of 1,2-bis (cyclohex-3-enyl) ethane represented by the following formula (3-1) at 30 ° C., 3.16 g of benzoic acid (purity: 70%, 12.6 mmol, 2.4 mol times of 1,2-bis (cyclohex-3-enyl) ethane) was added in three portions and stirred at 30 ° C. for 2 hours. Thereafter, the mixture was diluted with ethyl acetate, an aqueous sodium thiosulfate solution was further added, and the mixture was stirred for 30 minutes.
The aqueous layer was extracted with ethyl acetate, and the obtained organic layer was washed twice with an aqueous sodium bicarbonate solution and once with water, and then concentrated. The concentrated residue was purified by silica gel column chromatography to obtain 0.689 g of 1,2-bis (3,4-epoxycyclohexanyl) ethane represented by the following formula (5-1) as a transparent liquid. The yield based on 1,2-bis (cyclohex-3-enyl) ethane was 59%. The oxirane oxygen concentration (HBr method) was 14.4% (calculated value) and 13.9% (actual value).
1 H-NMR (CDCl 3 ): 3.15-3.11 (m, 4H), 2.15-2.11 (m, 2H), 2.03-1.98 (m, 2H), 1.85-1.78 (m, 1H), 1.73-1.67 (m , 1H), 1.45-1.28 (m, 5H), 1.13-1.07 (m, 6H), 0.91-0.88 (m, 1H)

Figure 0005926130
Figure 0005926130

Claims (5)

下記式(1)
Figure 0005926130
(式中、R1〜R11はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示し、Xは塩素原子、臭素原子、ヨウ素原子、ベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、又はトリフルオロメタンスルホニルオキシ基を示す)
で表される化合物と、下記式(2)
Figure 0005926130
(式中、R12〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示し、Yは塩素原子、臭素原子、又はヨウ素原子を示す)
で表される化合物を反応させて、下記式(3)
Figure 0005926130
(式中、R1〜R22は前記に同じ)
で表されるジオレフィン化合物を得るジオレフィン化合物の製造方法。
Following formula (1)
Figure 0005926130
(In the formula, R 1 to R 11 are each an independent group, and are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group, and X represents a chlorine atom, a bromine atom, an iodine atom, a benzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy group, or trifluoromethanesulfonyloxy group)
And a compound represented by the following formula (2)
Figure 0005926130
(Wherein R 12 to R 22 are each an independent group, the same or different, each representing a hydrogen atom, a methyl group, or an ethyl group, and Y represents a chlorine atom, a bromine atom, or an iodine atom)
And a compound represented by the following formula (3):
Figure 0005926130
(Wherein R 1 to R 22 are the same as above)
The manufacturing method of the diolefin compound which obtains the diolefin compound represented by these.
鉄触媒の存在下で反応を行う請求項1に記載のジオレフィン化合物の製造方法。   The method for producing a diolefin compound according to claim 1, wherein the reaction is carried out in the presence of an iron catalyst. 銅触媒と下記式(4)
Figure 0005926130
(式中、R23、R24は同一又は異なって、鎖状脂肪族炭化水素基、環状脂肪族炭化水素基、又は芳香族炭化水素基を示す)
で表されるアルキンの存在下で反応を行う請求項1に記載のジオレフィン化合物の製造方法。
Copper catalyst and the following formula (4)
Figure 0005926130
(Wherein R 23 and R 24 are the same or different and represent a chain aliphatic hydrocarbon group, a cyclic aliphatic hydrocarbon group, or an aromatic hydrocarbon group)
The manufacturing method of the diolefin compound of Claim 1 which reacts in presence of alkyne represented by these.
下記式(3)
Figure 0005926130
(式中、R1〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示す)
で表されるジオレフィン化合物。
Following formula (3)
Figure 0005926130
(In the formula, R 1 to R 22 are each an independent group, and are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group)
The diolefin compound represented by these.
請求項1〜3の何れか一項に記載のジオレフィン化合物の製造方法により下記式(3)
Figure 0005926130
(式中、R1〜R22はそれぞれ独立した基であり、同一又は異なって、水素原子、メチル基、又はエチル基を示す)
で表されるジオレフィン化合物を得、得られた上記式(3)で表されるジオレフィン化合物を過酸と反応させることにより下記式(5)
Figure 0005926130
(式中、R1〜R22は前記に同じ)
で表されるジエポキシ化合物を得るジエポキシ化合物の製造方法。
By the manufacturing method of the diolefin compound as described in any one of Claims 1-3, following formula (3)
Figure 0005926130
(In the formula, R 1 to R 22 are each an independent group, and are the same or different and each represents a hydrogen atom, a methyl group, or an ethyl group)
The diolefin compound represented by formula (5) is obtained, and the resulting diolefin compound represented by formula (3) is reacted with a peracid to give the following formula (5):
Figure 0005926130
(Wherein R 1 to R 22 are the same as above)
The manufacturing method of the diepoxy compound which obtains the diepoxy compound represented by these.
JP2012138362A 2012-06-20 2012-06-20 Method for producing diolefin compound and method for producing diepoxy compound containing the same Expired - Fee Related JP5926130B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012138362A JP5926130B2 (en) 2012-06-20 2012-06-20 Method for producing diolefin compound and method for producing diepoxy compound containing the same
PCT/JP2013/065936 WO2013191018A1 (en) 2012-06-20 2013-06-10 Method for producing diolefin compound and method for producing diepoxy compound containing same
TW102121659A TW201410641A (en) 2012-06-20 2013-06-19 Method for producing diolefin compound and method for producing diepoxy compound containing diolefin compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138362A JP5926130B2 (en) 2012-06-20 2012-06-20 Method for producing diolefin compound and method for producing diepoxy compound containing the same

