JP5919590B2 - Fluid power generator - Google Patents

Fluid power generator Download PDF

Info

Publication number
JP5919590B2
JP5919590B2 JP2012276833A JP2012276833A JP5919590B2 JP 5919590 B2 JP5919590 B2 JP 5919590B2 JP 2012276833 A JP2012276833 A JP 2012276833A JP 2012276833 A JP2012276833 A JP 2012276833A JP 5919590 B2 JP5919590 B2 JP 5919590B2
Authority
JP
Japan
Prior art keywords
impeller
impeller shaft
sprocket
shaft
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012276833A
Other languages
Japanese (ja)
Other versions
JP2014118937A (en
Inventor
渡邊 美信
美信 渡邊
相森 冨男
冨男 相森
瀬崎 忠
忠 瀬崎
典慎 北川
典慎 北川
Original Assignee
株式会社中山鉄工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社中山鉄工所 filed Critical 株式会社中山鉄工所
Priority to JP2012276833A priority Critical patent/JP5919590B2/en
Publication of JP2014118937A publication Critical patent/JP2014118937A/en
Application granted granted Critical
Publication of JP5919590B2 publication Critical patent/JP5919590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

本発明は、羽根車を用いた水力や風力などの流体力発電装置に関し、特に、巻き掛け伝動手段を介して原動側である羽根車の軸から従動側の発電機の軸へ駆動力を伝達する機構に関する。   TECHNICAL FIELD The present invention relates to a hydroelectric power generator using an impeller such as hydraulic power or wind power, and in particular, transmits a driving force from an impeller shaft on a driving side to a shaft of a driven generator via a winding transmission means. It is related with the mechanism to do.

水力発電は、これまで、ダムによる貯水等で得られる大量の水の落差を利用して発電を行う大規模のものが主流であった。しかしながら、従来、水力発電の適用対象外とされてきた、流れる水量の少ない小規模の河川や水路においても、近年、再生可能エネルギーへの注目の高まりを受け、こうした小規模の河川や水路に対応した、小型の水車を用いた水力発電装置が設置、活用されるようになっている。   Until now, hydroelectric power generation has been mainly conducted on a large scale, which generates electricity using a large drop of water obtained by dam storage. However, even in small rivers and waterways that have been excluded from the scope of hydroelectric power generation and have a small amount of flowing water in recent years, in response to growing attention to renewable energy, these small rivers and waterways have been supported. A hydroelectric power generation apparatus using a small water wheel is installed and utilized.

こうした小型の水力発電装置としては、水車、すなわち羽根車の中心に位置する羽根車軸を垂直に支持し、流れる水の中に羽根車を位置させる一方、発電機や、羽根車軸から発電機まで駆動力を伝達する機構は、保守性等を考慮して水上に配設する、立軸形の構造を採用したものが増えている。このような水力発電装置の例として、特開2007−177797号公報に開示されるものがある。   As such a small hydroelectric power generator, the impeller shaft located at the center of the impeller, that is, the impeller is vertically supported, and the impeller is positioned in the flowing water, while the generator or impeller shaft is driven from the impeller to the generator. An increasing number of mechanisms for transmitting force adopt a vertical shaft structure that is arranged on the water in consideration of maintainability and the like. An example of such a hydroelectric generator is disclosed in Japanese Patent Application Laid-Open No. 2007-177797.

特開2007−177797号公報JP 2007-177797 A

従来の水力発電装置は前記特許文献に例示される構成を有しており、このような小型の水力発電装置では、装置を貫通する水路内で水流を受けて回転する羽根車を適切に支持するために、羽根車軸は、羽根車を挟むように配置された複数の軸受で両持ち支持される。この羽根車軸の軸受は、水流と接触する場合を考慮して耐水性等を配慮する必要があり、特に、羽根車が立軸形の場合、羽根車の両側にある軸受のうち、下側の軸受は常に水中にあることから、水中の異物等の影響も受けにくい構造が必要となる。水中に軸受を設ける場合、軸の円滑な回転を実現するために、構造が簡単でトラブルを生じにくく、異物にも強いすべり軸受を採用することが多い。ただし、すべり軸受では、長期の使用により軸や軸受材が摩耗し、軸受の摺動面間に過大なクリアランスが生じることがある。   A conventional hydroelectric generator has a configuration exemplified in the above-mentioned patent document, and such a small hydroelectric generator appropriately supports an impeller that rotates by receiving a water flow in a water passage that penetrates the apparatus. Therefore, the impeller shaft is supported at both ends by a plurality of bearings arranged so as to sandwich the impeller. This impeller shaft bearing needs to consider water resistance in consideration of the case where it is in contact with the water flow. Especially when the impeller is a vertical shaft type, the lower bearing among the bearings on both sides of the impeller is required. Since the water is always in the water, a structure that is not easily affected by foreign matter in the water is required. When bearings are provided in water, a slide bearing is often used that is simple in structure and less prone to troubles and is resistant to foreign matters in order to achieve smooth rotation of the shaft. However, in slide bearings, shafts and bearing materials may wear due to long-term use, resulting in excessive clearance between the sliding surfaces of the bearings.

水中側の軸受におけるこうしたクリアランスは、水流の力を受ける羽根車軸をがたつかせ、他の軸受の支持構造によっては、羽根車軸の傾きを招き、羽根車軸の水上部分にもぶれを発生させることとなる。水力発電装置の水上部分には、羽根車軸から発電機側に駆動力を伝達する機構が設けられているが、駆動力の伝達にベルトやチェーン等の巻き掛け伝動手段を用いている場合、羽根車軸のぶれは伝動手段の張り具合に影響を及す。最悪の場合、羽根車軸のぶれで伝動手段が緩んで、羽根車軸から発電機側へ適切に駆動力を伝達できなくなり、発電が適切に行えなくなるなどの問題が生じるという課題を有していた。   Such clearance in bearings on the underwater side fluctuates the impeller shaft that receives the force of the water flow, and depending on the support structure of other bearings, the impeller shaft may be inclined and the water on the impeller shaft may be shaken. Become. A mechanism for transmitting the driving force from the impeller shaft to the generator side is provided in the water portion of the hydroelectric generator, but if a winding transmission means such as a belt or a chain is used to transmit the driving force, the blade Shaking of the axle affects the tension of the transmission means. In the worst case, there is a problem that the transmission means loosens due to the shake of the impeller shaft, so that the driving force cannot be properly transmitted from the impeller shaft to the generator side, and the power generation cannot be performed properly.

本発明は前記課題を解消するためになされたもので、羽根車軸の軸受が摩耗しても、羽根車軸の変位が伝動手段を緊張させる方向に生じて、伝動手段による駆動力の適切な伝達が維持され、そのまま発電を問題なく実行できる流体力発電装置を提供することを目的とする。   The present invention has been made to solve the above problems. Even if the bearing of the impeller shaft is worn, the displacement of the impeller shaft occurs in the direction of tensioning the transmission means, and the transmission of the driving force by the transmission means is appropriately performed. An object of the present invention is to provide a hydrodynamic power generation apparatus that is maintained and can perform power generation without any problem.

本発明に係る流体力発電装置は、ケーシングを貫通して設けられた流路部を通る流体の流れの力で羽根車を回転させ、羽根車から発電機に駆動力を伝えて発電を行う流体力発電装置において、羽根車の回転中心位置で羽根車と一体に取付けられ、ケーシングにおける前記流路部を挟む両側の所定箇所でそれぞれ回転可能に支持される羽根車軸と、ケーシングの流路部外側となる部分に延長配設された前記羽根車軸の一方の端部に、直接取付けて、又は、減速機構もしくは増速機構を介在させて配設され、少なくとも前記羽根車軸と連動して回転する状態とされる、駆動プーリ又はスプロケットと、前記発電機の入力軸に、直接取付けて、又は、減速機構もしくは増速機構を介在させて配設され、少なくとも前記入力軸と連動して回転する状態とされる、従動プーリ又はスプロケットと、前記駆動プーリ又はスプロケットと前記従動プーリ又はスプロケットに巻き掛けられて配設され、前記駆動プーリ又はスプロケットから、前記従動プーリ又はスプロケットに駆動力を伝達する無端の伝動手段と、前記羽根車軸の一方の端部寄りで、且つ前記流路部の外側となるケーシングの所定位置に設けられ、前記駆動プーリ又はスプロケットと前記羽根車との間の羽根車軸所定位置を支持する第一の軸受と、当該第一の軸受とは流路部を挟んで反対側となるケーシングの流路部に面する所定部位に設けられ、前記羽根車軸の他方の端部を支持する第二の軸受とを備え、前記第二の軸受が、ケーシングに固定されるハウジング部と、当該ハウジング部と羽根車軸他端部との間に介在して、羽根車軸の他端部の回動可能状態を維持するブシュとを有し、前記第一の軸受が、前記第二の軸受における羽根車軸支持位置のラジアル方向へのずれに伴う羽根車軸の傾きを許容する構造とされ、前記羽根車軸、第一の軸受、及び第二の軸受が、前記従動プーリ又はスプロケットに対し、流体の流れ方向における上流側に位置するものである。   The hydrodynamic power generation device according to the present invention is a flow that rotates an impeller with the force of a fluid flow passing through a flow passage provided through a casing and transmits power to the generator from the impeller to generate power. In the physical power generation device, an impeller shaft that is integrally attached to the impeller at the rotation center position of the impeller and is rotatably supported at predetermined positions on both sides of the flow passage portion in the casing, and the outer flow passage portion of the casing Directly attached to one end portion of the impeller shaft that is extended in the portion to be, or disposed via a speed reduction mechanism or a speed increasing mechanism, and at least rotates in conjunction with the impeller shaft The drive pulley or sprocket that is directly attached to the generator input shaft, or arranged with a speed reduction mechanism or speed increasing mechanism interposed, and at least rotating in conjunction with the input shaft A driven pulley or sprocket, an endless transmission that is wound around the drive pulley or sprocket and the driven pulley or sprocket and transmits a driving force from the drive pulley or sprocket to the driven pulley or sprocket. And a predetermined position of the casing near one end of the impeller shaft and outside the flow path portion, and supports a predetermined position of the impeller shaft between the drive pulley or sprocket and the impeller The first bearing and the first bearing are provided at a predetermined portion facing the flow passage portion of the casing on the opposite side across the flow passage portion, and support the other end portion of the impeller shaft. And the second bearing is interposed between the housing portion fixed to the casing and the other end portion of the housing portion and the impeller shaft. A bush that maintains the pivotable state of the other end of the shaft, and the first bearing allows an inclination of the impeller shaft accompanying a radial shift of an impeller shaft support position in the second bearing. The impeller shaft, the first bearing, and the second bearing are located on the upstream side in the fluid flow direction with respect to the driven pulley or sprocket.

このように本発明によれば、羽根車軸をその中間位置で支持する第一の軸受が、羽根車軸が傾くのを許容すると共に、羽根車軸やその軸受を発電機側の従動プーリ又はスプロケットよりも流体流れ方向の上流側となる位置に配置して、羽根車が水流により押されるのに伴ってこの押された側に羽根車軸が傾いた場合、羽根車軸の一端部に配置した駆動プーリ又はスプロケットが、従動プーリ又はスプロケットから遠ざかる向きへ動くようにしている。これにより、流路部に面して流体と接触する状況で軸受として機能するブシュの構造上の特性から、摩耗が生じやすい羽根車軸他端部側の第二の軸受で、摩耗に伴う羽根車軸他端部の支持位置のずれが生じる状況となっても、羽根車軸は、羽根車が流体流により押される向きに、第二の軸受での摩耗の分、軸他端部をずらして傾いた状態で回転でき、且つ、羽根車軸の一端部における駆動プーリ又はスプロケットは、従動プーリ又はスプロケットから遠ざかる向きにずれて、伝動手段の張りを維持できることとなり、軸受での摩耗が進行しても伝動手段が緩んで駆動力を伝えにくい状態に陥ることがなく、伝動手段を介して発電機が適切に駆動され、問題なく発電を行える。   As described above, according to the present invention, the first bearing that supports the impeller shaft at its intermediate position allows the impeller shaft to be tilted, and the impeller shaft and the bearing thereof are more than the driven pulley or sprocket on the generator side. A drive pulley or sprocket disposed at one end of the impeller shaft when the impeller is tilted to the pushed side as the impeller is pushed by the water flow when arranged at a position upstream of the fluid flow direction Are moved away from the driven pulley or sprocket. As a result, because of the structural characteristics of the bush that functions as a bearing in the situation where it faces the flow path and contacts the fluid, the second bearing on the other end side of the impeller shaft, which is likely to be worn, is used for the impeller shaft accompanying wear. Even when the support position of the other end portion is displaced, the impeller shaft is tilted by shifting the other end portion of the shaft in the direction in which the impeller is pushed by the fluid flow due to the wear of the second bearing. The drive pulley or sprocket at one end of the impeller shaft can be displaced away from the driven pulley or sprocket to maintain the tension of the transmission means, and the transmission means even if wear on the bearing progresses. However, the generator does not fall into a state where it is difficult to transmit the driving force, and the generator is appropriately driven via the transmission means, and power can be generated without any problem.

また、本発明に係る流体力発電装置は必要に応じて、前記羽根車軸の一方の端部に、羽根車の回転を減速又は増速した状態で前記駆動プーリ又はスプロケットに伝える減速機構又は増速機構が、羽根車軸及び前記ケーシングに対し相対回転可能として配設され、 前記駆動プーリ又はスプロケットは、前記減速機構又は増速機構上に、前記羽根車軸と一致しない他の軸を中心として回転可能に支持され、羽根車軸と、減速機構又は増速機構と、駆動プーリ又はスプロケットとの各位置関係が、減速機構又は増速機構が羽根車軸に対し相対回転せず羽根車軸と一体に回転して共回りすると、当該回転共回りの開始時に、減速機構又は増速機構上の駆動プーリ又はスプロケットを発電機側の従動プーリ又はスプロケットから遠ざけて伝動手段を緊張させる状態となるように、羽根車軸に対する減速機構又は増速機構の配設の向きを設定するものである。 In addition, the hydrodynamic power generation device according to the present invention may be provided with a speed reduction mechanism or speed increase that transmits to one end of the impeller shaft to the drive pulley or sprocket in a state where the speed of the speed of the impeller is reduced or increased. A mechanism is disposed so as to be rotatable relative to the impeller shaft and the casing, and the drive pulley or sprocket can be rotated on the speed reduction mechanism or the speed increasing mechanism around another axis that does not coincide with the impeller shaft. and supported by, an impeller shaft, a reduction gear mechanism or the speed increasing mechanism, the positional relationship between the drive pulley or sprocket, deceleration mechanism or the speed increasing mechanism is rotated to the impeller shaft and integrally without relative rotation with respect to the impeller shaft When rotating together, at the start of the rotation rotation , the drive pulley or sprocket on the speed reduction mechanism or speed increasing mechanism is moved away from the driven pulley or sprocket on the generator side, and the transmission means is tensioned. As a state in which Ru is, is to set the orientation of the arrangement of the reduction mechanism or the speed increasing mechanism for the impeller shaft.

このように本発明によれば、駆動プーリ又はスプロケットを含む減速機構又は増速機構の、羽根車の軸と共回りする際の挙動が、駆動プーリ又はスプロケットが発電機側の従動プーリ又はスプロケットから離れていく状態となる配置で、減速機構又は増速機構の羽根車軸に対する位置を設定しつつ、駆動プーリ又はスプロケットと従動プーリ又はスプロケットとを伝動手段で連動させることにより、羽根車軸の回転につれて減速機構又は増速機構も同じ向きに回転しようとするのに伴い、駆動プーリ又はスプロケットが従動プーリ又はスプロケットから離れようとして、これらの間に巻き掛けられた伝動手段を緊張させることとなり、伝動手段には常に適度な緊張力が加わる状態となり、伝動手段の緩みを生じさせず、伝動手段で確実に発電機側に駆動力を伝えて、発電機を継続的に効率よく作動させられる。   Thus, according to the present invention, the behavior of the speed reduction mechanism or speed increasing mechanism including the drive pulley or sprocket when rotating together with the shaft of the impeller is the same as that of the drive pulley or sprocket from the driven pulley or sprocket on the generator side. By setting the position of the speed reduction mechanism or speed increasing mechanism with respect to the impeller shaft in a distant arrangement, the drive pulley or sprocket and the driven pulley or sprocket are linked with the transmission means to reduce the speed as the impeller shaft rotates. As the mechanism or the speed increasing mechanism tries to rotate in the same direction, the drive pulley or sprocket tends to move away from the driven pulley or sprocket, and the transmission means wound between them is tensioned. Is always in a state where moderate tension force is applied, and it does not cause loosening of the transmission means, and the power generation means reliably generates electricity. Convey the driving force on the side, it is continuously allowed to efficiently operate the generator.

また、こうした減速機構又は増速機構の羽根車軸に対する配置構成により、羽根車が起動すると伝動手段が適切な緊張状態へ移行するため、別途伝動手段の張り具合を調整する機構を必要とせず、駆動力の伝達機構を簡略化できる。   In addition, because of the arrangement configuration of the speed reduction mechanism or speed increasing mechanism with respect to the impeller shaft, the transmission means shifts to an appropriate tension state when the impeller is activated, so that a mechanism for separately adjusting the tension of the transmission means is not required and driving The force transmission mechanism can be simplified.

本発明の第1の実施形態に係る流体力発電装置の斜視図である。1 is a perspective view of a hydrodynamic power generation apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る流体力発電装置の正面図である。It is a front view of the fluid power generator concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る流体力発電装置の背面図である。It is a rear view of the fluid power generator concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係る流体力発電装置の底面図である。It is a bottom view of the fluid power generator concerning a 1st embodiment of the present invention. 図2のA−A断面図である。It is AA sectional drawing of FIG. 本発明の第1の実施形態に係る流体力発電装置の内部構造概略説明図である。It is an internal structure schematic explanatory drawing of the fluid power generator concerning the 1st Embodiment of this invention. 本発明の第1の実施形態に係る流体力発電装置における羽根車軸軸受部の概略構成図である。It is a schematic block diagram of the impeller-shaft bearing part in the fluid power generator concerning the 1st Embodiment of this invention. 本発明の第1の実施形態に係る流体力発電装置における羽根車軸の初期状態説明図である。It is explanatory drawing of the initial state of the impeller shaft in the hydrodynamic power generator concerning the 1st embodiment of the present invention. 本発明の第1の実施形態に係る流体力発電装置における羽根車軸の軸受摩耗状態説明図である。It is a bearing wear state explanatory view of an impeller shaft in a fluid power generator concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る流体力発電装置の横断面図である。It is a cross-sectional view of the hydrodynamic power generator according to the second embodiment of the present invention. 本発明の第2の実施形態に係る流体力発電装置の内部構造概略説明図である。It is an internal structure schematic explanatory drawing of the hydroelectric power generator which concerns on the 2nd Embodiment of this invention.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る流体力発電装置の駆動力伝達機構を前記図1ないし図9に基づいて説明する。本実施形態においては、流体力として水流の力を用いる水力発電装置の例について説明する。
前記各図において本実施形態に係る流体力発電装置1は、ケーシング50を貫通して設けられた流路部51を通る水の流れの力で羽根車10を回転させ、羽根車10から発電機40に駆動力を伝えて発電を行うものであり、河川や用水路等の小規模水路への設置に対応する小型の装置である。
(First embodiment of the present invention)
Hereinafter, the driving force transmission mechanism of the hydrodynamic power generation apparatus according to the first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, an example of a hydroelectric generator that uses the force of water flow as fluid force will be described.
In each of the drawings, the hydrodynamic power generation device 1 according to the present embodiment rotates the impeller 10 with the force of the flow of water passing through the flow passage 51 provided through the casing 50, and the generator from the impeller 10 It is a small device that transmits power to 40 and generates power, and is compatible with installation in small-scale waterways such as rivers and irrigation canals.

より詳細には、流体力発電装置1は、その駆動力伝達機構として、クロスフロー型の羽根車10の回転中心位置で羽根車10と一体に取付けられ、発電装置のケーシング50に回転可能に支持される羽根車軸11と、この羽根車軸11の一端部に直接取付けて配設され、羽根車軸11と連動して回転する駆動プーリ12と、発電機40の入力軸41に直接取付けて配設され、入力軸41と連動して回転する従動プーリ42と、駆動プーリ12と従動プーリ42に巻き掛けられて配設され、駆動プーリ12から従動プーリ42に駆動力を伝達する伝動手段としてのベルト13と、羽根車軸11の一端部寄りとなるケーシング50所定位置に設けられ、駆動プーリ12と羽根車10との間の羽根車軸11所定位置を支持する第一軸受14と、ケーシング50の所定部位で羽根車軸11の他端部を支持する第二軸受15とを備える構成である。   More specifically, the hydrodynamic power generation device 1 is mounted integrally with the impeller 10 at the rotational center position of the crossflow type impeller 10 as a driving force transmission mechanism, and is rotatably supported by the casing 50 of the power generation device. The impeller shaft 11 and the impeller shaft 11 are directly attached to the drive pulley 12 that rotates in conjunction with the impeller shaft 11 and the input shaft 41 of the generator 40. A driven pulley 42 that rotates in conjunction with the input shaft 41; and a belt 13 as a transmission means that is wound around the drive pulley 12 and the driven pulley 42 and transmits a driving force from the drive pulley 12 to the driven pulley 42. A first bearing 14 that is provided at a predetermined position of the casing 50 near one end of the impeller shaft 11 and supports the predetermined position of the impeller shaft 11 between the drive pulley 12 and the impeller 10; A configuration and a second bearing 15 which supports the other end of the impeller shaft 11 at a predetermined portion of the ring 50.

この流体力発電装置1は、発電機40を上部、羽根車10を下部にそれぞれ配置して、羽根車軸11が垂直向きとなっている立軸形であり、水の流れ方向に対し横に羽根車10を二つ並べた構造を有し、また、ケーシング50の上部内側に、各羽根車10でそれぞれ駆動される発電機40を横に二つ並べて設けた構成である。   This hydrodynamic power generation apparatus 1 is a vertical shaft type in which a generator 40 is arranged at the upper part and an impeller 10 is arranged at the lower part, and the impeller shaft 11 is vertical, and the impeller is transverse to the water flow direction. In this configuration, two generators 40 respectively driven by the respective impellers 10 are arranged side by side inside the upper portion of the casing 50.

そして、流体力発電装置1は、流れの生じている水中にケーシング50が一部没した状態で設置され、ケーシング50内の流路部51に水流を導くことで、二つ並んだ羽根車10が水流を受けてそれぞれ回転し、各羽根車10から伝達される駆動力で各発電機40を作動させ、発電を行う仕組みである。水は、ケーシング50内の流路部51に前方から流入して、二つの羽根車10をそれぞれ回転させた後、ケーシング後方から出ていくこととなる。ケーシング50の前側には、流路部51の入口側で流路を狭めて水の流速を増大させつつ、水を流路部51中央に案内する絞り部52が設けられる。この絞り部52が、クロスフロー型の各羽根車10に対し、一種のガイドベーンの役割を果している。   The hydrodynamic power generator 1 is installed in a state where the casing 50 is partially submerged in the flowing water, and the two impellers 10 arranged side by side are guided to the flow path 51 in the casing 50. Is a mechanism that rotates by receiving a water flow and operates each generator 40 with the driving force transmitted from each impeller 10 to generate electricity. Water flows from the front into the flow path portion 51 in the casing 50, rotates the two impellers 10, and then exits from the rear of the casing. On the front side of the casing 50, there is provided a throttle portion 52 that guides water to the center of the flow path 51 while narrowing the flow path on the inlet side of the flow path 51 to increase the flow rate of water. The throttle 52 serves as a kind of guide vane for each cross-flow type impeller 10.

前記羽根車軸11は、羽根車10の回転中心位置で羽根車10と一体に取付けられ、ケーシング50における流路部51を挟む両側の所定箇所でそれぞれ回転可能に支持される構成である。この羽根車軸11の一端部側所定長さ分が、発電機40への駆動力伝達のために、ケーシング50の流路部51外側となる上側部分に延長配設される。   The impeller shaft 11 is mounted integrally with the impeller 10 at the rotation center position of the impeller 10 and is configured to be rotatably supported at predetermined positions on both sides of the casing 50 with the flow path portion 51 interposed therebetween. A predetermined length on the one end side of the impeller shaft 11 is extended and disposed on the upper portion of the casing 50 on the outer side of the flow path portion 51 in order to transmit the driving force to the generator 40.

前記駆動プーリ12は、羽根車軸11の一端部に直接取付けて配設され、羽根車軸11と一体に回転する構成である。
前記従動プーリ42は、発電機40の入力軸41に直接取付けて配設され、入力軸41と一体に回転する構成である。この従動プーリ42は、発電機40と共に、羽根車軸11に対し、流体としての水の流れ方向における下流側に位置している。
The drive pulley 12 is directly attached to one end of the impeller shaft 11 and is configured to rotate integrally with the impeller shaft 11.
The driven pulley 42 is directly attached to the input shaft 41 of the generator 40 and is configured to rotate integrally with the input shaft 41. The driven pulley 42, together with the generator 40, is located downstream of the impeller shaft 11 in the flow direction of water as a fluid.

前記ベルト13は、いわゆるVベルトであり、駆動プーリ12と従動プーリ42に巻き掛けられて配設され、駆動プーリ12の回転に伴わせて従動プーリ42を回転させ、駆動プーリ12から従動プーリ42に駆動力を伝達するものである。   The belt 13 is a so-called V-belt that is wound around the drive pulley 12 and the driven pulley 42, rotates the driven pulley 42 with the rotation of the drive pulley 12, and drives the driven pulley 42 to the driven pulley 42. The driving force is transmitted to the.

前記第一軸受14は、玉軸受等の公知の軸受であり、羽根車軸11の一端部寄りで、且つ前記流路部51の外側となるケーシング50の上部所定位置に設けられ、駆動プーリ12と羽根車10との間の羽根車軸11所定位置を支持するものである(図6、図7参照)。   The first bearing 14 is a known bearing such as a ball bearing and is provided at a predetermined position on the upper portion of the casing 50 near one end of the impeller shaft 11 and outside the flow path portion 51. A predetermined position of the impeller shaft 11 between the impeller 10 and the impeller 10 is supported (see FIGS. 6 and 7).

この第一軸受14は、羽根車軸11の回転可能な状態を保持しながら、第二軸受15における羽根車軸支持位置のラジアル方向へのずれに伴う羽根車軸11の傾きを許容する構造とされる。   The first bearing 14 is configured to permit the inclination of the impeller shaft 11 due to the radial displacement of the impeller shaft support position in the second bearing 15 while maintaining the rotatable state of the impeller shaft 11.

前記第二軸受15は、第一軸受14とは流路部51を挟んで反対側となるケーシング50の流路部51に面する下部に設けられ、羽根車軸11の他端部を支持するものである。この第二軸受15は、ケーシング50側に固定される軸受ハウジング15aと、この軸受ハウジング15aと羽根車軸11他端部との間に介在して、流体としての水と接触する状況下で羽根車軸11の他端部の回動可能状態を維持するブシュ15bとを備える構成である(図7参照)。   The second bearing 15 is provided at a lower portion facing the flow path portion 51 of the casing 50 on the opposite side to the first bearing 14 across the flow path portion 51, and supports the other end portion of the impeller shaft 11. It is. The second bearing 15 is interposed between the bearing housing 15a fixed to the casing 50 side and the bearing housing 15a and the other end of the impeller shaft 11 so that the impeller shaft is in contact with water as a fluid. 11 and a bush 15b that maintains the pivotable state of the other end portion (see FIG. 7).

次に、前記構成に基づく流体力発電装置における軸受摩耗に際してのベルト張力調整状態について説明する。前提として、装置の使用開始状態で各部の摩耗はまだなく、初期の寸法精度が確保され、ベルトも緩み無く適切な張り状態とされているものとする。   Next, the belt tension adjustment state at the time of bearing wear in the hydrodynamic power generation device based on the above configuration will be described. As a premise, it is assumed that there is still no wear of each part in the start of use of the apparatus, the initial dimensional accuracy is ensured, and the belt is in an appropriate tension state without loosening.

発電装置としての使用を継続すると、水中にある第二軸受15でブシュ15b内周部の摩耗や、このブシュ15bと接する羽根車軸11他端部外周の摩耗が進行する。こうした摩耗に伴い、ブシュ15bの内径と羽根車軸11他端部の外径との差が大きくなることで、第二軸受15において、羽根車軸支持位置、すなわち、羽根車軸11とブシュ15bとの実際の摺接位置、のラジアル方向へのずれが生じ得る状態となる。実際の使用では、羽根車10に加わる水流の力で、羽根車軸支持位置は流れの下流側にずれる状態となる(図9参照)。   If the use as the power generation device is continued, the wear of the inner peripheral portion of the bush 15b and the outer periphery of the other end of the impeller shaft 11 in contact with the bush 15b are advanced by the second bearing 15 in water. With such wear, the difference between the inner diameter of the bush 15b and the outer diameter of the other end of the impeller shaft 11 is increased, so that in the second bearing 15, the impeller shaft support position, that is, the actual position of the impeller shaft 11 and the bush 15b. This is a state in which the slidable contact position may be displaced in the radial direction. In actual use, the impeller shaft support position shifts to the downstream side of the flow by the force of the water flow applied to the impeller 10 (see FIG. 9).

この場合、第一軸受14が、羽根車軸11の傾きを許容する構造を有していることから、羽根車軸11は、羽根車10と共に回転する状態を維持されたまま、第二軸受15における羽根車軸支持位置が水の流れの下流側にずれる分、本来の向きから傾くこととなる。   In this case, since the first bearing 14 has a structure that allows the inclination of the impeller shaft 11, the impeller shaft 11 remains in a state of rotating together with the impeller 10 and the blades in the second bearing 15. As the axle support position shifts to the downstream side of the water flow, it will tilt from its original direction.

羽根車軸11の傾きにより、ケーシング上部に位置する羽根車軸11の一端部は、第一軸受14の位置を基準として、他端部とは逆の、流路部51における水の流れの上流側にずれた状態となる。このずれにより、羽根車軸11の一端部に取付けられた駆動プーリ12も初期状態からずれており、この駆動プーリ12と、羽根車軸11に対し水の流れ方向における下流側に位置している従動プーリ42との距離は初期状態に比べ広がっている(図8、図9参照)。   Due to the inclination of the impeller shaft 11, one end portion of the impeller shaft 11 located at the upper part of the casing is on the upstream side of the flow of water in the flow path portion 51, opposite to the other end portion, with respect to the position of the first bearing 14. It will be in a shifted state. Due to this deviation, the driving pulley 12 attached to one end of the impeller shaft 11 is also deviated from the initial state, and the driven pulley 12 and a driven pulley positioned downstream of the impeller shaft 11 in the water flow direction. The distance from 42 is wider than in the initial state (see FIGS. 8 and 9).

このように駆動プーリ12と従動プーリ42との距離が広がることで、駆動プーリ12と従動プーリ42に巻き掛けられているベルト13は、緊張状態となって、駆動プーリ12から従動プーリ42への駆動力の伝達が問題なく行われる状態を維持できることとなる。   As the distance between the drive pulley 12 and the driven pulley 42 is increased in this way, the belt 13 wound around the drive pulley 12 and the driven pulley 42 is in a tension state, and the drive pulley 12 to the driven pulley 42 is moved. It is possible to maintain a state where the driving force is transmitted without any problem.

こうして、流路部51を通過する水流が存在する間、水流から羽根車10が受ける力に基づいて羽根車軸11は傾斜し、一端部の駆動プーリ12を従動プーリ42から遠ざけようとする結果、ベルト13の緊張状態が維持され、ベルト13による駆動プーリ12から従動プーリ42への駆動力の適切な伝達が確保される。   In this way, while the water flow passing through the flow path 51 exists, the impeller shaft 11 is inclined based on the force received by the impeller 10 from the water flow, and as a result of trying to move the drive pulley 12 at one end away from the driven pulley 42, The tension state of the belt 13 is maintained, and appropriate transmission of the driving force from the driving pulley 12 to the driven pulley 42 by the belt 13 is ensured.

このように、本実施形態に係る流体力発電装置においては、羽根車軸11をその中間位置で支持する第一軸受14が、羽根車軸11が傾くのを許容すると共に、従動プーリ42を羽根車軸11より水の流れ方向の下流側に位置させて、羽根車10が水流により押されるのに伴って押された側に羽根車軸他端部がずれ、羽根車軸11が傾いた場合に、羽根車軸11の一端部に配置した駆動プーリ12が、従動プーリ42から遠ざかる向きに動くようにしている。   As described above, in the hydrodynamic power generation device according to the present embodiment, the first bearing 14 that supports the impeller shaft 11 at its intermediate position allows the impeller shaft 11 to tilt and the driven pulley 42 is connected to the impeller shaft 11. When the impeller shaft other end is shifted to the pushed side as the impeller 10 is pushed by the water flow, and the impeller shaft 11 is inclined, the impeller shaft 11 is positioned further downstream in the water flow direction. The drive pulley 12 disposed at one end of the actuator moves in a direction away from the driven pulley 42.

これにより、常時水中にあって水と接触する状況で軸受として機能するブシュの構造上の特性から、摩耗が生じやすい第二軸受15で、長期にわたる継続使用により、摺接する軸や軸受で摩耗が生じて寸法精度を維持できず、羽根車軸他端部の支持位置のずれと、これに伴う羽根車軸11の傾きと駆動プーリ位置の変位など、ベルト13による駆動力伝達への悪影響が生じ得る状態に至っても、第一軸受14で傾きを許容された羽根車軸11は、第二軸受15での摩耗の分、羽根車10が水流により押される向きに軸他端部をずらして傾いた状態で回転し、羽根車軸11の一端部における駆動プーリ12は、従動プーリ42から遠ざかる向きにずれて、ベルト13の張りを維持しながら回転できることとなり、軸受の摩耗が生じてもベルト13が緩んで駆動力を伝えにくい状態に陥ることがなく、発電機40が適切に駆動され、発電を問題なく継続して行える。   As a result, due to the structural characteristics of the bushing that functions as a bearing when it is always in water and in contact with water, the second bearing 15 is subject to wear. A state in which the dimensional accuracy cannot be maintained, and the driving force transmission by the belt 13 may be adversely affected, such as the displacement of the support position of the other end of the impeller shaft and the accompanying inclination of the impeller shaft 11 and displacement of the drive pulley position. However, the impeller shaft 11 allowed to be tilted by the first bearing 14 is tilted by shifting the other end of the shaft in the direction in which the impeller 10 is pushed by the water flow due to the wear of the second bearing 15. The drive pulley 12 at one end of the impeller shaft 11 is rotated in a direction away from the driven pulley 42 and can be rotated while maintaining the tension of the belt 13. Without falling into difficult state tell it loose driving force, the generator 40 is properly driven, it allows continued to without generating a problem.

(本発明の第2の実施形態)
本発明の第2の実施形態に係る流体力発電装置を前記図10及び図11に基づいて説明する。本実施形態においても、流体力として水流の力を用いる水力発電装置の例について説明する。
前記各図において本実施形態に係る流体力発電装置は、駆動力伝達機構として、前記第1の実施形態と同様、羽根車軸21と、駆動プーリ23と、従動プーリ42と、ベルト24と、第一軸受25と、第二軸受26とを備える一方、異なる点として、羽根車軸21の一端部に、羽根車20の回転を増速した状態で駆動プーリ23に伝える増速機構22を配設し、この増速機構22上に駆動プーリ23を回転可能に支持する構成を有するものである。
なお、増速機構22と、この増速機構に駆動プーリ23が支持される点以外の構成については、前記第1の実施形態と同じであり、詳細な説明を省略する。
(Second embodiment of the present invention)
A hydrodynamic power generation apparatus according to a second embodiment of the present invention will be described with reference to FIGS. Also in this embodiment, an example of a hydroelectric power generation apparatus that uses the force of water flow as fluid force will be described.
In each of the drawings, the hydrodynamic power generation device according to the present embodiment has the impeller shaft 21, the drive pulley 23, the driven pulley 42, the belt 24, and the first as a driving force transmission mechanism, as in the first embodiment. A speed increasing mechanism 22 is provided at one end portion of the impeller shaft 21 to transmit the rotation of the impeller 20 to the drive pulley 23 in a state where the rotation speed is increased while one bearing 25 and the second bearing 26 are provided. The drive pulley 23 is rotatably supported on the speed increasing mechanism 22.
The configuration other than the speed increasing mechanism 22 and the driving pulley 23 supported by the speed increasing mechanism is the same as in the first embodiment, and detailed description thereof is omitted.

前記増速機構22は、羽根車軸21の一端部に、羽根車20の回転を増速した状態で駆動プーリ23に伝える機構であり、羽根車軸21に対し相対回転可能として配設される。この増速機構22上に、駆動プーリ23が羽根車軸21と一致しない他の軸(出力軸)を中心として回転可能に支持されることとなる。
この増速機構22は、入力軸である羽根車軸21の回転を内蔵の歯車列を介して増速した上で、出力軸に伝達し、出力軸上の駆動プーリ23を回転させる公知の機構であり、詳細な説明を省略する。
The speed increasing mechanism 22 is a mechanism that transmits to one end portion of the impeller shaft 21 to the drive pulley 23 in a state where the rotation of the impeller 20 is increased, and is arranged to be rotatable relative to the impeller shaft 21. On this speed increasing mechanism 22, the drive pulley 23 is supported so as to be rotatable around another shaft (output shaft) that does not coincide with the impeller shaft 21.
The speed increasing mechanism 22 is a known mechanism that increases the rotation of the impeller shaft 21 that is an input shaft through a built-in gear train, transmits the speed to the output shaft, and rotates the drive pulley 23 on the output shaft. Detailed description will be omitted.

そして、増速機構22は、羽根車軸21が回転すると、増速機構22に対し外部から所定の拘束力を加えない場合、機構内部の摩擦等による抵抗があることから、羽根車軸21に対し相対回転せず、羽根車軸21と共回りする状態となる。   When the impeller shaft 21 rotates, the speed increasing mechanism 22 has a resistance due to friction or the like inside the mechanism unless a predetermined restraining force is applied to the speed increasing mechanism 22 from the outside. It will be in the state of rotating together with the impeller shaft 21 without rotating.

この増速機構22と、羽根車軸21、及び、駆動プーリ23との位置関係は、仮にベルト24の巻き掛けによる拘束を受けずに、増速機構22が羽根車軸21と一体に回転することを想定した場合に、増速機構22の回転開始に伴って、増速機構22上の駆動プーリ23を発電機40側の従動プーリ42から遠ざける状態となるように、羽根車軸21に対する増速機構22の配設の向きを設定することとなる。   The positional relationship between the speed increasing mechanism 22 and the impeller shaft 21 and the drive pulley 23 is such that the speed increasing mechanism 22 rotates integrally with the impeller shaft 21 without being restricted by the belt 24 being wound around. Assuming that the speed increasing mechanism 22 with respect to the impeller shaft 21 is moved away from the driven pulley 42 on the generator 40 side as the speed increasing mechanism 22 starts rotating. The orientation of the arrangement is set.

より具体的には、例えば、羽根車20及び羽根車軸21の回転方向が装置上方から見て時計回りの場合、羽根車軸21が発電機40より手前となる側から見て、羽根車軸21と発電機40の入力軸41とを結んだ線より右側の領域に、増速機構22上の駆動プーリ23中心が位置するように、ベルト24を巻掛けた状態での増速機構22の羽根車軸21に対する向きを設定する(図10参照)。   More specifically, for example, when the rotation direction of the impeller 20 and the impeller shaft 21 is clockwise when viewed from above the device, the impeller shaft 21 and the power generation are viewed from the side where the impeller shaft 21 is in front of the generator 40. The impeller shaft 21 of the speed increasing mechanism 22 in a state where the belt 24 is wound so that the center of the drive pulley 23 on the speed increasing mechanism 22 is positioned in the region on the right side of the line connecting the input shaft 41 of the machine 40. The direction with respect to is set (see FIG. 10).

次に、前記構成に基づく流体力発電装置における駆動力伝達に際してのベルト張力調整状態について説明する。前提として、装置の使用開始時点では増速機構22上の駆動プーリ23と発電機40側の従動プーリ42との間にベルト24が所定の張り状態で巻き掛けられて、緩みによる各プーリからのベルト24の脱落が生じないようにされているものとする。   Next, the belt tension adjustment state at the time of driving force transmission in the hydrodynamic power generation device based on the above configuration will be described. As a premise, the belt 24 is wound in a predetermined tension state between the drive pulley 23 on the speed increasing mechanism 22 and the driven pulley 42 on the generator 40 side at the start of use of the device, and the pulley 24 It is assumed that the belt 24 does not fall off.

ケーシング50の流路部51に水を導入して羽根車20を回転開始させると、ケーシング側に固定されていない増速機構22が、羽根車軸21の回転に合わせて共に回転しようとし、増速機構22上の駆動プーリ23も一体に回転して、発電機側の従動プーリ42から遠ざかろうとする。   When water is introduced into the flow path portion 51 of the casing 50 and the impeller 20 starts to rotate, the speed increasing mechanism 22 that is not fixed to the casing side tries to rotate together with the rotation of the impeller shaft 21 to increase the speed. The drive pulley 23 on the mechanism 22 also rotates together to move away from the driven pulley 42 on the generator side.

こうして、羽根車軸21の回転につれて増速機構22及び駆動プーリ23も同じ向きに回転しようとするのに伴い、駆動プーリ23が従動プーリ42から遠ざかろうとして、これらの間に巻き掛けられたベルト24を緊張させることとなる。駆動プーリ23はベルト24による拘束で羽根車軸21周りの回転を止められ、これにより増速機構22も回転を制限されて、増速機構22に対し羽根車軸21が回転し、増速機構22は羽根車軸21の回転を増速しつつ駆動プーリ23に伝える状態に移行する。   Thus, as the speed increasing mechanism 22 and the drive pulley 23 rotate in the same direction as the impeller shaft 21 rotates, the drive pulley 23 tries to move away from the driven pulley 42, and the belt 24 wound between them. Will be tense. The drive pulley 23 is stopped from rotating around the impeller shaft 21 by the restraint by the belt 24, whereby the speed increasing mechanism 22 is also restricted from rotating, and the impeller shaft 21 rotates relative to the speed increasing mechanism 22. The state shifts to a state where the rotation of the impeller shaft 21 is transmitted to the drive pulley 23 while increasing the speed.

駆動プーリ23の回転がベルト24を介して従動プーリ42に伝わり、発電機40が駆動されて発電を行う中、ベルト24の存在で拘束されてはいるものの、増速機構22が羽根車軸21と共に回転しようとして所定のトルクを生じている状態は羽根車軸21の回転当初から変らないため、ベルト24には常に適度な緊張力が加わる状態となっており、羽根車軸21が回転する間、ベルト24に緩みが生じることはなく、ベルト24を介して確実に発電機40を駆動でき、発電機40で効率よく発電を行わせることができる。   While the rotation of the drive pulley 23 is transmitted to the driven pulley 42 via the belt 24 and the generator 40 is driven to generate power, the speed increasing mechanism 22 is coupled with the impeller shaft 21 while being restrained by the presence of the belt 24. Since a state where a predetermined torque is generated to rotate does not change from the beginning of the rotation of the impeller shaft 21, an appropriate tension is always applied to the belt 24, and while the impeller shaft 21 rotates, the belt 24 is rotated. The generator 40 can be reliably driven via the belt 24 and the generator 40 can generate power efficiently.

また、羽根車20が起動するとベルト24が適切な緊張状態へ移行するのを、増速機構22の羽根車軸21に対する配置のみで実現していることで、ベルト24の張り具合を調整する機構を別途必要とせず、羽根車軸21から発電機40への駆動力の伝達機構を簡略に構成できる。   In addition, when the impeller 20 is activated, the belt 24 is shifted to an appropriate tension state only by the arrangement of the speed increasing mechanism 22 with respect to the impeller shaft 21, thereby providing a mechanism for adjusting the tension of the belt 24. A transmission mechanism for the driving force from the impeller shaft 21 to the generator 40 can be simplified without being separately required.

さらに、長期の使用で、水中にある第二軸受での各部の摩耗が進行した場合でも、前記第1の実施形態と同様、羽根車軸21の傾きにより、ケーシング上部に位置する羽根車軸の一端部は、流路部51における水の流れの上流側にずれた状態となり(図9参照)、駆動プーリ23と従動プーリ42との距離を広げるようにして、ベルト24を緊張した状態に維持でき、ベルト24による駆動プーリ23から従動プーリ42への駆動力の伝達は確保されることとなる。   Further, even when the wear of each part of the second bearing underwater has progressed over a long period of use, the one end part of the impeller shaft located at the upper part of the casing due to the inclination of the impeller shaft 21 as in the first embodiment. Is in a state shifted to the upstream side of the flow of water in the flow path portion 51 (see FIG. 9), the belt 24 can be maintained in a tensioned state by widening the distance between the driving pulley 23 and the driven pulley 42, The transmission of the driving force from the driving pulley 23 to the driven pulley 42 by the belt 24 is ensured.

このように、本実施形態に係る流体力発電装置の駆動力伝達機構においては、駆動プーリ23を含む増速機構22の、羽根車軸21と共回りする際の動きが、駆動プーリ23が発電機側の従動プーリ42から遠ざかる状態となる配置で、増速機構22の羽根車軸21に対する位置を設定しつつ、駆動プーリ23と従動プーリ42とをベルト24で連動させることから、羽根車軸21の回転につれて増速機構22も同じ向きに回転しようとするのに伴い、駆動プーリ23が従動プーリ42から離れようとして、これらの間に巻き掛けられたベルト24を緊張させることとなり、ベルト24には常に適度な緊張力が加わる状態となって、ベルト24の緩みを生じさせず、仮にベルトが経年変化で伸びたとしてもその伸び分も吸収して緊張を維持でき、ベルト24で確実に発電機側に駆動力を伝えて、発電機40を継続的に効率よく作動させられる。   Thus, in the driving force transmission mechanism of the hydrodynamic power generation device according to the present embodiment, the movement of the speed increasing mechanism 22 including the driving pulley 23 when rotating together with the impeller shaft 21 is caused by the driving pulley 23 being a generator. Since the drive pulley 23 and the driven pulley 42 are interlocked by the belt 24 while setting the position of the speed increasing mechanism 22 with respect to the impeller shaft 21 in an arrangement that is in a state of being away from the driven pulley 42 on the side, the rotation of the impeller shaft 21 is performed. As the speed increasing mechanism 22 tries to rotate in the same direction, the drive pulley 23 tends to move away from the driven pulley 42, and the belt 24 wound between them is tensioned. With moderate tension applied, the belt 24 will not loosen, and even if the belt stretches over time, it will absorb the stretch and maintain tension. , Convey the driving force reliably to the generator side in the belt 24 is continuously allowed to efficiently operate the generator 40.

なお、前記各実施形態に係る流体力発電装置においては、伝動手段をベルトとし、羽根車軸又は増速機構からベルトに駆動力を伝える機械要素を駆動プーリ、ベルトから発電機の入力軸に駆動力を伝える機械要素を従動プーリとする構成としているが、これに限らず、伝動手段をチェーンとし、羽根車軸又は増速機構からチェーンに駆動力を伝えるのに駆動スプロケット、チェーンから発電機の入力軸に駆動力を伝えるのに従動スプロケットをそれぞれ用いる構成とすることもできる。こうしたチェーン等を用いる場合も、前記各実施形態同様、羽根車軸の一端部における駆動スプロケットが、従動スプロケットから遠ざかる向きにずれて、チェーンの張りを維持できることとなり、チェーンが緩んで駆動力を伝えにくい状態に陥ることがなく、発電機40が適切に駆動され、発電を継続できる。   In the hydrodynamic power generation apparatus according to each of the embodiments described above, the transmission means is a belt, the mechanical element that transmits the driving force from the impeller shaft or the speed increasing mechanism to the belt is a driving pulley, and the driving force is transmitted from the belt to the input shaft of the generator. However, the drive element is not limited to this, and the transmission means is a chain, and the drive sprocket is used to transmit the driving force from the impeller shaft or the speed increasing mechanism to the chain. It is also possible to employ a configuration in which driven sprockets are used to transmit the driving force to each. Even when such a chain is used, the driving sprocket at one end portion of the impeller shaft is displaced away from the driven sprocket so that the tension of the chain can be maintained, and the chain is loosened so that the driving force is not easily transmitted. Without falling into a state, the generator 40 can be appropriately driven to continue power generation.

また、前記各実施形態に係る流体力発電装置においては、発電機40の入力軸41に直接従動プーリ42が取付けられ、羽根車側から伝えられた駆動力を従動プーリ42から減速又は増速することなく発電機40に伝える構成としているが、これに限らず、従動プーリと発電機40の入力軸41との間に、減速機構又は増速機構を介在させ、従動プーリの回転を減速又は増速した状態で発電機40に伝える構成とすることもできる。この場合、減速機構又は増速機構上に回転可能に支持される従動プーリの位置が変化して、ベルト等の伝動手段の張り具合が緩み側に変化するのを防ぐため、減速機構又は増速機構は、ケーシングに固定された状態で設けるのが好ましい。   Further, in the fluid power generation device according to each of the embodiments, the driven pulley 42 is directly attached to the input shaft 41 of the generator 40, and the driving force transmitted from the impeller side is decelerated or accelerated from the driven pulley 42. However, the present invention is not limited to this, and a speed reduction mechanism or speed increasing mechanism is interposed between the driven pulley and the input shaft 41 of the power generator 40 to reduce or increase the rotation of the driven pulley. It can also be set as the structure which transmits to the generator 40 in the speed state. In this case, in order to prevent the position of the driven pulley rotatably supported on the speed reduction mechanism or speed increase mechanism from changing and the tension of the transmission means such as a belt from changing to the loose side, the speed reduction mechanism or speed increase The mechanism is preferably provided in a state of being fixed to the casing.

また、前記各実施形態に係る流体力発電装置においては、発電機40をケーシング50上部に配置し、その下側の流路部51に羽根車10を位置させ、羽根車軸11を垂直向きとした立軸形の構成としているが、これに限らず、羽根車軸が横向きとなり、流路部外側で羽根車の側方となる位置に駆動プーリ等の駆動力伝達機構が配置される、横軸形の構成とすることもでき、河川や水路をはじめとする発電装置の設置箇所の状況や発電機の形状等に応じて、装置のレイアウトを適宜選択できる。   Further, in the hydrodynamic power generation device according to each of the above embodiments, the generator 40 is disposed on the upper portion of the casing 50, the impeller 10 is positioned in the flow path portion 51 on the lower side thereof, and the impeller shaft 11 is oriented vertically. Although it is configured as a vertical shaft type, the present invention is not limited to this, and a horizontal shaft type configuration in which a driving force transmission mechanism such as a driving pulley is arranged at a position on the outer side of the flow path section and on the side of the impeller is not limited to this. The layout of the device can be appropriately selected according to the situation of the installation location of the power generation device including the river and water channel, the shape of the power generator, and the like.

加えて、流路部51を通る流体の流れの力でクロスフロー型の羽根車10を回転させるものへの適用以外に、閉じた領域としての流路部ではなく開放された空間部分を通って羽根車に達する流体の流れの力で羽根車を回転させる、ペルトン水車や開放型上掛水車、開放型下掛水車などを含む、ケーシングに軸支された羽根車の羽根又はランナに加わる流体の流れの力で羽根車を回転させ、羽根車から発電機に駆動力を伝えて発電を行う他の流体力発電装置にも適用することができ、羽根車軸の傾きを許容して、羽根車軸上の駆動プーリ又はスプロケットが発電機側の従動プーリ又はスプロケットから遠ざかる向きへ動くようにしたり、回転する羽根車軸に対して減速機構又は増速機構上の駆動プーリ又はスプロケットが発電機側の従動プーリ又はスプロケットから遠ざかる状態となるように、減速機構又は増速機構の配設の向きを設定したりすることで、前記実施形態同様、ベルト等の緩みを生じさせず、確実に発電機側に駆動力を伝えて、発電機を継続的に効率よく作動させられることとなる。   In addition to the application to the one that rotates the cross-flow type impeller 10 by the force of the flow of fluid through the flow path 51, it passes through the open space portion instead of the flow path as a closed region. Fluid that is applied to the impeller blades or runners that are pivotally supported by the casing, including Pelton turbines, open upper suspension turbines, and open lower suspension turbines that rotate the impeller with the force of the fluid flow reaching the impeller It can also be applied to other hydrodynamic power generators that generate power by rotating the impeller with the force of the flow and transmitting the driving force from the impeller to the generator. The drive pulley or sprocket of the generator moves in a direction away from the driven pulley or sprocket on the generator side, or the drive pulley or sprocket on the speed reduction mechanism or the speed increasing mechanism with respect to the rotating impeller shaft By setting the orientation of the speed reduction mechanism or speed increasing mechanism so that it is away from the sprocket, the belt is not loosened as in the previous embodiment, and it is reliably driven to the generator side. The power can be transmitted and the generator can be operated continuously and efficiently.

さらに、前記各実施形態に係る流体力発電装置においては、流体力として水流の力を用いる構成としているが、これに限らず、水以外の他の液体や、気体、一種の流体としての性質を示す多量の粒状体などの流れの力、あるいは、気体と液体と固体のいずれか二種又は三種の混相流の流れの力、を用いる構成とすることもでき、前記各実施形態同様、流れの力を羽根車で受けて羽根車を回転させ、得られた駆動力を発電機に伝えて効率よく発電を行うことができる。   Furthermore, in the hydroelectric power generation apparatus according to each of the above embodiments, the structure uses a water flow force as the fluid force. However, the present invention is not limited to this, and has properties as a liquid other than water, a gas, or a kind of fluid. The flow force of a large amount of granular materials or the like, or the flow force of any two or three mixed-phase flows of gas, liquid, and solid can be used. Power can be received by the impeller to rotate the impeller, and the obtained driving force can be transmitted to the generator for efficient power generation.

1 流体力発電装置
10、20 羽根車
11、21 羽根車軸
11a 開口部
12、23 駆動プーリ
13、24 ベルト
14、25 第1軸受
15、26 第2軸受
15a 軸受ハウジング
15b ブシュ
22 増速機構
40 発電機
41 入力軸
42 従動プーリ
50 ケーシング
51 流路部
52 絞り部
DESCRIPTION OF SYMBOLS 1 Fluid power generator 10, 20 Impeller 11, 21 Impeller shaft 11a Opening part 12, 23 Drive pulley 13, 24 Belt 14, 25 First bearing 15, 26 Second bearing 15a Bearing housing 15b Bush 22 Speed increasing mechanism 40 Power generation Machine 41 Input shaft 42 Driven pulley 50 Casing 51 Channel section 52 Throttle section

Claims (2)

ケーシングを貫通して設けられた流路部を通る流体の流れの力で羽根車を回転させ、羽根車から発電機に駆動力を伝えて発電を行う流体力発電装置において、
羽根車の回転中心位置で羽根車と一体に取付けられ、ケーシングにおける前記流路部を挟む両側の所定箇所でそれぞれ回転可能に支持される羽根車軸と、
ケーシングの流路部外側となる部分に延長配設された前記羽根車軸の一方の端部に、直接取付けて、又は、減速機構もしくは増速機構を介在させて配設され、少なくとも前記羽根車軸と連動して回転する状態とされる、駆動プーリ又はスプロケットと、
前記発電機の入力軸に、直接取付けて、又は、減速機構もしくは増速機構を介在させて配設され、少なくとも前記入力軸と連動して回転する状態とされる、従動プーリ又はスプロケットと、
前記駆動プーリ又はスプロケットと前記従動プーリ又はスプロケットに巻き掛けられて配設され、前記駆動プーリ又はスプロケットから、前記従動プーリ又はスプロケットに駆動力を伝達する無端の伝動手段と、
前記羽根車軸の一方の端部寄りで、且つ前記流路部の外側となるケーシングの所定位置に設けられ、前記駆動プーリ又はスプロケットと前記羽根車との間の羽根車軸所定位置を支持する第一の軸受と、
当該第一の軸受とは流路部を挟んで反対側となるケーシングの流路部に面する所定部位に設けられ、前記羽根車軸の他方の端部を支持する第二の軸受とを備え、
前記第二の軸受が、ケーシングに固定されるハウジング部と、当該ハウジング部と羽根車軸他端部との間に介在して、羽根車軸の他端部の回動可能状態を維持するブシュとを有し、
前記第一の軸受が、前記第二の軸受における羽根車軸支持位置のラジアル方向へのずれに伴う羽根車軸の傾きを許容する構造とされ、
前記羽根車軸、第一の軸受、及び第二の軸受が、前記従動プーリ又はスプロケットに対し、流体の流れ方向における上流側に位置することを
特徴とする流体力発電装置。
In the hydrodynamic power generation device that rotates the impeller with the force of the flow of fluid passing through the flow path provided through the casing and transmits the driving force from the impeller to the generator to generate power,
An impeller mounted integrally with the impeller at the rotational center position of the impeller, and supported rotatably at predetermined locations on both sides of the flow passage portion in the casing;
It is directly attached to one end portion of the impeller shaft that is extended and disposed on a portion that is outside the flow path portion of the casing, or is disposed with a speed reduction mechanism or a speed increasing mechanism interposed, and at least the impeller shaft A driving pulley or sprocket which is in a state of rotating in conjunction with it;
A driven pulley or a sprocket that is directly attached to the input shaft of the generator, or is disposed with a speed reduction mechanism or a speed increasing mechanism interposed, and is in a state of rotating in conjunction with at least the input shaft;
An endless transmission means arranged to be wound around the driving pulley or sprocket and the driven pulley or sprocket, and transmitting a driving force from the driving pulley or sprocket to the driven pulley or sprocket;
A first shaft is provided at a predetermined position of the casing near one end of the impeller shaft and outside the flow path portion, and supports a predetermined position of the impeller shaft between the drive pulley or sprocket and the impeller. Bearings,
The first bearing is provided at a predetermined portion facing the flow passage portion of the casing on the opposite side across the flow passage portion, and includes a second bearing that supports the other end portion of the impeller shaft,
A housing portion fixed to the casing; and a bushing interposed between the housing portion and the other end portion of the impeller shaft to maintain a rotatable state of the other end portion of the impeller shaft. Have
The first bearing is configured to allow the inclination of the impeller shaft accompanying the radial shift of the impeller shaft support position in the second bearing,
The hydrodynamic power generation device, wherein the impeller shaft, the first bearing, and the second bearing are located upstream of the driven pulley or sprocket in a fluid flow direction.
前記請求項1に記載の流体力発電装置において、
前記羽根車軸の一方の端部に、羽根車の回転を減速又は増速した状態で前記駆動プーリ又はスプロケットに伝える減速機構又は増速機構が、羽根車軸及び前記ケーシングに対し相対回転可能として配設され、
前記駆動プーリ又はスプロケットは、前記減速機構又は増速機構上に、前記羽根車軸と一致しない他の軸を中心として回転可能に支持され、
羽根車軸と、減速機構又は増速機構と、駆動プーリ又はスプロケットとの各位置関係が、減速機構又は増速機構が羽根車軸に対し相対回転せず羽根車軸と一体に回転して共回りすると、当該回転共回りの開始時に、減速機構又は増速機構上の駆動プーリ又はスプロケットを発電機側の従動プーリ又はスプロケットから遠ざけて伝動手段を緊張させる状態となるように、羽根車軸に対する減速機構又は増速機構の配設の向きを設定することを
特徴とする流体力発電装置。
In the fluid power generation device according to claim 1,
At one end of the impeller shaft, a speed reduction mechanism or speed increasing mechanism for transmitting the rotation of the impeller to the drive pulley or sprocket in a state where the rotation of the impeller is decelerated or increased is arranged to be rotatable relative to the impeller shaft and the casing. And
The drive pulley or sprocket is supported on the speed reduction mechanism or speed increasing mechanism so as to be rotatable around another axis that does not coincide with the impeller shaft,
An impeller shaft, a reduction gear mechanism or the speed increasing mechanism, the positional relationship between the drive pulley or sprocket, the deceleration mechanism or the speed increasing mechanism is rotated together with rotation to the impeller shaft and integrally without relative rotation with respect to the impeller shaft , at the start of the rotation both around, so that the state of Ru is tensioned transmission means a drive pulley or sprocket on the speed reduction mechanism or the speed increasing mechanism away from the driven pulley or sprocket on the generator side, the deceleration mechanism for the impeller shaft Or the direction of arrangement | positioning of a speed-up mechanism is set, The fluid power generator characterized by the above-mentioned.
JP2012276833A 2012-12-19 2012-12-19 Fluid power generator Expired - Fee Related JP5919590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276833A JP5919590B2 (en) 2012-12-19 2012-12-19 Fluid power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012276833A JP5919590B2 (en) 2012-12-19 2012-12-19 Fluid power generator

Publications (2)

Publication Number Publication Date
JP2014118937A JP2014118937A (en) 2014-06-30
JP5919590B2 true JP5919590B2 (en) 2016-05-18

Family

ID=51173973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276833A Expired - Fee Related JP5919590B2 (en) 2012-12-19 2012-12-19 Fluid power generator

Country Status (1)

Country Link
JP (1) JP5919590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102252874B1 (en) * 2021-01-19 2021-05-17 주식회사 코다코 Small hydropower generation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109578189B (en) * 2018-09-11 2023-12-15 华北水利水电大学 Three-stage chain wheel and chain transmission type ecological fish-passing water turbine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183497U (en) * 1987-05-19 1988-11-25
JPH09256941A (en) * 1996-03-25 1997-09-30 Osamu Inoue Curved water-turbine-blade type hydraulic power generation mechanism
CZ302396B6 (en) * 2007-08-03 2011-04-27 Ceské vysoké ucení technické, Fakulta stavební Fluid turbine
WO2010086958A1 (en) * 2009-01-27 2010-08-05 シーベルインターナショナル株式会社 Hydraulic power generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102252874B1 (en) * 2021-01-19 2021-05-17 주식회사 코다코 Small hydropower generation apparatus

Also Published As

Publication number Publication date
JP2014118937A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP4817471B1 (en) Hydroelectric generator
JP4956537B2 (en) Power generation equipment that generates electricity by water flow such as tidal currents, river flows, etc.
AU2008239143B2 (en) Hydraulic power generating apparatus
JP5551594B2 (en) Device and method for converting kinetic energy of running water into kinetic energy of rotating rotor shaft
US8616830B2 (en) Hydraulic power generating apparatus
JP5919590B2 (en) Fluid power generator
TW201250111A (en) Water wheel impeller blade type electric power generating apparatus
GB2435908A (en) Vertical axis turbine for low speed flows with stall prevention
JP5919596B2 (en) Hydroelectric generator
JP2013024049A (en) Small-scaled hydropower generation apparatus
JP5702781B2 (en) Wave tidal power plant and method
WO2010086958A1 (en) Hydraulic power generation device
JP2006507448A (en) Hydraulic wheel
JP2009174480A (en) Impeller for undershot water wheel and undershot water wheel device
KR101852023B1 (en) Hydraulic turbine and hydraulic power generation system including the same
JP4917690B1 (en) Running water power generator
WO2013051113A1 (en) Francis turbine for hydropower generation
JP4665387B2 (en) Hydroelectric generator
JP3993220B1 (en) Water turbine for power generation
JP4955939B2 (en) Water wheel drive
WO2014112200A1 (en) Undershot water wheel
KR20100118673A (en) Turbine for a hydroelectric power station
US1197761A (en) Hydraulic turbine.
JP2015140662A (en) Hydraulic generating apparatus
KR101493005B1 (en) Flow energy harvesting apparatus by adjusting conditions of drainage pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160318

R150 Certificate of patent or registration of utility model

Ref document number: 5919590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees