JP5919458B2 - 超音波照射による食用微生物の増殖促進方法 - Google Patents

超音波照射による食用微生物の増殖促進方法 Download PDF

Info

Publication number
JP5919458B2
JP5919458B2 JP2011010287A JP2011010287A JP5919458B2 JP 5919458 B2 JP5919458 B2 JP 5919458B2 JP 2011010287 A JP2011010287 A JP 2011010287A JP 2011010287 A JP2011010287 A JP 2011010287A JP 5919458 B2 JP5919458 B2 JP 5919458B2
Authority
JP
Japan
Prior art keywords
fermentation
ultrasonic
growth
lactic acid
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011010287A
Other languages
English (en)
Other versions
JP2012147748A (ja
Inventor
明徳 野口
明徳 野口
宏海 胡
宏海 胡
章 松田
章 松田
米沢 裕司
裕司 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Ishikawa Prefectural Public University Corp
Original Assignee
Ishikawa Prefecture
Ishikawa Prefectural Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, Ishikawa Prefectural Public University Corp filed Critical Ishikawa Prefecture
Priority to JP2011010287A priority Critical patent/JP5919458B2/ja
Publication of JP2012147748A publication Critical patent/JP2012147748A/ja
Application granted granted Critical
Publication of JP5919458B2 publication Critical patent/JP5919458B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soy Sauces And Products Related Thereto (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Alcoholic Beverages (AREA)

Description

本発明は、超音波照射による食用微生物の増殖促進方法に関するものであり、更に詳しくは、物理的な操作因子である超音波を利用して、食用微生物、特に、発酵過程に関与する酒造酵母、醤油乳酸菌などの増殖を促進させることを可能とする食用微生物の新規増殖促進方法に関するものである。本発明は、発酵食品の製造過程において、超音波を利用することにより、酵母、乳酸菌などの発酵に関与する食用微生物の増殖、及び代謝を制御することで、得られる発酵食品の安定生産と品質の向上を図ることを可能とする、発酵食品の製造過程における食用微生物の増殖、及び代謝に関する新技術・新製品を提供するものである。
食用微生物の生育、代謝などを制御する外部因子として、主に、温度、圧力などの示強変数が検討されているが、操作因子の種類が少なくて、制御が難しく、食用微生物の安定的な生育、代謝による機能発現には、常に注意が必要とされる。酒造の場合を例とすれば、製品の安定生産と品質向上に欠かせないのは、製麹工程と仕込工程に関与する麹菌、酵母を如何にうまく増殖させ、働かせ、かつ制御するかにあるとされ、新たな外部因子の検討と、その利用による発酵制御の技術開発が強く求められている。近年、圧力、通電処理、音波などの物理的因子による反応制御の研究開発に関心が高まっており、その開発研究は、世界中で試みられている。
一般に、発酵過程で、菌体とそれを取り囲む媒体との境界層は、菌体内外の物質移送の障壁となる上に、発酵生成物による拮抗的阻害が起こる確率を高めると考えられている。一方、超音波が媒質に与える影響には、熱、振動効果、圧力変動などが想定され、特に、超音波の振動効果により、菌体又は媒質が振動し、菌体とそれを取り囲む媒体との境界層の極小化が期待される。また、超音波による圧力変動が、菌体にストレスを与えて、菌体の増殖、代謝の促進につながる可能性もあると考えられる。
発酵食品、例えば、清酒、醤油などの伝統発酵食品、及びその製造過程においては、麹菌や、酵母、乳酸菌など、様々の微生物が関与している。微生物の増殖、代謝は、発酵食品の品質に大きな影響を与えるため、発酵過程に関与する麹菌や、酵母、乳酸菌などの食用微生物を如何にうまく増殖させ、働かせ、その増殖、代謝を好適に制御することは非常に重要な課題である。一般に、発酵過程における課題として、発酵の安定性と生産効率の向上、生産の管理と調整システムの確立、効率的な設備投資、生産規模の大小に適応できる、簡便、かつ低コストで、汎用性のある新たな発酵技術、設備の開発などがあげられている。
一般に、超音波は、20kHz以上で、人間には聞こえない音である。超音波の効果は、該超音波が媒質に与える影響として、熱、圧力変動、振動効果などが考えられる。超音波の振動効果により、例えば、菌体又は媒質が振動し、拡散促進の可能性が想定される。細胞膜には、刺激受容体など様々なレセプターが局在すると考えられているため、低レベルの超音波照射による圧力変動が、何らかの受容体を介し又は直接、細胞内小器官や機能タンパクに影響を与えて、菌体の増殖、代謝の促進につながる可能性が想定される。
従来、超音波照射技術の発酵への応用に関して、先行技術文献には、例えば、糖質原料からアミノ酸、ペプチド、ビタミン類及び核酸関連物質を製造する際に、糖質原料、例えば、白米液化液に酵母を加えて発酵させた醪、又はその圧搾、ろ過後の残渣に超音波を照射することにより、発酵した醪に生成されるグルタチオンの生成量を大幅に増加させることができ、更に、アミノ酸、ペプチド、ビタミン類及び核酸関連物質などの生理活性物質を生成することができることが記載されている(特許文献1)。
また、他の先行技術文献には、米糠、又は玄米粉を原料とする乳酸発酵液の製造法において、得られた発酵液に超音波を当てることにより、米糠や玄米の悪息や悪味が著しく軽減された乳酸発酵液が得られることが記載されている(特許文献2)。
また、他の先行技術文献には、原料となるセラミド類組成物に、浄化水、ミネラルを添加して混合し、次に、このセラミド類組成物混合液に、麹菌、酵母、クエン酸菌、乳酸菌、酢酸菌を含む麹菌を加えて発酵させ、得られたセラミド類組成物発酵液に有機酸を混合して35℃〜45℃の温度に保持して熟成する際に、磁気雰囲気下において超音波振動を加えながら撹拌して流動させ、熟成(有機酸発酵)させることが記載されている(特許文献3)。
また、他の先行技術文献には、振動エネルギー(超音波など)による、気泡の放出により溶存酸素を低減させ、嫌気呼吸(酸素以外の無機化合物を電子受容体とする生物)を活性化させ、発酵(有機化合物を電子受容体とする生物)を活性化させ、例えば、乳酸菌、酵母などの増殖速度を向上させることが記載されている(特許文献4)。
更に、他の先行技術文献には、浄化水に、イオン化ミネラル液を添加し、直径が50μm以下の微細気泡を発生させ、更に25〜30kHzの超音波を照射して微細気泡に物理的刺激を与えて超微細気泡水を調製すること、上記イオン化ミネラル液である澱粉、穀類と種子と卵殻を含む混合原料に水を加え、50〜100℃に加熱して澱粉をα化した後、30〜40℃に保温して麹菌を加えて複合発酵させること、それらにより、生物に対する活性作用などの機能、効果を飛躍的に向上させることが記載されている(特許文献5)。
また、他の先行技術参考文献には、周波数20KHzの超音波により米酒(Rice wine)の熟成時間をかなり短縮でき、その効果が酒原料によって異なることが記載されている(非特許文献1)。
また、他の先行技術参考文献には、リボフラビン(ビタミンB2)を生産するための、Ecomthecium ashbyii発酵において、超音波照射により、最大乾燥菌糸体重量に達する所要時間が短縮したことが記載されている(非特許文献2)。
更に、他の先行技術参考文献には、ワイン、ビール、日本酒などの発酵において、弱い超音波照射(30mW/cm)により、発酵時間を従来の50〜64%に短縮できることが記載されている(非特許文献3)。
特開平7−16096号公報 特開平8−280341号公報 特開2009−100725号公報 特開2009−190018号公報 特開2009−226386号公報
Chang et al.(2002). The application of 20 kHz ultrasonic waves to accelerate the aging of different wines. Food Chemistry,79,501−506 Dai et al.(2003). Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii. Colloids and Surfaces B:Biointerfaces,30,37−41 Matsuura et al.(1994). Acceleration of cell growth and ester formation by ultrasonic wave irradiation. Journal of Fermentation and Bioengineering,77(1),36−40
このような状況の中で、本発明者らは、上記従来技術に鑑みて、物理的操作因子を用いて、発酵過程における食用微生物の増殖、代謝を促進させることを可能とする新しい技術を開発することを目標として鋭意研究を進める過程で、酒造酵母、乳酸菌などの増殖培地に、各種の周波数と強度の超音波を連続的に照射する処理を行った結果、いずれの菌においても、菌数の大幅な増加と、それに伴う有用な代謝産物の増大及び発酵期間の短縮が可能であることを見いだし、更に、当該処理技術は、酒醪、醤油諸味などの発酵食品の製造に適用することが可能であることを見いだし、本発明を完成するに至った。本発明は、物理的な操作因子である超音波照射を用いて、食用微生物、特に、酒造酵母、乳酸菌などの増殖促進及び機能強化を可能とする超音波照射による食用微生物の増殖促進方法を提供することを目的とするものである。
また、本発明は、例えば、酒造の過程で、製麹工程と仕込工程に関与する麹菌、酵母などを、うまく増殖させ、働かせ、かつ制御することで、製品の安定生産と品質向上を可能とする、新しい発酵制御技術を提供することを目的とするものである。更に、本発明は、上記物理的な操作因子である超音波を用いて、食用微生物、特に、酒造酵母、乳酸菌などの増殖促進及び機能強化の新技術を提供することを目的とするものである。
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)超音波照射をデューティ(Duty)比Dが所定値の範囲の方形波(quare)により行うことによる菌体増殖及び代謝産物生成促進方法であって、
1)食用微生物菌体と発酵媒体とを用いた発酵過程において、該食用微生物に超音波照射をすることにより、超音波による作用を、菌体とそれを取り囲む媒体との間に存在する境界層に作用させて、当該境界層の極小化を図ること、2)その際に、上記超音波として、Duty比=t/T×100%(但し、Tはパルス周期、tはパルス幅を表わす)が12.5〜50%の方形波(Square)を照射すること、3)それにより、菌体の増殖を促進し、その代謝産物の生成を増大させること、を特徴とする超音波照射による菌体増殖及び代謝産物生成促進方法。
(2)上記食用微生物が、酵母、又は乳酸菌である、前記(1)に記載の菌体増殖及び代謝産物生成促進方法。
(3)上記発酵過程が、アルコール、清酒もろみ、醤油、醤油諸味、又は乳酸の発酵過程である、前記(1)又は(2)に記載の菌体増殖及び代謝産物生成促進方法。
(4)超音波照射を連続照射により行う、前記(1)から(3)のいずれか一項に記載の菌体増殖及び代謝産物生成促進方法。
(5)超音波照射をデューティ(Duty)比Dが所定値の範囲の方形波(quare)により行うことによる発酵製品の製造方法であって、
1)食用微生物菌体と発酵媒体とを用いた発酵過程において、該食用微生物に超音波照射を行うことにより、超音波による作用を、菌体とそれを取り囲む媒体との間に存在する境界層に作用させて、当該境界層の極小化を図ること、2)その際に、上記超音波として、Duty比=t/T×100%(但し、Tはパルス周期、tはパルス幅を表わす)が12.5〜50%の方形波(Square)を照射すること、3)それにより、菌体の増殖を促進し、その代謝産物の生成を増大させ、常法により、目的の発酵製品を製造すること、を特徴とする発酵製品の製造方法。
(6)上記食用微生物が、酵母、又は乳酸菌である、前記(5)に記載の発酵製品の製造方法。
(7)上記発酵過程が、アルコール、清酒もろみ、醤油、醤油諸味、又は乳酸の発酵過程である、前記(5)又は(6)に記載の発酵食品の製造方法。
(8)超音波照射を連続照射により行う、前記(5)から(7)のいずれか一項に記載の発酵食品の製造方法。
次に、本発明について更に詳細に説明する。
本発明は、食用微生物の増殖促進技術に関するものであって、食用微生物菌体と発酵媒体とを用いた発酵過程において、該食用微生物に超音波照射をすることにより、超音波による作用を、菌体とそれを取り囲む媒体との間の境界層に作用させて、当該境界層の極小化を図り、それにより、菌体の増殖を促進し、その代謝産物の生成を増大させることを特徴とするものである。
本発明では、発酵過程において、発酵に関与する菌体に超音波による微弱エネルギーを与えて、発酵の促進、制御を行うものであり、種々の周波数、出力の超音波で菌体に振動、微弱圧力の変動を与え、菌体の個別活動を促進させるものである。
本発明は、発酵過程に関与する菌類の精密制御技術として有用であり、例えば、酒造の場合、品質向上に欠かせないのは、製麹工程と仕込工程に関与する麹菌、酵母、乳酸菌をいかにうまく働かせ、かつ制御するかにあるが、本発明により、それらを高精度に制御することが可能となる。本発明は、発酵過程における技術、装置の汎用性、すなわち食品加工の様々な単位操作に連結する有効な手段を確保し、内外で広く利用できる新しい発酵制御技術として、機器メーカーを含む企業の収益向上に資するものであり、低エネルギー、低投資型の新規発酵技術として、地域中小発酵企業でも好適に活用することを可能とするものである。
本発明では、超音波照射の形状、構造などについては、特に限定されるものではなく、その実施に当たり、任意に設計することが可能である。例えば、超音波照射用装置としては、好適には、0.3〜2.4MHzの公称発振周波数を照射することができる特性を有する装置が使用される。超音波の照射条件は、好ましくは、0.3〜2.4MHz、より好ましくは、0.3〜1.2MHz、最も好ましくは、0.3〜0.6MHzである。
酵母の標準的な培養液を用いて、超音波照射が、酵母の増殖に及ぼす影響を調べたところ、例えば、所定の電源入力(DC24V±5% 13W)で、所定の周波数範囲(0.3〜2.4MHz)では、周波数が低いほど、酵母の増殖促進効果が大きくなることが分かった。また、超音波照射が、清酒酵母の膜透過性に及ぼす影響を調べたところ、所定の周波数(2.4MHz)では、超音波照射により、酵母の細胞膜透過性が可逆的に増大することが分かった。
また、清酒もろみに及ぼす超音波照射の影響を調べたところ、乳酸、リンゴ酸などの有機酸には大きな変化は見られなかったが、ピルビン酸は、超音波照射により顕しく低下し、発酵が促進されることが分かった。米糖化後を乳酸発酵させる過程における超音波照射の影響を調べたところ、菌数の増加と、pH値の低下が速くなり、乳酸菌の増殖が促進され、更に、米糖化液発酵物の風味向上効果があることが分かった。
清酒酵母の標準的な培養液に、通電用電極を介して通電培養を行ったところ、通電加熱により、酵母の増殖が大幅に促進され、また、グルコースの消費速度が大きくなり、アルコールの生成量が増加することが分かった。本発明では、発酵過程において、超音波照射と、通電処理を、適宜組み合わせて適用することが可能であり、発酵の種類、発酵に関与する微生物の種類に応じて、適宜の実施形態で使用することができる。
本発明では、超音波照射を、方形波(Square)により行うことにより、菌体の増殖を一層促進させることが可能である。すなわち、デューティ比D=(Duty比)を高くすることによって、菌体の増殖は、より促進される。ここで、デューティ比Dは、Duty=t/T×100%(T:パルス周期、t:パルス幅)で表される。つまり、デューティ比Dが所定値(12.5〜50%)の範囲の方形波(Square)を照射することにより、菌体の増殖を、より促進させることができる。
本発明により、例えば、酒造、乳酸発酵の分野で、より効率的で短期間の発酵が可能になり、それにより、目的製品の生産性が向上すること、超音波照射システムが簡易な構造でスケールアップが容易であること、設備投資と維持管理費が小さいことから、本発明は、酒造メーカー、発酵食品メーカーなどをはじめ、中小零細の発酵企業でも好適に利用することが可能である。
本発明では、発酵食品を製造する発酵過程において、発酵に関与する麹菌、酵母、乳酸菌について、その発酵製品の種類に限定されることなく、それらの食用微生物の増殖、及び代謝の促進、代謝産物の生成量の向上などの効果が期待できることから、本発明は、発酵製品の種類、関与する食用微生物の種類に制限されることなく、広く適用可能な汎用性のある発酵促進技術として利用することが可能である。
従来、発酵させた諸味に超音波を照射して、アミノ酸、ペプチド、ビタミン類及び核酸関連物質を製造する方法が提案されているが、これらは、発酵した諸味中に含まれている生成物を、諸味から取得する収率を向上させるものであり、本発明の食用微生物の増殖を促進させる方法とは、本質的に異なるものである。また、従来、超音波などの振動エネルギーにより、水の表面張力、溶存酸素の低減を図ることで、嫌気呼吸や発酵を活性化させることを意図した着想や考え方はあるものの、それらの具体的な効果は明らかにされたり、実証された事例は見当らない。
本発明者らは、食用微生物を用いた発酵過程において、超音波を、菌体とそれを取り囲む媒体との間に存在する、菌体内外の物質移送の障壁になると共に、発酵生成物による拮抗的阻害の可能性を高める境界層に作用させて、菌体に損傷が生じない穏和なレベルにおいて、媒体を通じた所定の周波数と強度の超音波処理による境界層の極小化と発酵促進を検討した結果、酒造酵母、乳酸菌などの増殖培地への超音波連続照射により、いずれの菌でも菌数の大幅な増加と、それに伴う有用な代謝産物、例えば、アルコールと乳酸の増大が可能であることを見いだし、発酵期間の短縮を可能とし、また、本発明は、酒醪、醤油諸味に適用可能であることを確認した。
本発明で創出した超音波処理技術は、微生物を取り囲む材料が良好な音波伝搬性を示す限り、すべて有用であり、液体発酵などに限定されるものではない。また、本発明は、既存の発酵槽には、超音波素子を具備した投げ込み式、あるいは回転式の、低コストユニットで対処することが可能であり、新たな大がかりの設備投資を必要としない利点を有することから、中小零細の発酵、食品メーカーでも導入が可能であり、更に、発振した超音波の伝搬・減衰の計測を組み合わせることにより、従来にない、簡便で正確な発酵管理システムの構築が可能である。
本発明により、超音波による発酵促進システムを確立することで、資金的に体力が低い地域中小発酵企業でも活用できる低エネルギー・低投資型の新規発酵技術を提供でき、また、発酵の促進・制御により、従来にない新規食品の開発と併せて、少子高齢化で縮小しつつ競争激化が進む我が国食品業界において、生き残りの道を提示することができる。また、本発明は、混合、乳化、乾燥及び抽出技術と組み合わせることで、これらの分野にも波及効果を有するものである。
本発明により、次のような効果が奏される。
(1)発酵過程において、発酵に関与する酵母、乳酸菌などの食用微生物の増殖、及び代謝を促進し、発酵産物の生産量を大幅に増加させることができる。
(2)酒造、乳酸菌発酵などの分野で、より効率的で短期間の発酵が可能である。
(3)食用微生物を用いた発酵過程において、超音波を、菌体とそれを取り囲む媒体との境界層に作用させて、該境界層を極小化することで、発酵を促進させることができる。
(4)超音波の連続照射により、発酵に関与する微生物の種類にかかわらず、いずれの菌でも菌数の大幅な増加と、それに伴う有用な代謝産物の生産量を増大させることができる。
(5)品質の良好な発酵製品を製造し、提供することができる。
(6)超音波の連続照射により、発酵に関する微生物の増殖、代謝に影響を与え、新規の発酵製品を製造し、提供することができる。
(7)超音波素子を投げ込み式あるいは簡易な回転式の低コストユニットにすることで、簡便かつ廉価な発酵システムの構築が可能である。
超音波・通電用試作回転翼の構造の概略を示す。 発酵槽内の超音波強度分布を示す。 超音波照射による酵母k−7への影響を示す。 小型超音波発酵ユニットを示す。 酵母k−7の増殖に及ぼす超音波周波数の影響を示す。 清酒もろみの有機酸の変化を示す。 米糖化液の乳酸発酵に及ぼす超音波の影響を示す。 通電培養装置の概略図を示す。 清酒酵母の通電培養における温度制御の結果を示す。
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
以下の実施例では、食用微生物の増殖に及ぼす超音波の影響、すなわち、(1)清酒酵母k−7の増殖に及ぼす超音波の影響、(2)超音波による清酒もろみ発酵過程での成分変化、(3)超音波による米糖化液の乳酸発酵、について調べた。
各実施例で用いた超音波・通電用試作回転翼装置の構造概略を図1に示す。この装置において、超音波素子の特性は、公称発振周波数:2.4MHz、電源入力:DC24V±5% 13W、霧化能力:250±50mL/h、平均霧化粒子径:3μm、であり、素子の材質及び振動板は、SUS316Lで、パッキン:バイトン(黒)、使用水温範囲:5〜50℃、振動子の外形寸法(W×D×Hmm):42×30×11、回路冷却方式:強制冷却、である。通電用電極は、材質:チタン、形状:平行平板、であり、通電用電源部は、周波数:〜20kHz、電圧:〜200Vである。
上記装置を用いて、発酵槽内の超音波強度分布を調べた。その結果を、図2に示した。超音波素子の真上での強度が一番強いが、回転翼をゆっくり回転すれば、発酵槽内の超音波強度分布が均一になると考えられた。
超音波照射による酵母k−7への影響を調べた。その結果を、図3に示した。培地として、以下のYM−10培地を用いた。超音波照射を行わないコントロールに比べて、超音波照射により酵母の増殖が促進されたことが分かる。
[YM−10培地組成]
酵母エキス 3g
麦芽エキス 3g
ポリペプトン 5g
グルコース100g
蒸留水 1L
2.4MHzの周波数において、印加電圧をそれぞれ6V、12V、24Vとした時、清酒酵母k−7の増殖速度が大きくなり、菌数の増加が認められた。また、グルコースの消費速度とアルコール生成量の増加も13C−NMRにより観察された。
図4に示す小型超音波発酵ユニットを用いて実験を行った。超音波素子の特性は、公称発振周波数:2.4MHz、電源入力:DC24V±5% 13W、霧化能力:250±50mL/h、平均霧化粒子径:3μm、であり、素子の材質及び振動板は、SUS316Lで、パッキン:バイトン(黒)、使用水温範囲:5〜50℃、振動子の外形寸法(W×D×Hmm):42×30×11、回路冷却方式:強制冷却、である。
酵母K−7の増殖に及ぼす超音波周波数の影響を調べた。上記実施例2の小型超音波発酵ユニットのアクリル製水槽に超音波素子を設置し、信号発生器(WF1974、NF Corporation)と増幅器(HSA4052、NF Corporation)を介して超音波を照射した。槽内の超音波分布は音圧計(HUS−3、Honda Electoronics CO.,Ltd)で測定した。
滅菌YM−10培地を超音波発酵ユニットへ移し、清酒酵母k−7を接種し、30℃で各条件で超音波を照射しながら培養を行った。一定時間ごとにサンプリングし、菌数、pH値を測定した。
印加電圧を24Vに設定し、超音波周波数の影響を調べた。その結果を図5に示す。本実験の周波数範囲(0.3〜2.4MHz)では、超音波による酵母K−7の増殖が促進されることが確認され、周波数が低いほど、促進効果が大きくなる傾向が見られた。
清酒酵母の膜透過性に及ぼす超音波の影響を調べた。超音波条件を以下に示す。
[超音波条件]
波形:sine
周波数:2.4MHz
印加電圧:24V
発振モード:continuous
照射時間:48時間
蛍光剤として、Calceinと、Propidium iodideを用いた。Calceinは、膜不透過性の化合物で、強い黄緑色の蛍光を示す。Propidium iodide(PI)は、生細胞の細胞膜は透過せず、死細胞内に入り込み、細胞内のDNA にintercalateすることにより、特有の強い赤色蛍光を示す。
超音波照射により、細胞内へのCalcein取り込みが多かった。一方、PIによる赤色蛍光が見られなかったので、細胞が死んでいない。従って、細胞膜透過性が可逆的に増大したと考えられる。超音波照射によって、細胞膜透過性が増大することが明らかであり、結果として、菌の増殖・代謝促進につながる可能性があると考えられた。
超音波照射による清酒もろみの有機酸の変化を調べた。その結果を図6に示す。乳酸、リンゴ酸などの有機酸は、大きな変化がなかったが、ピルビン酸は、超音波無しに比べ、顕著に低下した。清酒もろみにおいては、超音波照射により、ピルビン酸が顕著に低下し、ピルビン酸がもろみ側に分泌されることはほとんどなく、代謝が促進されたと考えられる。
米糖化液を原料とした乳酸発酵への超音波の影響について調べた。その結果を図7に示す。実験材料として、供試乳酸菌:乳酸菌639株(L.plantarum:JCM1149,pickled cabbage由来)、発酵原料:米糖化液を用いた。実験条件は、培養温度:10℃、超音波照射条件は、周波数:2.4MHz、波形:Sine、発振モード:Continuous、印加電圧:24V、菌数計測:MRS寒天培地で30℃、約48時間培養、pH値:pHメーターにて測定、とした。米糖化液の乳酸発酵の場合は、超音波照射により、乳酸菌の増殖を促進し、無照射に比べて、pH値の低下が速かった。得られた米糖化液発酵物の風味が無照射より良いことが認められた。
[試験例]
清酒酵母の通電培養における温度制御を調べた。その結果を図9に示す。通電条件は、電極距離:77.2mm、電流:〜0.1A、電圧:25VAC(60Hzの時)、24VAC(3kHzの時)、電力消費:1.27×10−3KWh(60Hzの時)、である。通電加熱により、清酒酵母の培養温度を一定に維持することができた。
通電培養装置として、図8に示す装置を用いた。温度調節器は、温度調節器KT4(Panasonic Electric Works Co.,Ltd)、であり、通電用電極は、材質:チタン、形状:平行平板、である。温度調節器によって、培養液への通電をON/OFFにして、急速、均一な通電加熱を行い、精密な温度制御を可能にした。
以上詳述したとおり、本発明は、超音波照射による食用微生物の増殖促進方法に係るものであり、本発明により、発酵過程において、発酵に関与する菌体とそれを取り囲む媒体の境界層に作用させて該境界層を極小化することにより、菌数の大幅な増加を、それに伴う有用な代謝産物の生産量を大幅に増大させることが可能となる。本発明では、超音波照射システムが簡易な構造でスケールアップが容易であることから、設備投資と維持管理費を小さくすることができ、低エネルギー・低投資型の新規発酵技術として、比較的小規模の事業所においても好適に使用することが可能である。本発明は、酒造、乳酸発酵などの産業分野において、低エネルギー・低コストで、低環境負荷型で、高汎用性で、かつ小規模事業所で好適に使用することが可能な新規発酵技術を提供するものとして有用である。

Claims (8)

  1. 超音波照射をデューティ(Duty)比Dが所定値の範囲の方形波(quare)により行うことによる菌体増殖及び代謝産物生成促進方法であって、
    1)食用微生物菌体と発酵媒体とを用いた発酵過程において、該食用微生物に超音波照射をすることにより、超音波による作用を、菌体とそれを取り囲む媒体との間に存在する境界層に作用させて、当該境界層の極小化を図ること、2)その際に、上記超音波として、Duty比=t/T×100%(但し、Tはパルス周期、tはパルス幅を表わす)が12.5〜50%の方形波(Square)を照射すること、3)それにより、菌体の増殖を促進し、その代謝産物の生成を増大させること、を特徴とする超音波照射による菌体増殖及び代謝産物生成促進方法。
  2. 上記食用微生物が、酵母、又は乳酸菌である、請求項1に記載の菌体増殖及び代謝産物生成促進方法。
  3. 上記発酵過程が、アルコール、清酒もろみ、醤油、醤油諸味、又は乳酸の発酵過程である、請求項1又は2に記載の菌体増殖及び代謝産物生成促進方法。
  4. 超音波照射を連続照射により行う、請求項1から3のいずれか一項に記載の菌体増殖及び代謝産物生成促進方法。
  5. 超音波照射をデューティ(Duty)比Dが所定値の範囲の方形波(quare)により行うことによる発酵製品の製造方法であって、
    1)食用微生物菌体と発酵媒体とを用いた発酵過程において、該食用微生物に超音波照射を行うことにより、超音波による作用を、菌体とそれを取り囲む媒体との間に存在する境界層に作用させて、当該境界層の極小化を図ること、2)その際に、上記超音波として、Duty比=t/T×100%(但し、Tはパルス周期、tはパルス幅を表わす)が12.5〜50%の方形波(Square)を照射すること、3)それにより、菌体の増殖を促進し、その代謝産物の生成を増大させ、常法により、目的の発酵製品を製造すること、を特徴とする発酵製品の製造方法。
  6. 上記食用微生物が、酵母、又は乳酸菌である、請求項5に記載の発酵製品の製造方法。
  7. 上記発酵過程が、アルコール、清酒もろみ、醤油、醤油諸味、又は乳酸の発酵過程である、請求項5又は6に記載の発酵食品の製造方法。
  8. 超音波照射を連続照射により行う、請求項5から7のいずれか一項に記載の発酵食品の製造方法。
JP2011010287A 2011-01-20 2011-01-20 超音波照射による食用微生物の増殖促進方法 Active JP5919458B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010287A JP5919458B2 (ja) 2011-01-20 2011-01-20 超音波照射による食用微生物の増殖促進方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010287A JP5919458B2 (ja) 2011-01-20 2011-01-20 超音波照射による食用微生物の増殖促進方法

Publications (2)

Publication Number Publication Date
JP2012147748A JP2012147748A (ja) 2012-08-09
JP5919458B2 true JP5919458B2 (ja) 2016-05-18

Family

ID=46790691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010287A Active JP5919458B2 (ja) 2011-01-20 2011-01-20 超音波照射による食用微生物の増殖促進方法

Country Status (1)

Country Link
JP (1) JP5919458B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865714B (zh) * 2014-03-06 2015-09-30 江南大学 一种利用低强度间歇式超声波辅助酿造黄酒的方法
KR101610621B1 (ko) 2014-07-09 2016-04-08 동국대학교 산학협력단 알코올 음료의 제조 방법
JP6458299B2 (ja) * 2014-09-09 2019-01-30 大野醤油醸造協業組合 発酵装置、及び、発酵方法
US10604730B2 (en) 2015-10-16 2020-03-31 Terressentia Corporation Alcoholic beverage maturing device
CN114058500B (zh) * 2020-08-03 2024-06-25 佛山市顺德区美的电热电器制造有限公司 食物处理装置的控制方法、食物处理装置和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380070A (ja) * 1989-08-21 1991-04-04 Honda Electron Co Ltd 熟成装置
JPH0795873A (ja) * 1992-10-22 1995-04-11 Honda Electron Co Ltd ワイン、ビール、清酒の製造方法
JP2001258540A (ja) * 2000-03-22 2001-09-25 Snow Brand Milk Prod Co Ltd 赤ワインの製造方法
JP2005160340A (ja) * 2003-12-01 2005-06-23 Teijin Pharma Ltd 細胞培養装置および細胞培養方法

Also Published As

Publication number Publication date
JP2012147748A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
Dai et al. Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae
Li et al. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi
Huang et al. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei
Yu et al. Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: A review
Sulaiman et al. Ultrasound-assisted fermentation enhances bioethanol productivity
JP5919458B2 (ja) 超音波照射による食用微生物の増殖促進方法
Schläfer et al. Improvement of biological activity by low energy ultrasound assisted bioreactors
Lin et al. Enhancement of shikonin production in single‐and two‐phase suspension cultures of Lithospermum erythrorhizon cells using low‐energy ultrasound
Chuanyun et al. Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii
Zhang et al. Fermentation of Saccharomyces cerevisiae in a one liter flask coupled with an external circulation ultrasonic irradiation slot: Influence of ultrasonic mode and frequency on the bacterial growth and metabolism yield
CN104372060B (zh) 一种固态发酵饼粕制备低聚肽的方法
Paulová et al. Advanced fermentation processes
Gavahian et al. Combinations of emerging technologies with fermentation: Interaction effects for detoxification of mycotoxins?
Yao et al. Enhanced production of fumigaclavine C by ultrasound stimulation in a two-stage culture of Aspergillus fumigatus CY018
Lu et al. Ultrasound enhanced production of mycelia and exopolysaccharide by Agaricus bitorquis (Quel.) Sacc. Chaidam
Zhu et al. pH-control modes in a 5-L stirred-tank bioreactor for cell biomass and exopolysaccharide production by Tremella fuciformis spore
CN112608956B (zh) 一种利用超声波提高细菌胞外多糖产量的方法
JP5920767B2 (ja) 通電処理による発酵温度の制御並びに食品微生物の増殖・代謝の促進方法
Kisielewska Ultrasonic Stimulation of Co-Immobilized Saccharomyces cerevisiae Cells and β-Galactosidase Enzyme for Enhanced Ethanol Production from Whey Ultrafiltration Permeate.
Chen et al. Enhancing the biomass and riboflavin production of Ashbya gossypii by using low-intensity ultrasound stimulation
CN108893461B (zh) 一种利用高压脉冲电场促进酿酒酵母增殖及发酵的方法
CN109679846B (zh) 一种旋转式磁场处理装置及其强化发酵的方法
Jomdecha et al. The research of low-ultrasonic energy affects to yeast growthin fermentation process
KR20090008807A (ko) 전기장을 이용한 효모 성장 촉진 방법 및 장치
CN202898429U (zh) 一种三频超声辅助发酵设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5919458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250