Publications (2)

Publication Number Publication Date
JP2014001174A JP2014001174A (en) 2014-01-09
JP5926130B2 true JP5926130B2 (en) 2016-05-25

Family

ID=49768618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138362A Expired - Fee Related JP5926130B2 (en) 2012-06-20 2012-06-20 Method for producing diolefin compound and method for producing diepoxy compound containing the same

Country Status (3)

Country Link
JP (1) JP5926130B2 (en)
TW (1) TW201410641A (en)
WO (1) WO2013191018A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014181699A1 (en) * 2013-05-10 2017-02-23 株式会社ダイセル Curable epoxy resin composition and cured product thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433828A (en) * 1965-10-22 1969-03-18 Phillips Petroleum Co Carboxylic acid esters derived from 1,2-bis-(3-cyclohexen-1-yl)-ethylene and derivatives thereof
JP4663893B2 (en) * 2001-03-23 2011-04-06 ダイセル化学工業株式会社 Method for producing epoxy compound
JP2006089715A (en) * 2004-08-27 2006-04-06 Konica Minolta Medical & Graphic Inc Composition curable by active light, ink curable by active light, method for forming image and epoxy compound
JP5354868B2 (en) * 2006-07-06 2013-11-27 株式会社ダイセル Method for producing alicyclic diepoxy compound, method for producing epoxy resin composition, and method for producing cured product
WO2009048663A2 (en) * 2007-07-20 2009-04-16 Regents Of The University Of Minnesota Nano-structured polymer composites and process for preparing same
TWI491596B (en) * 2008-10-10 2015-07-11 Sumitomo Bakelite Co Preparation of alicyclic diepoxides

Also Published As

Publication number Publication date
JP2014001174A (en) 2014-01-09
WO2013191018A1 (en) 2013-12-27
TW201410641A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP5958734B2 (en) Novel epoxy compound and method for producing the same
CN108299343B (en) Method for preparing 3, 4-epoxy cyclohexyl methyl (meth) acrylate by using microchannel reactor
JP2002275169A (en) Method for epoxy compound production
WO2006073093A1 (en) High-purity alicyclic diepoxy compound and process for producing the same
JP5800709B2 (en) Method for producing epoxy compound
TWI641596B (en) Method of producing biphenyl skeleton-containing epoxy resin
JP5926130B2 (en) Method for producing diolefin compound and method for producing diepoxy compound containing the same
JP6086163B2 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
WO2007110978A1 (en) Terpenic alcohol compound, terpenic (meth)acrylate compound, and process for producing them
KR101140086B1 (en) Process for the production of ethylenically unsaturated isocyanate bearing ether linkage
US20130041184A1 (en) 1,1-bis[(ethenyloxy)methyl]cyclohexane and method of production of same
JP6343610B2 (en) Polyfunctional (meth) acrylate and method for producing the same
WO2011083537A1 (en) Process for producing polyglycidyl ether
WO2014034628A1 (en) Alicyclic epoxy compound and method for producing same
CN112939715A (en) Synthesis method of 4-alkyl biphenyl acetylene
JP2013124218A (en) Novel allyl ester compound and method for preparing the same
JP2005015396A (en) New alicyclic vinyl ether
JP2019104702A (en) Method for producing a 3&#39;-trifluoromethyl group-substituted aromatic ketone
JP2016069299A (en) Method for producing 2-trifluoromethyl benzoic acid ester
JP2007217354A (en) Manufacturing method of vinylphenanthrene
JP2012201611A (en) Sulfonium compound
JP5722054B2 (en) Method for producing α-acyloxyacrylate ester
JP5832821B2 (en) Epoxy compound and method for producing the same
JP2021054745A (en) Method for producing 2&#39;,3&#39;-dimethyl aromatic ketone
JP2018100236A (en) Method for producing naphthalene type epoxy compound and naphthalene type epoxy compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5926130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees