JP5915374B2 - Method for measuring surface temperature of continuous cast slab and continuous casting method using this method - Google Patents

Method for measuring surface temperature of continuous cast slab and continuous casting method using this method Download PDF

Info

Publication number
JP5915374B2
JP5915374B2 JP2012116771A JP2012116771A JP5915374B2 JP 5915374 B2 JP5915374 B2 JP 5915374B2 JP 2012116771 A JP2012116771 A JP 2012116771A JP 2012116771 A JP2012116771 A JP 2012116771A JP 5915374 B2 JP5915374 B2 JP 5915374B2
Authority
JP
Japan
Prior art keywords
slab
surface temperature
measuring device
air
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012116771A
Other languages
Japanese (ja)
Other versions
JP2013240824A (en
Inventor
井上 陽一
陽一 井上
本田 達朗
達朗 本田
村上 敏彦
敏彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012116771A priority Critical patent/JP5915374B2/en
Publication of JP2013240824A publication Critical patent/JP2013240824A/en
Application granted granted Critical
Publication of JP5915374B2 publication Critical patent/JP5915374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続鋳造鋳片の温度の測定方法およびこの方法を用いた連続鋳造方法に関し、特に連続鋳造機の2次冷却帯において冷却水の影響を抑制し、鋳片の表面温度を長期間にわたって安定して高い精度で測定可能な方法に関する。   The present invention relates to a method for measuring the temperature of a continuously cast slab and a continuous casting method using this method, and in particular, suppresses the influence of cooling water in a secondary cooling zone of a continuous casting machine, and increases the surface temperature of the slab for a long period of time. The present invention relates to a method that can be measured stably and with high accuracy.

鋼の連続鋳造は、連続鋳造機を用いて行う。すなわち、鋳型内で溶鋼を冷却して凝固シェルを形成させ、凝固シェルを鋳型から引き抜き、鋳型直下の2次冷却帯において冷却水のスプレーによって冷却し、最終的に中心部まで凝固させる。   Continuous casting of steel is performed using a continuous casting machine. That is, the molten steel is cooled in the mold to form a solidified shell, the solidified shell is pulled out from the mold, cooled in the secondary cooling zone immediately below the mold by spraying cooling water, and finally solidified to the center.

その際、連続鋳造機内で鋳片に曲げ応力が加えられるときに、鋳片の表面温度が鋼の脆化温度帯にあると、鋳片に表面欠陥が発生する可能性がある。鋳片に曲げ応力が加えられる区間は2次冷却帯に含まれる。このため、連続鋳造中に鋳片の表面欠陥の発生を防止するには、2次冷却帯で鋳片の温度を把握し、鋳片の温度が表面欠陥の発生しない温度となるように冷却水量の調整を適確に行うことが重要である。   At that time, when bending stress is applied to the slab in the continuous casting machine, if the surface temperature of the slab is in the embrittlement temperature zone of steel, surface defects may occur in the slab. The section where bending stress is applied to the slab is included in the secondary cooling zone. For this reason, in order to prevent the occurrence of surface defects on the slab during continuous casting, the temperature of the slab is grasped in the secondary cooling zone, and the amount of cooling water is set so that the temperature of the slab becomes a temperature at which no surface defects occur. It is important to make adjustments accurately.

鋳片の表面温度は、連続鋳造中の溶鋼の成分および温度、鋳造速度、ならびに冷却水の温度、量および分布等によって変化する。そのため、従来から、連続鋳造機内の2次冷却帯において、放射温度計等の非接触方式の温度計を用いた鋳片の表面温度の測定が行われてきた(例えば、特許文献1)。   The surface temperature of the slab varies depending on the composition and temperature of the molten steel during continuous casting, the casting speed, and the temperature, amount and distribution of the cooling water. Therefore, conventionally, the surface temperature of a slab has been measured using a non-contact type thermometer such as a radiation thermometer in a secondary cooling zone in a continuous casting machine (for example, Patent Document 1).

しかし、2次冷却帯において、非接触方式の温度計を用いて連続的に鋳片の表面温度の測定を行う場合、その雰囲気中には大量のスプレー冷却水や、ロールと鋳片との隙間を伝わる垂れ水や、冷却水が高温の鋳片に当たってなる蒸気等の外乱が発生している。この外乱により、鋳片表面からの熱放射光が散乱するため、十分な測温精度が得られなかった。   However, when measuring the surface temperature of the slab continuously using a non-contact type thermometer in the secondary cooling zone, a large amount of spray cooling water or a gap between the roll and the slab is contained in the atmosphere. Disturbances such as drooping water that travels through the steam and steam generated when the cooling water hits the high-temperature slab are generated. Due to this disturbance, heat radiation from the surface of the slab is scattered, so that sufficient temperature measurement accuracy cannot be obtained.

熱放射光の散乱は、水滴や蒸気等の水分と空気との界面が、温度計で検出すべき熱放射光の光路中に存在すると発生する。この散乱により光路が変化すると温度計で測定しようとしている鋳片表面の領域の面積や位置に変化が生じたり、測定領域以外の領域からの熱放射光を検出したりするため、測定誤差が生じる。   Scattering of thermal radiation occurs when an interface between moisture such as water droplets or steam and air exists in the optical path of thermal radiation to be detected by a thermometer. If the light path changes due to this scattering, the area and position of the surface area of the slab that is to be measured with a thermometer will change, or heat radiation from areas other than the measurement area will be detected, resulting in measurement errors. .

このような外乱を避ける方法として、特許文献2では、冷却水を大量に使用する熱間圧延工程において、鋼板下面に向けてノズルからパージ用の水を噴射して放射温度計と鋳片表面との間に水柱を鉛直方向に形成し、この水柱を介して鋳片表面から放射される熱放射光を検出することにより鋳片の表面温度を測定する方法が提案されている。   As a method for avoiding such disturbance, in Patent Document 2, in a hot rolling process in which a large amount of cooling water is used, a purge water is sprayed from a nozzle toward the lower surface of the steel plate, and a radiation thermometer, a slab surface, A method of measuring the surface temperature of the slab by forming a water column in the vertical direction and detecting thermal radiation emitted from the surface of the slab through the water column has been proposed.

しかし、熱間圧延工程とは異なり、連続鋳造工程を行う連続鋳造機内においては、鋳片が鋳造方向に垂直となる部分が存在するため、特許文献2に記載の方法を適用する場合には水柱を水平としなければならない。しかし、水柱は、重力の影響により完全に水平とすることができない。また、噴射する水の量および噴射圧力を大きくすることで、水柱を水平に近くして熱放射光の光路を確保することは可能であるものの、この場合は鋳片が過度に水柱によって冷却され測定部位の温度が低下するため、測定された温度の信頼性および精度が十分ではなくなる。   However, unlike the hot rolling process, in the continuous casting machine that performs the continuous casting process, there is a portion in which the slab is perpendicular to the casting direction. Therefore, when applying the method described in Patent Document 2, Must be level. However, the water column cannot be made completely horizontal due to the influence of gravity. Also, by increasing the amount of water to be injected and the injection pressure, it is possible to secure the optical path of the heat radiation light by making the water column almost horizontal, but in this case the slab is excessively cooled by the water column. Since the temperature of the measurement site is lowered, the reliability and accuracy of the measured temperature are not sufficient.

水柱を用いない方法としては、特許文献3では、表面温度が180℃〜350℃である水冷中の鋼材の表面に向けてノズルからパージ用の空気を噴射して放射温度計と鋳片表面との間に空気柱を形成し、この空気柱を介して鋳片から放射される熱放射光を検出する方法が提案されている。   As a method not using a water column, in Patent Document 3, a purge air is injected from a nozzle toward the surface of a water-cooled steel material having a surface temperature of 180 ° C. to 350 ° C. A method has been proposed in which an air column is formed between the two and the thermal radiation emitted from the slab through the air column is detected.

しかし、後述するように、本発明者らが検討したところ、特許文献3に記載の方法では、水冷中の鋳片表面の空気柱が接する部分の大きさによって、温度測定の安定性および鋳片の冷却の安定性が大きく変化することがわかった。これは、温度測定の安定性が上記外乱の影響を大きく受けること、および鋳片の冷却が、水冷中の鋳片表面の空気柱が接する部分が大きすぎると阻害されることによる。   However, as will be described later, the present inventors have examined that, in the method described in Patent Document 3, the stability of temperature measurement and the slab are determined depending on the size of the portion of the surface of the slab surface that is in contact with the air column during water cooling. It has been found that the cooling stability of the water changes greatly. This is because the stability of the temperature measurement is greatly affected by the above disturbance, and the cooling of the slab is hindered if the portion of the surface of the slab surface that is in water cooling contact with the air column is too large.

特開2009−50913号公報JP 2009-50913 A 特許第4151022号公報Japanese Patent No. 4151022 特開2011−53047号公報JP 2011-53047 A

本発明は、上記の問題に鑑みてなされたものであり、空気柱を形成することができる放射温度計を用いて連続鋳造機内の2次冷却帯で冷却中の鋳片の表面温度を長期間にわたって安定して測定可能な方法、およびこの温度測定方法を用いた連続鋳造方法を提供することを目的とする。そのために解決しなければならない課題は、以下の2つである。   The present invention has been made in view of the above problems, and the surface temperature of a slab that is being cooled in a secondary cooling zone in a continuous casting machine using a radiation thermometer capable of forming an air column for a long period of time. It is an object of the present invention to provide a method capable of measuring stably over a long period of time and a continuous casting method using this temperature measuring method. The following two problems must be solved.

第1の課題:被測温鋳片の表面と放射温度計との間に存在するような、スプレー冷却水、垂れ水および蒸気等の外乱による熱放射光の散乱に起因し、測定温度の誤差が生じるのを抑制すること。
第2の課題:連続鋳造機内における鋳片の冷却を阻害することなく鋳片の表面温度を測定すること。すなわち、スプレー冷却水の水量の低減または停止、冷却装置の改造を行うことなく鋳片の表面温度の測定を可能とすること。
First problem: Measurement temperature error due to scattering of thermal radiation due to disturbances such as spray cooling water, dripping water, and steam, which exist between the surface of the slab to be measured and the radiation thermometer To suppress the occurrence of.
Second problem: To measure the surface temperature of the slab without inhibiting the cooling of the slab in the continuous casting machine. That is, it is possible to measure the surface temperature of the slab without reducing or stopping the amount of spray cooling water and without modifying the cooling device.

本発明者らは、実際の連続鋳造機内を模擬した装置を用いて予備試験を行った結果、パージ用エアーにより形成される空気柱の、鋳片表面に接する部分での大きさを所定の大きさとすれば、上記2つの課題を解決した鋳片の表面温度の測定方法を実現できることを知見した。予備試験については後述する。   As a result of conducting a preliminary test using an apparatus simulating the inside of an actual continuous casting machine, the inventors have determined that the size of the air column formed by the purge air at a portion in contact with the slab surface is a predetermined size. Then, it has been found that a method for measuring the surface temperature of a slab that solves the above two problems can be realized. The preliminary test will be described later.

本発明は、この知見に基づいてなされたものであり、その要旨は、下記の(1)および(2)に示す鋳片の表面温度の測定方法および(3)に示す連続鋳造方法にある。   The present invention has been made on the basis of this finding, and the gist thereof is in the method for measuring the surface temperature of the slab shown in the following (1) and (2) and the continuous casting method shown in (3).

(1)鋳片の連続鋳造時に冷却水による鋳片の冷却を行う2次冷却帯において、表面温度測定装置により表面温度を測定する方法であって、前記表面温度測定装置は、放射温度計と、パージ用エアーを噴射するノズルとを備えており、前記表面温度測定装置の前記ノズルから前記鋳片の表面に向けてパージ用エアーを噴射して前記放射温度計と前記鋳片の表面との間に空気柱を形成し、この空気柱を通して前記鋳片の表面からの熱放射光を前記放射温度計で検出し、鋳片の表面温度を測定する際、前記放射温度計の受光軸が、前記ノズルから噴射されるパージ用エアーにより形成される空気柱内を、前記放射温度計から前記鋳片の表面に渡って通るように、前記放射温度計を配置し、前記表面温度測定装置の前記ノズルの口径を10〜18mmとし、前記空気柱の前記鋳片表面に接する部分における直径を30〜40mmとすることを特徴とする鋳片の表面温度の測定方法。
(1) A method of measuring a surface temperature with a surface temperature measuring device in a secondary cooling zone in which the slab is cooled with cooling water during continuous casting of the slab, wherein the surface temperature measuring device includes a radiation thermometer and And a nozzle for injecting purge air, and by injecting purge air from the nozzle of the surface temperature measuring device toward the surface of the slab, the radiation thermometer and the surface of the slab An air column is formed therebetween, and when the radiation thermometer detects thermal radiation from the surface of the slab through the air column and measures the surface temperature of the slab, the light receiving axis of the radiation thermometer is: The radiation thermometer is disposed so as to pass through the air column formed by the purge air injected from the nozzle from the radiation thermometer to the surface of the slab, and the surface temperature measuring device Nozzle diameter 10-18m And then, the measurement method of the surface temperature of the slab, characterized in that the 30~40mm the diameter at a portion in contact with the slab surface of the air column.

(2)前記パージ用エアーの流量を、前記放射温度計と前記鋳片の温度を測定する部分との距離に応じて決定することを特徴とする前記(1)に記載の鋳片の表面温度の測定方法。 (2) The surface temperature of the slab according to (1), wherein the flow rate of the purge air is determined according to a distance between the radiation thermometer and a portion at which the temperature of the slab is measured. Measuring method.

(3)鋳型と、鉛直方向に鋳造された鋳片を湾曲させる曲げ部と、湾曲した鋳片を平板に矯正し水平方向に搬送する水平部とを有する連続鋳造機を用いた鋳片の連続鋳造方法であって、前記鋳型から前記水平部までの2次冷却帯の少なくとも1箇所で、前記(1)または(2)に記載の鋳片の表面温度の測定方法で前記鋳片の表面温度を測定することを特徴とする鋳片の連続鋳造方法。 (3) Continuous slabs using a continuous casting machine having a mold, a bending part for bending a slab cast in the vertical direction, and a horizontal part for correcting the curved slab into a flat plate and transporting it horizontally. A casting method, wherein the surface temperature of the slab is measured by the method for measuring the surface temperature of a slab according to (1) or (2) at least at one point in a secondary cooling zone from the mold to the horizontal part. A continuous casting method of a slab characterized by measuring

本発明の鋳片の表面温度の測定方法によれば、連続鋳造機内の2次冷却帯で冷却中の鋳片の表面温度を長期間にわたって安定して高い精度で測定可能である。また、本発明の連続鋳造方法によれば、安定して高い精度で測定した鋳片の表面温度にもとづいて鋳造条件を制御できるため、品質に優れた鋳片を連続鋳造することができる。   According to the method for measuring the surface temperature of the slab of the present invention, the surface temperature of the slab being cooled in the secondary cooling zone in the continuous casting machine can be stably measured with high accuracy over a long period of time. In addition, according to the continuous casting method of the present invention, the casting conditions can be controlled based on the surface temperature of the slab measured stably and with high accuracy, so that a slab excellent in quality can be continuously cast.

パージ用エアーの噴射条件の検討の予備試験に用いた装置の概略図である。It is the schematic of the apparatus used for the preliminary test of examination of the injection conditions of purge air. エアーの流量ごとに、エアーを噴射するノズルの口径とノズルから噴射されるエアーの平均流速の関係を示す図である。It is a figure which shows the relationship between the aperture diameter of the nozzle which injects air, and the average flow velocity of the air injected from a nozzle for every flow volume of air. パージ用エアーの流量と、空気柱の噴射径との関係を示す図であり、同図(a)はパージ用エアーを噴射するノズルの口径が10mmの場合、同図(b)は18mmの場合の図である。It is a figure which shows the relationship between the flow volume of purge air, and the injection diameter of an air column, The figure (a) is the case where the aperture of the nozzle which injects purge air is 10 mm, The figure (b) is 18 mm FIG. 連続鋳造機における表面温度測定装置が配置された部分の拡大図である。It is an enlarged view of the part by which the surface temperature measuring apparatus in a continuous casting machine is arrange | positioned. 本発明例の鋳込時間と測定した表面温度の関係を示す図である。It is a figure which shows the relationship between the casting time of the example of this invention, and the measured surface temperature. 比較例の鋳込時間と測定した表面温度の関係を示す図である。It is a figure which shows the relationship between the casting time of a comparative example, and the measured surface temperature.

以下、本発明を完成させるための予備試験の内容および本発明を実施するための形態について説明する。   The contents of preliminary tests for completing the present invention and the modes for carrying out the present invention will be described below.

1.予備試験
1−1.予備試験に用いた装置
図1は、パージ用エアーの噴射条件の検討の予備試験に用いた装置の概略図である。この装置は、連続鋳造機内の2次冷却帯を模擬したものであり、鋳片を想定した透明なアクリル板11と、アクリル板11に向かってスプレー水13を噴射する2個のスプレーノズル12と、スプレーノズル12の間に配置された表面温度測定装置14とを備える。表面温度測定装置14は、先端に受光部を有する放射温度計を備えるとともに、先端からエアー15を噴射して表面温度測定装置14からアクリル板11の表面との間に空気柱を形成することができる。2個のスプレーノズル12の間隔D1は457mmとし、スプレーノズル12からアクリル板11までの距離D2は160mmとした。表面温度測定装置14はアクリル板11に垂直な矢印A方向に移動可能であり、表面温度測定装置14のノズルの先端とアクリル板11との距離Lの調整が可能である。
1. Preliminary test 1-1. Apparatus Used for Preliminary Test FIG. 1 is a schematic view of an apparatus used for a preliminary test for examining the purge air injection conditions. This apparatus simulates a secondary cooling zone in a continuous casting machine, and includes a transparent acrylic plate 11 that assumes a slab, and two spray nozzles 12 that spray spray water 13 toward the acrylic plate 11. And a surface temperature measuring device 14 disposed between the spray nozzles 12. The surface temperature measuring device 14 includes a radiation thermometer having a light receiving portion at the tip, and forms an air column between the surface temperature measuring device 14 and the surface of the acrylic plate 11 by jetting air 15 from the tip. it can. The distance D1 between the two spray nozzles 12 was 457 mm, and the distance D2 from the spray nozzle 12 to the acrylic plate 11 was 160 mm. The surface temperature measuring device 14 can move in the direction of arrow A perpendicular to the acrylic plate 11, and the distance L between the tip of the nozzle of the surface temperature measuring device 14 and the acrylic plate 11 can be adjusted.

また、アクリル板11のスプレー水13およびエアー15が噴射される面の反対側にはアクリル板11に対向するようにビデオカメラ16が配置され、鋳片に見立てたアクリル板11へのスプレー水13およびエアー15の噴射状況を確認することができる。   In addition, a video camera 16 is disposed on the opposite side of the surface of the acrylic plate 11 from which the spray water 13 and air 15 are jetted so as to face the acrylic plate 11, and the spray water 13 for the acrylic plate 11 that looks like a slab. And the injection situation of air 15 can be checked.

1−2.エアーを噴射するノズルの口径
図2は、エアーの流量ごとに、エアーを噴射するノズルの口径とノズルから噴射されるエアーの平均流速の関係を示す図である。同図からわかるように、エアー流量が大きいほど、またノズルの口径が小さいほど、噴射されるエアーの平均流速が大きい。
1-2. FIG. 2 is a diagram showing the relationship between the diameter of the nozzle for injecting air and the average flow velocity of the air injected from the nozzle for each flow rate of air. As can be seen from the figure, the larger the air flow rate and the smaller the nozzle diameter, the greater the average flow velocity of the injected air.

また、パージ用エアーが形成する空気柱の前記鋳片表面に接する部分における大きさ(以下、空気柱が物体に接する部分における、空気柱の直径を「噴射径」ともいう。)が、放射温度計による温度測定が行われる視野(以下「測定視野」ともいう。)よりも小さい場合、測定される温度がエアーを噴射するノズルの先端の温度の影響を受ける。そのため、パージ用エアーを噴射するノズルの口径は、放射温度計の測定視野よりも大きいことが必要である。   Further, the size of the air column formed by the purge air at the portion in contact with the slab surface (hereinafter, the diameter of the air column at the portion where the air column contacts the object is also referred to as “injection diameter”) is the radiation temperature. When the temperature is smaller than the visual field in which the temperature measurement is performed (hereinafter also referred to as “measurement visual field”), the measured temperature is affected by the temperature of the tip of the nozzle that injects air. Therefore, the diameter of the nozzle for injecting the purge air needs to be larger than the measurement field of view of the radiation thermometer.

以上のことを考慮して、予備試験では、表面温度測定装置の先端のエアーを噴射するノズルの口径は、10mmおよび18mmとした。   Considering the above, in the preliminary test, the diameters of the nozzles for injecting the air at the tip of the surface temperature measuring device were 10 mm and 18 mm.

1−3.第1予備試験
1−3−1.試験条件
前記図1に示す装置を用いて、図示しない光源からアクリル板11を通して表面温度測定装置14に向けて熱放射光に見立てた光を照射し、表面温度測定装置14で、エアーを噴射しながらこの光を検出した。試験は、外乱であるアクリル板11にかかるスプレー水13、垂れ水および蒸気がある場合について行い、エアーの噴射条件と光の検出状況との関係について調査した。スプレー水13および垂れ水は、連続鋳造機の実機に用いられるスプレーノズル12を用いてアクリル板11に放水し、蒸気は表面温度測定装置14の下方から放出した。
1-3. First preliminary test 1-3-1. Test conditions Using the apparatus shown in FIG. 1, light that is regarded as thermal radiation is emitted from a light source (not shown) through the acrylic plate 11 toward the surface temperature measuring device 14, and air is ejected by the surface temperature measuring device 14. While detecting this light. The test was conducted in the case where there was spray water 13, dripping water, and steam applied to the acrylic plate 11 as a disturbance, and the relationship between the air injection conditions and the light detection status was investigated. The spray water 13 and the dripping water were discharged to the acrylic plate 11 using the spray nozzle 12 used in the actual machine of the continuous casting machine, and the steam was discharged from below the surface temperature measuring device 14.

パージ用エアーを噴射するノズルの口径は10mmおよび18mm、エアー流量は12Nm3/h、18Nm3/h、24Nm3/hおよび30Nm3/hとし、表面温度測定装置14の先端からアクリル板11までの距離は、60mm、80mm、100mmおよび160mmとした。さらに、ノズルの口径が18mmの場合について、表面温度測定装置14の先端からアクリル板11までの距離を200mmとした。 Diameter of the nozzle for injecting purge air is 10mm and 18 mm, the air flow rate was set to 12Nm 3 / h, 18Nm 3 / h, 24Nm 3 / h and 30 Nm 3 / h, from the tip of the surface temperature measuring device 14 to the acrylic plate 11 The distance was set to 60 mm, 80 mm, 100 mm, and 160 mm. Furthermore, the distance from the front-end | tip of the surface temperature measuring apparatus 14 to the acrylic board 11 was 200 mm about the case where the aperture of a nozzle is 18 mm.

1−3−2.試験結果
図3は、パージ用エアーの流量と、噴射径との関係を示す図であり、同図(a)はパージ用エアーを噴射するノズルの口径が10mmの場合、同図(b)は18mmの場合の図である。上記の予備試験の結果、パージ用エアーを噴射するノズルの口径が10mmの場合、18mmの場合のいずれも、同図に示すように、エアー流量が多いほど、また、表面温度測定装置14の先端からアクリル板11までの距離が小さいほど、噴射径が大きいことがわかった。
1-3-2. Test results FIG. 3 is a diagram showing the relationship between the flow rate of purge air and the injection diameter. FIG. 3A shows the case where the nozzle diameter for injecting purge air is 10 mm, FIG. It is a figure in the case of 18 mm. As a result of the preliminary test, when the nozzle diameter for injecting the purge air is 10 mm and 18 mm, as shown in the figure, the larger the air flow rate, the more the tip of the surface temperature measuring device 14. It was found that the smaller the distance from to the acrylic plate 11, the larger the spray diameter.

また、表面温度測定装置14による光源からの光の検出の安定性を評価した結果、噴射径が30mm以上であれば、アクリル板11上の水膜による光の散乱が抑制され、安定的に光を検出できることがわかった。噴射径が30mm未満の場合、水膜が光源と表面温度測定装置14との間に発生することがあり、安定的に光を検出できなかった。また、この試験で適用したエアー流量の範囲では、表面温度測定装置14の先端からアクリル板11までの距離が160mm以下であれば、放射温度計の測定視野を確保できることがわかった。噴射径については、後述する第2予備試験でも詳細に調査した。   Further, as a result of evaluating the stability of detection of light from the light source by the surface temperature measuring device 14, if the injection diameter is 30 mm or more, light scattering by the water film on the acrylic plate 11 is suppressed, and light is stably emitted. It was found that can be detected. When the spray diameter is less than 30 mm, a water film may be generated between the light source and the surface temperature measuring device 14, and light could not be detected stably. Further, it was found that in the range of the air flow rate applied in this test, the measurement visual field of the radiation thermometer can be secured if the distance from the tip of the surface temperature measuring device 14 to the acrylic plate 11 is 160 mm or less. The injection diameter was also investigated in detail in the second preliminary test described later.

さらに、表面温度測定装置14の先端からアクリル板11までの距離を最適化することにより、放射温度計の測定視野よりも大きい光を検出可能となり、安定的に光を検出できることがわかった。   Furthermore, it was found that by optimizing the distance from the tip of the surface temperature measuring device 14 to the acrylic plate 11, light larger than the measurement visual field of the radiation thermometer can be detected, and light can be detected stably.

また、エアー15の流量、および表面温度測定装置14の先端からアクリル板11までの距離を調整することにより、表面温度測定装置14を設置してもスプレー水13を遮断することなく光路の確保が可能であることがわかった。   Further, by adjusting the flow rate of the air 15 and the distance from the tip of the surface temperature measuring device 14 to the acrylic plate 11, the optical path can be secured without blocking the spray water 13 even if the surface temperature measuring device 14 is installed. I found it possible.

前記図1に示す装置において、スプレー水13を停止し、スプレー水13が表面温度測定装置14とアクリル板11との間において温度測定に影響を及ぼさない場合においても、エアー15の流量を最適化し、表面温度測定装置14の先端からアクリル板11までの距離を所定の値に近づけることによって、アクリル板11の表面を伝わる垂れ水や蒸気による外乱を低減し、光源からの光を安定的に検出できることがわかった。   In the apparatus shown in FIG. 1, the flow rate of the air 15 is optimized even when the spray water 13 is stopped and the spray water 13 does not affect the temperature measurement between the surface temperature measuring device 14 and the acrylic plate 11. By reducing the distance from the tip of the surface temperature measuring device 14 to the acrylic plate 11 to a predetermined value, disturbance due to dripping water or steam traveling on the surface of the acrylic plate 11 is reduced, and light from the light source is stably detected. I knew it was possible.

さらに、光源からの光を安定的に検出するには、表面温度測定装置14の受光軸とアクリル板11の表面がなす角度が90°であることが理想的であるところ、90°からの傾きが15°以内であれば光源からの光を安定的に検出できることがわかった。   Furthermore, in order to stably detect light from the light source, it is ideal that the angle formed by the light receiving axis of the surface temperature measuring device 14 and the surface of the acrylic plate 11 is 90 °, and the inclination from 90 °. It was found that the light from the light source can be detected stably if is within 15 °.

1−4.第2予備試験
1−4−1.試験条件
前記図1に示す装置を用いて、パージ用エアーの噴射径と光源からの光の検出の安定性との関係について調査した。表面温度測定装置のパージ用エアーを噴射するノズルの口径、アクリル板とノズル先端との距離、パージ用エアーの流量、およびパージ用エアーのアクリル板表面に接する部分における噴射径は、後述する実施例の試験条件と同じとした(下記表1参照)。No.1〜6ではノズル口径を10mm、No.7〜12では18mmとし、アクリル板とノズル先端の距離、およびエアー流量を変化させることにより、パージ用エアーのアクリル板表面に接する部分における噴射径を変化させた。
1-4. Second preliminary test 1-4-1. Test conditions Using the apparatus shown in FIG. 1, the relationship between the jetting diameter of purge air and the stability of detection of light from the light source was investigated. The diameter of the nozzle for injecting the purge air of the surface temperature measuring device, the distance between the acrylic plate and the nozzle tip, the flow rate of the purge air, and the injection diameter at the portion of the purge air in contact with the acrylic plate surface are described later. (See Table 1 below). No. 1-6, the nozzle diameter is 10 mm, In 7-12, it was 18 mm, and by changing the distance between the acrylic plate and the tip of the nozzle, and the air flow rate, the jet diameter of the portion of the purge air in contact with the acrylic plate surface was changed.

1−4−2.試験結果
表1には、試験条件と併せて、光源からの光の安定的な検出の可否の調査結果も示した。同表からわかるように、噴射径が30〜40mmの場合にのみ光源からの光の安定的な検出が可能であり、噴射径が25mm以下の場合には不可能であった。また、同表には記載していないが、噴射径が40mmよりも大きかった場合には、光源からの光の安定的な検出が可能であったものの、スプレー水が当たる部分の面積が鋳片の冷却を阻害する程度まで狭くなった。
1-4-2. Test results Table 1 also shows the results of investigations on whether or not stable detection of light from a light source is possible, along with test conditions. As can be seen from the table, stable detection of light from the light source is possible only when the jet diameter is 30 to 40 mm, and impossible when the jet diameter is 25 mm or less. Although not shown in the table, when the spray diameter is larger than 40 mm, the light from the light source can be detected stably, but the area of the portion where the spray water hits is a slab. It was narrowed to such an extent as to inhibit the cooling of the.

2.本発明の鋳片の表面温度の測定方法
図4は、連続鋳造機における表面温度測定装置が配置された部分の拡大図である。表面温度測定装置30は、鋳片21に対向する放射温度計31と、鋳片21の表面に向けてパージ用エアーを噴射するノズル32を備える。
2. FIG. 4 is an enlarged view of a portion where a surface temperature measuring device is arranged in a continuous casting machine. The surface temperature measuring device 30 includes a radiation thermometer 31 that faces the slab 21, and a nozzle 32 that injects purge air toward the surface of the slab 21.

放射温度計31は、鋳片21の表面から放射される熱放射光を検出し、鋳片21の表面温度を測定することができる。放射温度計31は、受光軸31cがノズル32から噴射されるパージ用エアーにより形成される空気柱内を通るように配置されている。   The radiation thermometer 31 can detect the thermal radiation emitted from the surface of the slab 21 and measure the surface temperature of the slab 21. The radiation thermometer 31 is disposed so that the light receiving shaft 31 c passes through an air column formed by purge air ejected from the nozzle 32.

放射温度計31は、測温ヘッド31aと、測温ヘッド31a内に収納され、鋳片21からの熱放射光を受ける受光部と、受光した熱放射光を図示しない制御盤に伝送するための光ファイバ31bを備える。制御盤では、光ファイバ31bによって伝送された熱放射光を光電変換して光量に応じた電流を出力することができる。制御盤から出力された電流に、電流電圧変換およびAD変換を施して、温度に換算する演算を行う。以上の過程により、放射温度計31で熱放射光を受けることによって鋳片21の表面温度を測定することができる。   The radiation thermometer 31 is housed in the temperature measuring head 31a, a light receiving portion that is received in the temperature measuring head 31a, receives heat radiation light from the slab 21, and transmits the received heat radiation light to a control panel (not shown). An optical fiber 31b is provided. The control panel can photoelectrically convert the heat radiation light transmitted by the optical fiber 31b and output a current corresponding to the light amount. The current output from the control panel is subjected to current-voltage conversion and AD conversion, and an operation for conversion into temperature is performed. Through the above process, the surface temperature of the slab 21 can be measured by receiving the heat radiation light with the radiation thermometer 31.

表面温度測定装置30のノズル32は、測温ヘッド31aの先端に接続され、外部からエアーを導入させることにより、鋳片21の表面に向けてパージ用エアーを噴射することができる。   The nozzle 32 of the surface temperature measuring device 30 is connected to the tip of the temperature measuring head 31a, and can introduce the purge air toward the surface of the slab 21 by introducing air from the outside.

表面温度測定装置30は、隣接する鋳片支持ロール22の間に配置され、鋳片31の表面から放射される熱放射光を検知できるように配置される。表面温度測定装置30の配置は、放射温度計31の受光軸31cと鋳片21の被測温部とのなす角度が90°に近いほど好ましい。しかし、上述の予備試験の結果、この角度は90°からの傾きが15°以内であれば十分に安定して温度を測定できることがわかっている。前記図4では、放射温度計31の受光軸31cと鋳片21の被測温部とのなす角度の90°からの傾きが15°である場合を示している。   The surface temperature measuring device 30 is disposed between the adjacent slab support rolls 22 so as to be able to detect the heat radiation emitted from the surface of the slab 31. The arrangement of the surface temperature measuring device 30 is preferably as the angle formed between the light receiving shaft 31c of the radiation thermometer 31 and the temperature measured portion of the slab 21 is closer to 90 °. However, as a result of the preliminary test described above, it has been found that the temperature can be measured with sufficient stability if the angle from 90 ° is within 15 °. FIG. 4 shows a case where the inclination from 90 ° between the light receiving shaft 31c of the radiation thermometer 31 and the temperature-measured portion of the slab 21 is 15 °.

また、鋳片21へのパージ用エアーの噴射による鋳片21の冷却の阻害を抑制するため、パージ用エアーの噴射径は小さいことが好ましい。連続鋳造機内における鋳片支持ロール22のレイアウトや、鋳片21と表面温度測定装置30との距離Lに応じて、パージ用エアーの流量を設定し、パージ用エアーの噴射径を30〜40mmとする。距離Lは、ノズル31の先端と鋳片21との最短距離とする。   Further, in order to suppress the inhibition of cooling of the slab 21 due to the injection of purge air onto the slab 21, it is preferable that the purge air injection diameter is small. The flow rate of purge air is set according to the layout of the slab support roll 22 in the continuous casting machine and the distance L between the slab 21 and the surface temperature measuring device 30, and the jet diameter of the purge air is set to 30 to 40 mm. To do. The distance L is the shortest distance between the tip of the nozzle 31 and the cast piece 21.

表面温度測定装置30は、角度を調整することにより、(1)スプレー水が表面温度測定装置と鋳片の間に存在しないようにすること、(2)表面温度測定装置の先端から噴射されるパージ用エアーとスプレー水の噴射範囲が同一にならないようにすること、(3)スプレー水の鋳片への接触状況が、表面温度測定装置の設置により変化しないようにすることが可能である。そのため、鋳片の冷却を阻害することなく、すなわち、スプレー冷却水の水量の低減または停止、2次冷却装置の改造を行うことなく、鋳片の表面温度の測定が可能である。鋳片21と表面温度測定装置30との距離Lはパージ用エアーの影響がスプレー水に及ばない範囲で最短にすることが好ましい。   The surface temperature measuring device 30 adjusts the angle so that (1) spray water does not exist between the surface temperature measuring device and the slab, and (2) is sprayed from the tip of the surface temperature measuring device. It is possible to prevent the spray air and spray water injection ranges from being the same, and (3) the state of contact with the slab of spray water does not change due to the installation of the surface temperature measuring device. Therefore, it is possible to measure the surface temperature of the slab without hindering the cooling of the slab, that is, without reducing or stopping the amount of spray cooling water and without modifying the secondary cooling device. The distance L between the slab 21 and the surface temperature measuring device 30 is preferably as short as possible so long as the purge air does not affect the spray water.

本発明の鋳片の表面温度の測定方法は、垂直湾曲型の連続鋳造機に適用可能である。垂直湾曲型の連続鋳造機は、鋳型から鋳造方向下流側に向かって、鋳型と、鋳型直下のトップゾーンと、曲げ部と、水平部とを備える。曲げ部は、ベンディングユニットと、複数のガイドロールセグメントからなる。鋳型直下から最終ガイドロールセグメントまでの区間には、2次冷却帯が設けられている。曲げ部では、鋳型で鉛直方向に鋳造された鋳片を湾曲させ、水平部では、湾曲した鋳片を平板に矯正し水平に搬送する。   The method for measuring the surface temperature of a slab according to the present invention is applicable to a vertical bending type continuous casting machine. The vertical bending type continuous casting machine includes a casting mold, a top zone immediately below the casting mold, a bending part, and a horizontal part from the casting mold toward the downstream side in the casting direction. The bending portion is composed of a bending unit and a plurality of guide roll segments. A secondary cooling zone is provided in a section from immediately below the mold to the final guide roll segment. In the bending portion, the slab cast in the vertical direction by the mold is curved, and in the horizontal portion, the curved slab is corrected into a flat plate and conveyed horizontally.

この垂直湾曲型の連続鋳造機の2次冷却帯では、いずれの部分においても本発明の鋳片の表面温度の測定方法を適用することにより、鋳片の表面と表面温度測定装置との間の熱放射光の光路中の水分による散乱の影響を抑制しながら、鋳片の表面温度を長期間にわたって安定して高い精度で測定することができる。この測定した温度に基づいて2次冷却帯での冷却水量やその他の鋳造条件を調整することにより、鋳片の表面欠陥の発生を抑制し、品質に優れた鋳片を連続鋳造することができる。   By applying the method for measuring the surface temperature of the slab of the present invention in any part of the secondary cooling zone of the vertical bending type continuous casting machine, the surface between the surface of the slab and the surface temperature measuring device is applied. The surface temperature of the slab can be stably measured with high accuracy over a long period of time while suppressing the influence of scattering due to moisture in the optical path of the heat radiation light. By adjusting the amount of cooling water in the secondary cooling zone and other casting conditions based on the measured temperature, the occurrence of surface defects on the slab can be suppressed, and a slab excellent in quality can be continuously cast. .

鋳片の表面温度の測定時のパージ用エアーの流量は、過大であるとスプレー水の噴射に及ぼす影響が大きく、鋳片の冷却が阻害される場合があるため、30Nm3/h以下が好ましい。 The flow rate of the purge air when measuring the surface temperature of the slab is preferably 30 Nm 3 / h or less because an excessive flow has a great influence on spray water spraying and may hinder cooling of the slab. .

本発明の鋳片の表面温度の測定方法およびこれを適用した本発明の鋳片の連続鋳造方法の効果を確認するため、以下に示す実機試験を実施した。   In order to confirm the effect of the method of measuring the surface temperature of the slab of the present invention and the continuous casting method of the slab of the present invention to which the method is applied, the following actual machine test was performed.

1.試験条件
連続鋳造設備として、上述の垂直湾曲型の連続鋳造機を用い、表面温度測定装置として前記図4に示すものを用いた。表面温度測定装置による鋳片の表面温度の測定位置は、鋳片下面側のベンディングユニットとこれに隣接するガイドロールセグメントとの間とした。測定対象は、鋳片の幅方向の3箇所(鋳片幅方向中央、ならびに端部から20mmおよび40mmの位置)とした。
1. Test conditions The above-described vertical bending type continuous casting machine was used as the continuous casting equipment, and the surface temperature measuring apparatus shown in FIG. 4 was used. The measurement position of the surface temperature of the slab by the surface temperature measuring device was between the bending unit on the lower surface side of the slab and the guide roll segment adjacent thereto. The measurement objects were three places in the width direction of the slab (center of the slab width direction, and positions 20 mm and 40 mm from the end).

この測定位置は、2次冷却帯のなかでも、最もスプレーからの噴射水量およびこれに伴う垂れ水が多く、また、鋳片の表面温度が高いため蒸気の発生量が多いことから、これらの外乱の影響により鋳片の表面温度の測定条件が厳しい部分であり、鋳片の冷却強度が大きい部分でもある。   This measurement position has the largest amount of spray water from the spray and the amount of dripping water in the secondary cooling zone, and the amount of steam generated due to the high surface temperature of the slab. This is a part where the measurement condition of the surface temperature of the slab is severe due to the influence of the slab, and is also a part where the cooling strength of the slab is high.

表面温度測定装置のパージ用エアーを噴射するノズルの口径、鋳片とノズル先端との距離、パージ用エアーの流量、およびパージ用エアーの鋳片表面に接する部分における噴射径は、表1に示す通りとした。   Table 1 shows the diameter of the nozzle for injecting the purge air of the surface temperature measuring device, the distance between the slab and the nozzle tip, the flow rate of the purge air, and the jet diameter at the portion of the purge air in contact with the slab surface. It was street.

Figure 0005915374
Figure 0005915374

No.3〜5、7〜10および12は、本発明の規定を満たした本発明例である。No.1、2、6および11は、いずれもパージ用エアーの噴射径が本発明の規定を満たさなかった比較例である。   No. 3-5, 7-10, and 12 are examples of the present invention that satisfy the provisions of the present invention. No. 1, 2, 6, and 11 are comparative examples in which the jetting diameter of the purge air did not satisfy the regulations of the present invention.

2.試験結果
表1には、試験条件と併せて温度測定の安定性の調査結果も示した。同表からわかるように、噴射径が30〜40mmの場合にのみ安定的に鋳片の表面温度を測定でき、噴射径が25mm以下の場合には安定的に鋳片の表面温度を測定できなかった。
2. Test results Table 1 also shows the results of investigating the stability of temperature measurement along with the test conditions. As can be seen from the table, the surface temperature of the slab can be measured stably only when the injection diameter is 30 to 40 mm, and the surface temperature of the slab cannot be measured stably when the injection diameter is 25 mm or less. It was.

図5は、本発明例(No.10)の鋳込時間と測定した表面温度の関係を示す図である。鋳込時間とは、連続鋳造を開始した事件からの経過時間を意味する。同図から、本発明の鋳片の表面温度の測定方法によれば、安定して鋳片の表面温度を測定することができたことがわかる。   5 is a diagram showing the relationship between the casting time and the measured surface temperature of the inventive example (No. 10). The casting time means the elapsed time from the case where continuous casting is started. From the figure, it can be seen that according to the method for measuring the surface temperature of the slab of the present invention, the surface temperature of the slab could be measured stably.

図6は、比較例(No.11)の鋳込時間と測定した表面温度の関係を示す図である。同図から、この場合には噴射径が20mmと小さいため冷却水の影響を受け、鋳片の表面温度の変化が大きく、正確かつ安定した鋳片の表面温度の測定ができなかったことがわかる。   6 is a graph showing the relationship between the casting time of the comparative example (No. 11) and the measured surface temperature. From this figure, it can be seen that in this case, since the spray diameter was as small as 20 mm, the surface temperature of the slab was greatly affected by the influence of cooling water, and the surface temperature of the slab could not be measured accurately and stably. .

本発明の鋳片の表面温度の測定方法によれば、連続鋳造機内の2次冷却帯で冷却中の鋳片の表面温度を長期間にわたって安定して高い精度で測定可能である。また、本発明の連続鋳造方法によれば、安定して高い精度で測定した鋳片の表面温度にもとづいて鋳造条件を制御できるため、品質に優れた鋳片を連続鋳造することができる。   According to the method for measuring the surface temperature of the slab of the present invention, the surface temperature of the slab being cooled in the secondary cooling zone in the continuous casting machine can be stably measured with high accuracy over a long period of time. In addition, according to the continuous casting method of the present invention, the casting conditions can be controlled based on the surface temperature of the slab measured stably and with high accuracy, so that a slab excellent in quality can be continuously cast.

11:アクリル板、 12:スプレーノズル、 13:スプレー水、
14:表面温度測定装置、 15:エアー、 16:カメラ、21:鋳片、
22:鋳片支持ロール、 30:表面温度測定装置、 31:放射温度計、
31a:測温ヘッド、 31b:光ファイバ、 31c:受光軸、 32:ノズル
11: Acrylic plate, 12: Spray nozzle, 13: Spray water,
14: Surface temperature measuring device, 15: Air, 16: Camera, 21: Slab,
22: slab support roll, 30: surface temperature measuring device, 31: radiation thermometer,
31a: Temperature measuring head, 31b: Optical fiber, 31c: Light receiving axis, 32: Nozzle

Claims (3)

鋳片の連続鋳造時に冷却水による鋳片の冷却を行う2次冷却帯において、表面温度測定装置により表面温度を測定する方法であって、
前記表面温度測定装置は、放射温度計と、パージ用エアーを噴射するノズルとを備えており、
前記表面温度測定装置の前記ノズルから前記鋳片の表面に向けてパージ用エアーを噴射して前記放射温度計と前記鋳片の表面との間に空気柱を形成し、この空気柱を通して前記鋳片の表面からの熱放射光を前記放射温度計で検出し、鋳片の表面温度を測定する際、
前記放射温度計の受光軸が、前記ノズルから噴射されるパージ用エアーにより形成される空気柱内を、前記放射温度計から前記鋳片の表面に渡って通るように、前記放射温度計を配置し、
前記表面温度測定装置の前記ノズルの口径を10〜18mmとし、前記空気柱の前記鋳片表面に接する部分における直径を30〜40mmとすることを特徴とする鋳片の表面温度の測定方法。
In the secondary cooling zone in which the slab is cooled with cooling water during continuous casting of the slab, the surface temperature is measured by a surface temperature measuring device,
The surface temperature measuring device includes a radiation thermometer and a nozzle for injecting purge air,
Purge air is jetted from the nozzle of the surface temperature measuring device toward the surface of the slab to form an air column between the radiation thermometer and the surface of the slab, and the casting is passed through the air column. When the thermal radiation light from the surface of the piece is detected by the radiation thermometer and the surface temperature of the slab is measured,
The radiation thermometer is arranged so that the light receiving axis of the radiation thermometer passes through the air column formed by the purge air injected from the nozzle from the radiation thermometer to the surface of the slab. And
A method for measuring the surface temperature of a slab, wherein the nozzle of the surface temperature measuring device has a diameter of 10 to 18 mm and a diameter of a portion of the air column in contact with the slab surface of 30 to 40 mm.
前記パージ用エアーの流量を、前記放射温度計と前記鋳片の温度を測定する部分との距離に応じて決定することを特徴とする請求項1に記載の鋳片の表面温度の測定方法。   The method for measuring the surface temperature of a slab according to claim 1, wherein the flow rate of the purge air is determined in accordance with a distance between the radiation thermometer and a portion at which the temperature of the slab is measured. 鋳型と、鉛直方向に鋳造された鋳片を湾曲させる曲げ部と、湾曲した鋳片を平板に矯正し水平方向に搬送する水平部とを有する連続鋳造機を用いた鋳片の連続鋳造方法であって、
前記鋳型から前記水平部までの2次冷却帯の少なくとも1箇所で、請求項1または2に記載の鋳片の表面温度の測定方法で前記鋳片の表面温度を測定し、
測定した温度に基づいて前記2次冷却帯での冷却水量を調整することを特徴とする鋳片の連続鋳造方法。
In a continuous casting method of a slab using a continuous casting machine having a mold, a bending part for bending the slab cast in the vertical direction, and a horizontal part for correcting the curved slab into a flat plate and transporting it horizontally. There,
The surface temperature of the slab is measured by the method for measuring the surface temperature of the slab according to claim 1 or 2, in at least one place of a secondary cooling zone from the mold to the horizontal portion,
A method for continuously casting a slab comprising adjusting the amount of cooling water in the secondary cooling zone based on the measured temperature.
JP2012116771A 2012-05-22 2012-05-22 Method for measuring surface temperature of continuous cast slab and continuous casting method using this method Active JP5915374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116771A JP5915374B2 (en) 2012-05-22 2012-05-22 Method for measuring surface temperature of continuous cast slab and continuous casting method using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116771A JP5915374B2 (en) 2012-05-22 2012-05-22 Method for measuring surface temperature of continuous cast slab and continuous casting method using this method

Publications (2)

Publication Number Publication Date
JP2013240824A JP2013240824A (en) 2013-12-05
JP5915374B2 true JP5915374B2 (en) 2016-05-11

Family

ID=49842245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116771A Active JP5915374B2 (en) 2012-05-22 2012-05-22 Method for measuring surface temperature of continuous cast slab and continuous casting method using this method

Country Status (1)

Country Link
JP (1) JP5915374B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891531B1 (en) 2012-08-28 2017-11-15 Nippon Steel & Sumitomo Metal Corporation Method and device for measuring surface temperature of strand
JP6281325B2 (en) * 2014-03-06 2018-02-21 新日鐵住金株式会社 Steel continuous casting method
JP6883096B2 (en) * 2016-10-18 2021-06-09 江陰興澄特種鋼鉄有限公司Jiangyin Xing Cheng Special Steel Works Co.,Ltd Gear rack steel sheet with a maximum thickness of 177.8 mm manufactured from continuously cast steel pieces and a method for manufacturing the same.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233902Y2 (en) * 1972-02-26 1977-08-02
JP5333933B2 (en) * 2009-09-01 2013-11-06 新日鐵住金株式会社 Surface temperature measuring method and steel material manufacturing method
JP2012071330A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Method for measuring surface temperature of cast piece within continuous casting machine

Also Published As

Publication number Publication date
JP2013240824A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5459459B1 (en) Method and apparatus for measuring surface temperature of slab
JP5915374B2 (en) Method for measuring surface temperature of continuous cast slab and continuous casting method using this method
JP2010069496A (en) Secondary cooling apparatus and method in continuous casting
CN106735035B (en) A method of reducing slab crackle
JP6107966B2 (en) Wire rod cooling device and wire rod cooling method
JP2009195959A (en) Method and device for surface temperature measurement of cast slab on continuous caster
JP2012071330A (en) Method for measuring surface temperature of cast piece within continuous casting machine
JP5098394B2 (en) Continuous casting slab manufacturing method, continuous casting machine
JP2015098033A (en) Roll gap management method for continuous casting machine
JP5703828B2 (en) Method for measuring the slab surface temperature in a continuous casting machine
US11648607B2 (en) Continuous casting method of cast slab
JP2009125770A (en) Method for producing continuously cast slab and continuous caster
JP2009255127A (en) Method and equipment for cooling of continuously cast slab
JP5703827B2 (en) Method for measuring the slab surface temperature in a continuous casting machine
JP2013154369A (en) Continuous casting method
JP2011053047A (en) Surface temperature measuring method, surface temperature measuring apparatus, and steel manufacturing method
JP2009214150A (en) Surface defect-determining method for continuously cast slab and method for producing the same
CN208019158U (en) A kind of roughing heat detecting device
JP4151022B2 (en) Steel surface temperature measuring method, surface temperature measuring device, and steel manufacturing method
JP2009160620A (en) Short side shape measuring device for continuously cast slab
JP5239852B2 (en) Manufacturing method of hot-rolled steel strip
JP6281325B2 (en) Steel continuous casting method
JP2012170995A (en) Measuring method of cast slab surface temperature in continuous casting machine
KR102098504B1 (en) Apparatus for measuring temperature
JP2014217849A (en) Method of detecting casting piece surface defect and facility abnormality of continuous casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5915374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350