JP5925848B2 - Indium phosphide substrate and semiconductor epitaxial wafer - Google Patents

Indium phosphide substrate and semiconductor epitaxial wafer Download PDF

Info

Publication number
JP5925848B2
JP5925848B2 JP2014169064A JP2014169064A JP5925848B2 JP 5925848 B2 JP5925848 B2 JP 5925848B2 JP 2014169064 A JP2014169064 A JP 2014169064A JP 2014169064 A JP2014169064 A JP 2014169064A JP 5925848 B2 JP5925848 B2 JP 5925848B2
Authority
JP
Japan
Prior art keywords
epitaxial wafer
substrate
semiconductor
semiconductor epitaxial
indium phosphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014169064A
Other languages
Japanese (ja)
Other versions
JP2015008318A (en
Inventor
立一 平野
立一 平野
英樹 栗田
英樹 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014169064A priority Critical patent/JP5925848B2/en
Publication of JP2015008318A publication Critical patent/JP2015008318A/en
Application granted granted Critical
Publication of JP5925848B2 publication Critical patent/JP5925848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)等の半導体デバイスの作製に使用されるリン化インジウム基板及び半導体エピタキシャルウェハに関し、特にIII−V族化合物半導体を基板とした場合に好適な技術に関する。   The present invention relates to an indium phosphide substrate and a semiconductor epitaxial wafer used for manufacturing a semiconductor device such as a high electron mobility transistor (HEMT), particularly when a III-V compound semiconductor is used as the substrate. It relates to a suitable technique.

従来、InP基板等のIII−V族化合物半導体基板に、InAlAsバッファ層、InGaAsチャネル層、InAlAsスペーサ層、InP電子供給層をエピタキシャル成長させたHEMT構造が知られている。なお、本明細書において、半導体基板上に、半導体薄膜をエピタキシャル成長させたものを半導体エピタキシャルウェハと呼ぶ。また、エピタキシャル成長させた半導体薄膜をエピタキシャル膜と呼ぶこともある。
このようなHEMT構造を有する半導体エピタキシャルウェハを作製する場合、一般には、鏡面仕上げしたInP基板に、硫酸/過酸化水素水などのエッチング溶液によるエッチング処理を施して、基板表面に付着したケイ素(Si)等の不純物を除去する。そして、このエッチング処理後のInP基板に、分子線エピタキシャル成長法(MBE:Molecular Beam Epitaxy)又は有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)によりエピタキシャル膜を形成する。
また、半導体基板とエピタキシャル膜の界面に、炭素(C)原子の蓄積層を設けることにより、半導体デバイスのゲート耐圧を向上させる技術が提案されている(例えば特許文献1)。
Conventionally, a HEMT structure is known in which an InAlAs buffer layer, an InGaAs channel layer, an InAlAs spacer layer, and an InP electron supply layer are epitaxially grown on a III-V group compound semiconductor substrate such as an InP substrate. In the present specification, a semiconductor epitaxial wafer obtained by epitaxially growing a semiconductor thin film on a semiconductor substrate is referred to as a semiconductor epitaxial wafer. In addition, an epitaxially grown semiconductor thin film may be referred to as an epitaxial film.
When producing a semiconductor epitaxial wafer having such a HEMT structure, generally, an InP substrate having a mirror finish is subjected to an etching treatment with an etching solution such as sulfuric acid / hydrogen peroxide solution, and silicon (Si ) And the like are removed. Then, an epitaxial film is formed on the InP substrate after the etching process by molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD).
In addition, a technique for improving the gate breakdown voltage of a semiconductor device by providing a carbon (C) atom accumulation layer at the interface between the semiconductor substrate and the epitaxial film has been proposed (for example, Patent Document 1).

特開2000−182960号公報JP 2000-182960 A

しかしながら、上述したようにInP基板にエッチング処理を施して基板表面の不純物を除去しても、エピタキシャル成長装置に基板を搬送する際などに不純物が付着してしまうと、リーク電流を効果的に低減するのは困難となる。
また、特許文献1には、炭素原子蓄積層におけるCやC以外の不純物の蓄積量については規定されているが、CとSiの相対関係については明らかにされていない。
However, as described above, even if the InP substrate is etched to remove impurities on the surface of the substrate, the leakage current is effectively reduced if impurities adhere to the substrate when the substrate is transferred to the epitaxial growth apparatus. It will be difficult.
Further, Patent Document 1 defines the accumulation amount of impurities other than C and C in the carbon atom accumulation layer, but does not clarify the relative relationship between C and Si.

本発明は、HEMT等の半導体デバイスの作製に好適なエピタキシャル成長用基板及びエピタキシャルウェハを提供することを目的とする。   An object of the present invention is to provide an epitaxial growth substrate and an epitaxial wafer suitable for manufacturing a semiconductor device such as HEMT.

請求項1に記載の発明は、上記目的を達成するためになされたもので、半導体薄膜をエピタキシャル成長させるためのリン化インジウム基板であって、このリン化インジウム基板の表面に存在するケイ素のシート濃度D1.7×10 12 cm −2 以上2.3×1012cm−2以下であり、前記表面に存在する炭素のシート濃度Dと前記ケイ素のシート濃度Dとの比D/D25以上であることを特徴とする。 The invention according to claim 1 is an indium phosphide substrate for epitaxially growing a semiconductor thin film, which is made in order to achieve the above object, and a silicon sheet concentration present on the surface of the indium phosphide substrate. D s is 1.7 × 10 12 cm −2 or more and 2.3 × 10 12 cm −2 or less, and the ratio D c of the carbon sheet concentration D c existing on the surface and the silicon sheet concentration D s / D s is characterized in that 25 or more.

請求項2に記載の発明は、リン化インジウム基板上に半導体薄膜をエピタキシャル成長させてなる半導体エピタキシャルウェハであって、前記リン化インジウム基板と前記半導体薄膜の界面に存在するケイ素のシート濃度D1.7×10 12 cm −2 以上2.3×1012cm−2以下であり、前記界面に存在する炭素のシート濃度Dと前記ケイ素のシート濃度Dとの比D/D25以上であることを特徴とする。 The invention according to claim 2 is a semiconductor epitaxial wafer obtained by epitaxially growing a semiconductor thin film on an indium phosphide substrate, wherein the silicon sheet concentration D s existing at the interface between the indium phosphide substrate and the semiconductor thin film is 1.7 × 10 12 cm -2 or more 2.3 × 10 12 cm -2 or less, the ratio D c / D s of the sheet density D s of the silicon sheet density D c of carbon present in the interface Is 25 or more.

本発明によれば、半導体エピタキシャルウェハにおける基板と半導体薄膜(エピタキシャル膜)の界面に存在するSiが効果的に不活性化されるので、この半導体エピタキシャルウェハを用いることでデバイス特性の向上を図ることができる。具体的には、この半導体エピタキシャルウェハを用いたHEMTにおいては、リーク電流が格段に低減される。   According to the present invention, Si present at the interface between the substrate and the semiconductor thin film (epitaxial film) in the semiconductor epitaxial wafer is effectively inactivated, so that device characteristics can be improved by using this semiconductor epitaxial wafer. Can do. Specifically, in the HEMT using this semiconductor epitaxial wafer, the leakage current is remarkably reduced.

実施形態に係る半導体エピタキシャルウェハのHEMT構造を示す図である。It is a figure which shows the HEMT structure of the semiconductor epitaxial wafer which concerns on embodiment. リーク電流の測定に使用した簡易デバイス構造を示す図である。It is a figure which shows the simple device structure used for the measurement of leak current.

以下、本発明の実施の形態について、図面を参照して説明する。
図1は、実施形態に係るHEMT構造の例を示す図である。図1に示すように、半導体エピタキシャルウェハ1は、InP基板11に、InAlAs層(バッファ層)12、InGaAs層(チャネル層)13、InAlAs層(スペーサ層)14、InP層(電子供給層)15を順次エピタキシャル成長させたInP系HEMT構造を有している。
半導体エピタキシャルウェハ1において、InP基板11とInAlAs層12の界面におけるCとSiのSIMSによるシート濃度をそれぞれD,Dとすると、D/D比は20以上となっている。また、InP基板11とInAlAs層12の界面におけるSiのシート濃度Dは2.3×1012cm−2以下となっている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a HEMT structure according to the embodiment. As shown in FIG. 1, a semiconductor epitaxial wafer 1 includes an InP substrate 11, an InAlAs layer (buffer layer) 12, an InGaAs layer (channel layer) 13, an InAlAs layer (spacer layer) 14, and an InP layer (electron supply layer) 15. Has an InP-based HEMT structure obtained by epitaxially growing the layers.
In the semiconductor epitaxial wafer 1, if the sheet concentrations by SIMS of C and Si at the interface between the InP substrate 11 and the InAlAs layer 12 are D c and D s , respectively, the D c / D s ratio is 20 or more. Further, the Si sheet concentration D s at the interface between the InP substrate 11 and the InAlAs layer 12 is 2.3 × 10 12 cm −2 or less.

この半導体エピタキシャルウェハ1は、以下の工程により作製される。すなわち、鏡面研磨仕上げされたInP基板11の表面からSiを除去し、InP基板11の表面に意図的にCを付着させ、エピタキシャル成長用基板とする。そして、このInP基板(エピタキシャル成長用基板)11に、InAlAs層12、InGaAs層13、InAlAs層14、InP層15を順次エピタキシャル成長させることで半導体エピタキシャルウェハ1が作製される。
このとき、Si除去後のInP基板11を、100〜120℃の大気中で1時間以上保持することにより、エピタキシャル成長後のD/D比が20以上となる程度のCをInP基板11の表面に容易に付着させることができる。
This semiconductor epitaxial wafer 1 is manufactured by the following steps. That is, Si is removed from the surface of the mirror-polished InP substrate 11 and C is intentionally attached to the surface of the InP substrate 11 to obtain an epitaxial growth substrate. Then, the InAlAs layer 12, the InGaAs layer 13, the InAlAs layer 14, and the InP layer 15 are sequentially epitaxially grown on the InP substrate (epitaxial growth substrate) 11, whereby the semiconductor epitaxial wafer 1 is manufactured.
At this time, by maintaining the InP substrate 11 after Si removal in the atmosphere at 100 to 120 ° C. for 1 hour or longer, the C of the extent that the D c / D s ratio after epitaxial growth becomes 20 or more is changed to It can be easily attached to the surface.

[実施例]
実施例では、鏡面仕上げされたInP基板11を、フッ化水素(HF)やリン酸/過酸化水素水等の薬液により洗浄し、表面のSiを除去した。このSi除去後のInP基板11をポリプロピレン製の枚葉収納式密閉型容器内に1枚ずつ収容し、100℃で3日間経過させ、ポリプロピレン製容器からの揮発ガス雰囲気中にInP基板11を設置することにより、表面に所望濃度のCを付着させた。
このInP基板11に、膜厚400nmのInAlAs層12をMBE法によりエピタキシャル成長させた。同様に、膜厚15nmのInGaAs層13、膜厚8.5nmのInAlAs層14、膜厚5nmのInP層15を、MBE法により順次エピタキシャル成長させて、実施例に係る半導体エピタキシャルウェハ1を作製した。
[Example]
In the example, the mirror-finished InP substrate 11 was washed with a chemical solution such as hydrogen fluoride (HF) or phosphoric acid / hydrogen peroxide solution to remove Si on the surface. The InP substrate 11 after the removal of Si is housed one by one in a polypropylene single-wafer storage type sealed container and allowed to pass for 3 days at 100 ° C., and the InP substrate 11 is placed in a volatile gas atmosphere from the polypropylene container. As a result, a desired concentration of C was deposited on the surface.
An InAlAs layer 12 having a thickness of 400 nm was epitaxially grown on the InP substrate 11 by MBE. Similarly, an InGaAs layer 13 having a thickness of 15 nm, an InAlAs layer 14 having a thickness of 8.5 nm, and an InP layer 15 having a thickness of 5 nm were sequentially epitaxially grown by the MBE method, thereby producing the semiconductor epitaxial wafer 1 according to the example.

[比較例]
比較例では、鏡面仕上げされたInP基板に、従来の一般的な処理方法である硫酸/過酸化水素水によるエッチング処理を施した。このエッチング処理後のInP基板に、実施例と同様の方法によりHEMT構造の半導体薄膜をエピタキシャル成長させて、比較例に係る半導体エピタキシャルウェハを作製した。
[Comparative example]
In the comparative example, the mirror-finished InP substrate was etched with sulfuric acid / hydrogen peroxide solution, which is a conventional general processing method. A semiconductor thin film having a HEMT structure was epitaxially grown on the InP substrate after the etching process in the same manner as in the example, and a semiconductor epitaxial wafer according to a comparative example was manufactured.

上述した実施例及び比較例に係る半導体エピタキシャルウェハについて、InP基板とエピタキシャル膜の界面に存在するCとSiのシート濃度を、SIMSにより測定した。また、実施例及び比較例に係る半導体エピタキシャルウェハを用いて図2に示す簡易的なHEMTデバイス構造を作製し、10Vの電圧を印加したときのリーク電流を測定した。なお、実施例に係る半導体エピタキシャルウェハについては、3個のサンプルを用意して測定した。   About the semiconductor epitaxial wafer which concerns on the Example and comparative example which were mentioned above, the sheet | seat density | concentration of C and Si which exists in the interface of an InP board | substrate and an epitaxial film was measured by SIMS. Moreover, the simple HEMT device structure shown in FIG. 2 was produced using the semiconductor epitaxial wafer which concerns on an Example and a comparative example, and the leak current when a voltage of 10V was applied was measured. In addition, about the semiconductor epitaxial wafer which concerns on an Example, three samples were prepared and measured.

測定結果を表1に示す。表1に示すように、実施例の半導体エピタキシャルウェハでは、CとSiのシート濃度の比D/DSiが20以上で、Siのシート濃度が2.3×1012cm−2以下となった。また、リーク電流は10nA以下となった。
これに対して、比較例の半導体エピタキシャルウェハでは、CとSiのシート濃度の比D/DSiは20より小さく、Siのシート濃度は2.3×1012cm−2よりも大きくなった。また、リーク電流は60nAとなった。
これにより、実施例の半導体エピタキシャルウェハでは、HEMT構造におけるリーク電流を効果的に低減できていることが確認された。
The measurement results are shown in Table 1. As shown in Table 1, in the semiconductor epitaxial wafer of the example, the C / Si sheet concentration ratio D C / D Si is 20 or more and the Si sheet concentration is 2.3 × 10 12 cm −2 or less. It was. Further, the leakage current was 10 nA or less.
In contrast, in the semiconductor epitaxial wafer of the comparative example, the C / Si sheet concentration ratio D C / D Si was smaller than 20, and the Si sheet concentration was larger than 2.3 × 10 12 cm −2 . . Moreover, the leak current was 60 nA.
Thereby, it was confirmed that the leakage current in the HEMT structure can be effectively reduced in the semiconductor epitaxial wafer of the example.

Figure 0005925848
Figure 0005925848

このように、本実施形態に係るInP基板(エピタキシャル成長用基板)11及び半導体エピタキシャルウェハ1によれば、InP基板とエピタキシャル膜の界面におけるn型不純物であるSiを低減するとともに、意図的にCを付着させているので、効果的にSiが不活性化される。その結果、この半導体エピタキシャルウェハ1を用いたHEMTでは、リーク電流が格段に低減されデバイス特性が向上する。   Thus, according to the InP substrate (epitaxial growth substrate) 11 and the semiconductor epitaxial wafer 1 according to the present embodiment, Si, which is an n-type impurity at the interface between the InP substrate and the epitaxial film, is reduced and C is intentionally added. Since it is adhered, Si is effectively inactivated. As a result, in the HEMT using this semiconductor epitaxial wafer 1, the leakage current is remarkably reduced and the device characteristics are improved.

以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、上記実施形態では、InP基板を用いたHEMT構造の半導体エピタキシャルウェハについて説明したが、本発明はGaAsやGaNのような他のIII-V族化合物
半導体を基板として用いる場合に適用可能である。
As mentioned above, although the invention made by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.
For example, in the above embodiment, a semiconductor epitaxial wafer having a HEMT structure using an InP substrate has been described. However, the present invention is applicable to the case where another III-V group compound semiconductor such as GaAs or GaN is used as a substrate. .

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (2)

半導体薄膜をエピタキシャル成長させるためのリン化インジウム基板であって、
このリン化インジウム基板の表面に存在するケイ素のシート濃度D1.7×10 12 cm −2 以上2.3×1012cm−2以下であり、
前記表面に存在する炭素のシート濃度Dと前記ケイ素のシート濃度Dとの比D/D25以上であることを特徴とするリン化インジウム基板。
An indium phosphide substrate for epitaxially growing a semiconductor thin film,
The sheet concentration D s of silicon present on the surface of the indium phosphide substrate is 1.7 × 10 12 cm −2 or more and 2.3 × 10 12 cm −2 or less,
The indium phosphide substrate, wherein a ratio D c / D s of a sheet concentration D c of carbon existing on the surface and a sheet concentration D s of silicon is 25 or more.
リン化インジウム基板上に半導体薄膜をエピタキシャル成長させてなる半導体エピタキシャルウェハであって、
前記リン化インジウム基板と前記半導体薄膜の界面に存在するケイ素のシート濃度D1.7×10 12 cm −2 以上2.3×1012cm−2以下であり、
前記界面に存在する炭素のシート濃度Dと前記ケイ素のシート濃度Dとの比D/D25以上であることを特徴とする半導体エピタキシャルウェハ。
A semiconductor epitaxial wafer obtained by epitaxially growing a semiconductor thin film on an indium phosphide substrate,
The silicon sheet concentration D s present at the interface between the indium phosphide substrate and the semiconductor thin film is 1.7 × 10 12 cm −2 or more and 2.3 × 10 12 cm −2 or less,
A semiconductor epitaxial wafer, wherein a ratio D c / D s of a sheet concentration D c of carbon existing at the interface and a sheet concentration D s of silicon is 25 or more.
JP2014169064A 2014-08-22 2014-08-22 Indium phosphide substrate and semiconductor epitaxial wafer Active JP5925848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169064A JP5925848B2 (en) 2014-08-22 2014-08-22 Indium phosphide substrate and semiconductor epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169064A JP5925848B2 (en) 2014-08-22 2014-08-22 Indium phosphide substrate and semiconductor epitaxial wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009241930A Division JP5626955B2 (en) 2009-10-21 2009-10-21 Epitaxial growth substrate manufacturing method and semiconductor epitaxial wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2015008318A JP2015008318A (en) 2015-01-15
JP5925848B2 true JP5925848B2 (en) 2016-05-25

Family

ID=52338368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169064A Active JP5925848B2 (en) 2014-08-22 2014-08-22 Indium phosphide substrate and semiconductor epitaxial wafer

Country Status (1)

Country Link
JP (1) JP5925848B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022135A (en) * 1998-07-06 2000-01-21 Toshiba Corp Field effect transistor
JP2000182960A (en) * 1998-12-11 2000-06-30 Sumitomo Electric Ind Ltd Compound semiconductor wafer and manufacture thereof
JP2001053011A (en) * 1999-06-02 2001-02-23 Japan Energy Corp Compound semiconductor wafer and semiconductor device using the same

Also Published As

Publication number Publication date
JP2015008318A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
US8476151B2 (en) Method for manufacturing nitride semiconductor crystal layer
JP5543103B2 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device
JP3093904B2 (en) Method for growing compound semiconductor crystal
JP5543710B2 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device
US10796905B2 (en) Manufacture of group IIIA-nitride layers on semiconductor on insulator structures
US7327036B2 (en) Method for depositing a group III-nitride material on a silicon substrate and device therefor
KR101743017B1 (en) Method for manufacturing semiconductor device using high speed epitaxial lift-off and template for iii-v direct growth and semiconductor device manufactured using the same
JP2016207748A (en) Method of manufacturing semiconductor device, and semiconductor device
US20220367176A1 (en) Epitaxies of a Chemical Compound Semiconductor
JP5925848B2 (en) Indium phosphide substrate and semiconductor epitaxial wafer
JPH05175150A (en) Compound semiconductor and its manufacture
KR101088985B1 (en) Compound semiconductor substrate, process for producing compound semiconductor substrate, and semiconductor device
JP5626955B2 (en) Epitaxial growth substrate manufacturing method and semiconductor epitaxial wafer manufacturing method
JP2011054685A (en) Semiconductor substrate
JP6983570B2 (en) Manufacturing method of semiconductor laminate, manufacturing method of nitride semiconductor self-supporting substrate, semiconductor laminate and semiconductor device
JP2014216356A (en) Semiconductor substrate, semiconductor substrate manufacturing method and composite substrate manufacturing method
KR101938230B1 (en) Method for manufacturing semiconductor device and etching apparatus for making epitaxial lift-off process faster by applying voltage
JP2016533643A (en) Semiconductor wafer and method for manufacturing a semiconductor wafer
JP2011054688A (en) Semiconductor substrate
JP2003020300A (en) Method for manufacturing compound semiconductor epitaxial wafer
JPH07130657A (en) Method of growing compound semiconductor
JP2008198795A (en) Epitaxial substrate for mbe, and method for forming iii-v compound semiconductor film using mbe method
JP2009182315A (en) Method of processing surface of semiconductor substrate, semiconductor substrate, and thin film forming method
JPH09306836A (en) Method of manufacturing compound semiconductor device
JPH0758177A (en) Method for measuring hole density of c-coped compound semiconductor layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160420

R150 Certificate of patent or registration of utility model

Ref document number: 5925848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250