JP5925570B2 - 計量装置 - Google Patents

計量装置 Download PDF

Info

Publication number
JP5925570B2
JP5925570B2 JP2012091971A JP2012091971A JP5925570B2 JP 5925570 B2 JP5925570 B2 JP 5925570B2 JP 2012091971 A JP2012091971 A JP 2012091971A JP 2012091971 A JP2012091971 A JP 2012091971A JP 5925570 B2 JP5925570 B2 JP 5925570B2
Authority
JP
Japan
Prior art keywords
voltage
insulation resistance
measuring
resistance value
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012091971A
Other languages
English (en)
Other versions
JP2013221784A (ja
Inventor
孝橋 徹
孝橋  徹
松尾 孝徳
孝徳 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Scale Co Ltd
Original Assignee
Yamato Scale Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Scale Co Ltd filed Critical Yamato Scale Co Ltd
Priority to JP2012091971A priority Critical patent/JP5925570B2/ja
Publication of JP2013221784A publication Critical patent/JP2013221784A/ja
Application granted granted Critical
Publication of JP5925570B2 publication Critical patent/JP5925570B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、計量装置に関し、特にロードセルを使用した計量装置における絶縁抵抗値の測定に関するものである。
ロードセルには、金属起歪体の起歪部にストレインゲージを貼付したものがある。ストレインゲージは、通常ポリイミドなどの絶縁性、耐水性を有する樹脂によって周囲を被われているので、容易に水分を通すことはない。また、ストレインゲージの構成要素である金属抵抗線への配線用の端子や、ロードセルから外部へケーブルを取り出す中継用の端子も樹脂製の絶縁板の上に設けられ、ストレインゲージと共にシリコンゴムやブチルゴムなどによって被われているので、容易に水分を通すことはない。
しかし、これらの樹脂やゴム剤は多孔質であるので、これらは基本的には水蒸気を通す。従って、ロードセルの長期使用によって、または使用環境によって、吸収した水蒸気が水分化して、ストレインゲージと、ストレインゲージが貼付されている金属起歪体との間の絶縁抵抗値が低下し、ロードセルの出力に基づく荷重信号の零点やスパンに測定後諭して影響を与える。
特に、気温差が大きく結露しやすい場所で使用される計量装置、計量部を日々水洗する必要のある計量装置、屋外設置の計量装置などの厳しい環境下で使用される計量装置は、荷重信号に無視できない誤差を与えるほど絶縁抵抗値が低下する可能性が大きい。そこで、絶縁抵抗値の大きさを判定し、所定の精度で計量装置を使用できなくなる前に、絶縁抵抗値の低下を報知する手段の装備が望ましい。
ロードセルにおける絶縁抵抗値の測定技術として、特許文献1の第5図に開示されたものがある。この技術では、ロードセルがストレインゲージからなるブリッジ回路を備えており、計量時には、ブリッジ回路の2つの電源励磁端間に測定用電源を接続し、ブリッジ回路の2つの出力端間の電圧を測定する。絶縁抵抗値を測定する場合、2つの電源励磁端の一方に、測定用電源と基準抵抗器との直列回路の一端を接続し、この直列回路の他端を延長ケーブルを介して大地に接続する。2つの電源励磁端の他方は、空き端子とする。ロードセルと大地との間には絶縁抵抗が存在するので、測定用電源からストレインゲージ、絶縁抵抗、大地、延長ケーブル、基準抵抗、測定用電源へ電流が流れ、基準抵抗に電圧が発生する。この電圧を増幅器で増幅し、A/D変換器でデジタル化し、演算及び判定回路に供給して、絶縁抵抗値を測定する。絶縁抵抗値の測定用電源は、ブリッジ回路での荷重測定用に使用する増幅器等の電源とは、コモンラインが異なるものを使用している。そのため、ブリッジ回路励磁用と増幅器等用の2つの電源が準備されている。
特公昭61−16006号公報
特許文献1の技術によれば、荷重信号の測定または絶縁抵抗の測定のために、荷重信号測定用のブリッジ回路用電源、演算増幅器等用の電源、絶縁抵抗値測定用の電源の3つの電源を使用しなければならない。このような測定方法では、荷重信号の測定と共に絶縁抵抗値の測定をするのに多くの電源を必要として、コスト高になる。
本発明は、荷重信号の測定用にも絶縁抵抗値の測定用にも共通の1つの電源を用いるようにして、コストの低減を図った計量装置を提供することを目的とする。
本発明の一態様の計量装置は、金属起歪体を有している。金属起歪体は、複数の起歪部にそれぞれにストレインゲージが貼着されている。金属起歪体としては、例えばロバーバル型のものも使用することができるし、コラム型のものを使用することもできる。前記複数のストレインゲージを含むブリッジ手段が設けられている。ブリッジ手段には、ストレインゲージの他に、例えば温度補償用抵抗手段などが含まれることもある。ブリッジ手段は、例えばホイーストンブリッジ回路で、2つの電源励磁端と、2つの出力端とを有している。ブリッジ回路の2つの電源励磁端に接続線を介して2つの電源励磁端子が接続されている。ブリッジ回路の2つの出力端に接続線を介して2つの測定用端子が接続されている。また、電圧測定手段が設けられている。コモンラインとノーマルラインとを有する電源手段は、コモンライン及びノーマルラインとが前記電圧測定手段に接続されている。さらに、ノーマルラインが前記2つの電源励磁端子の一方に接続されている。前記金属起歪体または前記金属起歪体が接触している導体と、前記電源手段の前記コモンラインとの間に基準抵抗手段が接続されている。荷重信号の電圧測定時には、電源手段のコモンラインが電源励磁端子の他方に接続され、前記電圧測定手段が前記2つの測定用端子を介して前記ブリッジ手段の2つの出力端間に発生している荷重信号の電圧を測定する。絶縁抵抗の測定時には、電圧測定手段が、電源手段のノーマルラインから、ストレインゲージ並びに各電源励磁端子及び測定用端子と金属起歪体または前記導体との間の絶縁抵抗を介してコモンラインに流れる電流によって基準抵抗手段に発生する電圧を測定する。
このように構成された計量装置では、使用されている電源手段は、絶縁抵抗値を測定するために使用する基準抵抗手段と電圧測定手段とに対して共通であり、複数種類の電源手段を設ける必要が無く、計量装置のコストを低減することができる。
前記電圧測定手段は、前記荷重信号の測定時に、前記2つの出力端間に発生した荷重信号の電圧が前記2つの測定用端子を介して直接に供給される荷重信号測定用演算増幅器と、前記絶縁抵抗の測定時に、前記基準抵抗手段の両端間に発生する電圧が直接に供給される絶縁抵抗測定用の演算増幅器とを、具備するものとすることができる
このように構成された計量装置では、荷重信号測定用演算増幅器及び絶縁抵抗測定用の演算増幅器のどちらにも直接に電圧が供給されており、切換回路を備えていない。従って、漏れ電流等の影響を受けずに低電圧レベルでも高精度に絶縁抵抗値や荷重信号を測定することができる。
ストレインゲージ及びブリッジ手段が内部に収容され、内部と外気との気体流通が遮断された金属ケースを設けることもできる。この場合、金属ケースに、金属ケースと外気との気体流通を遮断するように設けられ、かつ前記電源励磁端子と前記測定用端子とが設けられている気密栓を設ける。気密栓に絶縁抵抗値検出ピンが設けられ、前記絶縁抵抗値検出ピンと前記コモンラインとの間に前記基準抵抗手段が接続されている。
このように構成すると、金属ケース内のブリッジ手段等で絶縁抵抗値が低下する可能性が少ない。しかし、気密栓で結露等が生じて、2つの電源端子や2つの測定用端子と気密栓との間の絶縁抵抗値が低下する可能性があるが、気密栓に絶縁抵抗値検出ピンを設けているので、上記絶縁抵抗値を測定することができる。
前記電圧測定手段は1つの演算増幅器を有するものとすることができる。この場合、前記荷重信号の測定時に2つの測定用端子を介して2つの出力端間に発生している電圧が前記演算増幅器に供給され、絶縁抵抗値の測定時に前記基準抵抗手段の両端間の電圧が前記演算増幅器に供給されるように、前記演算増幅器に供給される電圧を切り換える切換手段が設けられている。このように構成すると、演算増幅器を1台だけ使用すればよいので、コストの低減を図ることができる。
前記絶縁抵抗値測定手段は、前記ブリッジ回路の出力が正常な状態において前記基準抵抗手段の両端間電圧を初期値として記憶し、前記基準抵抗手段の両端間電圧の前記初期値からの変化量によって、絶縁抵抗値の大きさを評価する絶縁抵抗評価手段を設けることができる。このように構成すると、絶縁抵抗値の初期値からの変化分を測定することができる。
以上のように、本発明によれば、荷重信号を測定する場合または絶縁抵抗値を測定する場合にブリッジ手段を励磁する電源と、電圧測定手段を励磁する電源とを、別個に準備せずに共通の1つのものを使用することができ、計量装置のコストを低減することができる。また、本発明の特定の態様によれば、後述するように、ブリッジ手段の荷重信号の測定用端子から演算増幅器に電圧を供給する経路に、切換手段を設ける必要が無く、高精度の測定ができる。
本発明の第1の実施形態の計量装置のロードセル及び電圧測定回路のブロック図である。 図1の計量装置の縦断面図である。 図1の計量装置のブロック図である。 本発明の第2の実施形態の計量装置のロードセル及び電圧測定回路のブロック図である。 本発明の第3の実施形態の計量装置のロードセル及び電圧測定回路のブロック図である。 本発明の第4の実施形態の計量装置の縦断面図である。 図6の計量装置の気密端子盤58の縦断面図である。
本発明の第1の実施形態の計量装置は、図2に示すようにロードセル1を有している。このロードセル1は、例えばコラム型の金属起歪体2を有している。その金属起歪体2に形成した起歪部4に、複数、例えば4つのストレインゲージ6が貼着されている。コラム型の金属起歪体2及びそれに対するストレインゲージ6の貼着技術は周知であるので詳細な説明は者略する。
この金属起歪体2は、ケース8内に収容されている。ケース8は、例えば金属製のベース8aを有し、その上に起歪体2が配置され、起歪体2の周囲を胴部8bが包囲し、胴部8bの上部に蓋部8cが取り付けられている。
各ストレインゲージ6は、図1に示すようにブリッジ手段、例えばホイーストンブリッジ回路10を構成している。なお、ホイーストンブリッジ回路10では、温度補償用等にストレインゲージ6以外の抵抗器を含むこともあるが、この実施形態では、ストレインゲージ6以外の抵抗器を含んでいないホイーストンブリッジ回路を示している。このホイーストンブリッジ回路10は、対向する2つの電源励磁端10a、10bと、対向する2つの出力端10c、10dを有している。電源励磁端10aは、端子板12に設けた電源励磁端子14に配線を介して接続され、電源励磁端10bも端子板12に設けた電源励磁端子16に配線を介して接続されている。同様に、出力端10cは、端子板12に設けた測定用端子18に接続され、出力端10dは、端子板12に設けた測定用端子20に接続されている。端子板12は、図2に示すようにケース8の胴部8bに取り付けられている。
ロードセル1は、図3に示すように指示計22に接続されている。指示計22は、電圧測定手段、例えば電圧測定回路24を有し、更に演算回路26、操作・設定スイッチ28及び表示部30も有している。
図1に示すように、電圧測定回路24は、電源励磁端子32、34、測定用端子36、38を有している。電源励磁端子32は、ロードセル1の電源励磁端子14にケーブルを介して接続され、電源励磁端子34は、ロードセル1の電源励磁端子16にケーブルを介して接続されている。測定用端子36は、ロードセル1の測定用端子18にケーブルを介して接続され、測定用端子38はロードセル1の測定用端子20にケーブルを介して接続されている。
電源励磁端子32は、電源手段、例えば電源40のノーマルにノーマルラインNを介して接続されている。電源励磁端子34は、切換手段、例えばアナログスイッチまたはリレー42の接点42aに接続されている。アナログスイッチまたはリレー42は、接点42bと接触子42cも有し、接触子42cが接点42a、42bのいずれかに接触する。接点42bは、空き接点とされ、接触子42cは電源40のコモンにコモンラインCを介して接続されている。
測定用端子36は、切換手段、例えばアナログスイッチ44の接点44aに接続されている。アナログスイッチ44は、接点44b及び接触子44cも有し、接触子44cは接点44aまたは接点44bに接触する。接点44bは、一端がコモンラインCに接続された基準抵抗手段、例えば予めた抵抗値を持つ基準抵抗器46の他端に接続されている。この基準抵抗器46の他端は、絶縁抵抗値測定用端子48に接続されている。この絶縁抵抗値測定用端子48は、ケーブルを介して金属起歪体2の任意の位置または金属起歪体2が接触している導体、例えばケース8の金属製ベース8aの任意の位置である絶縁抵抗値測定点50に接続されている。接触子44cは、増幅手段、例えば演算増幅器45の一方の入力端子に接続されている。
測定用端子38は、切換手段、例えばアナログスイッチ52の接点52aに接続されている。アナログスイッチ52は、接点52b、接触子52cも有し、接触子52cは、接点52a、52bのいずれかに接触する。接点52bは、コモンラインCに接続されている。接触子52cは、演算増幅器45の他方の入力端子に接続されている。なお、演算増幅器45の入力側及び出力側に設けられる回路は、図示を省略している。
アナログスイッチ44、52に代えてリレーを使用することも可能である。しかし、ロードセル1の測定用端子36、38間の電圧は、ロードセル1に定格負荷を印加した場合でも数mV程度であり、高精度を得るためには1μV以下の電圧変動が問題になる。従って、温度変化によって大きい熱起電力を生じるリレーを使用すると、高精度の計量ができないので、アナログスイッチ44、52の使用が望ましい。
アナログスイッチまたはリレー42及びアナログスイッチ44、52は、図3に示す演算回路26によって制御される。演算回路26は、アナログスイッチまたはリレー42及びアナログスイッチ44、52を、荷重信号の測定モードと、絶縁抵抗値の測定モードとに制御する。荷重信号の測定モードでは、アナログスイッチ42またはリレー42及びアナログスイッチ44、52の接触子42c、44c、52cが接点42a、44a、52aに接触する。絶縁抵抗値の測定モードでは、アナログスイッチまたはリレー42及びアナログスイッチ44、52の接触子42c、44c、52cが接点42b、44b、52bに接触する。電源40のコモンは、荷重信号の測定モードのときも、絶縁抵抗値の測定モードのときも、コモンラインCに接続されている。
荷重信号の測定モードでは、ホイーストンブリッジ回路10の電源励磁端10a、10bがアナログスイッチまたはリレー42の接触子42cが接点42aに接触したことにより、電源励磁端子14、16、32、34、アナログスイッチまたはリレー42を介して、電源40のノーマルラインNとコモンラインCとに接続され、ホイーストンブリッジ回路10の出力端10c、10dが測定用端子18、20、36、38、アナログスイッチ44、52を介して、演算増幅器45の入力側に接続され、ホイーストンブリッジ回路10の出力端10c、10d間に発生している出力、例えば電圧が演算増幅器45で増幅される。従って、起歪体2に印加されている荷重を検出することができる。
絶縁抵抗値の測定モードでは、アナログスイッチまたはリレー42の接触子42cが接点42bに接触していることにより、ホイーストンブリッジ回路10の電源励磁端10bは、電源40のコモンラインCから切り離される。また、アナログスイッチ44、52の接触子44c、52cが接点44b、52bに接触していることによって、演算増幅器45の入力側に基準抵抗器46の両端が接続される。この状態では、ストレインゲージ6自身と絶縁抵抗値測定点50との間は、図1に破線で示すように絶縁抵抗で接続されている。また、ホイーストンブリッジ回路10の電源励磁端10a、10b、出力端10c、10dと絶縁抵抗値測定点50との間も破線で示すように絶縁抵抗で接続されている。その結果、電源40のノーマルラインNから電源励磁端子32、14、ホイーストンブリッジ回路10の電源励磁端10aを経て、ストレインゲージ6から絶縁抵抗を介して電流が絶縁抵抗値測定点50に流れ、同じく電源励磁端10a、10b、出力端10c、10dから絶縁抵抗を介して電流が絶縁抵抗値測定点50に流れる。これら電流は絶縁抵抗値測定用端子48、基準抵抗器46を介して電源40のコモンラインCに流れる。そして、基準抵抗器46に発生した電圧が演算増幅器45で増幅される。
荷重信号の測定モードであれ、絶縁抵抗値の測定モードであれ、演算増幅器45の出力は、A/D変換手段、例えばA/D変換器54に供給され、デジタル化され、演算回路26に供給される。
なお、演算増幅器45もA/D変換器54も電源40のノーマルラインNとコモンラインCとに接続され、電源40から動作電力が供給されている。図示していないが、演算回路26や操作・設定スイッチ28や表示部30も同様である。即ち、電圧測定回路24の各構成要素の励磁用電源は、ブリッジ回路10の励磁用電源と共用されている。
演算回路26は、CPUやメモリ及び入出力回路から構成されており、上述したようにアナログスイッチ42、44、54の制御を行うと共に、A/D変換器54から供給されたデジタル信号を処理し、荷重信号の測定モードでは、ホイーストンブリッジ回路10の出力端10c、10d間の荷重信号の電圧に基づいて計量値を算出し、その計量値を表示部30に表示する。絶縁抵抗値の測定モードでは、演算回路26は、基準抵抗器46の両端間電圧に基づいて絶縁抵抗値を算出し、その絶縁抵抗値を予め定めた絶縁抵抗基準値と比較し、絶縁抵抗基準値よりも絶縁抵抗値が低い場合、表示部30に絶縁抵抗値低下による故障警報を表示する。操作・設定スイッチ28は、荷重信号の測定モードと絶縁抵抗値の測定モードの切換操作指示を演算回路26に与えたり、絶縁抵抗基準値を演算回路26に設定したり、基準抵抗器の抵抗値を演算回路26に設定したりする。
絶縁抵抗値の測定モードにおいて、絶縁抵抗値が大きく、ホイーストンブリッジ回路10のどこからも基準抵抗値46に向かって電流が流れていない初期状態でも、演算増幅器45の入力にはオフセット電圧、バイアス電流、オフセット電流が存在するので、演算増幅器45には出力電圧edoが発生する。初期状態では、アナログスイッチ44、52に存在するリーク電流に基づいても演算増幅器45には出力電圧が発生し、この出力電圧も、出力電圧edoに含まれる。絶縁抵抗値の大小を評価する場合に、この初期状態での出力電圧edoを無視できないことがある。
そこで、調整設定時の手順として、絶縁抵抗値が極めて高いロードセル1の正常な状態である調整、設定時点における演算増幅器45の出力電圧である初期電圧edoのデジタル化値Dedoを演算回路26のメモリに記憶させる。そして、絶縁抵抗値の測定モードにおける演算増幅器45の出力電圧edxには、上述した初期電圧edoが含まれている。そこで、演算回路26において、演算増幅器45の出力電圧edxのデジタル化値DedxからDedoを減算して、電圧変化分Ddxを算出する。このDdxと、基準抵抗器46の基準抵抗値と電源40の電圧とに基づいて絶縁抵抗値の変化分を算出し、予め定めた荷重信号の誤差を許容し得る最小の絶縁抵抗値である許容絶縁抵抗値と比較することが可能である。また、基準抵抗器46の基準抵抗値は一定であるので、電圧変化分Edxによって絶縁抵抗値の変化を評価することもできる。ホイーストンブリッジ回路10の出力(荷重信号)の誤差を許容し得る最小の絶縁抵抗値に基づいて、予め許容変化電圧Eeを決定し、そのデジタル化値DeとDdxとを比較することもできる。絶縁抵抗値の変化分が許容絶縁抵抗値よりも小さい場合、あるいはDdxがDeよりも大きいとき、絶縁抵抗値が低く、ホイーストンブリッジ回路10の出力に生じた誤差が許容値を超えているとして表示部30に絶縁抵抗値の低下の警報を表示する。音声によって警報を発することも可能である。このように演算回路26は、絶縁抵抗評価手段としても機能する。
なお、絶縁抵抗値測定点50の位置は、使用するロードセル1の構造に応じて変更される。例えば図2に示すようにケース8によって起歪体2が被われている場合、その金属部分のうち起歪体2と接触している部分、例えばベース部8aに絶縁抵抗値測定点50を設ける。ケースによって起歪体2が被われていない場合、起歪体2の任意の位置に絶縁抵抗値測定点50を設ける。
このように構成すると、絶縁抵抗値測定点50と絶縁抵抗値測定端子48とは、荷重信号の測定モードの間も含めて常に接続したままとすることができ、絶縁抵抗値を測定するたびに、絶縁抵抗値測定点50と絶縁抵抗値測定端子48とを接続する必要は無く、円滑に絶縁抵抗値を測定することができる。
絶縁抵抗値の測定は、計量装置の故障検出手段として重要であるので、検出忘れが生じないように確実に実施される必要がある。荷重信号の測定モードから絶縁抵抗値の測定モードへの切換は、例えば以下のように行うことが望ましい。
台はかり、料金はかり、トラックスケールのように作業者計量装置上に被計量物品をおいたなら、計量しなければならない非自動秤では、計量装置自身の判断で自動的に荷重信号の測定モードから絶縁抵抗値の測定モードに切り換えることはできない。そこで、作業者の意思に基づいて絶縁抵抗値の測定も行うとして、操作・設定スイッチ28内に含まれている零点調整キースイッチを絶縁抵抗値の測定モードへの切換スイッチと兼用し、零点調整キースイッチが押されていた時間を演算回路26において検出し、予め定めた時間よりも短い時間だけおされた場合には、単に零点調整を行うが、予め定めた時間以上に押された場合には、零点調整を行うが、その前後いずれかにおいて一時的に絶縁抵抗値の測定モードに切り換えて、上述したようにして絶縁抵抗値を測定する。更に、演算回路26は、絶縁抵抗値の測定モードが実行されてからの時間を計測し、予め定めた時間以上の時間が経過した場合、作業者に絶縁抵抗値測定を行うことを促す警報を表示部30に表示する。また、零点調整キーを絶縁抵抗値の測定モードへの切換スイッチと兼用するのに加えて、或いはこれに代えて、計量装置への電源投入時に強制的に絶縁抵抗値の測定モードに切り換えるようにすることもできる。
重量充填機や組合せ秤のように自動的に被計量物品が計量装置に供給される自動秤では、計量が実行されないタイミングとして、被計量物品を収容している物品収容手段、例えば計量ホッパから被計量物品が排出され、新たな被計量物品が供給されるまでの間が、ある。この期間に、自動的に絶縁抵抗値の測定モードに切り換えて、上述したように絶縁抵抗値を測定する。計量が行われていないタイミングが、計量シーケンス上で明確でない例えば軸重計では、車輪が計量台から降りるときが、計量が実行されないタイミングとなる。そこで、荷重信号の測定モードでの計量信号が、予め定めた第1の設定重量以上ある状態から、第1の設定重量よりも小さく零点付近に設定した第2の設定重量以下に計量信号が変化したとき、絶縁抵抗値の測定モードに切り換えて、上述したようにして絶縁抵抗値を測定する。この手法は、上述した非自動秤においても使用可能であり、零点調整キーの絶縁抵抗値の測定モードへの切換、電源投入に伴う絶縁抵抗値の測定モードへの切換に代えて、或いはこれらのいずれかまたは両方に加えて、この手法によって絶縁抵抗値の測定モードに切り換えることもできる。また、自動秤においても、上述した電源投入時に強制的に絶縁抵抗値の測定モードに切り換える手法や、零点調整される際の前後いずれかに絶縁抵抗値の測定モードに切り換える手法を採用することも可能である。
本発明の第2の実施形態を図4に示す。この実施形態では、電圧測定回路24aにおいて、絶縁抵抗値測定用の演算増幅器45aと、計量値測定用の演算増幅器45bとを別個に設け、これに伴いA/D変換器もA/D変換器54a、54bの2台を設け、アナログスイッチ44、52を除去してある。なお、第1の実施形態で使用していた測定用端子20、38は使用されずに、測定用端子20a、38aが設けられ、これらを介して計量値測定用の演算増幅器45bにホイーストンブリッジ回路10の出力端10dが直接に接続され、測定端子18、36を介して計量値測定用の演算増幅器45bにホイーストンブリッジ回路10の出力端10cが接続されている。絶縁抵抗値測定用の演算増幅器45aには基準抵抗器46の両端が直接に接続されている。他の構成は、第1の実施形態と同様であるので、詳細な説明は省略する。
このように構成すると、ロードセル1の測定用端子36、38と増幅器45aとの経路にアナログスイッチを設ける必要が無いので、アナログスイッチの漏れ電流の影響を受けず、さらに高精度の測定が可能となる。
即ち、上述した特許文献1の技術では、荷重信号の測定時には、演算増幅器の前段でリレー接点を介してブリッジ回路と演算増幅器とを接続している。ブリッジ回路の荷重信号用の測定端子間の電圧は、ロードセルに定格負荷が印加された場合でも数mボルト程度であり、例えば1/5000以上の高い精度を得たい場合には、演算増幅器に供給される電圧は、1μボルトレベルが安定していなければならず、熱起電力を有するリレー接点を使用することは適切ではない。そこで、リレー接点をアナログスイッチに置換することも考えられるが、たとえ置換したとしても、アナログスイッチには漏れ電流が存在し、リレー接点程の精度低下は生じないが、やはり低電圧レベルの信号経路にアナログスイッチを使用することは高精度の測定には適しない。この実施形態では、上述したように、ロードセル1の測定用端子36、38と増幅器45aとの経路にアナログスイッチを設ける必要が無いので、アナログスイッチの漏れ電流の影響を受けず、さらに高精度の測定が可能となる。また、荷重信号の測定用と絶縁抵抗値の測定用とに演算増幅器45a、45bを別個に設けたので、演算増幅器45a、45bの増幅率を、計量用、絶縁抵抗値測定用それぞれに適したものに設定することができる。
また、本発明の第3の実施形態として図5に示すように、電圧測定回路24において、アナログスイッチ44をA/D変換器54の入力側に設け、荷重信号を測定する演算増幅器45bと絶縁抵抗値を測定する演算増幅器45aとの出力を切り換えるようにしてもよい。このようにすると、A/D変換器は1台設けるだけでよい。また、演算増幅器45a、45bの出力は、ボルトオーダーに増幅されているので、アナログスイッチ44での漏れ電流の影響を受けない。
本発明の第4の実施形態の計量装置を図6及び図7に示す。この実施形態では、第1乃至第3の実施形態で使用した電圧測定回路24、24aまたは24bが使用される。但し、起歪体2における少なくとも各ストレインゲージ6の部分が、外気から完全に気密とされた金属ケース56内に収容されている。ホイーストンブリッジ回路10の電源励磁端10a、10b、出力端10c、10dは、金属ケース56に設置された気密端子盤58に、導通ピン形態で設けた電源励磁端子14、16、測定用端子18及び測定用端子20(第1の実施形態の場合)若しくは20a(第2または第3の実施形態の場合)に接続されている。気密端子盤58は、完全に気体流通を阻止するガラス材などによって製作された気密栓60と、この気密栓60を保護する金属枠62とによって構成され、気密栓60に電源励磁端子14、16、測定用端子18及び測定用端子20(若しくは20a)が気密状態に取り付けられている。金属枠62は、金属ケース56に形成した配線取り出し孔64に挿入されて、溶接によって気密に取り付けられている。
電源励磁端子14、16、測定用端子18及び測定用端子20(若しくは20a)は、ケーブル66を介して指示計22の電圧測定回路24(第1の実施形態の場合)、24a(第2の実施形態の場合)若しくは24b(第3の実施形態の場合)に接続されている。
金属枠62には、円筒状の金属製コネクタケース68が溶接され、その内部にケーブル66が挿通されている。ケーブル66は、その外周囲がコネクタケース68内において押さえ金具70によって固定され、押さえ金具70はコネクタケース68にネジ止めされている。押さえ金具70とコネクタケース68との間には、パッキング72が挿入され、外部環境から上記のネジ止め部分を介してコネクタケース68内に水分が侵入することを防止している。また、金属ケース56内には乾燥気体が封入されている。
従って、金属ケース56内で結露が生じることはなく、また水分が金属ケース56内に侵入することもなく、金属ケース56内で起歪体2とストレインゲージ6との間の絶縁抵抗値が低下することはない。
しかし、金属ケース62の内部及びコネクタケース68の内部であるコネクタ室内には、ケーブル66の各導線の隙間を通して、或いはケーブル66の樹脂製外壁とパッキング72との間の隙間を通して、コネクタ室内には水蒸気が入ることがある。水蒸気を含んだ空気がコネクタ室内に存在すると、外部との大きな気温差があると、結露が生じる。
気密栓60の上に結露が生じると、電源励磁端子14、16、測定用端子18、20(若しくは20a)とコネクタケース68や金属枠62との間の絶縁抵抗値が低下して、計量値に誤差が生じる。従って、このような完全密閉構造のロードセルであっても、絶縁抵抗値の検出、評価が必要である。
電源励磁端子14、16、測定用端子18、20(若しくは20a)とコネクタケース68や金属枠62との間の絶縁抵抗値を測定するため、金属枠62やコネクタケース68や金属ケース56と起歪体2と電気的に導通している計量部金属部材74(金属ケース56が接触している金属部材)上に絶縁抵抗測定点50を設け、これを第1及び第2の実施形態のように絶縁抵抗値測定用端子48へ接続することも考えられるが、これでは接続作業が面倒となる。そこで、第4の実施形態では、気密栓60の上に、絶縁抵抗値検出ピン76を設け、これをケーブル66を介して絶縁抵抗値測定用端子48に接続してある。
気密栓60上のコネクタケース68側の面が結露して、この面の絶縁抵抗値が低下すると、各端子14、16、18及び20(若しくは20a)と金属枠62やコネクタケース68との間と同様に、各端子14、16、18及び20(若しくは20a)と絶縁抵抗値検出ピン76との間の絶縁抵抗値も低下しているので、この絶縁抵抗値も測定することができる。
上記の各実施形態では、起歪体としてコラム型のものを使用したが、ロバーバル型の起歪体を使用することもできる。第1及び第2の実施形態では、基準抵抗器46間の電圧を演算増幅器45または45aで増幅後にデジタル化して、演算回路26においてデジタル処理したが、演算増幅器45または45aの出力電圧を、比較器において予め定めた基準電圧と比較するアナログ処理を行うこともできる。
2 起歪体
6 ストレインゲージ
24 電圧測定回路(電圧測定手段)
32 34 電源励磁端子
36 38 測定用端子
40 電源(電源手段)
46 基準抵抗器(基準抵抗手段)

Claims (5)

  1. 複数のストレインゲージが貼着された金属起歪体と、
    前記複数のストレインゲージを含み、2つの電源励磁端と、2つの出力端とを有するブリッジ手段と、
    前記ブリッジ手段の前記2つの電源励磁端に接続線を介してそれぞれ接続された2つの電源励磁端子と、
    前記2つの出力端に接続線を介してそれぞれ接続された2つの測定用端子と、
    電圧測定手段と、
    コモンラインとノーマルラインとを有し、前記コモンライン及び前記ノーマルラインが前記電圧測定手段に接続され、前記ノーマルラインが前記2つの電源励磁端子の一方に接続されている電源手段と、
    前記金属起歪体または前記金属起歪体が接触している導体と、前記電源手段の前記コモンラインとの間に接続された基準抵抗手段とを、
    具備し、荷重信号の電圧測定時には、前記電源手段のコモンラインが前記電源励磁端子の他方に接続され、前記電圧測定手段が前記2つの測定用端子を介して前記ブリッジ手段の2つの出力端間に発生している荷重信号の電圧を測定し、
    絶縁抵抗の測定時には、前記電圧測定手段が、前記電源手段のノーマルラインから、前記ストレインゲージ並びに前記各電源励磁端子及び前記測定用端子と前記金属起歪体または前記導体との間の絶縁抵抗を介して前記コモンラインに流れる電流によって前記基準抵抗手段に発生する電圧を測定する
    計量装置。
  2. 請求項1記載の計量装置において、前記電圧測定手段は、
    前記荷重信号の測定時に、前記2つの出力端間に発生した荷重信号の電圧が前記2つの測定用端子を介して直接に供給される荷重信号測定用演算増幅器と、
    前記絶縁抵抗の測定時に、前記基準抵抗手段の両端間に発生する電圧が直接に供給される絶縁抵抗測定用の演算増幅器とを、
    具備する計量装置。
  3. 請求項1または2記載の計量装置において、前記ストレインゲージ及び前記ブリッジ手段が内部に収容され、内部と外気との気体流通が遮断された金属ケースと、
    前記金属ケースに、前記金属ケースと外気との気体流通を遮断するように設けられ、かつ前記電源励磁端子と前記測定用端子とが設けられている気密栓とを、
    具備し、前記気密栓に絶縁抵抗値検出ピンが設けられ、前記基準抵抗手段が、前記金属起歪体または前記金属起歪体が接触している導体と前記電源手段の前記コモンラインとの間に接続するのに代えて、前記絶縁抵抗値検出ピンと前記コモンラインとの間に接続された計量装置。
  4. 請求項1に記載の計量装置において、前記電圧測定手段が1つの演算増幅器を有し、前記荷重信号の測定時に前記2つの測定用端子を介して前記2つの出力端間に発生している電圧が前記演算増幅器に供給され、絶縁抵抗値の測定時に前記基準抵抗手段の両端間の電圧が前記演算増幅器に供給されるように、前記演算増幅器に供給される電圧を切り換える切換手段が設けられた計量装置。
  5. 請求項1または2記載の計量装置において、前記ブリッジ手段の出力が正常な状態において前記基準抵抗手段の両端間電圧を初期値として記憶し、前記基準抵抗手段の両端間電圧の変化量によって、絶縁抵抗値の大きさを評価する絶縁抵抗評価手段を具備する計量装置。
JP2012091971A 2012-04-13 2012-04-13 計量装置 Active JP5925570B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012091971A JP5925570B2 (ja) 2012-04-13 2012-04-13 計量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091971A JP5925570B2 (ja) 2012-04-13 2012-04-13 計量装置

Publications (2)

Publication Number Publication Date
JP2013221784A JP2013221784A (ja) 2013-10-28
JP5925570B2 true JP5925570B2 (ja) 2016-05-25

Family

ID=49592859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091971A Active JP5925570B2 (ja) 2012-04-13 2012-04-13 計量装置

Country Status (1)

Country Link
JP (1) JP5925570B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697343B (zh) * 2021-03-23 2021-07-16 上海艾为微电子技术有限公司 电阻桥式压力传感器的检测电路、方法、电子设备及芯片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158521A (en) * 1979-05-29 1980-12-10 Kyowa Dengiyou:Kk Device for measuring axle load
JPS60201265A (ja) * 1984-03-27 1985-10-11 Kyowa Dengiyou:Kk 絶縁抵抗計
US5135062A (en) * 1990-07-18 1992-08-04 Flintab Ab Strain gage transducer system with guard circuit
JP5164736B2 (ja) * 2008-08-19 2013-03-21 大和製衡株式会社 ロードセル
JP5213598B2 (ja) * 2008-09-10 2013-06-19 大和製衡株式会社 ロードセルおよびそれを用いる重量測定装置

Also Published As

Publication number Publication date
JP2013221784A (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
US8055456B2 (en) Method of monitoring and/or determining the condition of a force-measuring device, and force-measuring device
CA2368901A1 (en) Current meter
MX2009012522A (es) Metodo para monitorear la condicion de un dispositivo de medicion de fuerza, dispositivo de medicion de fuerza y modulo de medicion de fuerza.
US20170059628A1 (en) Power detection apparatus
JP3940970B2 (ja) ひずみ測定モジュール
JP5925570B2 (ja) 計量装置
CN114121560A (zh) 断路器的端子罩
KR102011005B1 (ko) 압력 및 수분 통합 센서
JP2015530579A (ja) 歪送信器
JP4224993B2 (ja) 物理量検出装置
CN109443503B (zh) 检测装置
JP2928751B2 (ja) ゲージ圧測定装置
JPS6224121A (ja) 測定ヘツド
JP4255926B2 (ja) ひずみ及び温度の測定装置
JP5213598B2 (ja) ロードセルおよびそれを用いる重量測定装置
JP2013234949A (ja) 計量装置
JP2023101853A (ja) デジタルロードセル
JP2010096502A (ja) 計量器
JP5164736B2 (ja) ロードセル
JP2007093528A (ja) 圧力センサ
JP2014016270A (ja) 計量装置
JP2905131B2 (ja) 絶対圧測定装置
JPH0216841B2 (ja)
JP5679837B2 (ja) 計量装置
CN109141495A (zh) 传感器接口装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160420

R150 Certificate of patent or registration of utility model

Ref document number: 5925570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250