JP5921888B2 - Corrosion measurement method and corrosion environment gauge - Google Patents

Corrosion measurement method and corrosion environment gauge Download PDF

Info

Publication number
JP5921888B2
JP5921888B2 JP2012003387A JP2012003387A JP5921888B2 JP 5921888 B2 JP5921888 B2 JP 5921888B2 JP 2012003387 A JP2012003387 A JP 2012003387A JP 2012003387 A JP2012003387 A JP 2012003387A JP 5921888 B2 JP5921888 B2 JP 5921888B2
Authority
JP
Japan
Prior art keywords
metal plate
corrosion
environment
thickness
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012003387A
Other languages
Japanese (ja)
Other versions
JP2012163554A (en
Inventor
義浩 伊藤
義浩 伊藤
岳史 山下
岳史 山下
重信 貝沼
重信 貝沼
佐島 隆生
隆生 佐島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kobe Steel Ltd
Original Assignee
Kyushu University NUC
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kobe Steel Ltd filed Critical Kyushu University NUC
Priority to JP2012003387A priority Critical patent/JP5921888B2/en
Publication of JP2012163554A publication Critical patent/JP2012163554A/en
Application granted granted Critical
Publication of JP5921888B2 publication Critical patent/JP5921888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、測定環境中の腐食性や構造物の腐食状態を測定する腐食測定方法、及び該方法の実施に好適な腐食環境ゲージに関するものである。   The present invention relates to a corrosion measurement method for measuring the corrosivity in a measurement environment and the corrosion state of a structure, and a corrosion environment gauge suitable for carrying out the method.

これまで、環境中の腐食性や、当該環境中に設置される構造物の腐食状態を測定する方法が種々開示されている。例えば、特許文献1や2には、構造物を構成する鋼材の外部表面の色の明度、彩度、及び色相から、鋼材の腐食状態や劣化状態を判定する方法が開示されている。また、特許文献3には、鋼構造物の腐食の進行程度を初期段階で把握するために、鋼構造物の腐食に関与する大気中の劣化因子により変色する複数種類の犠牲金属の薄膜を非腐食性、非導電性の基板に配列してなる腐食環境センサを用い、薄膜の変色から鋼構造物の腐食の程度を評価する方法が開示されている。さらに、特許文献4には、膜厚を段階的または連続的に変化させて形成した金属薄膜の色の変化により環境中の腐食性を評価する方法が開示されている。   So far, various methods for measuring the corrosiveness in the environment and the corrosion state of structures installed in the environment have been disclosed. For example, Patent Documents 1 and 2 disclose a method for determining a corrosion state or a deterioration state of a steel material from the brightness, saturation, and hue of the color of the outer surface of the steel material constituting the structure. Patent Document 3 discloses a plurality of types of sacrificial metal thin films that discolor due to deterioration factors in the atmosphere involved in corrosion of steel structures in order to grasp the progress of corrosion of the steel structures at an early stage. A method for evaluating the degree of corrosion of a steel structure from discoloration of a thin film using a corrosive environment sensor arranged on a corrosive and non-conductive substrate is disclosed. Further, Patent Document 4 discloses a method for evaluating the corrosiveness in the environment by changing the color of a metal thin film formed by changing the film thickness stepwise or continuously.

あるいは、特許文献5には、交流インピーダンス法を用いた腐食速度の測定方法が開示されている。また、特許文献6には、電気的絶縁部材で被覆された面と外部に露出された面とを有し腐食の進行により電気抵抗値が増加する金属導電部材の電気抵抗値を測定して、構造物の腐食量を測定する方法が開示されている。   Alternatively, Patent Document 5 discloses a method for measuring a corrosion rate using an AC impedance method. Patent Document 6 measures the electrical resistance value of a metal conductive member having a surface covered with an electrically insulating member and a surface exposed to the outside, and the electrical resistance value increases due to the progress of corrosion. A method for measuring the amount of corrosion of a structure is disclosed.

特開2001−4525号公報JP 2001-4525 A 特開平11−132962号公報Japanese Patent Laid-Open No. 11-132962 特開2005−121510号公報JP-A-2005-121510 特開平10−90165号公報JP-A-10-90165 特開2002−71616号公報JP 2002-71616 A 特開2007−292747号公報JP 2007-292747 A

しかしながら、特許文献1〜4に開示されている方法では、色の変化という指標を用いており、定量的に環境中の腐食性や構造物の腐食状態を評価することが困難であった。また、特許文献5及び6に開示されている方法では、測定器具や配線等の準備が必要であり、簡易に構造物の腐食状態を測定することができなかった。   However, in the methods disclosed in Patent Documents 1 to 4, it is difficult to quantitatively evaluate the corrosivity in the environment and the corrosion state of the structure, using an index of color change. In addition, the methods disclosed in Patent Documents 5 and 6 require preparation of measuring instruments, wiring, and the like, and the corrosion state of the structure cannot be easily measured.

本発明は上記の様な事情に鑑みてなされたものであり、本発明者らは、定量的に、かつ簡易に、環境中の腐食性や被測定物の腐食状態を測定する方法、及び当該方法の実施に好適な腐食環境ゲージを提供することを課題として掲げた。   The present invention has been made in view of the circumstances as described above, and the present inventors have quantitatively and easily measured the corrosivity in the environment and the corrosion state of the object to be measured, and The object was to provide a corrosive environmental gauge suitable for the implementation of the method.

上記課題を解決し得た本発明の腐食測定方法は、厚みが段階的または連続的に変化する個所を有する金属板を測定環境中に置き、所定時間経過後の前記金属板の所定個所の後退長さを測定することを特徴とする。   The corrosion measurement method of the present invention that has solved the above-described problems is a method of placing a metal plate having a portion where the thickness changes stepwise or continuously in a measurement environment, and retreating the predetermined portion of the metal plate after a predetermined time has elapsed. It is characterized by measuring the length.

本発明において、前記所定個所が前記金属板の最小厚み個所であることや、前記金属板がくさび形であり、傾斜面全体が凹部形状であることや、前記金属板が溝状の穴を有しており、更に前記金属板の穴は、厚み方向を横から見た場合、台形であり、略均一な割合で傾斜面を有すること、前記金属板の厚み方向の投影図が円形であること、前記金属板が耐食性樹脂体中に埋没されつつ一方面は露出されていることは好ましい実施態様である。   In the present invention, the predetermined location is the minimum thickness location of the metal plate, the metal plate is wedge-shaped, the entire inclined surface is concave, or the metal plate has a groove-shaped hole. Further, the holes of the metal plate are trapezoidal when the thickness direction is viewed from the side, have an inclined surface at a substantially uniform ratio, and the projection view in the thickness direction of the metal plate is circular. It is a preferred embodiment that the one surface is exposed while the metal plate is buried in the corrosion-resistant resin body.

また、本発明には、厚みが段階的または連続的に変化する金属板が、耐食性樹脂体中に埋没されつつ一方面は露出されていることを特徴とする腐食環境ゲージが包含される。   Further, the present invention includes a corrosive environment gauge characterized in that a metal plate whose thickness changes stepwise or continuously is buried in a corrosion-resistant resin body and one surface is exposed.

上記腐食環境ゲージにおいて、前記金属板がくさび形であることや、前記金属板の厚み方向の投影図が円形であること、前記金属板の表面がブラスト処理されていることや、前記耐食性樹脂体がポリエステル系樹脂体またはアクリル系樹脂体であること、前記耐食性樹脂体が導電剤を含有することは好ましい実施態様である。   In the corrosion environment gauge, the metal plate is wedge-shaped, the projection in the thickness direction of the metal plate is circular, the surface of the metal plate is blasted, and the corrosion-resistant resin body. It is a preferable embodiment that is a polyester resin body or an acrylic resin body, and that the corrosion-resistant resin body contains a conductive agent.

本発明の腐食測定方法は、厚みが変化する金属板を測定環境中に放置して、所定時間経過後の金属板について、所定個所(好ましくは、最小厚み個所)の後退長さを測定することにより、環境中の腐食性や被測定物の腐食状態を評価するものであり、定量的に腐食性等を測定することができる。   In the corrosion measurement method of the present invention, a metal plate with a varying thickness is left in a measurement environment, and the receding length of a predetermined location (preferably, the minimum thickness location) is measured for the metal plate after a predetermined time has elapsed. Thus, the corrosivity in the environment and the corrosion state of the object to be measured are evaluated, and the corrosivity and the like can be measured quantitatively.

また、本発明の腐食測定方法は、上記の通り、環境中の腐食性や被測定物の腐食状態を長さという指標で評価するため、簡易に実施できる。   Further, as described above, the corrosion measuring method of the present invention can be easily implemented because the corrosiveness in the environment and the corrosion state of the object to be measured are evaluated by the index of length.

本発明で用いる金属板の一実施態様の正面図(a)と側面図(b)である。It is the front view (a) and side view (b) of one embodiment of the metal plate used by this invention. 板厚方向の投影図(正面図)が円形の金属板を用いた際の、所定個所における後退長さの測定方法を説明する図である。It is a figure explaining the measuring method of the retreat length in the predetermined location when the projection figure (front view) of a plate | board thickness direction uses a circular metal plate. 金属板がくさび形であり、傾斜面全体が凹部形状を有する本発明の腐食環境ゲージの一実施態様を説明する図である。It is a figure explaining one embodiment of the corrosive environment gauge of this invention which has a wedge-shaped metal plate and the whole inclined surface has a recessed shape. 金属板が溝状の穴を有しており、更に該金属板の穴は、厚み方向を横から見た場合、台形であり、略均一な割合で傾斜面を有する本発明の腐食環境ゲージの一実施態様を説明する図である。The metal plate has a groove-like hole, and the hole of the metal plate is trapezoidal when viewed in the thickness direction from the side, and has the inclined surface at a substantially uniform ratio. It is a figure explaining one embodiment.

本発明の腐食測定方法は、厚みが段階的または連続的に変化する個所を有する金属板を測定環境中に置き、所定時間経過後の前記金属板の所定個所の後退長さを測定することを特徴とする。以下、本発明の腐食測定方法について、詳細に説明する。   The corrosion measurement method of the present invention is to place a metal plate having a portion where the thickness changes stepwise or continuously in a measurement environment, and measure the receding length of the predetermined portion of the metal plate after a predetermined time has elapsed. Features. Hereinafter, the corrosion measurement method of the present invention will be described in detail.

(金属板)
本発明で用いる金属板は、その厚みが段階的または連続的に変化する個所を有するものである。本発明で用いる金属板は、減肉により金属板の所定個所(好ましくは、最小厚み個所)の後退が起るものであればよく、上記厚みが変化する個所は金属板の一部に設けられても、金属板の全体に亘って設けられてもよいが、所定時間における所定個所の後退長さを長くするために、当該個所は金属板の全体に亘って設けられるのが好ましい。なお、厚みが変化する個所が金属板の一部に設けられる場合には、当該個所は金属板に複数個あってもよい。また、本発明で用いる金属板には、傾斜面に沿って、凹部形状、例えば、U字状やV字状の溝を設けることにより、厚みの変化率(傾斜角)が異なる傾斜面を複数形成してもよい(後述する図3)。かかる構成により、後退長さの測定を、測定環境に応じて最適な個所で行うことができる。
(Metal plate)
The metal plate used in the present invention has a portion where the thickness changes stepwise or continuously. The metal plate used in the present invention is only required to be retracted at a predetermined portion (preferably, a minimum thickness portion) of the metal plate due to thinning, and the portion where the thickness changes is provided in a part of the metal plate. Alternatively, the metal plate may be provided over the entire metal plate. However, in order to increase the retracted length of the predetermined portion in a predetermined time, the portion is preferably provided over the entire metal plate. In addition, when the location where thickness changes is provided in a part of metal plate, the said metal plate may have two or more said locations. In addition, the metal plate used in the present invention has a plurality of inclined surfaces having different thickness change rates (inclination angles) by providing a concave shape, for example, a U-shaped or V-shaped groove along the inclined surface. You may form (FIG. 3 mentioned later). With this configuration, the retreat length can be measured at an optimum location according to the measurement environment.

本発明で用いる金属板の形状の具体的態様としては、例えば、図1に示すようなくさび形や、板厚方向の投影図が円形である金属板(例えば、円錐形)の他、正面が矩形(または円形)で側面が円弧状のもの等、厚みが金属板全体に亘って連続的に変化するとともに、金属板の少なくとも一つの端部に向かって厚みが減少する態様が挙げられる。また、正面が矩形(あるいは円形)で側面がV字状のもの等、厚みが金属板全体に亘って連続的に変化するとともに、金属板の略中央に向かって厚みが減少する態様や、正面が矩形(あるいは円形)で側面が階段状のもの等、厚みが金属板全体に亘って段階的に変化するとともに、金属板の少なくとも一方の端部に向けて厚みが減少する態様等も挙げられる。正面(もしくは板厚方向の投影図)が円形の金属板を用いることにより、減肉する方向から腐食環境の方向性(腐食劣化の度合いの方向性)を読み取ることができる。あるいは、金属板に溝状の穴、例えば、厚み方向を横から見た場合、台形である穴をあけ、略均一な割合で傾斜面を有するようにし、この金属板の裏面を大気曝露面とすれば、金属板の厚みが小さい方から大きい方向に向かって減少する態様が挙げられる。   Specific examples of the shape of the metal plate used in the present invention include, for example, a wedge shape as shown in FIG. 1, a metal plate (for example, a conical shape) whose projection in the thickness direction is circular, and a front surface. Examples include a rectangular shape (or a circular shape) having a circular arc on the side surface and the thickness continuously changing over the entire metal plate and the thickness decreasing toward at least one end of the metal plate. In addition, the front surface is rectangular (or circular) and the side surface is V-shaped, etc., and the thickness continuously changes over the entire metal plate, and the thickness decreases toward the approximate center of the metal plate. Examples include a shape in which the thickness changes stepwise over the entire metal plate and the thickness decreases toward at least one end of the metal plate, such as a rectangular shape (or a circular shape) and a stepped side surface. . By using a metal plate whose front surface (or projection in the plate thickness direction) is circular, the direction of the corrosive environment (the direction of the degree of corrosion deterioration) can be read from the direction of thinning. Alternatively, when a groove-like hole is formed in the metal plate, for example, when the thickness direction is viewed from the side, a hole having a trapezoidal shape is formed so as to have an inclined surface at a substantially uniform ratio, and the back surface of the metal plate is defined as an air exposure surface. In this case, an aspect in which the thickness of the metal plate decreases from a smaller direction toward a larger direction can be given.

本発明では、厚みが連続的に変化する個所を有する金属板を用いることが好ましく、金属板の加工のし易さから、くさび形の金属板や円錐形の金属板を用いることがより好ましい。また、厚み方向を横から見た場合、台形である溝状の穴をあけた金属板を用いることもより好ましい。かかる形状の金属板であれば、金属板の減肉に伴う最小厚み個所の後退が連続的に生じることから、測定精度を上げることができる。   In the present invention, it is preferable to use a metal plate having a portion where the thickness continuously changes, and it is more preferable to use a wedge-shaped metal plate or a conical metal plate from the viewpoint of easy processing of the metal plate. Further, when the thickness direction is viewed from the side, it is more preferable to use a metal plate having a trapezoidal groove-like hole. With the metal plate having such a shape, the retreat of the minimum thickness portion accompanying the thinning of the metal plate continuously occurs, so that the measurement accuracy can be increased.

本発明で用いる金属板の材質は、水分や塩化物イオン、硫化物イオン、窒素酸化物イオン等の腐食因子を含む測定環境中で、金属板が減肉するものであれば特に限定されず、例えば、腐食電位列が低電位側にある金属が挙げられる。具体的には、Mg、Al、Cd等の金属、Al−Mg合金、Al−Mn−Mg合金、Al−Zn合金、Al−Mn合金等のAl基合金、機械構造用鋼や工具鋼等の特殊鋼、あるいは普通鋼等が挙げられる。   The material of the metal plate used in the present invention is not particularly limited as long as the metal plate is thinned in a measurement environment including corrosion factors such as moisture, chloride ions, sulfide ions, nitrogen oxide ions, For example, a metal having a corrosion potential row on the low potential side can be given. Specifically, metals such as Mg, Al, Cd, Al-Mg alloys, Al-Mn-Mg alloys, Al-Zn alloys, Al-Mn alloys such as Al-Mn alloys, mechanical structural steels, tool steels, etc. Special steel or ordinary steel can be used.

本発明の腐食測定方法は、上記材質から構成される単一種の金属板を用いて行ってもよいが、材質の異なる金属板を2種以上組み合わせて行ってもよい。   The corrosion measurement method of the present invention may be performed using a single type of metal plate composed of the above materials, or may be performed by combining two or more types of metal plates of different materials.

本発明で用いる金属板の厚みは、所定時間における所定個所の後退が進みやすいように設定するのが好ましい。具体的な厚みについては、金属板の材質によって適宜設計され得る。例えば、鋼板を用いる場合には、金属板の最小厚み部分を0.05mm以下(より好ましくは0.03mm以下)とし、金属板の最大厚み部分を0.1mm以上(より好ましくは0.15mm以上)とするのが好ましい。金属板の最大厚み部分が0.1mm未満では、測定開始から短期間で金属板が全て消失して、本発明の方法を長期間に亘って実施できない場合がある。なお、金属板の最大厚み部分の厚みの上限は、特に限定されるものではないが、例えば、水経路中に金属板を設置して本発明の方法を実施する場合に、金属板が水の流れを変えることのないようにするのが好ましい。   The thickness of the metal plate used in the present invention is preferably set so that the backward movement at a predetermined position in a predetermined time can easily proceed. About specific thickness, it can design suitably with the material of a metal plate. For example, when using a steel plate, the minimum thickness portion of the metal plate is 0.05 mm or less (more preferably 0.03 mm or less), and the maximum thickness portion of the metal plate is 0.1 mm or more (more preferably 0.15 mm or more). ) Is preferred. If the maximum thickness portion of the metal plate is less than 0.1 mm, the metal plate may disappear completely in a short period from the start of measurement, and the method of the present invention may not be performed over a long period. In addition, although the upper limit of the thickness of the maximum thickness part of a metal plate is not specifically limited, For example, when installing a metal plate in a water path and implementing the method of this invention, a metal plate is water. It is preferable not to change the flow.

本発明で用いる金属板の大きさは特に限定されず、金属板の材質によって適宜設計され得るものである。例えば、正面が矩形の鋼板を用いる場合には、当該鋼板を正面から見た場合に、長さ方向と直交する方向(幅方向)の長さは、3cm以上(より好ましくは5cm以上)とするのが好ましい。幅方向の長さが3cm未満では腐食面積が小さいため、所定個所の後退長さのバラツキが大きくなり、腐食性を正確に測定できない場合がある。また、幅方向からの腐食進展が生じてしまい、腐食長さを正確に測定できない場合がある。   The size of the metal plate used in the present invention is not particularly limited, and can be appropriately designed depending on the material of the metal plate. For example, when a steel plate having a rectangular front surface is used, the length in the direction (width direction) orthogonal to the length direction is 3 cm or more (more preferably 5 cm or more) when the steel plate is viewed from the front. Is preferred. If the length in the width direction is less than 3 cm, the corrosion area is small, and therefore, the variation in the retracted length at a predetermined location becomes large, and the corrosivity may not be measured accurately. In addition, corrosion progress from the width direction may occur, and the corrosion length may not be measured accurately.

(腐食測定方法)
本発明の方法を用いて測定環境中の腐食性を測定するには、例えば、図1を参照して、以下のように行えばよい。すなわち、所定の腐食因子を所定量含む環境中に、本発明にかかる金属板を所定時間放置する(放置後に減肉した金属板を破線で示す)。次いで、金属板の任意の個所Aから金属板の所定個所(例えば、最小厚み個所B)に向けて、厚み方向と直交する仮想線を設け、当該仮想線にそれぞれ垂線を下ろして、その交点間距離1を求める。続いて、当該仮想線の延長線上に、測定前の金属板の端部から垂線を下ろして得られる交点と、上記個所Aから仮想線に垂線を下ろして得られる交点との交点間距離2を求め、二つの交点間距離の差(交点間距離2−交点間距離1)を算出して、最小厚み個所の後退長さを得、当該後退長さから、上記所定環境に対する検量線を作成する。その後、所望の環境中で上記と同様の方法で金属板の後退長さを求め、上記検量線から当該環境中の腐食性等を評価する。
(Corrosion measurement method)
In order to measure the corrosiveness in the measurement environment using the method of the present invention, for example, referring to FIG. That is, the metal plate according to the present invention is left for a predetermined time in an environment containing a predetermined amount of a predetermined corrosion factor (a metal plate whose thickness has been reduced after being left is indicated by a broken line). Next, an imaginary line orthogonal to the thickness direction is provided from an arbitrary position A of the metal plate to a predetermined position (for example, the minimum thickness position B) of the metal plate, and perpendicular lines are respectively dropped on the imaginary lines, and between the intersections. Find the distance 1. Subsequently, an intersection distance 2 between an intersection obtained by dropping a perpendicular line from the end of the metal plate before the measurement and an intersection obtained by dropping a perpendicular line from the location A to the virtual line on the extension line of the virtual line. The difference between the distances between the two intersections (inter-intersection distance 2−inter-intersection distance 1) is calculated to obtain the receding length of the minimum thickness portion, and a calibration curve for the predetermined environment is created from the receding length. . Thereafter, the receding length of the metal plate is obtained in a desired environment by the same method as described above, and the corrosivity in the environment is evaluated from the calibration curve.

その際、所定個所(例えば、最小厚み個所B)が金属板中に複数ある場合には、任意に一つの個所を選択すればよいが、後退長さが長い個所を選択して、測定感度を上げることが好ましい。   At that time, when there are a plurality of predetermined locations (for example, the minimum thickness location B) in the metal plate, one location may be arbitrarily selected. However, a location with a long receding length is selected to improve the measurement sensitivity. It is preferable to raise.

また、板厚方向の投影図が円形である金属板(例えば、円錐形の金属板)を用いる場合には、例えば、図2に示すように、その中心(最大厚み個所)からの最小厚み個所(例えば、12点)の長さの平均値を半径とする等価円を作成して、減肉量を算出すればよい。   When a metal plate (for example, a conical metal plate) having a circular projection in the plate thickness direction is used, for example, as shown in FIG. 2, the minimum thickness portion from the center (maximum thickness portion) is used. What is necessary is just to create the equivalent circle which makes the radius the average value of the length of (for example, 12 points), and calculate the amount of thinning.

金属板の最小厚み個所が金属板内にある場合には、交点間距離1は上記と同様の方法で求めると共に、仮想線の延長線上にあって、かつ測定前に最も厚みの小さい個所から上記仮想線に垂線を下ろして得られる交点と、上記個所Aから仮想線に垂線を下ろして得られる交点とから交点間距離2を求め、交点間距離の差(交点間距離2−交点間距離1)を算出すればよい。   When the minimum thickness portion of the metal plate is in the metal plate, the distance 1 between the intersections is obtained by the same method as described above, and is located on the extension line of the imaginary line and from the portion having the smallest thickness before the measurement. The distance 2 between the intersections is obtained from the intersection obtained by dropping the perpendicular to the imaginary line and the intersection obtained by dropping the perpendicular from the location A to the imaginary line, and the difference between the intersections (distance between the intersections 2−distance between the intersections 1 ) May be calculated.

本発明による被測定物(構造物)の腐食状態の測定は、本発明の金属板を被測定物上に所定時間設置して、上記と同様の方法で所定個所の後退長さを求めて評価すればよい。この際、金属板と被測定物の材質は同一でも異なっていてもよいが、被測定物と同一の材質で金属板を構成すると、被測定物の腐食状態を直接的に測定できるため好ましい。被測定物としては、特に限定されず、鉄塔や煙突、橋梁等の鋼構造物が挙げられる。   The measurement of the corrosion state of the object to be measured (structure) according to the present invention is performed by installing the metal plate of the present invention on the object to be measured for a predetermined time and obtaining the receding length at a predetermined position by the same method as described above. do it. At this time, the material of the metal plate and the object to be measured may be the same or different, but it is preferable that the metal plate is made of the same material as the object to be measured because the corrosion state of the object to be measured can be directly measured. The object to be measured is not particularly limited, and examples thereof include steel structures such as steel towers, chimneys, and bridges.

金属板を被測定物上に載置して被測定物の腐食状態を測定する場合には、金属板は絶縁性の板状部材(例えば、ガラス板や後述する耐食性樹脂製の板など)を介して構造物上に載置されることが好ましい。金属板と被測定物とが異なる材質で構成される場合には、金属板を被測定物上に直接載置すると、金属板と測定物の腐食電位の違いにより、金属板が被測定物の影響を受けて腐食する場合がある。   When a metal plate is placed on the object to be measured and the corrosion state of the object to be measured is measured, the metal plate is an insulating plate member (for example, a glass plate or a plate made of a corrosion-resistant resin, which will be described later). It is preferable to be placed on the structure. When the metal plate and the object to be measured are made of different materials, if the metal plate is placed directly on the object to be measured, the metal plate will be different from the object to be measured due to the difference in corrosion potential between the metal plate and the object to be measured. May be affected and corroded.

(腐食環境ゲージ)
本発明の腐食測定方法は、以下に説明する腐食環境ゲージを用いることによって好適に行うことができる。以下、本発明の腐食環境ゲージについて詳細に説明する。
(Corrosion environment gauge)
The corrosion measurement method of the present invention can be suitably performed by using a corrosion environment gauge described below. Hereinafter, the corrosion environment gauge of the present invention will be described in detail.

本発明の腐食環境ゲージは、厚みが段階的または連続的に変化する個所を有する金属板が、該金属板の一方面を露出しつつ耐食性樹脂体中に埋没されて構成されることを特徴とする。当該腐食環境ゲージの一実施態様を図3に示す。   The corrosive environment gauge of the present invention is characterized in that a metal plate having a portion where the thickness changes stepwise or continuously is buried in a corrosion-resistant resin body while exposing one surface of the metal plate. To do. One embodiment of the corrosive environment gauge is shown in FIG.

あるいは、本発明の腐食環境ゲージは、厚みが段階的または連続的に変化する個所を有する金属板が、溝状の穴を有しており、更に金属板の穴は厚み方向を横から見た場合、台形であり、略均一な割合で傾斜面を有するように構成されることを特徴とする。当該腐食環境ゲージの一実施態様を図4に示す。   Alternatively, in the corrosion environment gauge of the present invention, the metal plate having a portion where the thickness changes stepwise or continuously has a groove-like hole, and the hole of the metal plate is seen from the side in the thickness direction. In this case, it is trapezoidal and is configured to have inclined surfaces at a substantially uniform rate. One embodiment of the corrosive environment gauge is shown in FIG.

図3に示す腐食環境ゲージを用いて、本発明の腐食測定方法を行えば、耐食性樹脂体10から露出している金属板20の一方面のみが測定環境に曝露されることから、概ね金属板20の厚み方向に金属板20の減肉が進むこととなる。その結果、後退長さを求める個所を最小厚み個所にすれば、当該個所の後退は厚さの小さい側の端部からのみ起ることとなる。   If the corrosion measurement method of the present invention is performed using the corrosion environment gauge shown in FIG. 3, only one surface of the metal plate 20 exposed from the corrosion-resistant resin body 10 is exposed to the measurement environment. Accordingly, the metal plate 20 is reduced in thickness in the thickness direction. As a result, if the position where the retraction length is obtained is set to the minimum thickness position, the retraction of the position occurs only from the end portion on the side where the thickness is small.

このため、最小厚み個所が後退する方向に沿って、金属板の長さ目盛りを、当該金属板20の厚みの小さい側の端部付近を始点とし、厚みの大きい側の端部付近を終点として、耐食性樹脂体10の表面(例えば、耐食性樹脂体の正面、側面、裏面)に設けることにより、測定環境中の腐食性等の評価をより簡易に行うことが可能になる。   For this reason, along the direction in which the minimum thickness portion recedes, the length scale of the metal plate starts from the vicinity of the end portion on the smaller thickness side of the metal plate 20 and the end point near the end portion on the larger thickness side. By providing it on the surface of the corrosion-resistant resin body 10 (for example, the front surface, side surface, and back surface of the corrosion-resistant resin body), it becomes possible to more easily evaluate the corrosiveness in the measurement environment.

図4に示す腐食環境ゲージを用いて、本発明の腐食測定方法を行えば、金属板30の裏面のみが測定環境に曝露されることから、概ね金属板30の厚み方向に減肉が進むことになる。その結果、後退長さを求める個所を最小厚み個所にすれば、当該個所の後退は厚さの小さい側の溝端部からのみ起こることとなる。   If the corrosion measurement method of the present invention is performed using the corrosion environment gauge shown in FIG. 4, only the back surface of the metal plate 30 is exposed to the measurement environment, so that the thinning progresses generally in the thickness direction of the metal plate 30. become. As a result, if the position where the retraction length is determined is set to the minimum thickness position, the retraction of the position occurs only from the groove end portion on the side where the thickness is small.

このため、最小厚み個所が後退する方向に沿って、金属板の長さ目盛りを、当該金属板30の厚みの小さい側の溝端部付近を始点とし、厚みの大きい側の溝端部付近を終点として、金属板30の裏面に設けることにより、測定環境中の腐食性等の評価をより簡易に行うことが可能になる。   For this reason, along the direction in which the minimum thickness portion recedes, the length scale of the metal plate starts from the vicinity of the groove end on the side where the thickness of the metal plate 30 is small, and the end near the end of the groove on the side where the thickness is large By providing it on the back surface of the metal plate 30, it becomes possible to more easily evaluate the corrosivity in the measurement environment.

本発明の腐食環境ゲージで用いる耐食性樹脂としては、使用環境中で劣化しないものであれば、その種類は特に限定されるものではなく、例えば、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂が挙げられる。これらの樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。耐食性樹脂としてポリエステル系樹脂やアクリル系樹脂のような透明性の樹脂を用いた場合には、耐食性樹脂体の表面に設けた検量線を、耐食性樹脂体の裏面から読むことも可能になる。また、耐食性樹脂に導電性フィラーを添加して、耐食性樹脂の導電性を高め、腐食状態を測定する被処理物(構造物)との熱容量の差を極力小さくしてもよい。   The type of the corrosion-resistant resin used in the corrosive environment gauge of the present invention is not particularly limited as long as it does not deteriorate in the usage environment. For example, acrylic resin, urethane resin, epoxy resin, polyester Resin and vinyl chloride resin. These resins may be used alone or in combination of two or more. When a transparent resin such as a polyester resin or an acrylic resin is used as the corrosion resistant resin, it is possible to read the calibration curve provided on the surface of the corrosion resistant resin body from the back surface of the corrosion resistant resin body. Further, a conductive filler may be added to the corrosion-resistant resin to increase the conductivity of the corrosion-resistant resin and minimize the difference in heat capacity from the object to be processed (structure) for measuring the corrosion state.

本発明の腐食環境ゲージの形状は特に限定されず、直方形や円形であってよいが、少なくとも一方の側面(好ましくは、全ての側面)にテーパーが設けられていることが好ましい。かかる構成により、本発明の腐食環境ゲージを水たまり個所や水流れ経路に設置しても、水が腐食環境ゲージ(金属板の一方面上)に集まりやすくなる。   The shape of the corrosive environment gauge of the present invention is not particularly limited, and may be rectangular or circular, but it is preferable that at least one side surface (preferably, all side surfaces) be tapered. With this configuration, even if the corrosive environment gauge of the present invention is installed in a puddle location or a water flow path, water easily collects in the corrosive environment gauge (on one surface of the metal plate).

また、本発明の腐食環境ゲージを用いて、本発明の腐食測定方法を用いる場合には、極力、金属板の一方面が重力方向に沿うように設置することが好ましい。かかる態様により、金属板が減肉した個所に水が溜まることを防ぐことができる。   Moreover, when using the corrosion measuring method of this invention using the corrosion environment gauge of this invention, it is preferable to install so that one surface of a metal plate may follow a gravity direction as much as possible. According to this aspect, it is possible to prevent water from accumulating at the location where the metal plate has been thinned.

(金属板、及び腐食環境ゲージの製造方法)
本発明で用いる金属板の製造方法は、特に限定されるものではなく、例えば、金属板をグラインダーで研磨したり、エッチングしたりして、所定形状に加工する方法が挙げられる。更に、一般的なエンドミル加工により一定の傾きを保持したまま、加工する方法などが挙げられる。
(Metal plate and corrosion environment gauge manufacturing method)
The manufacturing method of the metal plate used by this invention is not specifically limited, For example, the method of grind | polishing a metal plate with a grinder or etching and processing to a predetermined shape is mentioned. Furthermore, there is a method of processing while maintaining a certain inclination by general end mill processing.

また、本発明で用いる腐食環境ゲージの製造方法も特に限定されるものではなく、例えば、型枠の略中央に、金属板をその一方面を下側にして載置し、次いで上記耐食性樹脂の加熱溶融物をその上から流し込んだ後、冷却して硬化させたり、あるいは、上記耐食性樹脂が常温で液状である場合には、型枠に耐食性樹脂を流し込んだ後、硬化剤によって硬化させたりして製造する方法が挙げられる。   Further, the method for producing a corrosive environment gauge used in the present invention is not particularly limited. For example, a metal plate is placed on one side of the mold at the approximate center of the mold, and then the corrosion-resistant resin is formed. After pouring the heated melt from above, cool and cure, or when the above-mentioned corrosion-resistant resin is liquid at room temperature, cast the corrosion-resistant resin into the mold and then cure it with a curing agent. And manufacturing method.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

1.金属板の作製
長さ50mm、幅40mm、厚み0.2mmの炭素工具鋼材を用い、表面を機械研磨して、くさび形の金属板を作製した(図1)。なお、くさび形の傾斜面には、最大幅40mm、最大深さ0.15mmのV字状の溝を形成した(図3)。
1. Production of Metal Plate Using a carbon tool steel material having a length of 50 mm, a width of 40 mm, and a thickness of 0.2 mm, the surface was mechanically polished to produce a wedge-shaped metal plate (FIG. 1). Note that a V-shaped groove having a maximum width of 40 mm and a maximum depth of 0.15 mm was formed on the wedge-shaped inclined surface (FIG. 3).

また、長さ50mm、幅50mm、厚み0.2mmの炭素工具鋼材を用い、表面を機械研磨して、底面の直径50mm、高さ0.2mmの円錐形の金属板を作製した。   Further, a carbon tool steel material having a length of 50 mm, a width of 50 mm, and a thickness of 0.2 mm was used, and the surface was mechanically polished to prepare a conical metal plate having a bottom diameter of 50 mm and a height of 0.2 mm.

さらに、長さ70mm、幅20mm、厚み3mmの炭素工具鋼材を用い、表面を直径5mmのドリルで加工して、厚み方向を横から見た場合、台形である溝状の穴(底面として略均一な割合で傾斜面を有する穴であり、穴部分における金属板の厚みは0.05mmから0.20mm)を有する金属板を作製した(図4)。   Furthermore, when a carbon tool steel material having a length of 70 mm, a width of 20 mm, and a thickness of 3 mm is used and the surface is processed with a drill having a diameter of 5 mm and the thickness direction is viewed from the side, a trapezoidal groove-like hole (substantially uniform as the bottom surface) A metal plate having an inclined surface at a certain ratio and a thickness of the metal plate in the hole portion from 0.05 mm to 0.20 mm was produced (FIG. 4).

2.腐食環境ゲージの作製
図1に示すくさび形の金属板を、機械研磨した側の面を上側にして型枠の略中央に載置し、次いで加熱溶融したポリエステル系樹脂(丸本ストルアス製、冷間押込樹脂No.105)を流し込み、冷却して硬化させた。その後、ポリエステル系樹脂板を所定の形状に加工して、図3に示す腐食環境ゲージを作製した。また、同様にして、円錐形の金属板がポリエステル系樹脂中に埋没されつつ底面は露出されている腐食環境ゲージを作製した。図4に示す金属板は、そのまま、裏面を大気曝露面とする腐食環境ゲージとして用いた。
2. Production of Corrosion Environment Gauge A wedge-shaped metal plate shown in FIG. 1 is placed in the center of the mold with the machine-polished side facing up, and then heated and melted polyester resin (Marumoto Struers, cold Penetration resin No. 105) was poured and cooled and cured. Thereafter, the polyester resin plate was processed into a predetermined shape to produce a corrosion environment gauge shown in FIG. Similarly, a corrosive environment gauge was produced in which a conical metal plate was buried in a polyester resin and the bottom surface was exposed. The metal plate shown in FIG. 4 was used as it was as a corrosive environment gauge with the back surface exposed to the atmosphere.

3.検量線の作製
図3に示す腐食環境ゲージの表面と裏面とに、金属板の長手方向(最小厚み個所後退方向)に沿って、金属板の長さの目盛りを設けた。また、図4に示す腐食環境ゲージの裏面に、同様にして、金属板の長さの目盛りを設けた。
3. Preparation of calibration curve A scale of the length of the metal plate was provided along the longitudinal direction (reverse direction of the minimum thickness portion) of the metal plate on the front and back surfaces of the corrosion environment gauge shown in FIG. Similarly, a scale of the length of the metal plate was provided on the back surface of the corrosive environment gauge shown in FIG.

4.腐食測定
図3に示す腐食環境ゲージを、表1に示す環境中に1ヶ月放置した後、最小厚み個所の後退長さを測定した。また、傾斜率(厚み/長さ)と上記後退長さとから減肉速度を算出して、文献値と比較した。その結果を表1に示す。なお、表1中、覆い外とは腐食環境ゲージに雨がかかる環境を意味し、覆い内とは雨がかからない環境を意味する。
4). Corrosion Measurement After the corrosion environment gauge shown in FIG. 3 was left in the environment shown in Table 1 for 1 month, the recess length at the minimum thickness portion was measured. Further, the rate of thinning was calculated from the inclination rate (thickness / length) and the retreat length, and compared with the literature values. The results are shown in Table 1. In Table 1, “outside the cover” means an environment in which the corrosive environment gauge is exposed to rain, and “inside the cover” means an environment where no rain is applied.

Figure 0005921888
Figure 0005921888

表1から、減肉速度の測定値は文献値と近いことから、本発明の測定方法によって腐食環境を精度よく行えることが分かる。   Table 1 shows that the measured value of the thinning rate is close to the literature value, so that the corrosive environment can be accurately performed by the measuring method of the present invention.

なお、円錐形の金属板がポリエステル系樹脂中に埋没されつつ一方面は露出されている腐食環境ゲージや、図4に示す溝状の穴を有する金属板からなる腐食環境ゲージについても、くさび形鋼板で作製した図3に示す腐食環境ゲージと同様の効果を発揮すると考えられる。   Note that a wedge-shaped corrosive environment gauge in which a conical metal plate is buried in a polyester resin and one surface is exposed or a corrosive environment gauge made of a metal plate having a groove-shaped hole shown in FIG. It is considered that the same effect as the corrosion environment gauge shown in FIG.

10:耐食性樹脂体
20、30:金属板
10: Corrosion-resistant resin body 20, 30: Metal plate

Claims (10)

一方の表面に深さが段階的または連続的に変化する溝状の凹部または穴を有する金属板を、当該一方の表面とは反対側の平面である裏面のみが腐食因子を含む測定環境に曝露するように、当該測定環境中に置き、所定時間経過後の前記金属板の所定個所の後退長さを測定し、前記所定個所が、前記金属板の最小厚み個所であることを特徴とする腐食測定方法。 Expose a metal plate with a groove-like recess or hole whose depth changes stepwise or continuously on one surface to a measurement environment where only the back surface opposite to the one surface is a corrosive factor. The corrosion is characterized by being placed in the measurement environment and measuring the retracted length of the predetermined portion of the metal plate after a predetermined time has elapsed , wherein the predetermined portion is the minimum thickness portion of the metal plate Measuring method. 前記金属板がくさび形であり、前記一方の表面が前記裏面に対して傾斜しており、当該傾斜した表面が前記溝状の凹部を有する請求項に記載の腐食測定方法。 The corrosion measurement method according to claim 1 , wherein the metal plate has a wedge shape, the one surface is inclined with respect to the back surface, and the inclined surface has the groove-shaped recess. 前記金属板が溝状の穴を有し、当該穴は、厚み方向を横から見た場合、台形である請求項に記載の腐食測定方法。 The corrosion measurement method according to claim 1 , wherein the metal plate has a groove-shaped hole, and the hole has a trapezoidal shape when the thickness direction is viewed from the side. 前記金属板が、耐食性樹脂体中に埋没されつつ前記裏面は露出されている請求項1からのいずれか一項に記載の腐食測定方法。 The corrosion measurement method according to any one of claims 1 to 3 , wherein the back surface is exposed while the metal plate is buried in a corrosion-resistant resin body. 一方の表面に深さが段階的または連続的に変化する溝状の凹部または穴を有し、当該一方の表面とは反対側の平面である裏面を測定環境に曝露する面とする金属板が、耐食性樹脂体中に埋没されつつ当該裏面は露出されていることを特徴とする腐食環境ゲージ。 A metal plate having a groove-like recess or hole whose depth changes stepwise or continuously on one surface, and a back surface, which is a flat surface opposite to the one surface, is exposed to the measurement environment. A corrosive environment gauge characterized in that the back surface is exposed while being buried in a corrosion-resistant resin body. 前記金属板がくさび形であり、前記一方の表面が前記裏面に対して傾斜しており、当該傾斜した表面が前記溝状の凹部を有する請求項に記載の腐食環境ゲージ。 The corrosion environment gauge according to claim 5 , wherein the metal plate has a wedge shape, the one surface is inclined with respect to the back surface, and the inclined surface has the groove-shaped recess. 前記金属板が溝状の穴を有し、当該穴は、厚み方向を横から見た場合、台形である請求項に記載の腐食環境ゲージ。 The corrosion environment gauge according to claim 5 , wherein the metal plate has a groove-shaped hole, and the hole has a trapezoidal shape when the thickness direction is viewed from the side. 前記金属板は、前記一方の表面がブラスト処理されている請求項からのいずれか一項に記載の腐食環境ゲージ。 The corrosion environment gauge according to any one of claims 5 to 7 , wherein the one surface of the metal plate is blasted. 前記耐食性樹脂体がポリエステル系樹脂体またはアクリル系樹脂体である請求項からのいずれか一項に記載の腐食環境ゲージ。 The corrosion environment gauge according to any one of claims 5 to 8 , wherein the corrosion-resistant resin body is a polyester resin body or an acrylic resin body. 前記耐食性樹脂体が導電剤を含有する請求項からのいずれか一項に記載の腐食環境ゲージ。 The corrosion environment gauge according to any one of claims 5 to 9 , wherein the corrosion-resistant resin body contains a conductive agent.
JP2012003387A 2011-01-17 2012-01-11 Corrosion measurement method and corrosion environment gauge Expired - Fee Related JP5921888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003387A JP5921888B2 (en) 2011-01-17 2012-01-11 Corrosion measurement method and corrosion environment gauge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011007160 2011-01-17
JP2011007160 2011-01-17
JP2012003387A JP5921888B2 (en) 2011-01-17 2012-01-11 Corrosion measurement method and corrosion environment gauge

Publications (2)

Publication Number Publication Date
JP2012163554A JP2012163554A (en) 2012-08-30
JP5921888B2 true JP5921888B2 (en) 2016-05-24

Family

ID=46843064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003387A Expired - Fee Related JP5921888B2 (en) 2011-01-17 2012-01-11 Corrosion measurement method and corrosion environment gauge

Country Status (1)

Country Link
JP (1) JP5921888B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115605747A (en) * 2020-05-19 2023-01-13 杰富意钢铁株式会社(Jp) Method for designing corrosion sensor, method for manufacturing corrosion sensor, and corrosion sensor
WO2022091337A1 (en) * 2020-10-30 2022-05-05 日本電信電話株式会社 Structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191541A (en) * 1984-10-12 1986-05-09 Nippon Steel Corp Test method and apparatus for promoting corrosion undercover
US5411890A (en) * 1994-06-23 1995-05-02 Westvaco Corporation Method for measuring atmospheric corrosion
JPH1090165A (en) * 1996-09-20 1998-04-10 Hitachi Ltd Monitoring apparatus for corrosion environment
JPH10176985A (en) * 1996-12-16 1998-06-30 Mitsubishi Heavy Ind Ltd Corrosion-detecting apparatus
JP2000046778A (en) * 1998-07-28 2000-02-18 Shukuji Asakura Mimic electrode for monitoring local corrosion and method for monitoring local corrosion using the electrode
JP2000241340A (en) * 1999-02-25 2000-09-08 Nkk Corp Method and apparatus for measuring corrosion rate of weatherable steel material
JP2001153786A (en) * 1999-11-25 2001-06-08 Sanyo Electric Co Ltd Method for evaluating durability of paint film
JP2002139416A (en) * 2000-10-31 2002-05-17 Hitachi Ltd Corrosion sensor
JP4447448B2 (en) * 2004-12-27 2010-04-07 新日鐵住金ステンレス株式会社 Corrosion diagnosis method
JP4745811B2 (en) * 2005-12-14 2011-08-10 太平洋セメント株式会社 Corrosion detection member and corrosion sensor
JP4895886B2 (en) * 2006-03-29 2012-03-14 新日本製鐵株式会社 Corrosion measurement sensor

Also Published As

Publication number Publication date
JP2012163554A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
ES2757799T3 (en) Corrosion sensors
US8926823B2 (en) Sub-coating coated metal corrosion measurement
JP6825846B2 (en) Maintenance support equipment, maintenance support programs, and maintenance support methods
JP5921888B2 (en) Corrosion measurement method and corrosion environment gauge
JP2007292747A (en) Corrosion amount measuring sensor
CN110319965A (en) A method of detection workpiece deep layer residual stress
JP6635135B2 (en) Corrosion sensor design method and corrosion sensor manufacturing method
CN102865948A (en) Method for determining residual butt welding stress of aluminum alloy sheets
CA2568425A1 (en) Measuring probe
CN109208001A (en) A kind of method that metal surface regional area accurately corrodes
CN112543865B (en) Corrosion environment monitoring method and corrosion environment monitoring system
CN105339781B (en) The method of labeled in situ for thermomechanical monitoring structural health conditions
JP2008026284A (en) Sample for evaluating corrosion resistance in end face of plated steel sheet, and end face corrosion resistance evaluation device and method
JP2019164020A (en) Liquid film thickness measuring device
WO2021235475A1 (en) Corrosion sensor designing method, corrosion sensor manufacturing method, and corrosion sensor
KR101928779B1 (en) Apparatus for measuring corrosion, apparatus for simulating corrosion and method for monitering corrosion of structure in tidal zone
JP6544403B2 (en) Method of predicting corrosion of metals by numerical analysis
JP5232759B2 (en) Method for evaluating the quality of sprayed film
JP2000046778A (en) Mimic electrode for monitoring local corrosion and method for monitoring local corrosion using the electrode
JP2006053095A (en) Method of measuring opening variation amount of surface crack in structure, method of measuring surface crack depth, and database used therefor
JP2002250601A (en) Gap-measuring device
CN210165845U (en) Detection apparatus for power battery utmost point post copper core squints from top to bottom
CN102330090A (en) Single surface thinning method of thin metal plate
JP7455707B2 (en) Harsh environment chloride measurement system and harsh environment chloride measurement method
Liu et al. A Combined Numerical and Experimental Approach to Study the Effect of Water Layer Thickness on the Electrochemical and Corrosion Distributions in the Galvanic Coupling between UNS A97050 and UNS S31600

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5921888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees