JP5918858B2 - マイクロリソグラフィ投影露光装置の光変調器及び照明系 - Google Patents

マイクロリソグラフィ投影露光装置の光変調器及び照明系 Download PDF

Info

Publication number
JP5918858B2
JP5918858B2 JP2014541542A JP2014541542A JP5918858B2 JP 5918858 B2 JP5918858 B2 JP 5918858B2 JP 2014541542 A JP2014541542 A JP 2014541542A JP 2014541542 A JP2014541542 A JP 2014541542A JP 5918858 B2 JP5918858 B2 JP 5918858B2
Authority
JP
Japan
Prior art keywords
mirror
light
modulator
substrate
micromirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014541542A
Other languages
English (en)
Other versions
JP2014533441A5 (ja
JP2014533441A (ja
Inventor
ヴェルベル アルミン
ヴェルベル アルミン
ヴァルディス ゼヴェリン
ヴァルディス ゼヴェリン
バッハ フロリアン
バッハ フロリアン
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2014533441A publication Critical patent/JP2014533441A/ja
Publication of JP2014533441A5 publication Critical patent/JP2014533441A5/ja
Application granted granted Critical
Publication of JP5918858B2 publication Critical patent/JP5918858B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、概して、ミラーアレイを含む光変調器に関し、より具体的には、斯かる光変調器を備えるマイクロリソグラフィ投影露光装置の照明系に関する。
マイクロリソグラフィ(フォトリソグラフィ又は単にリソグラフィとも称する)とは、集積回路、液晶ディスプレー及びその他の微細構造デバイスを製造するための技術のことを指す。エッチング工程を含むマイクロリソグラフィの工程は、ウェハなどの基板上に形成された積層薄膜に特徴部をパターニングするためのものである。製造時における各層に関して、ウェハ上には先にフォトレジスト、即ち特定の波長の光に対して感光性を有する材料を塗布しておく。次いで、フォトレジストが塗布されたウェハは、投影露光装置を使用して、マスクを通した投影光に露光させる。この場合にマスクは、フォトレジスト上に結像すべき回路パターンを含んでいる。露光後、フォトレジストは現像することにより、マスクが含む回路パターンに対応する像が生成される。その後のエッチング工程において、回路パターンがウェハ上の積層薄膜に形成される。最後に、フォトレジストを除去する。異なるマスクを使用して上記の工程を繰り返せば、多層微細構造部品が得られる。
投影露光装置は通常、照明系を備え、その照明系が例えば矩形状又は曲線状スリットとしたマスク上のフィールドを照射する。露光装置は更に、マスクを整列するためのマスクステージと、マスク上の照射フィールドをフォトレジスト上に結像する対物レンズ((レンズ)とも称する場合がある)と、フォトレジストが塗布されたウェハを整列するためのウェハ整列ステージとを備える。
投影露光装置の開発における本質的な目的の一つは、リソグラフィによって、ウェハ上により微小な寸法を有する構造を規定可能とすることである。微細な構造は、露光装置を使用して製造された微細構造部品の性能に好ましい効果をもたらす高集積密度につながる。
上述した目的を達成するために、様々なアプローチがこれまでに追求されてきた。これらアプローチの一つにおいては、回路パターンをフォトレジスト上に結像するために使用する投影光をより波長の短いものにする。これは、リソグラフィによって規定可能な特徴部の最小寸法が、投影光の波長にほぼ比例するという事実を利用したものである。従って、このアプローチによる装置の製造者は、より短い波長を有する投影光の使用を重視している。現在使用されている最短波長は248 nm、193 nm及び157 nmであり、従って深紫外線(DUV)又は真空紫外線(VUV)のスペクトル範囲内にある。市販される次世代の装置では、約13.5 nmという更に短い波長を有する投影光が使用されると想定される。13.5 nmの波長は、極紫外線(EUV)のスペクトル範囲内にある。EUV装置の場合には、レンズがEUV光をほぼ全て吸収するため、レンズの代わりにミラーが備えられる。
他のアプローチにおいては、マスク照度の向上を図る。理想的には、投影露光装置の照明系は、マスク上のフィールドにおける各点を、明確に規定された空間放射照度分布及び角度放射照度分布を有する投影光で照射するものである。この場合の用語「角度放射照度分布」とは、マスク上の特定点に収束する光束中の全光エネルギが、光線の各方向でいかに分布しているかを表す。
マスク上に入射する投影光の角度放射照度分布は通常、フォトレジスト上に結像すべきパターンの種類に適合させるものである。例えば、比較的寸法の大きな特徴部は、寸法の小さな特徴部と比べた場合に異なる角度を必要とする場合がある。最も一般的な角度放射照度分布は、通常照明設定、輪帯照明設定、二重極照明設定及び四重照明設定と称する。これらの用語は、照明系における瞳面の放射照度分布に関連するものである。例えば、輪帯照明設定であれば、瞳面の環状領域だけが照射される。このように、投影光における角度放射照度分布の角度範囲は僅かであり、また全ての光線は、類似の角度で傾斜しながらマスク上に入射する。
従来技術においては、マスク平面内における投影光の角度放射照度分布を変更して所望の照明設定を達成するための様々な手段が既知である。マスク平面で異なる角度放射照度分布を生成する際に最大限の柔軟性を得るために、瞳面内の放射照度分布を決定するミラーアレイの使用が提案されている。
特許文献1(欧州特許出願公開第1262836号明細書)において、ミラーアレイは、1000個を超えるマイクロミラーを含むマイクロ電気機械システム(MEMS)として実現される。この場合に各ミラーは、2つの直交する傾動軸線周りで傾斜させることができる。従って、このようなミラーデバイス上に入射する放射は、ほぼ任意の半球方向に反射させることができる。ミラーアレイ及び瞳面の間に配置されたコンデンサレンズは、ミラーによる反射角を瞳面内の位置に合うよう変換する。特許文献1に記載の照明系により、瞳面が複数のスポット状に照射可能であり、また各スポットは、特定かつ1個のミラーに関連付けられると共に、ミラーを傾斜させることにより瞳面に亘って自由に移動可能である。
特許文献2(米国特許出願公開第2006/0087634号明細書)、特許文献3(米国特許第7061582号明細書)及び特許文献4(国際公開第2005/026843号パンフレット)には、ミラーアレイを使用する類似の照明系が既知である。
上述した特許文献1の一実施形態において、集光光学系は、複数個のパラボラ型反射面を含み、これら反射面が入射する投影光ビームを複数のサブビームに分割し、複数個のミラーに対して個別に反射する。このことは、投影光が、隣接するミラー間に形成されたギャップを通して伝播しないことを保証するものである。これにより、光損失が低減されるのみならず、ミラーの下方に配置された敏感な電子部品及びアクチュエータが、ギャップを通して伝播する投影光によって加熱又は損傷することが確実に回避される。しかしながら、このような集光光学系は、照明系の複雑さやコスト増をもたらすものである。
特許文献5(米国特許出願公開第2006/0209386号明細書)は、デジタルマイクロミラーデバイス(DMD)を記載している。この場合のデバイスには、迷放射線がデバイスの性能に及ぼす影響を低減するための反射防止コーティングが施されている。反射防止コーティングは、DMDのCMOS基板上に直接配置されており、主として可視光に対して反射性を有する。
特許文献6(米国特許第7167297号明細書)は、光回折を低減するために非矩形の外周形状を有するマイクロミラーアレイを記載している。
欧州特許出願公開第1262836号明細書 米国特許出願公開第2006/0087634号明細書 米国特許第7061582号明細書 国際公開第2005/026843号パンフレット 米国特許出願公開第2006/0209386号明細書 米国特許第7167297号明細書 米国特許出願公開第2009/0115990号明細書 国際公開第2010/040506号パンフレット
本発明の目的は、ミラーアレイにおける各ミラーの下方に配置された敏感な電子部品が、光によって大幅に加熱及び/又は損傷するリスクを低減する光変調器を提供することである。
本発明の更なる目的は、ミラーアレイを備えるマイクロリソグラフィ投影露光装置の照明系を提供することである。本発明の照明系は、投影光を複数のサブビームに分離する集光光学系を不要としながらも、ミラーアレイにおける各ミラーの下方に配置された敏感な電子部品が、投影光によって大幅に加熱及び/又は損傷するリスクを回避するものである。
この目的は、本発明の第1態様に従って達成される。換言すれば、この目的は、変調器基板と、変調器基板に支持されたミラーアレイとを含む光変調器によって達成される。この場合、隣接するミラーの少なくとも幾つかは、部分的に重なっている。また、複数個のアクチュエータは、変調器基板に支持されると共に、各ミラーを個別に傾斜させるよう構成されている。
隣接するミラーを重ねて配置することにより、隣接するミラー間に形成されたギャップに入り込み、アクチュエータ又は電子部品に入射可能な光量を大幅に低減することができる。隣接するミラーのうち、どのミラーがどの程度重なるかは、とりわけミラーアレイに入射するときの光の方向に依存するものである。このように、ミラー自体が、その下方に配置された敏感な部品を高エネルギの投影光からシールドするものであるため、例えば吸収素子のような付加的な光シールドを設ける必要はない。
本発明の最も有利な構成によれば、光変調器は、光源及びミラーアレイ間に配置された照明光学系を含み、その照明光学系は、隣接するミラーの少なくとも幾つかに亘って延びる少なくとも1つの光ビームが各ミラーを照射するよう、光をミラーアレイに向けて反射する。ただし本発明は、互いに分離した複数かつ個別のサブビームが集光光学系によって生成される光学系に適用してもよい。この場合、ミラーを重ねて配置することにより、迷光が、ミラーアレイの変調器基板に配置された敏感な部品に到達することが回避される。
各ミラーは、隣接するミラー間に形成されたギャップを通して光が全く入り込むことができず、従ってアクチュエータの1個又は電子部品に入射できない程度に重ねることができる。
少なくとも幾つかのミラーが部分的に重なっていれば、各ミラーは通常、変調器基板上において異なる高さで配置する必要がある。この場合、ミラーの高さ及び側方方向における距離は、隣接するミラー間のギャップがより高いミラーによって生じる影に配置されるよう、決定する必要がある。
ミラーアレイが三次元的なアレイであれば、各ミラーは通常、変調器基板上において3つ以上の異なる高さで配置する必要がある。
各ミラーが異なる高さで配置されていれば、アレイは、変調器基板に対向するミラーの1個における基板(76)の下側に配置された吸収性コーティングを有することができる。このような吸収性コーティングは、より低い配置としたミラーからより高い配置としたミラーに向けて反射した光を吸収するものである。
本発明の他の態様によれば、上述した目的は、150 nmを超える波長を有する投影光を生成するよう構成された光源を備えるマイクロリソグラフィ投影露光装置の照明系によって達成される。この照明系は更に、変調器基板と、該変調器基板によって支持され、かつガスを流出入可能とするギャップが隣接するミラー間で残留するようアレイ状に配置される複数個のミラーとを有する光変調器を含む。光変調器は更に、変調器基板に支持され、かつミラーを傾動軸線周りで個別に傾斜させるよう構成された複数個のアクチュエータを有する。光変調器には複数個の吸収素子が設けられ、それぞれが、投影光に対する吸収面を有する。更に、各吸収素子は、隣接するミラー間に配置されることにより、ギャップを通して伝播する投影光が、変調器基板に支持されたアクチュエータ又は電子部品に入射することを少なくとも部分的に回避する。本発明のこの態様によれば、吸収素子は、各ミラー又はギャップで延在する隆起部に取り付けられる。照明系は更に、光源及び光変調器の間に配置された照明光学系を含み、その照明光学系は、隣接するミラーの少なくとも2個に亘って延びる少なくとも1つの光ビームが光変調器を照射するよう、投影光をミラーアレイに向けて反射する。
上述した吸収面は、入射する投影光の少なくとも99%を吸収するよう構成することができる。
他の実施形態において、吸収素子は、ミラーの縁部に取り付けられる。この場合に吸収素子は、角度付きの断面を有することができる。
吸収素子がギャップで延在するポスト又は隆起部に取り付けられる場合、各ミラーはこれらポール又は隆起部から吊られるものとすることもできる。
本発明の更なる目的は、動作時に迷光を低減する光変調器を提供することである。
本発明によれば、この目的は、変調器基板と、ミラーアレイと、変調器基板に支持され、かつ2つの傾動軸線周りでミラーを個別に傾斜させるよう構成された複数個のアクチュエータとを含む光変調器によって達成される。この場合、ミラーの幾つかが有する外周形状は、基本形状を、傾動軸線に少なくともほぼ直交する軸線周りに異なる角度で回転させることによって得られるものである。
上述した外周形状を得ることは、完全に規則的な配置を回避し、従って回折による迷光を回避するのに寄与する。
この効果は、回転角度が例えば0.1°〜30°、好適には1°〜5°の回転角度範囲内でほぼランダムに分布していれば、更に向上する。
定義
用語「光」とは、全ての電磁波を意味し、特に、可視光、UV、DUV、VUV及びEUV及びX線を意味する。
本明細書の用語「光線」とは、その伝播経路を直線によって表すことのできる光を意味する。
本明細書の用語「光束」とは、フィールド平面において、共通の源を有する複数の光線を意味する。
本明細書の用語「光ビーム」とは、特定のレンズ又は他の光学素子を通過する光を意味する。
本明細書の用語「光学ラスター素子」とは、レンズ、プリズム又は回折光学素子など任意の光学素子であって、複数の光学チャネルが生成されたり維持されたりするよう、他の光学ラスター素子と共に配置される光学素子を意味する。
本明細書の用語「インテグレータ光学系」とは、NA・aの積を増加させる光学システムを意味し、この場合にNAは開口数であり、aは照射フィールド領域のことである。
本明細書の用語「コンデンサ」とは、フィールド平面及び瞳面間などの2つの平面間において、フーリエ関係を(少なくとも近似的に)確立する光学素子又は光学システムを意味する。
本明細書の用語「表面(面)」とは、三次元空間における任意の平面又は曲面を意味する。この場合に表面(面)は、物体の一部であるか、又はフィールド若しくは瞳面に関して一般的であるように、完全に物体から分離していてもよい。
本発明の様々な特徴及び利点は、添付図面に関連した以下の詳細な記載によって、より容易に理解することができる。
投影露光装置を示す概略斜視図である。 図1の装置の一部である照明系を示す子午断面図である。 図2の照明系が含むミラーアレイを示す斜視図である。 図2の照明系が含むインテグレータ光学系を示す斜視図である。 図2の照明系が含むミラーアレイを、該ミラーアレイの基板上に配置された吸収素子を有する第1実施形態に従って示す断面図である。 図2の照明系が含むミラーアレイを、各ミラーの縁部に取り付けられた吸収素子を有する第2実施形態に従って示す断面図である。 図2の照明系が含むミラーアレイを、隣接するミラー間におけるギャップで延在する隆起部に取り付けられた吸収素子を有する第3実施形態に従って示す断面図である。 図2の照明系が含むミラーアレイを、各ミラーが隆起部に吊るされている点で図3の実施形態とは異なる、第4実施形態に従って示す断面図である。 図2の照明系が含むミラーアレイを、隣接するミラーの幾つかが部分的に重なっている第5実施形態に従って示す断面図である。 図9のミラーアレイを示す上面図である。 回転させたミラーを含むミラーアレイを、第6実施形態に従って示す上面図である。
I.投影露光装置の一般的な構成
図1は、本発明に係る投影露光装置10を大幅に簡略化した状態で示す斜視図である。装置10は、投影光ビーム(図示せず)を生成する照明系12を備える。この場合に照明系12は、複数個の微細な特徴部19(図1では細いラインで概略的に示す)で形成されたパターン18を含むマスク16上のフィールド14を照射するものである。図示の実施形態において、照射フィールド14は、環状セグメント状であるが、矩形など他の形状であってもよい。
投影対物レンズ20は、照射フィールド14内のパターン18を、基板24に支持された感光層22上、例えばフォトレジスト上に結像する。シリコンウェハで形成することのできる基板24は、感光層22の頂面が投影対物レンズ20の結像平面内に正確に位置するよう、ウェハステージ(図示せず)上に配置される。マスク16は、マスクステージ(図示せず)により、投影対物レンズ20の平面内に位置決めされる。この場合に投影対物レンズ20は、|β|< 1の横倍率βを有するため、照射フィールド14内におけるパターン18の縮小像18'が感光層22上に投影される。
図示の実施形態において、投影対物レンズ20の構成により、照射フィールド14は、投影対物レンズ20の光軸OAに対してずらせておく必要がある。他のタイプの投影対物レンズにおいて、照射フィールド14は、中心を光軸OAに合わせておくことができる。
投影時におけるマスク16及び基板24は、図1のY方向に対応する走査方向に沿って移動する。この場合、照射フィールド14は、マスク16に亘って走査されるため、照射フィールド14よりも大きなパターン領域が連続的に結像可能である。基板24及びマスク16間における速度比は、投影対物レンズ20の横倍率βに等しい。投影対物レンズ20により像を反転させる場合(β<0)、マスク16及び基板24は、図1の矢印A1及びA2で示すように、逆方向に移動する。ただし本発明は、マスクの投影時にマスク16及び基板24が移動しないステッパー装置でも使用することができる。
II.照明系の一般的な構成
図2は、図1の照明系12を示す子午断面図である。なお同図は、明瞭性の見地から大幅に簡略化されており、実寸を反映するものではない。この点は、特に、異なる光学ユニットが1個又は僅かな個数の光学素子によってのみ表されていることを意味する。実際には、これらユニットは、遥かに多くのレンズや他の光学素子を含むことができる。
照明系12は、ハウジング29と、図示の実施形態ではエキシマレーザとして実現された光源30とを含む。この場合に光源30は、約193 nmの波長を有する投影光を発するものである。他のタイプの光源30や他の波長、例えば248 nm又は157 nmも想定することができる。
図示の実施形態において、光源30から放射された光ビームは、該光ビームを拡大するビーム拡大ユニット32に入射する。光ビームを拡大するために、ビーム拡大ユニット32は、例えば複数個のレンズ又は平面ミラーを有することができる。ビーム拡大ユニット32から出射する拡大光ビーム34は、ほぼ発散することがない。即ち、ほぼ平行である。
ビーム拡大ユニット32から出射した拡大光ビーム34列は、可変な空間放射照度分布を、後続的な瞳面内で生成するための光変調器38に入射する。そのために光変調器38は、アクチュエータによって、2つの直交する軸線周りで個別に傾斜可能なマイクロミラー42のアレイ40を含む。アクチュエータは、全体的なシステムコントローラ45に接続された制御ユニット43で制御される。
図3は、アレイ40を示す斜視図である。同図は、光線が入射するマイクロミラー42の傾斜角に応じて、2つの光線LR1, LR2が異なる方向に反射する状態を示す。図2及び図3のアレイ40は、6×6の個数のマイクロミラー42だけを含むが、実際には数百又は場合によっては数千個ものマイクロミラー42を含むことができる。
図2について再度説明すると、光変調器38は更に、照明系12の光軸OAに対して傾斜した第1平面48a及び第2平面48bを有するプリズム46を含む。光ビーム34は、内部全反射によって、これら傾斜した平面48a,48bで反射する。第1平面48aは、光ビーム34をミラーアレイ40のマイクロミラー42に向けて反射し、第2平面48bは、マイクロミラー42が反射した個別の光ビームをプリズム46の出射面49に向けて反射する。第1平面48aは、光ビーム34をミラーアレイ40のマイクロミラー42に向けて反射し、第2平面48bは、マイクロミラー42が反射した個別の光ビームをプリズム46の出射面49に向けて反射する。このように、反射した光ビーム、従って出射面49から出射する投影光の角度放射照度分布は、マイクロアレイ40のマイクロミラー42を個別に傾斜させることで変化させることができる。光変調器38に関する更なる詳細は、例えば特許文献7(米国特許出願公開第2009/0115990号明細書)に記載されている。
光変調器38によって生成された角度放射照度分布は、入射する光ビームをインテグレータ光学系52に向ける第1コンデンサ50により、空間放射照度分布に変換される。
図4の斜視図に示すように、図示の実施形態におけるインテグレータ光学系52は、2個の光学ラスタプレート54a,54bを有し、これらプレート54a,54bは、円筒状マイクロレンズ56で構成されると共に、互いに直交するアレイを含む。この場合にインテグレータ光学系は、照明系12における後続的な瞳面内で複数の二次光源を発生させるものである。第2コンデンサ58は、瞳面56内と調整可能な視野絞り62が配置された視野絞り平面60との間にフーリエ関係を確立する。第2コンデンサ58は、第2光源から出射した光ビームを視野絞り平面60内で重ね合わせることにより、視野絞り平面60が極めて均一に照射される。
視野絞り平面60は、視野絞り対物レンズ64により、マスクステージ(図示せず)によってマスク16が配置されるマスク平面66上に結像される。これにより、調整可能な視野絞り62もマスク平面66上に結像され、走査方向Yに沿って延在する、照射フィールド14の少なくとも短側面が規定される。
インテグレータ光学系52の前で生成される放射照度分布により、瞳面56内における放射照度分布が決定し、従って視野絞り平面60内及びマスク平面66内における角度放射照度分布を決定する。このように、制御ユニット43でミラーアレイ40のマイクロミラー42を慎重に設定することにより、ほぼ任意の角度放射照度分布をマスク平面66内で迅速に生成することが可能である。更に、このことにより、マスク平面66内における角度放射照度分布を、マスク16に含まれるパターン18に適合させることが可能である。このパターン18は、角度放射照度分布を最適化することにより、感光層22上により正確に結像することができる。
III.ミラーアレイの構成
以下、図5〜図11に関連して、ミラーアレイ40の様々な実施形態について説明する。
1.吸収素子
図5は、第1実施形態に係るミラーアレイ40の一部を示す断面図である。この場合にミラーアレイ40は、複数個の電子部品72(詳細に示さずに、単一の回路層としてのみ示す)を支持する基板70を含む。基板70は更に、複数個のミラーユニット74を支持しており、各ミラーユニット74は、マイクロミラー42の1個と、該マイクロミラー42に機能的に関連付けられた電子部品とを含む。加えて、各マイクロミラー42は、ミラー基板76と、該ミラー基板76上に施され、例えば交互に異なる屈折率を有する複数の薄層より成る反射コーティング78とを含む。
更に、各ミラーユニット74は、2個の半導体連結部材82,84を支持するベース80を含む。これら部材82,84により、マイクロミラー42は、半導体連結部材82,84の構成に規定される2つの直交する傾動軸線周りで傾斜可能である。また、ミラーユニット74は、各ミラーユニット74に関連付けられたマイクロミラー42を、2つの直交する傾動軸線周りで傾斜させるよう構成された複数個のアクチュエータ86,88を含む。傾動軸線周りでの傾斜を可能にするため、これらアクチュエータ86,88は、例えば特許文献8(国際公開第2010/040506号パンフレット)に記載されているように、静電気力を及ぼすことができる。
図示の実施形態において、ミラーユニット74のベース80は、電子部品72上に実装されているが、本発明の技術分野で周知されているように、基板70上に直接に実装してもよい。
ミラーアレイ40において隣接するマイクロミラー42間には、これらマイクロミラー42をアクチュエータ86,88によって傾斜させるときの接触を回避するために必要なギャップ90が残留している。これらギャップ90には、マイクロミラー42の下方に形成されたキャビティにおけるガスの流出入を可能にするという利点もある。ガスの流出入は、電子部品72や、投影光34がマイクロミラー42の反射コーティング78に吸収されることによって生じる対流熱を除去するのに寄与する。
ただし投影光34は、単一かつ連続的な投影光ビームとしてミラーアレイ40上に入射するため、ガスだけでなく投影光34の一部もギャップ90を通過することが可能である。図示の実施形態において、投影光34の一部は、矢印92で示す。投影光34の一部92がアクチュエータ86,88及び/又は電子部品72に入射した場合、これら部品に吸収され、ミラーアレイ40の動作を損ない得る温度上昇をもたらすことになる。更に、高エネルギの投影光は、そのエネルギの一部を散乱電子に伝達することにより、アクチュエータ86,88及び/又は88を部分的にイオン化する可能性もある(コンプトン効果)。加えて、高エネルギの投影光による影響は、長期的には材料の劣化を引き起こす可能性がある。
アクチュエータ86,88及び/又は電子部品72に入射する投影光によって生じ得る悪影響の少なくとも一部を回避するため、複数個の吸収素子94が、隣接するマイクロミラー42間に配置されている。これら吸収素子94は、隣接するマイクロミラー42間に形成されたギャップを通して伝播する投影光の大部分を吸収するよう構成された吸収面96を含む。図示の実施形態において、吸収素子94は、電子部品72上に配置されている。吸収素子94は、吸収面96のみで構成することもでき、その場合には、電子部品72上に直接に配置される。
図6は、第2実施形態に係るミラーアレイ240の一部を示す断面図である。図示の実施形態における吸収素子94は、基板70、アクチュエータ86,88、又は基板70に支持される電子部品に取り付けられているわけではなく、マイクロミラー基板76の縁部98に取り付けられている。この場合の吸収素子94は、角度付きの断面を有するため、マイクロミラー42は吸収素子94と共に、隣接するマイクロミラーに接触することなく2つの傾動軸線周りで自由に傾斜可能である。吸収素子94をマイクロミラー基板76に取り付けることには、投影光がギャップ90内に入り込むことが完全に回避されるという利点がある。これにより、吸収素子で吸収される投影光によって生じる熱は、敏感な電子部品72及びアクチュエータ86,88から遠ざけておくことができるだけでなく、ミラーアレイ240の表面上を流動するガスによって、該ミラーアレイ240からより容易に除去することができる。
原則的には、吸収素子94に吸収面を設ける代わりに、吸収素子94が反射面を支持する構成としてもよい(この場合、厳密には吸収素子と呼ぶことはできない)。この場合、吸収素子94の反射面は、投影光を、反射コーティング78で被覆されたマイクロミラー42の表面におけると同様の方向に反射する。
図7に示す第3実施形態のミラーアレイ340は、基板70上のマイクロミラー42間で直立する隆起部100上に配置された吸収素子94を含む。この場合の吸収素子94による効果は、図6に示すミラーアレイ240の吸収素子94による効果と類似する。
図8に示すミラーアレイ440の第4実施形態は、主として、マイクロミラー42が半導体連結部材に支持されておらず、吸収素子94が取り付けられた隆起部100から吊るされている点において、図7に示すミラーアレイ340とは異なるものである。図示の実施形態における吸収素子94を吊るすため、曲げストリップ102が、マイクロミラー基板76の隆起部100及び縁部98間で延在している。
2.ミラーの重なり
図9は、第5実施形態に係るミラーアレイ540の断面図である。この場合、隣接するマイクロミラーの少なくとも幾つかは部分的に重なっている。そのためにマイクロミラーは、基板70上において異なる高さで配置されている。より具体的には、第1マイクロミラー42aは、第2マイクロミラー42bに比べて、基板70上においてより小さな高さで配置されている。図9の断面図に示すように、第1及び第2マイクロミラー42a,42bは、一方向に沿って高さが交互に異なっている。
投影光34は、ミラーアレイ540上で傾斜して入射するため、隣接する第1及び第2マイクロミラー42a,42bの全てを部分的に重ねておく必要はない。例えば、図9の中央に示す2個のマイクロミラー42a,42bは重なっていない。なぜなら、この場合に投影光34は、これら2個のマイクロミラー間42a,42b間に形成されたギャップ90に入り込むことができず、従ってアクチュエータ86,88の1個又は電子部品72に入射することがないからである。
ただし、図9に示す他のマイクロミラー42a,42bに関しては、マイクロミラー42a,42bを重ねて配置することによってのみ、投影光34がアクチュエータ86,88又は電子部品72に到達することが確実に回避される。即ち、他のマイクロミラー42a,42bに関しては、ギャップ90近傍における投影光34は、基本的には、高さがより小さい第1マイクロミラー42aに入射した後、高さがより大きい隣接する第2マイクロミラー42bの下側に向けて反射する。その第2マイクロミラー42bの下側に入射する投影光が、アクチュエータ86,88又は電子部品72に向けて反射するのを回避するため、第2マイクロミラー42bの下側は、吸収性コーティング106で被覆されている。
三次元的なアレイにおけるマイクロミラーは、基本的には、基板70上において3つの異なる高さで配置する必要がある。基本的には、3つの異なる高さで配置した場合のみ、マイクロミラーは、2つの直交する方向に沿って重ねることができる。
この点は、図10の上面図で示す。この場合、第3マイクロミラー42cは、第1及び第2マイクロミラー42a,42bと交互に配置されている。第3マイクロミラー42cは、基板70上で最大の高さを有するものとしている。より大きな高さを有するマイクロミラー42b又は42cの影に配置された第1マイクロミラー42aのみが、これらより大きな高さを有するマイクロミラー42b,42cと重なることがない。影の方向は、投影光34の入射方向に依存する。
言うまでもなく、マイクロミラー42a,42b,42cは、隣接するマイクロミラーの全てが重なるように配置し、従ってこれらマイクロミラー42a〜42cによる完全に規則的な配置を実現することもできる。ただし、隣接するマイクロミラー間により大きなギャップ90を残留させることは、対流熱を除去する上で有利である。
更に、アクチュエータ86,88に関して、他の様々な配置が想定可能である。例えば、アクチュエータ86,88は、マイクロミラー42a〜42cが基板70上において異なる高さで配置された場合でも、全て同一平面内に配置することができる。更に、アクチュエータ86,88は、マイクロミラー42a〜42cの下部に直接に取り付けることも想定可能である。
上述した実施形態はVUV投影露光装置に関するものだが、本発明は、波長が50 nm未満の投影光を発生させる光源を備えるEUV装置に関しても同様に適用することができる。
3.回転配置
図11は、第6実施形態に係るミラーアレイ640を示す上面図である。この場合のミラーアレイ640の構成は、図5に示す第1実施形態の構成と本質的に同一である。図示の実施形態における各マイクロミラー42も、変調器基板70に支持されたアクチュエータ86,88(図5にのみ示す)によって、2つの傾動軸線周りで個別に傾斜可能とされている。マイクロミラー42が有する外周形状は、基本形状(図示の実施形態では正方形)を、傾動軸線に少なくともほぼ直交する回転軸線RA周りに異なる角度で回転させることによって得られるものである。図示の実施形態における回転軸線RAは、図面に対して直交するよう延在する。
上述した点は、光変調器の動作中に、マイクロミラーが回転軸線RA周りで回転可能であることを意味するものではない。このような回転自由度は、任意に付与することができるが必須ではない。ここに用語「回転」とは、基本ミラーを異なる回転角度だけ概念的に回転させて得られる、ミラーアレイ640の構造的配置を単に記述するにすぎない。図示の実施形態において、回転角度は、1°〜5°の範囲内でほぼランダムに異なるものである。
このほぼランダムな配置により、ミラーアレイ640の規則性が極めて効果的に低下し、これにより回折による迷光量が低減する。
図11の拡大切り欠き図に示すように、マイクロミラーの縁部98が不規則に擦り減っている場合、回折による迷光量を更に低減することができる。

Claims (6)

  1. 光変調器(38)であって、
    a)変調器基板(70)と、
    b)ミラー(42aa, 42ab, 42ac, 42ba, 42bb, 42ca)のアレイと、
    c)前記変調器基板(70)に支持され、かつ前記ミラーを2つの傾動軸線周りで個別に傾斜させるよう構成された複数個のアクチュエータ(86,88)とを含み、
    前記ミラー(42)の少なくとも幾つかは非円形の基本形状を、前記ミラーのアレイの完全に規則的な配置を回避するために、完全に規則的な配置から傾動軸線に少なくともほぼ直交する回転軸線(RA)周りに異なる角度で回転させた外周形状を有する光変調器。
  2. 請求項1に記載の変調器であって、前記回転角度は、一定の回転角度範囲内でほぼランダムに分布している変調器。
  3. 請求項2に記載の変調器であって、前記範囲は、0.1°〜30°である変調器。
  4. 請求項3に記載の変調器であって、前記範囲は、1°〜5°である変調器。
  5. 請求項1〜4の何れか一項に記載の変調器であって、前記ミラーの少なくとも幾つかの縁部は、不規則に擦り減っている変調器。
  6. 請求項1〜5の何れか一項に記載の光変調器を備えるマイクロリソグラフィ投影露光装置の照明系。
JP2014541542A 2011-11-15 2011-11-15 マイクロリソグラフィ投影露光装置の光変調器及び照明系 Active JP5918858B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/005737 WO2013071940A1 (en) 2011-11-15 2011-11-15 Light modulator and illumination system of a microlithographic projection exposure apparatus

Publications (3)

Publication Number Publication Date
JP2014533441A JP2014533441A (ja) 2014-12-11
JP2014533441A5 JP2014533441A5 (ja) 2015-01-29
JP5918858B2 true JP5918858B2 (ja) 2016-05-18

Family

ID=44983490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014541542A Active JP5918858B2 (ja) 2011-11-15 2011-11-15 マイクロリソグラフィ投影露光装置の光変調器及び照明系

Country Status (3)

Country Link
US (1) US9274434B2 (ja)
JP (1) JP5918858B2 (ja)
WO (1) WO2013071940A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212613B4 (de) * 2013-06-28 2015-07-23 Carl Zeiss Sms Gmbh Beleuchtungsoptik für ein Metrologiesystem sowie Metrologiesystem mit einer derartigen Beleuchtungsoptik
DE102013219057A1 (de) * 2013-09-23 2015-03-26 Carl Zeiss Smt Gmbh Facettenspiegel für eine Projektionsbelichtungsanlage
JP6558529B2 (ja) * 2015-03-30 2019-08-14 株式会社ニコン 空間光変調器及びその使用方法、変調方法、露光方法及び装置、並びにデバイス製造方法
JP6558528B2 (ja) * 2015-03-30 2019-08-14 株式会社ニコン 空間光変調器及びその使用方法、変調方法、露光方法及び装置、並びにデバイス製造方法
US11307335B2 (en) * 2017-08-09 2022-04-19 Maradin Ltd. Optical apparatus and methods and computer program products useful for manufacturing same
DE102020123024A1 (de) * 2020-09-03 2022-03-03 Universität Kassel Spiegel-Shutter-Array
DE102020211173A1 (de) * 2020-09-04 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrospiegelanordnung
DE102021211619A1 (de) 2021-10-14 2023-04-20 Carl Zeiss Smt Gmbh EUV- Mehrfachspiegelanordnung
DE102022213143A1 (de) 2022-12-06 2024-06-06 Carl Zeiss Smt Gmbh Spiegelanordnung zur Absorption von Strahlung und Lithographiesystem

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719695A (en) * 1995-03-31 1998-02-17 Texas Instruments Incorporated Spatial light modulator with superstructure light shield
US6275325B1 (en) * 2000-04-07 2001-08-14 Microsoft Corporation Thermally activated microelectromechanical systems actuator
JP2001356282A (ja) * 2000-06-13 2001-12-26 Ricoh Co Ltd 表示媒体
US7172296B2 (en) 2000-08-30 2007-02-06 Reflectivity, Inc Projection display
EP1262836B1 (en) 2001-06-01 2018-09-12 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6728023B1 (en) * 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
KR100480620B1 (ko) 2002-09-19 2005-03-31 삼성전자주식회사 마이크로 미러 어레이를 구비한 노광 장치 및 이를 이용한노광 방법
US6844959B2 (en) * 2002-11-26 2005-01-18 Reflectivity, Inc Spatial light modulators with light absorbing areas
US7483198B2 (en) * 2003-02-12 2009-01-27 Texas Instruments Incorporated Micromirror device and method for making the same
WO2005026843A2 (en) 2003-09-12 2005-03-24 Carl Zeiss Smt Ag Illumination system for a microlithography projection exposure installation
US20060087634A1 (en) 2004-10-25 2006-04-27 Brown Jay M Dynamic illumination uniformity and shape control for lithography
US7502155B2 (en) 2005-03-15 2009-03-10 Texas Instruments Incorporated Antireflective coating for semiconductor devices and method for the same
WO2008131930A1 (en) 2007-04-25 2008-11-06 Carl Zeiss Smt Ag Mirror matrix for a microlithographic projection exposure apparatus
JP5345132B2 (ja) * 2007-04-25 2013-11-20 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ露光装置においてマスクを照明するための照明系
EP2009501B1 (de) * 2007-06-26 2013-02-27 Carl Zeiss SMT GmbH Verfahren und Vorrichtung für die Steuerung einer Vielzahl von Aktuatoren einer Projektionsbelichtungsanlage für die Mikrolithographie
SG185313A1 (en) * 2007-10-16 2012-11-29 Nikon Corp Illumination optical system, exposure apparatus, and device manufacturing method
KR20180072841A (ko) 2007-11-06 2018-06-29 가부시키가이샤 니콘 조명 광학계, 노광 장치 및 노광 방법
EP2233960A4 (en) * 2007-12-17 2012-01-25 Nikon Corp SPATIAL LIGHT MODULATION UNIT, OPTICAL LIGHTING SYSTEM, ALIGNMENT DEVICE AND COMPONENT MANUFACTURING METHOD
WO2010008552A1 (en) * 2008-07-15 2010-01-21 Fusao Ishii Mirror device with flat and smooth mirror surface without protrusion or dip
DE102008050446B4 (de) 2008-10-08 2011-07-28 Carl Zeiss SMT GmbH, 73447 Verfahren und Vorrichtungen zur Ansteuerung von Mikrospiegeln

Also Published As

Publication number Publication date
WO2013071940A1 (en) 2013-05-23
JP2014533441A (ja) 2014-12-11
US20140218708A1 (en) 2014-08-07
US9274434B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5918858B2 (ja) マイクロリソグラフィ投影露光装置の光変調器及び照明系
JP6343344B2 (ja) マイクロリソグラフィ投影露光装置の照明系
JP5755295B2 (ja) マイクロリソグラフィ露光装置においてマスクを照明するための照明系
JP5871216B2 (ja) マイクロリソグラフィ投影露光装置の照明系
JP5850267B2 (ja) マイクロリソグラフィ投影露光装置の照明系
JP6016169B2 (ja) マイクロリソグラフィ投影露光装置の照明系
TWI639850B (zh) 光瞳組合反射鏡、照明光學單元、照明系統、投射曝光設備、用於產生一微結構或奈米結構元件之方法以及微結構或奈米結構元件
JP5611443B2 (ja) マイクロリソグラフィ投影露光装置の照明系
JP6221160B2 (ja) ミラーの配置
JP5337304B2 (ja) マイクロリソグラフィ投影露光装置及びそこに収容される光学面に関連するパラメータを測定する方法
JP5587917B2 (ja) マイクロリソグラフィ投影露光装置
JP5868492B2 (ja) マイクロリソグラフィ投影露光装置の照明系
US20150185622A1 (en) Illumination system of a microlithographic projection exposure apparatus
US8724080B2 (en) Optical raster element, optical integrator and illumination system of a microlithographic projection exposure apparatus
JP6114952B2 (ja) リソグラフィによって感光性表面にパターンを転写する方法およびマイクロリソグラフィ投影露光装置の照明システム
JP5103995B2 (ja) 露光方法及び装置、並びにデバイス製造方法
JP2006019510A (ja) 露光装置及びマイクロデバイスの製造方法
JP5864771B2 (ja) マイクロリソグラフィ投影露光装置の照明系
TW201009486A (en) Optical element mount for lithographic apparatus
JP6652948B2 (ja) マイクロリソグラフィ投影露光装置の照明システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5918858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250