JP5918568B2 - Logic module - Google Patents

Logic module Download PDF

Info

Publication number
JP5918568B2
JP5918568B2 JP2012043306A JP2012043306A JP5918568B2 JP 5918568 B2 JP5918568 B2 JP 5918568B2 JP 2012043306 A JP2012043306 A JP 2012043306A JP 2012043306 A JP2012043306 A JP 2012043306A JP 5918568 B2 JP5918568 B2 JP 5918568B2
Authority
JP
Japan
Prior art keywords
connection
logic
signal
switching
logic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012043306A
Other languages
Japanese (ja)
Other versions
JP2013179547A (en
Inventor
啓充 今
啓充 今
毅 大湊
毅 大湊
其一 山崎
其一 山崎
直弘 松原
直弘 松原
郷 成瀬
郷 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Information and Telecommunication Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information and Telecommunication Engineering Ltd filed Critical Hitachi Information and Telecommunication Engineering Ltd
Priority to JP2012043306A priority Critical patent/JP5918568B2/en
Publication of JP2013179547A publication Critical patent/JP2013179547A/en
Application granted granted Critical
Publication of JP5918568B2 publication Critical patent/JP5918568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Logic Circuits (AREA)

Description

本発明は、プログラム可能な複数の論理素子に検証対象の論理をプログラムし、大規模集積回路の論理検証を行うハードウェアエミュレーション用の論理モジュールに係り、特に複数の論理素子に論理を分割搭載した論理モジュールに関するものである。   The present invention relates to a logic module for hardware emulation in which logic to be verified is programmed in a plurality of programmable logic elements and performs logic verification of a large scale integrated circuit, and in particular, the logic is divided and mounted on the plurality of logic elements. It relates to logic modules.

近年、情報処理装置に適用する大規模集積回路(LSI)の大規模化、高機能化、高性能化に伴い、LSIの論理検証において、LSIをプログラム可能な論理素子であるFPGA(Field Programmable Gate Array)化し、FPGA等をボード上に搭載したエミュレーションボードを用いて論理検証を行う論理モジュールが、例えば特許文献1等で知られている。しかしながら、全論理が、ひとつのFPGAに収まるとはかぎらず、複数のFPGAに分割搭載した環境で構築せざるを得ない。このとき、分割論理間の信号数が各FPGA間の接続経路に収まらない場合がある。   2. Description of the Related Art With the recent increase in scale, functionality, and performance of large-scale integrated circuits (LSIs) that are applied to information processing apparatuses, FPGA (Field Programmable Gate), which is a logic element that can program LSIs, in LSI logic verification. For example, Patent Document 1 discloses a logic module that performs logic verification using an emulation board in which an FPGA is mounted on the board. However, the entire logic does not necessarily fit in one FPGA, and must be constructed in an environment in which it is divided and mounted in a plurality of FPGAs. At this time, the number of signals between the divided logics may not fit in the connection path between the FPGAs.

このような場合に対応するため、複数のFPGAを接続切替回路を介して接続する装置が提案されている。この接続切替回路は、検証対象論理の回路構成に合わせて接続経路を切替えるようにしたものである。論理モジュールでは、論理接続形態に対応して接続切替回路を切替えるための接続切替制御信号を出力する。この種の論理モジュールは、例えば特許文献2、特許文献3等に記載されている。   In order to cope with such a case, an apparatus for connecting a plurality of FPGAs via a connection switching circuit has been proposed. This connection switching circuit switches the connection path according to the circuit configuration of the verification target logic. The logic module outputs a connection switching control signal for switching the connection switching circuit corresponding to the logical connection form. This type of logic module is described in, for example, Patent Document 2, Patent Document 3, and the like.

特開2001−318124号公報JP 2001-318124 A 特開2007−201843号公報JP 2007-201843 A 特開2009−246456号公報JP 2009-246456 A

しかし、従来の手法では、論理モジュール内の複数のFPGA等の論理素子間を配線で接続する際に、接続経路が接続切替制御信号により一意に決まってしまう。そのため、この種の論理モジュールでは、一意に決まった経路以外の未使用経路が存在しても活用できないという問題があった。   However, in the conventional method, when a plurality of logic elements such as FPGAs in the logic module are connected by wiring, the connection path is uniquely determined by the connection switching control signal. Therefore, this type of logic module has a problem that it cannot be used even if there is an unused route other than a uniquely determined route.

本発明の目的は、上記問題点を解決し、従来のものに比べ論理モジュール内の論理素子の使用経路を増大することができる論理モジュールを提供することにある。   An object of the present invention is to provide a logic module capable of solving the above-described problems and increasing the usage paths of logic elements in the logic module as compared with the conventional one.

本発明は、上記目的を達成するため以下のような論理モジュールを提供する。
(1)プログラム可能な第1論理素子および第2論理素子と、前記第1論理素子および第2論理素子にそれぞれ接続された外部接続用の第1コネクタおよび第2コネクタと、前記第1論理素子と第2論理素子間を接続する2本の配線をストレート接続とクロス接続に切替可能な接続切替回路と、前記第1論理素子および第2論理素子の共通の論理動作周波数に係るクロックに基づいて前記接続切替回路をストレート接続とクロス接続に交互に切り替えるための切替制御信号を生成する切替制御信号生成回路とを備えたことを特徴とする論理モジュール。
(2)前記第1論理素子と第2論理素子間を接続する2本の配線が前記第1論理素子および第2論理素子内に配置された素子内接続切替回路に接続され、前記素子内接続切替回路が前記第1論理素子と第2論理素子間の接続切替回路属性信号により前記第1論理素子および第2論理素子内のストレート接続論理群とクロス接続論理群との接続を切り替えることを特徴とする上記(1)に記載の論理モジュール。
(3)前記素子内接続切替回路と前記ストレート接続論理群およびクロス接続論理群との間に信号方向変換を行う双方向切替回路が接続され、前記双方向切替回路が前記第1論理素子と第2論理素子間の信号方向属性信号により信号方向を切り替えることを特徴とする上記(2)に記載の論理モジュール。
The present invention provides the following logic module to achieve the above object.
(1) Programmable first logic element and second logic element, first connector and second connector for external connection connected to the first logic element and second logic element, respectively, and the first logic element Based on a connection switching circuit capable of switching two wirings connecting between the first logic element and the second logic element to a straight connection and a cross connection, and a clock related to a common logic operating frequency of the first logic element and the second logic element A logic module comprising: a switching control signal generation circuit that generates a switching control signal for switching the connection switching circuit between a straight connection and a cross connection alternately.
(2) Two wirings connecting the first logic element and the second logic element are connected to an intra-element connection switching circuit disposed in the first logic element and the second logic element, and the intra-element connection A switching circuit switches connection between a straight connection logic group and a cross connection logic group in the first logic element and the second logic element according to a connection switching circuit attribute signal between the first logic element and the second logic element. The logic module according to (1) above.
(3) A bidirectional switching circuit for performing signal direction conversion is connected between the intra-element connection switching circuit and the straight connection logic group and the cross connection logic group, and the bidirectional switching circuit is connected to the first logic element and the first logic element. The logic module according to (2) above, wherein the signal direction is switched by a signal direction attribute signal between two logic elements.

請求項1に係る発明によれば、従来のものに比べ論理モジュール内の論理素子の使用経路を増大することができる。
請求項2に係る発明によれば、論理モジュール内のストレート接続論理群とクロス接続論理群との接続切替を簡単に行うことができる。
請求項3に係る発明によれば、双方向(INOUT)切替において論理モジュール間の接続信号の衝突を防止することができる。
According to the first aspect of the present invention, the usage paths of the logic elements in the logic module can be increased compared to the conventional one.
According to the second aspect of the present invention, connection switching between the straight connection logic group and the cross connection logic group in the logic module can be easily performed.
According to the third aspect of the present invention, it is possible to prevent collision of connection signals between logic modules in bidirectional (INOUT) switching.

本発明に係る論理モジュールの一実施例を示す図である。It is a figure which shows one Example of the logic module which concerns on this invention. (a),(b)は、図1の接続切替回路を説明するための図である。(A), (b) is a figure for demonstrating the connection switching circuit of FIG. (a),(b)は、図1の切替制御信号生成回路および切替信号生成回路を説明するための図である。(A), (b) is a figure for demonstrating the switching control signal generation circuit and switching signal generation circuit of FIG. 接続切替回路がストレート接続される例を示す図である。It is a figure which shows the example by which a connection switching circuit is connected straight. 接続切替回路がクロス接続される例を示す図である。It is a figure which shows the example by which a connection switching circuit is cross-connected. (a),(b),(c)は、図1のFPGA101中の素子内接続切替回路131とFPGA101とFPGA102の間信号接続切替を説明するための図である。(A), (b), (c) is a figure for demonstrating signal connection switching between the intra-element connection switching circuit 131 in FPGA101 of FIG. 1, and FPGA101 and FPGA102. (d),(e),(f)は、図1のFPGA101中の素子内接続切替回路131とFPGA101とFPGA102の間信号接続切替を説明するための図である。(D), (e), and (f) are diagrams for explaining signal connection switching between the intra-element connection switching circuit 131 and the FPGA 101 and the FPGA 102 in the FPGA 101 of FIG. 図1のFPGA102中の素子内接続切替回路131を説明するための図である。FIG. 2 is a diagram for explaining an intra-element connection switching circuit 131 in the FPGA 102 of FIG. 1.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、本発明に係る論理モジュールの一実施例を示す図である。本論理モジュールは、複数のプログラム可能な論理素子と外部とを接続するためのコネクタと、複数のプログラム可能な論理素子とコネクタとを接続するための接続切替回路とを基板に備えたボードである。図示のように、本例の論理モジュール100は、プログラム可能な論理素子としてFPGAを用いたもので、2つのFPGA101およびFPGA102を実装したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of a logic module according to the present invention. The logic module is a board provided on a board with a connector for connecting a plurality of programmable logic elements and the outside, and a connection switching circuit for connecting the plurality of programmable logic elements and the connector. . As shown in the figure, the logic module 100 of this example uses an FPGA as a programmable logic element, and includes two FPGAs 101 and 102.

図1において、外部接続用コネクタ105と外部接続用コネクタ106の間には、論理信号用配線(以下、単に「配線」という)の接続切替回路103が配線110と配線111を介して接続される。また、接続切替回路103は、FPGA101とFPGA102の間に、配線110、112と配線111、113を介して接続される。同様に、外部接続用コネクタ107と外部接続用コネクタ108の間には、接続切替回路104が配線120と配線121を介して接続される。また、接続切替回路104は、FPGA101とFPGA102の間に、配線120、122と配線121、123を介して接続される。すなわち、接続切替回路103(104)は、FPGA101とFPGA102との接続、外部接続用コネクタ105(107)と外部接続用コネクタ106(108)との接続、FPGA101と外部接続用コネクタ106(108)との接続、およびFPGA102と外部接続用コネクタ105(107)との接続のうちの少なくとも1つを接続可能とするものである。   In FIG. 1, a connection switching circuit 103 for logic signal wiring (hereinafter simply referred to as “wiring”) is connected between an external connection connector 105 and an external connection connector 106 via a wiring 110 and a wiring 111. . The connection switching circuit 103 is connected between the FPGA 101 and the FPGA 102 via the wirings 110 and 112 and the wirings 111 and 113. Similarly, the connection switching circuit 104 is connected between the external connection connector 107 and the external connection connector 108 via the wiring 120 and the wiring 121. The connection switching circuit 104 is connected between the FPGA 101 and the FPGA 102 via the wirings 120 and 122 and the wirings 121 and 123. That is, the connection switching circuit 103 (104) connects the FPGA 101 and the FPGA 102, connects the external connection connector 105 (107) and the external connection connector 106 (108), and connects the FPGA 101 and the external connection connector 106 (108). And at least one of the connection between the FPGA 102 and the external connection connector 105 (107).

FPGA101は、図示のように、素子内接続切替回路131、およびダイナミック(動的)に切替制御信号を生成する切替制御信号生成回路340、およびダイナミックに切替信号を生成する切替信号生成回路341を備える。素子内接続切替回路131は、配線110,112に接続される。切替信号生成回路341は、切替制御信号生成回路340に接続される。切替制御信号生成回路340は、接続切替制御信号114,115,116および124,125,126を接続切替回路103、104および素子内接続切替回路131にそれぞれ出力する。接続切替回路103、104は、接続切替制御信号114,115,116および124,125,126により、それぞれストレート接続またはクロス接続に切り替えることができる。切替制御信号生成回路340の出力信号は検証対象論理間の接続形態に対応している。FPGA102も、図示のように、素子内接続切替回路131を備える。FPGA101およびFPGA102の素子内接続切替回路131は、接続切替回路103および104で切り替わった際の既接続信号の衝突を防止するため、信号方向属性信号127,128および接続切替回路属性信号129,130により信号方向を切り替えることができる。これらについては後述する。   As illustrated, the FPGA 101 includes an intra-element connection switching circuit 131, a switching control signal generation circuit 340 that dynamically generates a switching control signal, and a switching signal generation circuit 341 that dynamically generates a switching signal. . The intra-element connection switching circuit 131 is connected to the wirings 110 and 112. The switching signal generation circuit 341 is connected to the switching control signal generation circuit 340. The switching control signal generation circuit 340 outputs the connection switching control signals 114, 115, 116 and 124, 125, 126 to the connection switching circuits 103, 104 and the intra-element connection switching circuit 131, respectively. The connection switching circuits 103 and 104 can be switched to straight connection or cross connection by connection switching control signals 114, 115, 116 and 124, 125, 126, respectively. The output signal of the switching control signal generation circuit 340 corresponds to the connection form between the verification target logics. The FPGA 102 also includes an in-element connection switching circuit 131 as illustrated. The in-element connection switching circuit 131 of the FPGA 101 and the FPGA 102 uses the signal direction attribute signals 127 and 128 and the connection switching circuit attribute signals 129 and 130 to prevent collision of already connected signals when the connection switching circuits 103 and 104 are switched. The signal direction can be switched. These will be described later.

このように本論理モジュールは、プログラム可能なFPGA101、102と、FPGA101、102にそれぞれ接続された外部接続用のコネクタ105、106、107、108と、FPGA101、102間を接続する2本の配線をストレート接続とクロス接続に切替可能な接続切替回路103、104と、FPGA101、102の共通の論理動作周波数に係るクロックに基づいて接続切替回路103、104をストレート接続とクロス接続に交互に切り替えるための切替制御信号を生成する切替制御信号生成回路340とを備える。そして、FPGA101、102間を接続する2本の配線がFPGA101、102内に配置された接続切替回路103に接続され、接続切替回路103、104がFPGA101、102間の信号方向属性信号により信号方向を切り替えることができるように構成される。   As described above, this logic module includes programmable FPGAs 101 and 102, external connection connectors 105, 106, 107, and 108 connected to the FPGAs 101 and 102, and two wirings for connecting the FPGAs 101 and 102, respectively. Connection switching circuits 103 and 104 that can be switched between straight connection and cross connection, and connection switching circuits 103 and 104 for alternately switching between straight connection and cross connection based on a clock related to a common logic operation frequency of FPGAs 101 and 102 A switching control signal generation circuit 340 for generating a switching control signal. Then, two wires connecting the FPGAs 101 and 102 are connected to the connection switching circuit 103 arranged in the FPGAs 101 and 102, and the connection switching circuits 103 and 104 change the signal direction by the signal direction attribute signal between the FPGAs 101 and 102. Configured to be switchable.

図2(a),(b)は、図1の接続切替回路を説明するための図である。図2(a)において、信号ピン210、211と220、221との間にそれぞれMOSFET201、202、203、204を実装する。接続切替制御ピン230、231、232に接続切替制御信号(High、Low)を入力し信号デコード回路240を介することで、信号ピン210、211と220、221の接続経路を切替えることができる。図2(b)は、図2(a)中の接続切替制御ピンの入力信号と各MOSFETのON/OFFの関係を示す図である。図2(b)に示す信号デコード回路真理値表により、例えば、接続切替制御ピン230が”High”、接続切替制御ピン231、232が”Low”のとき、MOSFET201がONし、MOSFET202、203、204がOFFし、その結果、信号ピン210と220が接続状態となる。また、例えば、接続切替制御ピン232が”High”、接続切替制御ピン230、231が”Low”のとき、MOSFET204がONし、MOSFET201、202、203がOFFし、その結果、配線211と221が接続状態となる。この信号デコード回路真理値表に従って、信号ピン210、211と220、221との接続状態が制御される。図2に示す接続切替制御ピン230、231、232に入力する接続切替制御信号は、図1の接続切替回路103,104に入力される接続切替制御信号114,115,116および124,125,126に対応する。   2A and 2B are diagrams for explaining the connection switching circuit of FIG. In FIG. 2A, MOSFETs 201, 202, 203, and 204 are mounted between signal pins 210 and 211 and 220 and 221 respectively. By connecting connection switching control signals (High, Low) to the connection switching control pins 230, 231, and 232 and passing through the signal decoding circuit 240, the connection paths of the signal pins 210, 211, 220, and 221 can be switched. FIG. 2B is a diagram showing the relationship between the input signal of the connection switching control pin in FIG. 2A and the ON / OFF of each MOSFET. According to the signal decoding circuit truth table shown in FIG. 2B, for example, when the connection switching control pin 230 is “High” and the connection switching control pins 231 and 232 are “Low”, the MOSFET 201 is turned on, and the MOSFETs 202, 203, As a result, the signal pins 210 and 220 are connected. For example, when the connection switching control pin 232 is “High” and the connection switching control pins 230 and 231 are “Low”, the MOSFET 204 is turned on, and the MOSFETs 201, 202, and 203 are turned off. As a result, the wirings 211 and 221 are connected. Connected. According to this signal decoding circuit truth table, the connection state of the signal pins 210, 211 and 220, 221 is controlled. The connection switching control signals input to the connection switching control pins 230, 231, 232 shown in FIG. 2 are the connection switching control signals 114, 115, 116 and 124, 125, 126 input to the connection switching circuits 103, 104 of FIG. Corresponding to

図3(a),(b)は、図1の切替制御信号生成回路および切替信号生成回路を説明するための図である。図3(a)に示すように、切替制御信号生成回路340は、ダイナミックに切替信号を生成する切替信号生成回路341より切替制御ピン330を介して切替信号を入力し、そして接続切替制御ピン230、231、232を介して切替制御信号を信号デコード回路240に出力する。信号デコード回路240の出力は、図2に示すMOSFET201、202、203、204に与えられる。ここで、切替信号生成回路341は、FPGA101とFPGA102の共通の論理動作周波数に係るクロックに基づいて、信号方向属性“INPUT”、“OUTPUT”、“INOUT”の3種存在するが、2種の“INPUT”、“OUTPUT”の方向信号を生成する。切替信号生成回路341は、上記クロックで動作するカウンタ回路を有し、カウンタ回路の生成値により信号方向属性“INOUT”については、信号方向属性“INPUT”、“OUTPUT”の信号方向属性を有しているため、2種の“INPUT”、“OUTPUT”信号方向属性に準ずる。すなわち、このクロックは切替動作クロックとして用いられ、例えばその周波数は66MHzであり、クロックの立ち上がりで上記の方向信号を生成する。   FIGS. 3A and 3B are diagrams for explaining the switching control signal generation circuit and the switching signal generation circuit of FIG. As shown in FIG. 3A, the switching control signal generation circuit 340 inputs the switching signal from the switching signal generation circuit 341 that dynamically generates the switching signal via the switching control pin 330, and then the connection switching control pin 230. , 231 and 232, the switching control signal is output to the signal decoding circuit 240. The output of the signal decoding circuit 240 is given to the MOSFETs 201, 202, 203, and 204 shown in FIG. Here, the switching signal generation circuit 341 has three types of signal direction attributes “INPUT”, “OUTPUT”, and “INOUT” based on a clock related to a common logic operation frequency of the FPGA 101 and the FPGA 102, but two types The direction signals “INPUT” and “OUTPUT” are generated. The switching signal generation circuit 341 includes a counter circuit that operates with the clock. The signal direction attribute “INOUT” has signal direction attributes “INPUT” and “OUTPUT” depending on the generation value of the counter circuit. Therefore, it conforms to the two types of “INPUT” and “OUTPUT” signal direction attributes. That is, this clock is used as a switching operation clock. For example, the frequency is 66 MHz, and the direction signal is generated at the rising edge of the clock.

図3(b)に示すダイナミック切替制御信号デコード回路真理値表は、信号方向属性“INPUT”、“OUTPUT”の2種の方向属性ごとの接続切替回路入力となる接続切替制御ピン230、231、232の関係を示す。例えば、切替制御ピン330の入力信号(切替信号)が“Low”のとき、信号方向属性を“INPUT”とし、切替動作クロックの例えば立ち上がりで、ストレート接続の接続切替制御信号として、接続切替制御ピン230に“Low”、231に“High”、232に“High”をそれぞれ出力し、また、クロス接続の接続切替制御信号として、接続切替制御ピン230に“High”、231に“High”、232に“High”をそれぞれ出力する。他の信号方向属性“OUTPUT”(“INOUT”は、“INPUT”、“OUTPUT”の信号方向属性を有しているため、2種の“INPUT”、“OUTPUT”信号方向属性に準ずる。)についても、図3(b)の真理値表に示すように、同様の制御が行われる。このように、切替制御信号生成回路340は、FPGA101とFPGA102の共通の論理動作周波数に係るクロックに基づいて接続切替回路103,104をストレート接続とクロス接続に交互に切り替えるための切替制御信号を生成する。この切替制御信号を使った切替の例を図4および図5に示す。   The dynamic switching control signal decoding circuit truth table shown in FIG. 3B includes connection switching control pins 230, 231 that serve as connection switching circuit inputs for each of the two direction attributes of the signal direction attribute “INPUT” and “OUTPUT”. 232 relationship is shown. For example, when the input signal (switching signal) of the switching control pin 330 is “Low”, the signal direction attribute is “INPUT”, and the connection switching control pin is used as a connection switching control signal for straight connection at the rising edge of the switching operation clock, for example. “Low” is output to 230, “High” is output to 231 and “High” is output to 232, and “High” and 232 are input to the connection switching control pin 230 as a connection switching control signal for cross connection. "High" is output to each. Other signal direction attributes “OUTPUT” (“INOUT” has the signal direction attributes of “INPUT” and “OUTPUT” and therefore conforms to the two types of “INPUT” and “OUTPUT” signal direction attributes). The same control is performed as shown in the truth table of FIG. As described above, the switching control signal generation circuit 340 generates a switching control signal for alternately switching the connection switching circuits 103 and 104 between the straight connection and the cross connection based on the clock related to the common logic operation frequency of the FPGA 101 and the FPGA 102. To do. Examples of switching using this switching control signal are shown in FIGS.

図4は、接続切替回路がストレート接続される例を示す図である。図中の符号は図1のものと同じものを示す。図示のように、接続切替回路103がストレート接続され、FPGA101とFPGA102間で、配線112と配線113が接続され、かつ配線110と配線111が接続される。また、接続切替回路104がストレート接続され、FPGA101とFPGA102間で、配線122と配線123が接続され、かつ配線120と配線121が接続される。   FIG. 4 is a diagram illustrating an example in which the connection switching circuit is straight-connected. The reference numerals in the figure are the same as those in FIG. As illustrated, the connection switching circuit 103 is connected in a straight line, the wiring 112 and the wiring 113 are connected between the FPGA 101 and the FPGA 102, and the wiring 110 and the wiring 111 are connected. Further, the connection switching circuit 104 is connected straight, the wiring 122 and the wiring 123 are connected between the FPGA 101 and the FPGA 102, and the wiring 120 and the wiring 121 are connected.

図5は、接続切替回路がクロス接続される例を示す図である。図中の符号は図1のものと同じものを示す。図示のように、接続切替回路103がクロス接続され、FPGA101とFPGA102間で、配線111と配線112が接続され、かつ配線110と配線113が接続される。また、接続切替回路104がクロス接続され、FPGA101とFPGA102間で、配線121と配線122が接続され、かつ配線120と配線123が接続される。   FIG. 5 is a diagram illustrating an example in which the connection switching circuit is cross-connected. The reference numerals in the figure are the same as those in FIG. As illustrated, the connection switching circuit 103 is cross-connected, the wiring 111 and the wiring 112 are connected between the FPGA 101 and the FPGA 102, and the wiring 110 and the wiring 113 are connected. In addition, the connection switching circuit 104 is cross-connected, the wiring 121 and the wiring 122 are connected, and the wiring 120 and the wiring 123 are connected between the FPGA 101 and the FPGA 102.

接続切替回路103、104においてストレート接続とクロス接続が切り替わった際、既接続信号の衝突を防止するため、FPGA101、FPGA102には、個々に素子内接続切替回路131が配置され、ここでFPGA間接続信号方向属性信号127,128による信号方向切り替えと接続切替回路属性信号129,130により接続先を切り替えることで、既接続信号の衝突を回避することができる。信号方向の切替は、信号方向属性“INPUT”、“OUTPUT”(“INOUT”は、“INPUT”、“OUTPUT”の信号方向属性を有しているため、2種の“INPUT”、“OUTPUT”信号方向属性に準ずる。)の2種の方向属性ごとに行なう。   In order to prevent collision of already connected signals when the straight connection and the cross connection are switched in the connection switching circuits 103 and 104, the intra-element connection switching circuit 131 is individually arranged in the FPGA 101 and the FPGA 102. Here, the connection between the FPGAs is connected. By switching the signal destination by the signal direction attribute signals 127 and 128 and by switching the connection destination by the connection switching circuit attribute signals 129 and 130, it is possible to avoid collision of already connected signals. The signal direction is switched by the signal direction attributes “INPUT” and “OUTPUT” (“INOUT” has the signal direction attributes “INPUT” and “OUTPUT”, so two types of “INPUT” and “OUTPUT”). This is performed for each of the two types of direction attributes.

図6A(a),(b),(c)は、FPGA101の接続切替回路131での切替を説明する図である。図6B(d),(e),(e)は、FPGA101とFPGA102の間信号接続切替を説明する図である。図中の符号は図1のものと同じものを示す。図6A(a)において、配線110、配線112とFPGA101内のストレート接続論理群、クロス接続論理群との間にそれぞれMOSFET400、401、402、403を実装する。接続切替回路属性信号129(High、Low)を入力し接続切替信号デコード回路410を介することで、配線110、配線112とストレート接続論理群、クロス接続論理群との接続経路を切替えることができる。図6A(b)は、図6A(a)中の接続切替回路属性信号129の入力信号と各MOSFETのON/OFFの関係を示す図である。図6A(b)に示す接続切替信号デコード回路真理値表により、例えば、接続切替回路属性信号129が”Low”のとき、MOSFET400,MOSFET402がONし、MOSFET401、403がOFFし、その結果、配線110、配線112がストレート接続論理群との接続状態となる。また、接続切替回路属性信号129が”High”のとき、MOSFET400,MOSFET402がOFFし、MOSFET401、403がONし、その結果、配線110、配線112がクロス接続論理群と接続状態となる。この信号デコード回路真理値表に従って、配線110、配線112とストレート接続論理群、クロス接続論理群との接続状態が制御される。図6A(c)において、素子内接続切替回路とストレート接続論理群およびクロス接続論理群との間にそれぞれ双方向(INOUT)切替回路420を実装する。FPGA間信号方向属性信号127(High、Low)を入力することでストレート接続論理群、クロス接続論理群の信号方向を切替えることができる。例えば、FPGA間信号方向属性信号127が“Low”のとき、信号の流れが左から右への“INPUT”となる。また、FPGA間信号方向属性信号127が“High”のとき、信号の流れが右から左への“OUTPUT”となる。これにより、信号方向“INPUT”、“OUTPUT”の信号方向変換を行なう。図6Aに示したものは、図1にあるFPGA101の左系統を示し、同様に右系統も存在する。この場合、信号方向属性信号128および接続切替回路属性信号130が上記と同様に用いられる。また、図6A(a),(b)と同様な構成は、FPGA102の左右両系統にも存在する。この場合、信号方向属性信号127,128および接続切替回路属性信号129,130が上記と同様に用いられる。信号方向属性信号127については、図6B(d)に示すようにダイナミック切替信号生成回路341よりFPGA間信号方向属性ピン430を介し、変換せずそのまま出力する。接続切替回路属性信号129については、図6B(e)に示すように接続切替制御信号114,115,116(High,Low)を接続切替回路属性信号エンコード回路431が入力し、接続切替回路属性を決定する。図6B(f)に示す接続切替信号エンコード回路真理値表により、例えば、接続切替制御信号114が“Low”,接続切替制御信号115が“High”,接続切替制御信号116が“High”のとき、“Low”とし、信号方向属性“INPUT”とする。接続切替制御信号114が“High”,接続切替制御信号115が“High”,接続切替制御信号116が“High”のとき、“High”とし、信号方向属性“OUTPUT”とする。図6B(d),(e),(e)は図1にあるFPGA101の左系統を示し、同様に右系統も存在する。
図6A(c)については、FPGA101において、信号方向が“INPUT”の場合、FPGA102では、“OUTPUT”となり、FPGA101信号方向が“OUTPUT”の場合、FPGA102では、“INPUT”となるため、FPGA102においては、図6A(c)の双方向(INOUT)切替回路420とは逆の信号方向変換となる。これらについては後述する。
6A (a), (b), and (c) are diagrams for explaining switching in the connection switching circuit 131 of the FPGA 101. FIG. 6B (d), (e), and (e) are diagrams for explaining signal connection switching between the FPGA 101 and the FPGA 102. FIG. The reference numerals in the figure are the same as those in FIG. 6A, MOSFETs 400, 401, 402, and 403 are mounted between the wiring 110 and the wiring 112 and the straight connection logic group and the cross connection logic group in the FPGA 101, respectively. By inputting the connection switching circuit attribute signal 129 (High, Low) and via the connection switching signal decoding circuit 410, the connection path between the wiring 110 and the wiring 112 and the straight connection logic group and the cross connection logic group can be switched. FIG. 6A (b) is a diagram illustrating the relationship between the input signal of the connection switching circuit attribute signal 129 and the ON / OFF of each MOSFET in FIG. 6A (a). According to the connection switching signal decoding circuit truth table shown in FIG. 6A (b), for example, when the connection switching circuit attribute signal 129 is “Low”, the MOSFET 400 and the MOSFET 402 are turned on, and the MOSFETs 401 and 403 are turned off. 110 and the wiring 112 are connected to the straight connection logic group. When the connection switching circuit attribute signal 129 is “High”, the MOSFET 400 and the MOSFET 402 are turned off and the MOSFETs 401 and 403 are turned on. As a result, the wiring 110 and the wiring 112 are connected to the cross connection logic group. According to this signal decode circuit truth table, the connection state between the wiring 110 and the wiring 112 and the straight connection logic group and the cross connection logic group is controlled. In FIG. 6A (c), a bidirectional (INOUT) switching circuit 420 is mounted between the intra-element connection switching circuit and the straight connection logic group and the cross connection logic group. The signal direction of the straight connection logic group and the cross connection logic group can be switched by inputting the inter-FPGA signal direction attribute signal 127 (High, Low). For example, when the inter-FPGA signal direction attribute signal 127 is “Low”, the signal flow is “INPUT” from left to right. When the inter-FPGA signal direction attribute signal 127 is “High”, the signal flow is “OUTPUT” from right to left. Thereby, the signal direction of the signal directions “INPUT” and “OUTPUT” is changed. 6A shows the left system of the FPGA 101 shown in FIG. 1, and there is a right system as well. In this case, the signal direction attribute signal 128 and the connection switching circuit attribute signal 130 are used in the same manner as described above. 6A (a) and 6 (b) also exist in both the left and right systems of the FPGA 102. In this case, the signal direction attribute signals 127 and 128 and the connection switching circuit attribute signals 129 and 130 are used in the same manner as described above. As shown in FIG. 6B (d), the signal direction attribute signal 127 is output from the dynamic switching signal generation circuit 341 via the inter-FPGA signal direction attribute pin 430 without being converted. As for the connection switching circuit attribute signal 129, the connection switching circuit attribute signal encoding circuit 431 inputs the connection switching control signals 114, 115, and 116 (High, Low) as shown in FIG. decide. According to the connection switching signal encoding circuit truth table shown in FIG. 6B (f), for example, when the connection switching control signal 114 is “Low”, the connection switching control signal 115 is “High”, and the connection switching control signal 116 is “High”. , “Low”, and the signal direction attribute “INPUT”. When the connection switching control signal 114 is “High”, the connection switching control signal 115 is “High”, and the connection switching control signal 116 is “High”, “High” is set and the signal direction attribute “OUTPUT” is set. 6B (d), (e), and (e) show the left system of the FPGA 101 in FIG. 1, and the right system also exists.
6A (c), when the signal direction is “INPUT” in the FPGA 101, the output is “OUTPUT” in the FPGA 102. When the signal direction is “OUTPUT” in the FPGA 101, the input is “INPUT” in the FPGA 102. Is a signal direction conversion opposite to the bidirectional (INOUT) switching circuit 420 in FIG. 6A (c). These will be described later.

図7は、FPGA102の左系統中の接続切替回路131内の双方向(INOUT)切替回路例を示す図である。上記のように図6A(c)については、FPGA101において、信号方向が“INPUT”の場合、FPGA102では、“OUTPUT”となり、FPGA101信号方向が“OUTPUT”の場合、FPGA102では、“INPUT”となるため、FPGA102においては、図6A(c)の双方向(INOUT)切替回路420とは逆の信号方向変換となる。ストレート接続論理群、クロス接続論理群との間にそれぞれ双方向(INOUT)切替回路421を実装する。FPGA間信号方向属性信号128(High、Low)を入力することでFPGA102内のストレート接続論理群、クロス接続論理群の信号方向を切替えることができる。例えば、FPGA間信号方向属性信号127が“Low”のとき、図6A(c)のように信号の流れが左から右への“INPUT”となるため、双方向(INOUT)切替回路421では、信号の流れを右から左への“OUTPUT”とする。また、FPGA間信号方向属性信号127が“High”のとき、図6A(c)のように信号の流れが右から左への“OUTPUT”となるため、双方向(INOUT)切替回路421では、信号の流れを左から右への“INPUT”とする。これにより、FPGA101とFPGA102の間の信号方向“INPUT”、“OUTPUT”の信号方向変換を行なう。これにより接続信号の衝突を防止する。   FIG. 7 is a diagram illustrating an example of a bidirectional (INOUT) switching circuit in the connection switching circuit 131 in the left system of the FPGA 102. As described above, in FIG. 6A (c), when the signal direction is “INPUT” in the FPGA 101, “OUTPUT” is displayed in the FPGA 102, and when the signal direction is “OUTPUT” in the FPGA 101, “INPUT” is displayed in the FPGA 102. Therefore, in the FPGA 102, the signal direction conversion is opposite to that of the bidirectional (INOUT) switching circuit 420 in FIG. 6A (c). A bidirectional (INOUT) switching circuit 421 is mounted between the straight connection logic group and the cross connection logic group. The signal direction of the straight connection logic group and the cross connection logic group in the FPGA 102 can be switched by inputting the inter-FPGA signal direction attribute signal 128 (High, Low). For example, when the inter-FPGA signal direction attribute signal 127 is “Low”, since the signal flow is “INPUT” from left to right as shown in FIG. 6A (c), in the bidirectional (INOUT) switching circuit 421, Let the signal flow be “OUTPUT” from right to left. Further, when the inter-FPGA signal direction attribute signal 127 is “High”, the signal flow is “OUTPUT” from right to left as shown in FIG. 6A (c), so the bidirectional (INOUT) switching circuit 421 Let the signal flow be “INPUT” from left to right. As a result, the signal directions “INPUT” and “OUTPUT” between the FPGA 101 and the FPGA 102 are changed. This prevents collision of connection signals.

これにより、従来一意に決まった経路以外の経路を利用可能とすることができる。すなわち、これまで利用不可能だった経路を利用することにより、より多くの分割論理間信号を各FPGA間の接続経路に収めることが可能となり、従来のものに比べ論理モジュール内のFPGA等の論理素子の使用経路を増大することができる。 This makes it possible to use a route other than a route uniquely determined in the past. In other words, by using a path that has not been used so far, it becomes possible to store more signals between the divided logic in the connection paths between the FPGAs, and the logic such as the FPGA in the logic module compared to the conventional one. The use path of the element can be increased.

本発明は、プログラム可能な複数の論理素子に検証対象の論理をプログラムし、大規模集積回路の論理検証を行うハードウェアエミュレーション用の論理モジュールに係り、特に複数の論理素子に分割搭載した論理モジュールに関するものであり、産業上の利用可能性がある。   The present invention relates to a logic module for hardware emulation in which logic to be verified is programmed in a plurality of programmable logic elements and performs logic verification of a large-scale integrated circuit, and in particular, a logic module divided and mounted on a plurality of logic elements. And has industrial applicability.

100・・・論理モジュール
101,102・・・FPGA
103,104・・・接続切替回路
105,106,107,108・・・外部接続用コネクタ
110,111,112,113,120,121,122,123・・・配線
114,115,116,124,125,126・・・接続切替制御信号
127,128・・・FPGA間信号方向属性信号
129,130・・・接続切替回路属性信号
131・・・素子内接続切替回路
200・・・接続切替回路
201,202,203,204・・・MOSFET
210,211,220,221・・・信号ピン
230,231,232・・・接続切替制御ピン
240・・・信号デコード回路
330・・・切替制御ピン
340・・・ダイナミック切替制御信号生成回路
341・・・ダイナミック切替信号生成回路
400,401,402,403・・・MOSFET
410・・・接続切替信号デコード回路
420,421・・・双方向(INOUT)切替回路
430・・・FPGA間信号方向属性ピン
431・・・接続切替回路属性信号エンコード回路
100: Logic modules 101, 102: FPGA
103, 104 ... connection switching circuits 105, 106, 107, 108 ... external connection connectors 110, 111, 112, 113, 120, 121, 122, 123 ... wirings 114, 115, 116, 124, 125, 126 ... connection switching control signals 127, 128 ... inter-FPGA signal direction attribute signals 129, 130 ... connection switching circuit attribute signals 131 ... intra-element connection switching circuit 200 ... connection switching circuit 201 , 202, 203, 204... MOSFET
210, 211, 220, 221 ... signal pins 230, 231, 232 ... connection switching control pin 240 ... signal decoding circuit 330 ... switching control pin 340 ... dynamic switching control signal generation circuit 341- ..Dynamic switching signal generation circuits 400, 401, 402, 403 ... MOSFET
410: Connection switching signal decoding circuit 420, 421 ... Bidirectional (INOUT) switching circuit 430 ... Inter-FPGA signal direction attribute pin 431 ... Connection switching circuit attribute signal encoding circuit

Claims (2)

プログラム可能な第1論理素子および第2論理素子と、前記第1論理素子および第2論理素子にそれぞれ接続された外部接続用の第1コネクタおよび第2コネクタと、前記第1論理素子と第2論理素子間を接続する2本の配線をストレート接続とクロス接続に切替可能な接続切替回路と、前記第1論理素子および第2論理素子の共通の論理動作周波数に係るクロックに基づいて前記接続切替回路をストレート接続とクロス接続に交互に切り替えるための切替制御信号を生成する切替制御信号生成回路とを備え
前記第1論理素子と第2論理素子間を接続する2本の配線が前記第1論理素子および第2論理素子内に配置された素子内接続切替回路に接続され、前記素子内接続切替回路が接続切替回路属性信号により、前記第1論理素子および第2論理素子内のストレート接続論理群とクロス接続論理群と、前記第1論理素子と第2論理素子間を接続する2本の配線との接続を切り替えることを特徴とする論理モジュール。
Programmable first logic element and second logic element, first and second connectors for external connection connected to the first logic element and second logic element, respectively, the first logic element and second logic element A connection switching circuit capable of switching two wirings connecting between logic elements to a straight connection and a cross connection, and the connection switching based on a clock related to a common logic operating frequency of the first logic element and the second logic element A switching control signal generation circuit that generates a switching control signal for alternately switching the circuit between a straight connection and a cross connection ;
Two wirings connecting the first logic element and the second logic element are connected to an intra-element connection switching circuit disposed in the first logic element and the second logic element, and the intra-element connection switching circuit is According to a connection switching circuit attribute signal, a straight connection logic group and a cross connection logic group in the first logic element and the second logic element, and two wirings connecting the first logic element and the second logic element A logic module characterized by switching connections .
前記素子内接続切替回路と前記ストレート接続論理群およびクロス接続論理群との間に信号方向変換を行う双方向切替回路が接続され、前記双方向切替回路が信号方向属性信号により前記第1論理素子と第2論理素子間の信号方向を切り替えることを特徴とする請求項に記載の論理モジュール。
The bidirectional switching circuit for signal direction change between the between elements within the connection switching circuit straight connecting logical group and the cross-connect logic groups are connected, the first logical said bidirectional switching circuit by signal direction attribute signal The logic module according to claim 1 , wherein a signal direction between the element and the second logic element is switched.
JP2012043306A 2012-02-29 2012-02-29 Logic module Expired - Fee Related JP5918568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043306A JP5918568B2 (en) 2012-02-29 2012-02-29 Logic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043306A JP5918568B2 (en) 2012-02-29 2012-02-29 Logic module

Publications (2)

Publication Number Publication Date
JP2013179547A JP2013179547A (en) 2013-09-09
JP5918568B2 true JP5918568B2 (en) 2016-05-18

Family

ID=49270803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043306A Expired - Fee Related JP5918568B2 (en) 2012-02-29 2012-02-29 Logic module

Country Status (1)

Country Link
JP (1) JP5918568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113336A1 (en) * 2016-12-22 2018-06-28 珠海艾派克微电子有限公司 Regenerative chip and contact control method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117247B2 (en) * 2008-03-28 2013-01-16 日立情報通信エンジニアリング株式会社 Logic module

Also Published As

Publication number Publication date
JP2013179547A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5360194B2 (en) Reconfigurable logic circuit
JP2010041156A (en) Semiconductor integrated circuit
US8806086B2 (en) Serial port connection circuit and server
JP5918568B2 (en) Logic module
JP3992702B2 (en) Programmable logic blocks that can be used for asynchronous circuit design
JP2006011825A (en) Reconfigurable arithmetic unit and semiconductor device
CN103257842B (en) A kind of method and a kind of adder of addition carry information output
CN114020669B (en) CPLD-based I2C link system and server
US8788609B2 (en) Automation device and automation system
US20140036699A1 (en) Methods and structure for reduced layout congestion in a serial attached scsi expander
JP5818762B2 (en) Programmable logic device and verification method thereof
JP5455249B2 (en) Semiconductor integrated circuit using majority circuit and majority method
JP5117247B2 (en) Logic module
KR101904142B1 (en) Test Mode Signal Generator
CN106776463B (en) Design method of dual-redundancy computer control system based on FPGA
JP4724128B2 (en) Board for mounting logic modules
JP2012160149A (en) Duplex circuit, semiconductor device and test method
JP2017169118A (en) Integrated circuit and electronic equipment
JP2005116793A (en) Semiconductor integrated circuit and its clock wiring method
US6784712B2 (en) Variable circuit capable of changing the connected states of its flipflops
JP2010160635A (en) Module connection system
JP2021131654A (en) Control device
JP2006319981A (en) Logical difference calculation circuit
CN116579281A (en) 6-input lookup table, field programmable gate array and electronic equipment
JP4886311B2 (en) Semiconductor integrated circuit and test method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5918568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees