JP2012170995A - Measuring method of cast slab surface temperature in continuous casting machine - Google Patents

Measuring method of cast slab surface temperature in continuous casting machine Download PDF

Info

Publication number
JP2012170995A
JP2012170995A JP2011036946A JP2011036946A JP2012170995A JP 2012170995 A JP2012170995 A JP 2012170995A JP 2011036946 A JP2011036946 A JP 2011036946A JP 2011036946 A JP2011036946 A JP 2011036946A JP 2012170995 A JP2012170995 A JP 2012170995A
Authority
JP
Japan
Prior art keywords
slab
surface temperature
infrared
temperature measuring
sensitive surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011036946A
Other languages
Japanese (ja)
Inventor
Makoto Nakaseko
誠 中世古
Michiya Komaki
倫哉 駒城
Takeshi Kagoshima
毅 鹿子島
Genzo Murayama
元三 村山
Kyoji Watanabe
恭二 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011036946A priority Critical patent/JP2012170995A/en
Publication of JP2012170995A publication Critical patent/JP2012170995A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To precisely measure the surface temperature of a cast slab while accurately understanding an end part of the cast slab being cast, without affected by a secondary cooling water remaining on the surface of cast slab, the steam generated from the secondary cooling water, and the white plume resulting from condensation of the steam.SOLUTION: The measuring method of surface temperature of a cast slab measures the surface temperature of the cast slab 10 which is being continuously cast, using an infrared sensing type surface temperature measuring instrument 13. The infrared sensing type surface temperature measuring instrument is used in which the measurement direction of radiation energy from the surface of cast slab is tilted from the vertical line on the surface of cast slab by a range of 1-60° along cast slab width direction. The distance between a condenser lens of the infrared sensing type surface temperature measuring instrument and the surface of cast slab is 100-800 mm. The gas of 10 NL/mil or more is jetted toward the cast slab from the infrared sensing type surface temperature measuring instrument. The gas excludes the secondary cooling water and vapor from between the condenser lens and the surface of cast slab as well as from a temperature-measurement point of the cast slab.

Description

本発明は、連続鋳造機で鋳造されている鋳片の表面温度を赤外線感知式表面温度測定器によって測定する方法に関する。   The present invention relates to a method for measuring the surface temperature of a slab cast by a continuous casting machine using an infrared-sensitive surface temperature measuring device.

鋼の連続鋳造では、取鍋内の溶鋼を一旦タンディッシュに注入し、タンディッシュ内に所定量の溶鋼を滞在させた状態で、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した浸漬ノズルを介して鋳型に注入している。鋳型内に注入された溶鋼は冷却されて鋳型との接触面に凝固シェルを形成し、この凝固シェルを外殻とし、内部に未凝固溶鋼を有する鋳片は、鋳型下方に設けられた二次冷却帯において、鋳片表面に噴射される冷却水(「二次冷却水」ともいう)によって冷却されながら鋳型下方に連続的に引き抜かれ、やがて中心部までの凝固が完了する。中心部まで凝固の完了した鋳片を所定の長さに切断して、圧延用素材である鋳片が製造されている。   In continuous casting of steel, the molten steel in the ladle is once poured into the tundish, and a predetermined amount of molten steel stays in the tundish, and the immersion steel is placed in the tundish at the bottom of the tundish. Through the mold. The molten steel injected into the mold is cooled to form a solidified shell on the contact surface with the mold, and this slab with the solidified shell as the outer shell and the unsolidified molten steel inside is a secondary provided below the mold. In the cooling zone, while being cooled by cooling water (also referred to as “secondary cooling water”) sprayed on the surface of the slab, it is continuously drawn below the mold, and eventually solidification to the center is completed. A slab which is a raw material for rolling is manufactured by cutting a slab that has been solidified to the center to a predetermined length.

二次冷却帯において、鋳造中の鋳片の表面温度を目標範囲に維持することは、鋳片品質確保の基本的な手段であり、鋳片の表面から放射される放射光のエネルギーを測定して鋳片表面温度を測定する放射温度計などの表面温度測定器を用いて鋳造中の鋳片の表面温度を測定することが、従来から行われてきた(例えば、特許文献1を参照)。但し、二次冷却帯には、溶鋼静圧による鋳片の膨らみを抑制するための鋳片支持ロールが鋳造方向に150〜400mmの間隔で配置されていて、隣り合うロールの間隔が狭い上に、二次冷却水が鋳片表面に残留したり、蒸気が発生したりすることで、表面温度の測定精度は高くはなかった。また、長期間に亘って安定して測定することも困難であった。   Maintaining the surface temperature of the slab during casting within the target range in the secondary cooling zone is a basic means of ensuring the quality of the slab and measures the energy of the emitted light emitted from the surface of the slab. It has been conventionally performed to measure the surface temperature of a slab during casting using a surface temperature measuring device such as a radiation thermometer that measures the slab surface temperature (see, for example, Patent Document 1). However, in the secondary cooling zone, slab support rolls for suppressing swell of the slabs due to the molten steel static pressure are arranged at intervals of 150 to 400 mm in the casting direction, and the interval between adjacent rolls is narrow. The secondary cooling water remained on the surface of the slab or steam was generated, so that the measurement accuracy of the surface temperature was not high. It was also difficult to measure stably over a long period of time.

しかし、近年、増産や高機能材料の要望に伴い、ダイナミック制御やアクティブ制御を可能とする、高機能を有する連続鋳造機が求められている。そのためにも連続鋳造機内で精度良く且つ安定して鋳片表面の測温を行うことが重要となっている。また、増産を目的として鋳片の鋳造速度を上昇すると、鋳片コーナー部に割れが発生しやすく、鋳片コーナー部の温度管理が重要になっている。このためにも連続鋳造機内で鋳片幅方向に表面温度を二次元的に正確に把握することが重要になっている。   However, in recent years, with the demand for increased production and highly functional materials, there is a demand for a continuous casting machine having high functionality that enables dynamic control and active control. Therefore, it is important to measure the temperature of the slab surface accurately and stably in a continuous casting machine. Further, if the casting speed of the slab is increased for the purpose of increasing production, cracks are likely to occur at the corner of the slab, and temperature management at the corner of the slab becomes important. For this reason, it is important to accurately grasp the surface temperature two-dimensionally in the slab width direction in the continuous casting machine.

冷却中の鋼材表面温度を放射温度計によって測定する場合に、鋼材の表面に存在する冷却水などの処理液によって放射エネルギーが吸収されることによる誤差を解決して測定する方法として、特許文献2及び特許文献3が提案されている。特許文献2及び特許文献3に提案される測定方法は、被測温鋼材と放射温度計との間に光導波路としての水柱を形成し、当該水柱を介して被測温鋼材表面からの放射光を放射温度計で検出して、被測温鋼材の表面温度を測定するという方法である。   Patent Document 2 discloses a method for solving an error caused by absorption of radiant energy by a treatment liquid such as cooling water present on the surface of a steel material when measuring the surface temperature of the steel material during cooling with a radiation thermometer. And patent document 3 is proposed. In the measurement methods proposed in Patent Document 2 and Patent Document 3, a water column as an optical waveguide is formed between a temperature-measured steel material and a radiation thermometer, and the light emitted from the surface of the temperature-measured steel material through the water column. Is detected by a radiation thermometer, and the surface temperature of the steel material to be measured is measured.

また、連続鋳造中の鋳片表面温度を測定する装置として、特許文献4には、鋳片表面に対向する開口をその先端に有し、鋳片表面からの放射光をその内部に取り込むライトガイド及びこれの基礎に配された集光レンズからなる集光部と、該集光部に光ファイバーを介して接続し、前記集光レンズにより集光された放射光を鋳片表面温度に関連する電気信号に変換する光電変換部と、前記ライトガイドの内部にガスを吹き込み、前記開口から噴出せしめるパージ手段と、を有する表面温度測定器が提案され、また、特許文献5には、鋳片表面温度を検出するように適応される温度センサーと、該温度センサーに接続され、温度センサーで監視される鋳片表面の残留物を除外・排斥するためのパージ・ガスを供給するパージ・ガス系統と、を備えた表面温度測定器が提案されている。   In addition, as a device for measuring the slab surface temperature during continuous casting, Patent Document 4 discloses a light guide that has an opening at the tip thereof that faces the slab surface and takes in the radiated light from the slab surface. And a condensing unit comprising a condensing lens disposed on the basis thereof, and an electric light connected to the condensing unit via an optical fiber, and the radiated light collected by the condensing lens is related to the slab surface temperature. A surface temperature measuring device having a photoelectric conversion unit for converting into a signal and a purging unit for blowing gas into the light guide and ejecting the gas from the opening is proposed. A temperature sensor adapted to detect the gas, a purge gas system connected to the temperature sensor and supplying a purge gas for removing and rejecting slab surface residues monitored by the temperature sensor; With Surface temperature measuring device has been proposed.

実開昭58−49236号公報Japanese Utility Model Publication No. 58-49236 特開昭59−100224号公報Japanese Patent Application Laid-Open No. 59-1000022 特開2008−164626号公報JP 2008-164626 A 特開平4−162949号公報JP-A-4-162949 特開2007−296583号公報JP 2007-296583 A

連続鋳造機内で赤外線感知式表面温度測定器によって鋳片の表面温度を非接触で測定する場合には、以下の事項が問題となる。即ち、鋳片表面上に残留する二次冷却水は、放射光を屈折させるために正確な温度測定の妨げとなる。また、鋳片との熱交換によって二次冷却水から生成される水蒸気は、赤外線を吸収するために、これも温度測定の妨げとなる。また更に、連続鋳造機の二次冷却帯での鋳片の冷却中には白い水煙のようなものが発生するが、これは水蒸気ではなくて、空気中のチリや埃を凝縮核として水蒸気が凝縮したもので、ここでは「白水煙」と称するが、これも光を散乱させるので、赤外線感知式表面温度測定器による温度測定の妨げとなる。   When the surface temperature of a slab is measured in a non-contact manner using an infrared-sensitive surface temperature measuring instrument in a continuous casting machine, the following matters become a problem. That is, the secondary cooling water remaining on the surface of the slab refracts the radiated light, which hinders accurate temperature measurement. Moreover, since the water vapor | steam produced | generated from secondary cooling water by heat exchange with a slab absorbs infrared rays, this also becomes a hindrance to temperature measurement. Furthermore, white smoky smoke is generated during the cooling of the slab in the secondary cooling zone of the continuous casting machine. This is not water vapor, but water vapor is caused by dust and dust in the air as condensation nuclei. Although it is condensed and is referred to as “white water smoke” here, it also scatters light, which hinders temperature measurement by an infrared sensitive surface temperature measuring device.

また、赤外線感知式表面温度測定器を鋳片の幅方向に往復移動させながら鋳片幅方向の温度分布を測定する際には、鋳片端部(長辺面と短辺面とのコーナー部)の表面温度が低く、また、表面温度測定器は鋳片端部を離れても鋳片短辺面からの放射エネルギーを検出し、鋳片の存在しない領域と鋳片端部との区別が困難で、鋳片端部の表面温度を正確に把握することができない場合、つまり、鋳片表面温度の分布を正確に把握できない場合が発生する。   Also, when measuring the temperature distribution in the slab width direction while reciprocating the infrared sensitive surface temperature measuring instrument in the slab width direction, the slab end (the corner between the long side surface and the short side surface) The surface temperature is low, and the surface temperature measuring device detects the radiant energy from the short side of the slab even if it leaves the slab end, and it is difficult to distinguish the area where the slab does not exist and the slab end, When the surface temperature of the slab end cannot be accurately grasped, that is, when the distribution of the slab surface temperature cannot be accurately grasped.

このような問題を抱える連続鋳造機での鋳片表面温度の測定手段として、前記特許文献2〜5を検証すれば、水柱を介して測定する特許文献2、3は、二次冷却に加えて更に水中によって鋳片表面を冷却することになり、鋳片表面温度の不均一化を増大させる原因となることから鋳造中の鋳片の表面温度測定には適切ではない。また、鋳片幅方向で二次元に測定することも困難である。   As a means for measuring the slab surface temperature in a continuous casting machine having such a problem, if Patent Documents 2 to 5 are verified, Patent Documents 2 and 3 that measure through a water column are added to secondary cooling. Furthermore, since the surface of the slab is cooled by water, and this causes an increase in unevenness of the slab surface temperature, it is not appropriate for measuring the surface temperature of the slab during casting. It is also difficult to measure two-dimensionally in the slab width direction.

特許文献4、5は、パージ用ガスを噴射して鋳片表面の残留水や蒸気を除外・排斥しているが、確実なパージを行うための空気の流量、並びに、精度の高い測定を可能とするための鋳片と表面温度測定器との距離が開示されていない。パージ用空気の流量が不十分であると、鋳片表面の二次冷却水を除外することは不可能であるし、また、表面温度測定器が鋳片から離れすぎていると、パージしているとはいえども蒸気の影響を受けやすく、また、水蒸気の凝縮した白水煙によって放射光が表面温度測定器と鋳片との間で散乱して測定ができなくなる虞がある。また更に、特許文献4、5は、鋳片端部の判定方法は記載していない。   In Patent Documents 4 and 5, residual gas and steam on the surface of the slab are excluded and discharged by injecting a purge gas, but it is possible to measure the air flow rate and high accuracy for reliable purging. The distance between the slab and the surface temperature measuring instrument is not disclosed. If the flow rate of the purge air is insufficient, it is impossible to exclude the secondary cooling water on the surface of the slab, and if the surface temperature measuring instrument is too far from the slab, it will be purged. However, it is easily affected by steam, and the white water smoke condensed with water vapor may scatter the radiated light between the surface temperature measuring instrument and the slab, making measurement impossible. Furthermore, Patent Documents 4 and 5 do not describe a method for determining a slab end.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造機で鋳造されている鋳片の端部を正確に把握しながら、鋳片表面に残留する二次冷却水、二次冷却水から生成される水蒸気及び水蒸気の凝縮した白水煙の影響を受けることなく、鋳片の表面温度を赤外線感知式表面温度測定器によって精度良く測定する方法を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to provide secondary cooling water remaining on the surface of the slab while accurately grasping the end of the slab cast by a continuous casting machine. Another object of the present invention is to provide a method for accurately measuring the surface temperature of a slab with an infrared-sensitive surface temperature measuring instrument without being affected by water vapor generated from secondary cooling water and white water smoke condensed with water vapor.

上記課題を解決するための本発明の要旨は以下のとおりである。
(1) 赤外線感知式表面温度測定器によって連続鋳造中の鋳片の表面温度を測定する、連続鋳造機内での鋳片表面温度の測定方法であって、赤外線感知式表面温度測定器の鋳片表面からの放射エネルギー測定方向が鋳片表面の垂直線に対して鋳片幅方向に1〜60度の範囲で傾斜している赤外線感知式表面温度測定器を用い、前記赤外線感知式表面温度測定器の集光レンズと鋳片表面との距離を100〜800mmの範囲内とし、且つ、前記赤外線感知式表面温度測定器から鋳片に向かって10NL/min以上の気体を噴射して該気体によって前記集光レンズと鋳片表面との間及び鋳片の被測温箇所から二次冷却水及び蒸気を排斥しながら、前記赤外線感知式表面温度測定器で鋳片の表面温度を測定することを特徴とする、連続鋳造機内での鋳片表面温度の測定方法。
(2) 前記赤外線感知式表面温度測定器は、それぞれ鋳片幅方向の反対側に傾斜している2つの放射エネルギー測定方向を有する赤外線感知式表面温度測定器であることを特徴とする、上記(1)に記載の連続鋳造機内での鋳片表面温度の測定方法。
(3) 前記赤外線感知式表面温度測定器を鋳片の幅方向で往復移動させて鋳片の表面温度を測定し、得られた鋳片幅方向の温度測定値を鋳片幅方向距離または測定時間で微分し、その微分値の極大値の位置を鋳片の端部と判定して鋳片の表面温度分布を測定することを特徴とする、上記(1)または上記(2)に記載の連続鋳造機内での鋳片表面温度の測定方法。
The gist of the present invention for solving the above problems is as follows.
(1) A method for measuring a slab surface temperature in a continuous casting machine, wherein the surface temperature of a slab during continuous casting is measured by an infrared-sensitive surface temperature measuring instrument, the slab of an infrared-sensitive surface temperature measuring instrument Infrared sensitive surface temperature measurement using an infrared sensitive surface temperature measuring instrument whose radiant energy measurement direction from the surface is inclined in the range of 1 to 60 degrees in the slab width direction with respect to the vertical line of the slab surface The distance between the condenser lens and the slab surface is within a range of 100 to 800 mm, and a gas of 10 NL / min or more is jetted from the infrared-sensitive surface temperature measuring instrument toward the slab. Measuring the surface temperature of the slab with the infrared-sensitive surface temperature measuring device while discharging secondary cooling water and steam between the condenser lens and the surface of the slab and from the temperature-measured portion of the slab. In the continuous casting machine Of measuring the slab surface temperature of steel.
(2) The infrared-sensitive surface temperature measuring instrument is an infrared-sensitive surface temperature measuring instrument having two radiant energy measuring directions each inclined to the opposite side of the slab width direction. The measuring method of the slab surface temperature in the continuous casting machine as described in (1).
(3) The surface temperature of the slab is measured by reciprocating the infrared-sensitive surface temperature measuring instrument in the width direction of the slab, and the obtained temperature measurement value in the slab width direction is measured as a distance in the slab width direction or measured. Differentiating with time, determining the position of the maximum value of the differential value as the end of the slab and measuring the surface temperature distribution of the slab, as described in (1) or (2) above A method for measuring the slab surface temperature in a continuous casting machine.

本発明によれば、赤外線感知式表面温度測定器の鋳片表面からの放射エネルギー測定方向が鋳片表面の垂直線に対して鋳片幅方向に1〜60度の範囲で傾斜している赤外線感知式表面温度測定器を用いるので、鋳片幅の範囲外から鋳片に向かって測温したときには鋳片短辺面からの放射エネルギーが検出され、これによって、周囲に比較して相対的に表面温度の低い鋳片端部を確実に把握することができる。また、赤外線感知式表面温度測定器の集光レンズと鋳片表面との距離を100〜800mmの範囲内とし、且つ、前記表面温度測定器から鋳片に向かって10NL/min以上の気体を噴射しつつ鋳片表面温度を測定するので、鋳片表面に残留する二次冷却水、二次冷却水から生成される水蒸気及び水蒸気の凝縮した白水煙の影響を受けることなく、精度良く且つ長期間に亘って安定して連続鋳造中の鋳片の表面温度を測定することが実現される。また更に、精度良く且つ長期間に亘って安定して鋳片表面温度を測定することが実現されることから、鋳片の表面欠陥の発生防止や表面温度計を利用したダイナミック制御が可能になるという副次的効果も発現する。   According to the present invention, an infrared ray whose radiant energy measurement direction from the slab surface of the infrared-sensitive surface temperature measuring device is inclined in the range of 1 to 60 degrees in the slab width direction with respect to the vertical line of the slab surface. Since a sensor-type surface temperature measuring device is used, when the temperature is measured from outside the range of the slab width toward the slab, the radiant energy from the short side of the slab is detected. The end of the slab with a low surface temperature can be reliably grasped. Further, the distance between the condensing lens of the infrared-sensitive surface temperature measuring instrument and the slab surface is set within a range of 100 to 800 mm, and a gas of 10 NL / min or more is jetted from the surface temperature measuring instrument toward the slab. However, since the surface temperature of the slab is measured, the secondary cooling water remaining on the surface of the slab, water vapor generated from the secondary cooling water, and white water smoke condensed with water vapor are not affected by accuracy and for a long time. Thus, it is possible to stably measure the surface temperature of the slab during continuous casting. Furthermore, since it is possible to measure the slab surface temperature accurately and stably over a long period of time, it is possible to prevent the occurrence of slab surface defects and to perform dynamic control using a surface thermometer. The secondary effect is also expressed.

本発明が適用される垂直曲げ型スラブ連続鋳造設備の一例の概略図である。It is the schematic of an example of the vertical bending type slab continuous casting installation with which this invention is applied. 図1に示す赤外線感知式表面温度測定器の概略図である。FIG. 2 is a schematic view of the infrared sensitive surface temperature measuring device shown in FIG. 1. 集光レンズの放射エネルギー測定方向を鋳片表面の垂直線に対して鋳片幅方向に傾斜させたときに測定される鋳片表面温度の測定結果の例を示す図である。It is a figure which shows the example of the measurement result of the slab surface temperature measured when the radiant energy measurement direction of a condensing lens is made to incline in the slab width direction with respect to the vertical line of a slab surface. 本発明で使用する赤外線感知式表面温度測定器の他の形態の概略図である。It is the schematic of the other form of the infrared sensitive surface temperature measuring device used by this invention. 水蒸気層を通過した赤外線の吸収割合と赤外線の波長との関係を示す図である。It is a figure which shows the relationship between the absorption ratio of the infrared rays which passed the water vapor layer, and the wavelength of infrared rays. 表面温度の測定値と、この温度測定値を測定時間で微分した結果と、を対比して示す図である。It is a figure which contrasts and shows the measured value of surface temperature, and the result of differentiating this measured temperature value by measuring time. 本発明例1において、赤外線感知式表面温度測定器を鋳片幅方向に移動させたときに得られた温度測定値を示す図である。In Example 1 of this invention, it is a figure which shows the temperature measurement value obtained when the infrared sensitive surface temperature measuring device was moved to the slab width direction. 図7に示す温度測定値を鋳片幅方向距離で微分した結果を示す図である。It is a figure which shows the result of differentiating the temperature measurement value shown in FIG. 7 by the slab width direction distance. 本発明例2において、赤外線感知式表面温度測定器を鋳片幅方向に移動させたときに得られた温度測定値を示す図である。In Example 2 of this invention, it is a figure which shows the temperature measurement value obtained when the infrared sensitive surface temperature measuring device was moved to the slab width direction. 鋳片の表面温度分布の測定結果を、本発明例2と比較例1とで対比して示す図である。It is a figure which compares and shows the measurement result of the surface temperature distribution of slab by the example 2 of this invention, and the comparative example 1. FIG. 鋳片が存在しない範囲まで測温したときの測定結果を、本発明例2と比較例2とで対比して示す図である。It is a figure which compares and shows the measurement result when measuring temperature to the range where a slab does not exist in this invention example 2 and the comparative example 2. FIG.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明が適用される垂直曲げ型のスラブ連続鋳造設備の一例の概略図、図2は、図1に示す赤外線感知式表面温度測定器13の概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view of an example of a vertical bending type slab continuous casting equipment to which the present invention is applied, and FIG. 2 is a schematic view of an infrared sensitive surface temperature measuring device 13 shown in FIG.

図1に示すように、スラブ連続鋳造機1には、溶鋼9を注入して凝固させ、鋳片10の外殻形状を形成するための鋳型5が設置され、この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼9を鋳型5に中継供給するためのタンディッシュ2が設置されている。一方、鋳型5の下方には、サポートロール、ガイドロール及びピンチロールからなる複数対の鋳片支持ロール6が配置されている。鋳造方向に隣り合う鋳片支持ロール6の間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水(「二次冷却水」ともいう)によって鋳片10は引き抜かれながら冷却されるようになっている。   As shown in FIG. 1, a slab continuous casting machine 1 is provided with a mold 5 for injecting and solidifying molten steel 9 to form an outer shell shape of a slab 10, and a predetermined position above the mold 5. Is provided with a tundish 2 for relaying and supplying molten steel 9 supplied from a ladle (not shown) to the mold 5. On the other hand, a plurality of pairs of slab support rolls 6 including a support roll, a guide roll, and a pinch roll are arranged below the mold 5. A secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged is formed in the gap between the slab support rolls 6 adjacent in the casting direction. The slab 10 is cooled while being drawn out by cooling water sprayed from the nozzle (also referred to as “secondary cooling water”).

タンディッシュ2の底部には、溶鋼9の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、浸漬ノズル4が設置されている。また、鋳片支持ロール6の下流側には、鋳造された鋳片10を搬送するための複数の搬送ロール7が設置されており、この搬送ロール7の上方には、鋳造される鋳片10から所定の長さの鋳片10aを切断するためのガス切断機8が配置されている。   A sliding nozzle 3 for adjusting the flow rate of the molten steel 9 is installed at the bottom of the tundish 2, and an immersion nozzle 4 is installed on the lower surface of the sliding nozzle 3. A plurality of transport rolls 7 for transporting the cast slab 10 are installed on the downstream side of the slab support roll 6. Above the transport roll 7, the cast slab 10 to be cast is provided. A gas cutting machine 8 for cutting a slab 10a having a predetermined length is disposed.

鋳片10の上面側であって、二次冷却帯の隣り合う鋳片支持ロール6の間隙には、鋳片10の表面温度を測定するための赤外線感知式表面温度測定器13が設置されている。この赤外線感知式表面温度測定器13は、図2に示すように、セグメントフレーム20に固定された支持台座22に保持される往復スライダー21に対して移動可能に配置される変換器14と、変換器14と接続する光ファイバー15と、光ファイバー15の他端に接続する集光レンズ16と、上端が変換器14と密着し、光ファイバー15及び集光レンズ16を覆い、下端が開放した保護カバー17と、を備えている。保護カバー17の上部には、パージ用気体を導入するためのガス導入管18が設置されている。   An infrared-sensitive surface temperature measuring device 13 for measuring the surface temperature of the slab 10 is installed on the upper surface side of the slab 10 and in the gap between adjacent slab support rolls 6 in the secondary cooling zone. Yes. As shown in FIG. 2, the infrared-sensitive surface temperature measuring device 13 includes a converter 14 that is movably disposed with respect to a reciprocating slider 21 that is held by a support base 22 fixed to the segment frame 20, and a conversion device. An optical fiber 15 connected to the optical device 14, a condensing lens 16 connected to the other end of the optical fiber 15, a protective cover 17 whose upper end is in close contact with the converter 14, covers the optical fiber 15 and the condensing lens 16, and whose lower end is open It is equipped with. A gas introduction pipe 18 for introducing a purge gas is installed on the protective cover 17.

即ち、鋳片10の表面から放射される放射光を集光レンズ16で集め、集められた放射光は光ファイバー15を経由して変換器14に送られ、変換器14に送られた放射光は、変換器14に配置される、例えばSi半導体などからなる放射光検知素子によってその強度が検出され、検出強度に基づいて鋳片表面温度に変換され、かくして鋳片10の表面温度が測定されるようになっている。保護カバー17は、光ファイバー15及び集光レンズ16を保護すると同時に、ガス導入管18から導入されたパージ用気体を鋳片表面に向けて噴出する役割を担うものである。   That is, the radiated light emitted from the surface of the slab 10 is collected by the condenser lens 16, and the collected radiated light is sent to the converter 14 via the optical fiber 15, and the radiated light sent to the converter 14 is The intensity is detected by a synchrotron radiation detection element made of, for example, a Si semiconductor, which is arranged in the converter 14, and is converted into a slab surface temperature based on the detected intensity, and thus the surface temperature of the slab 10 is measured. It is like that. The protective cover 17 protects the optical fiber 15 and the condensing lens 16 and at the same time plays a role of ejecting the purge gas introduced from the gas introduction pipe 18 toward the slab surface.

この赤外線感知式表面温度測定器13は、往復スライダー21を左右に自走することで、鋳片10の幅方向全面の表面温度を測定可能となっている。また、この赤外線感知式表面温度測定器13は、二次冷却帯の鋳造方向任意の位置に取り付けられるように構成されている。尚、図2では、鋳片10を支持するセグメントとして、鋳片10の上面側のみを表示しているが、鋳片10の下面側も同様の構造になっている。また、図2において、符号19は、上面側のセグメントフレーム20と下面側のセグメントフレーム(図示せず)とを所定の間隔で連結するためのタイロッドである。   The infrared sensitive surface temperature measuring device 13 can measure the surface temperature of the entire width direction of the slab 10 by moving the reciprocating slider 21 left and right. The infrared sensitive surface temperature measuring device 13 is configured to be attached at an arbitrary position in the casting direction of the secondary cooling zone. In FIG. 2, only the upper surface side of the slab 10 is shown as a segment for supporting the slab 10, but the lower surface side of the slab 10 has a similar structure. In FIG. 2, reference numeral 19 denotes a tie rod for connecting the upper segment frame 20 and the lower segment frame (not shown) at a predetermined interval.

本発明においては、集光レンズ16と鋳片10の表面との距離を100〜800mmの範囲内とする。これは、二次冷却によって生じる白水煙(空気中のチリや埃を凝縮核として水蒸気が凝縮したもの)を避けるためである。鋼の連続鋳造では1500℃以上の溶鋼を取り扱っており、連続鋳造機内での鋳片10の表面温度は600〜1100℃になる。一方、白水煙は、二次冷却によって生成した水蒸気が、大気圧下で100℃以下となってチリや埃などを凝縮核として凝縮するものであるので、大気温度が100℃以上であれば凝縮せず、白水煙は発生しない。鋳片10のサイズにもよるが、スラブ幅が900mm以上の一般的なスラブを鋳造するスラブ連続鋳造機では、鋳片表面から800mm以内であれば大気温度は殆ど100℃以上であることが分った。これに基づき集光レンズ16と鋳片表面との距離の上限を800mmとした。一方、集光レンズ16と鋳片表面との距離を100mm以上とする理由は、鋳片10からの熱により、集光レンズ16や光ファイバー15などが溶解・劣化することを防止するためである。   In the present invention, the distance between the condenser lens 16 and the surface of the slab 10 is set within a range of 100 to 800 mm. This is in order to avoid white water smoke (those in which water vapor is condensed using dust and dust in the air as condensation nuclei) generated by secondary cooling. In continuous casting of steel, molten steel of 1500 ° C. or higher is handled, and the surface temperature of the slab 10 in the continuous casting machine is 600 to 1100 ° C. On the other hand, white water smoke is condensed when water vapor generated by secondary cooling becomes 100 ° C or lower under atmospheric pressure and dust or dust is condensed as condensation nuclei. No white water smoke is generated. Although it depends on the size of the slab 10, in a slab continuous casting machine that casts a general slab having a slab width of 900 mm or more, the atmospheric temperature is almost 100 ° C. or more if it is within 800 mm from the slab surface. It was. Based on this, the upper limit of the distance between the condenser lens 16 and the slab surface was set to 800 mm. On the other hand, the reason why the distance between the condensing lens 16 and the slab surface is 100 mm or more is to prevent the condensing lens 16 and the optical fiber 15 from being melted and deteriorated by heat from the slab 10.

また、本発明においては、保護カバー17から噴出するパージ用気体の流量を10NL/min以上とする。これは、集光レンズ16と鋳片表面との間の蒸気を除外・排斥するのみならず、被測温箇所である鋳片表面に残留する冷却水及び鋳片表面から剥がれたスケールなどを確実に吹き飛ばすためである。当然、パージ用気体の流量が多ければ除外・排斥効果が高く、従って、パージ用気体の流量は50NL/min程度が最適である。   In the present invention, the flow rate of the purge gas ejected from the protective cover 17 is set to 10 NL / min or more. This not only excludes and rejects steam between the condenser lens 16 and the slab surface, but also ensures cooling water remaining on the slab surface, which is the location to be measured, and the scale peeled off from the slab surface. It is for blowing away. Naturally, if the flow rate of the purge gas is large, the effect of exclusion / rejection is high, and therefore the optimal flow rate of the purge gas is about 50 NL / min.

更に、本発明においては、集光レンズ16の軸心方向が、鋳片表面(長辺面)の垂直線Zに対して鋳片幅方向に1〜60度の範囲で傾斜している赤外線感知式表面温度測定器13を使用する。つまり、集光レンズ16の鋳片表面からの放射エネルギーの測定方向Rが、鋳片10の鋳造方向から見たときに鋳片表面の垂直線Zに対して1〜60度の範囲で傾斜している(鋳造方向から見たときに垂直線Zと測定方向Rとでなす角度が1〜60度であるという意味である)赤外線感知式表面温度測定器13を使用する。図2では、集光レンズ16は図面の右側を向いて傾斜しているが、傾斜方向はこの方向に限るものではなく、左側を向いて傾斜していても全く問題ない。但し、鋳造方向に如何に大きく傾斜していても、鋳片幅方向に1〜60度の範囲で傾斜していない限り、本発明は適用できない。   Furthermore, in the present invention, the infrared ray detection in which the axial center direction of the condenser lens 16 is inclined in the range of 1 to 60 degrees in the slab width direction with respect to the vertical line Z of the slab surface (long side surface). A formula surface temperature measuring device 13 is used. That is, the measurement direction R of the radiant energy from the slab surface of the condenser lens 16 is inclined in the range of 1 to 60 degrees with respect to the vertical line Z of the slab surface when viewed from the casting direction of the slab 10. The infrared sensitive surface temperature measuring instrument 13 is used (which means that the angle formed between the vertical line Z and the measuring direction R when viewed from the casting direction is 1 to 60 degrees). In FIG. 2, the condensing lens 16 is inclined toward the right side of the drawing, but the inclination direction is not limited to this direction, and there is no problem even if it is inclined toward the left side. However, the present invention cannot be applied no matter how much tilted in the casting direction, unless tilted in the range of 1 to 60 degrees in the slab width direction.

このように、集光レンズ16の放射エネルギー測定方向Rを、垂直線Zに対して鋳片幅方向に1〜60度の範囲で傾斜させる理由は以下による。   Thus, the reason why the radiant energy measurement direction R of the condenser lens 16 is inclined in the range of 1 to 60 degrees in the slab width direction with respect to the vertical line Z is as follows.

即ち、赤外線感知式表面温度測定器13を鋳片幅方向に往復移動させて鋳片10の表面温度を測定する際には、赤外線感知式表面温度測定器13は鋳片端部(鋳片10の長辺面と短辺面とのコーナー部)で停止せず、鋳片端部を外れた領域まで移動して温度測定を行う。これは、鋳片10の幅は連続鋳造中にも変更されるので、このような表面温度測定方法を採用する。一方、鋳片10の端部は、鋳片長辺面側と鋳片短辺面側との2方向から冷却されており、長辺面側及び短辺面側ともに、その周囲よりも相対的に表面温度が低くなる。   That is, when the surface temperature of the slab 10 is measured by reciprocating the infrared-sensitive surface temperature measuring instrument 13 in the slab width direction, the infrared-sensitive surface temperature measuring instrument 13 is provided at the end of the slab (the slab 10 The temperature is measured by moving to the area off the slab end without stopping at the corner of the long side and the short side. Since the width of the slab 10 is changed even during continuous casting, such a surface temperature measuring method is adopted. On the other hand, the end portion of the slab 10 is cooled from two directions, that is, the slab long side surface side and the slab short side surface side, and both the long side surface side and the short side surface side are relatively relative to the surroundings. The surface temperature is lowered.

赤外線感知式表面温度測定器13の放射エネルギーつまり放射光の測定方向Rを垂直線Zに対して鋳片幅方向に1〜60度の範囲で傾斜させることで、この赤外線感知式表面温度測定器13を鋳片幅方向に移動させて測温すると、測定方向Rの向く方向と赤外線感知式表面温度測定器13の移動方向とが同一の方向(図2の紙面の左側から右側への方向)のときには、鋳片10の存在しない側から鋳片側に向かって鋳片端部を通過すると、鋳片10の短辺面が測定視野に入るので、赤外線感知式表面温度測定器13は、先ず、鋳片端部よりも表面温度の高い鋳片短辺面の放射エネルギーを検出し、これにより測定温度が上昇する。その後、周囲よりも相対的に温度の低い鋳片端部を測定することで測定温度が低下し、更に鋳片端部を通りすぎると測定温度が再度上昇する。即ち、測定した表面温度分布から、鋳片端部を測定温度の極小値の位置として把握することが可能となる。   By inclining the measurement direction R of the radiant energy, that is, the radiated light of the infrared sensitive surface temperature measuring device 13 with respect to the vertical line Z in the range of 1 to 60 degrees in the slab width direction, this infrared sensitive surface temperature measuring device When the temperature is measured by moving 13 in the width direction of the slab, the direction in which the measurement direction R faces is the same as the direction in which the infrared sensitive surface temperature measuring device 13 moves (the direction from the left side to the right side of the paper surface of FIG. 2). In this case, when the slab end portion passes from the side where the slab 10 does not exist toward the slab side, the short side surface of the slab 10 enters the measurement visual field. The radiant energy of the short side surface of the slab whose surface temperature is higher than that of the one end portion is detected, thereby increasing the measurement temperature. Thereafter, the measurement temperature is lowered by measuring the end portion of the slab, which is relatively cooler than the surroundings, and the measurement temperature rises again when the end portion of the slab is passed. That is, it becomes possible to grasp the slab end as the position of the minimum value of the measured temperature from the measured surface temperature distribution.

但し、反対側の鋳片端部を通過する際は、鋳片短辺面は測定視野に入らないので、鋳片短辺面の放射エネルギーは検出されず、鋳片端部での測定温度は単調に減少し、鋳片端部を明確に判別することはできない。また、赤外線感知式表面温度測定器13を逆向き方向(測定方向Rの向く方向と赤外線感知式表面温度測定器13の移動方向とが反対方向、図2の紙面の右側から左側への方向)で移動する場合には、上記と同様に、図2の紙面の右側の鋳片短辺面の放射エネルギーは検出できず、図2の紙面の左側の鋳片短辺面の放射エネルギーが検出される。   However, when passing through the opposite slab end, the slab short side surface does not enter the measurement field of view, so the radiant energy of the slab short side surface is not detected, and the measurement temperature at the slab end is monotonous. The slab end cannot be clearly identified. Further, the infrared sensitive surface temperature measuring device 13 is directed in the reverse direction (the direction in which the measuring direction R is directed and the moving direction of the infrared sensitive surface temperature measuring device 13 is opposite, the direction from the right side to the left side in FIG. 2). 2, the radiant energy of the short side of the slab on the right side of the paper of FIG. 2 cannot be detected, and the radiant energy of the short side of the slab of the left side of FIG. 2 is detected. The

しかしながら、鋳片10の幅は、連続鋳造機の制御用計算機から変換器14に入力するなどして知ることができるので、一方の鋳片端部の位置が正確に把握できれば、他方の鋳片端部の位置も、赤外線感知式表面温度測定器13の移動速度に基づいて把握することができる。つまり、このようにして鋳片表面温度を測定することで、鋳片10の幅が正確に把握でき、鋳片10の表面温度分布を正確に求めることができる。   However, since the width of the slab 10 can be known by inputting it to the converter 14 from the control computer of the continuous casting machine, if the position of one slab end can be accurately grasped, the other slab end Can also be grasped based on the moving speed of the infrared sensitive surface temperature measuring device 13. That is, by measuring the slab surface temperature in this manner, the width of the slab 10 can be accurately grasped, and the surface temperature distribution of the slab 10 can be accurately obtained.

尚、放射光の測定方向Rを傾斜させずに垂直線Zと平行にすると、鋳片10の短辺面は赤外線感知式表面温度測定器13の測定視野に入らず、赤外線感知式表面温度測定器13が鋳片側に向かって鋳片端部を通過した際には、温度分布は単調に増加し、一方、赤外線感知式表面温度測定器13が鋳片側から鋳片端部を通過した際には、温度分布は単調に減少し、鋳片端部の位置を正確に把握することができない。ひいては、鋳片10の表面温度分布を正確に求めることができない。   If the measurement direction R of the radiated light is not inclined and is parallel to the vertical line Z, the short side surface of the slab 10 does not enter the measurement field of view of the infrared sensitive surface temperature measuring device 13 and the infrared sensitive surface temperature measurement is performed. When the vessel 13 passes the slab end toward the slab side, the temperature distribution increases monotonously, while when the infrared-sensitive surface temperature measuring instrument 13 passes the slab end from the slab side, The temperature distribution decreases monotonously, and the position of the slab end cannot be accurately grasped. As a result, the surface temperature distribution of the slab 10 cannot be obtained accurately.

集光レンズ16の鋳片表面からの放射光の測定方向Rが、垂直線Zに対して鋳片幅方向に1度未満では、鋳片短辺面が測定視野に十分に入らず、一方、垂直線Zに対して鋳片幅方向に60度を超えると、赤外線感知式表面温度測定器13は鋳片長辺面の放射光を測定するための機器であり、赤外線感知式表面温度測定器13の検出する鋳片長辺面からの放射エネルギーの強度が低下し、温度測定値の誤差が大きくなる。   If the measurement direction R of the emitted light from the slab surface of the condenser lens 16 is less than 1 degree in the slab width direction with respect to the vertical line Z, the slab short side surface does not sufficiently enter the measurement field, When it exceeds 60 degrees in the slab width direction with respect to the vertical line Z, the infrared sensitive surface temperature measuring device 13 is a device for measuring the emitted light on the long side of the slab, and the infrared sensitive surface temperature measuring device 13 The intensity of the radiant energy from the long side surface of the slab that is detected by this decreases, and the error of the temperature measurement value increases.

図3に、集光レンズ16の放射光の測定方向Rを鋳片表面(長辺面)の垂直線Zに対して鋳片幅方向に傾斜させたときに測定される鋳片表面温度の測定結果の例を示す。図3において、実線で示す表面温度の測定値が、測定方向Rの向く方向を図3の紙面の右側とした集光レンズ16を鋳片幅方向に移動させたときのデータであり、破線で示す表面温度の測定値が、測定方向Rの向く方向を図3の紙面の左側とした集光レンズ16Aを鋳片幅方向に移動させたときのデータである。図3で示すように、鋳片端部(=端部A)が、表面温度の極小値の位置として明確に検出され、他方の鋳片端部(=端部B)は、赤外線感知式表面温度測定器13の移動速度と鋳片幅とから求めることができる。   FIG. 3 shows the measurement of the slab surface temperature measured when the measurement direction R of the emitted light of the condenser lens 16 is inclined in the slab width direction with respect to the vertical line Z of the slab surface (long side surface). An example of the result is shown. In FIG. 3, the measured value of the surface temperature indicated by the solid line is data when the condensing lens 16 is moved in the slab width direction with the direction of the measurement direction R facing the right side of the paper surface of FIG. The measured values of the surface temperature shown are data when the condensing lens 16A is moved in the slab width direction with the direction in the measurement direction R facing the left side of the paper surface of FIG. As shown in FIG. 3, the slab end (= end A) is clearly detected as the position of the minimum surface temperature, and the other slab end (= end B) is infrared-sensitive surface temperature measurement. It can be obtained from the moving speed of the vessel 13 and the slab width.

また、図3からも明らかなように、放射光の測定方向Rの向く方向がそれぞれ逆向きである2つの集光レンズ16を備えた赤外線感知式表面温度測定器を用いることで、鋳片10の左右両方の端部位置を表面温度測定値から把握することが可能となる。同様に、放射光の測定方向Rの向く方向がそれぞれ逆向きである集光レンズ16を備えた赤外線感知式表面温度測定器13を鋳片幅方向に2つ並べて設置することでも、鋳片10の左右両方の端部位置を表面温度測定値から把握することが可能となる。   Further, as apparent from FIG. 3, the slab 10 is obtained by using an infrared sensitive surface temperature measuring device including two condensing lenses 16 in which the direction of the measurement direction R of the emitted light is opposite. It is possible to grasp both the left and right end positions from the measured surface temperature. Similarly, it is also possible to install two infrared-sensitive surface temperature measuring devices 13 each having a condenser lens 16 in which the measurement direction R of the emitted light is opposite to each other in the slab width direction. It is possible to grasp both the left and right end positions from the measured surface temperature.

図4に、測定方向Rの向く方向が逆向きである2つの集光レンズ16,16Aを備えた赤外線感知式表面温度測定器13Aの概略図を示す。図4において、赤外線感知式表面温度測定器13Aは、往復スライダー21に対して移動可能に配置される変換器14と、この変換器14と接続する光ファイバー15と、光ファイバー15の他端に接続する集光レンズ16と、上端が変換器14と密着し、光ファイバー15及び集光レンズ16を覆い、下端が開放した保護カバー17と、を一方の放射エネルギー測定経路として備えるとともに、前記変換器14と接続する光ファイバー15Aと、光ファイバー15Aの他端に接続する集光レンズ16Aと、上端が変換器14と密着し、光ファイバー15A及び集光レンズ16Aを覆い、下端が開放した保護カバー17Aと、を他の一つの放射エネルギー測定経路として備えている。保護カバー17の上部には、パージ用気体を導入するためのガス導入管18が設置され、また、保護カバー17Aの上部には、パージ用気体を導入するためのガス導入管18Aが設置されている。   FIG. 4 shows a schematic diagram of an infrared-sensitive surface temperature measuring device 13A including two condenser lenses 16 and 16A whose measurement direction R is opposite. In FIG. 4, the infrared-sensitive surface temperature measuring device 13 </ b> A is connected to a converter 14 movably disposed with respect to the reciprocating slider 21, an optical fiber 15 connected to the converter 14, and the other end of the optical fiber 15. The condenser lens 16 and a protective cover 17 whose upper end is in close contact with the converter 14, covers the optical fiber 15 and the condenser lens 16, and whose lower end is opened are provided as one radiant energy measurement path, and the converter 14 An optical fiber 15A to be connected, a condensing lens 16A to be connected to the other end of the optical fiber 15A, a protective cover 17A whose upper end is in close contact with the converter 14, covers the optical fiber 15A and the condensing lens 16A, and whose lower end is open, etc. As a radiant energy measurement path. A gas introduction pipe 18 for introducing a purge gas is installed on the upper part of the protective cover 17, and a gas introduction pipe 18A for introducing a purge gas is installed on the upper part of the protective cover 17A. Yes.

つまり、2つの集光レンズ16,16Aで測定される放射エネルギーが1つの変換器14に入力され、集光レンズ16,16Aの測定データから、鋳片幅方向の表面温度分布が求められるように構成されている。この場合、同一箇所の表面温度がそれぞれの集光レンズ16,16Aによって2つ測定されるが、表面温度の測定値は外乱などの影響によって真の表面温度に対して低くなることが一般的であり、従って、高い方の測定値をその部位の表面温度とすればよい。光ファイバー15A、集光レンズ16A、保護カバー17A及びガス導入管18Aは、前述した光ファイバー15、集光レンズ16、保護カバー17及びガス導入管18と同一機能を有しており、その説明は省略する。   That is, the radiant energy measured by the two condenser lenses 16 and 16A is input to one converter 14, and the surface temperature distribution in the slab width direction is obtained from the measurement data of the condenser lenses 16 and 16A. It is configured. In this case, two surface temperatures at the same location are measured by the respective condensing lenses 16 and 16A, but the measured value of the surface temperature is generally lower than the true surface temperature due to the influence of disturbance or the like. Therefore, the higher measured value may be the surface temperature of the part. The optical fiber 15A, the condensing lens 16A, the protective cover 17A, and the gas introduction pipe 18A have the same functions as the optical fiber 15, the condensing lens 16, the protective cover 17, and the gas introduction pipe 18 described above, and a description thereof is omitted. .

尚、本発明においては、赤外線感知式表面温度測定器13,13Aとして、測定波長が5.0μm以下、赤外線の吸収率が20%以下である赤外線感知式表面温度測定器を用いることが好ましい。これは、測定波長が5.0μmを超えると水蒸気の影響が強くなり、測定精度が低下し、また、赤外線の吸収率が20%以下の波長領域を使用することで、水蒸気による影響も抑制できることによる。   In the present invention, as the infrared sensitive surface temperature measuring devices 13 and 13A, it is preferable to use infrared sensitive surface temperature measuring devices having a measurement wavelength of 5.0 μm or less and an infrared absorption rate of 20% or less. This is because the influence of water vapor becomes stronger when the measurement wavelength exceeds 5.0 μm, the measurement accuracy is lowered, and the influence of water vapor can be suppressed by using a wavelength region where the infrared absorption rate is 20% or less. by.

また、測定精度をより一層高めるために、測定波長が1.33μm以下、1.5〜1.8μm、2.0〜2.4μm、3.4〜4.8μmの赤外線感知式表面温度測定器を使用することが好ましい。水蒸気層を通過した赤外線の吸収割合と赤外線の波長との関係を図5に示す。図5は、文献1(伝熱工学(下)、原著者:J.P.ホールマン、著者:平田賢、発行所:ブレイン図書出版株式会社、発行所:丸善株式会社、昭和63年9月3日第1版第5刷発行、P.308)に記載された図であり、測定波長が1.33μm以下、1.5〜1.8μm、2.0〜2.4μm、3.4〜4.8μmの範囲で、赤外線の吸収が少ないことを示している。   In addition, in order to further improve the measurement accuracy, an infrared sensitive surface temperature measuring device having a measurement wavelength of 1.33 μm or less, 1.5 to 1.8 μm, 2.0 to 2.4 μm, 3.4 to 4.8 μm Is preferably used. FIG. 5 shows the relationship between the absorption ratio of infrared rays that have passed through the water vapor layer and the wavelength of infrared rays. FIG. 5 shows reference 1 (heat transfer engineering (bottom), original author: JP Hallman, author: Ken Hirata, publisher: Brain Book Publishing Co., Ltd., publisher: Maruzen Co., Ltd., September 1988). 3rd day, 1st edition, 5th printing, P. 308), measurement wavelength is 1.33 μm or less, 1.5-1.8 μm, 2.0-2.4 μm, 3.4- In the range of 4.8 μm, the absorption of infrared rays is low.

尚、図5において、波長が0.8μmから4μmまでの範囲は、蒸気温度127℃、水蒸気層の厚さ109cmでの測定値で、波長が4μmから34μmまでは、(a)蒸気温度127℃、水蒸気層の厚さ109cmでの測定値、(b)蒸気温度127℃、水蒸気層の厚さ104cmでの測定値、(c)蒸気温度127℃、水蒸気層の厚さ32.4cmでの測定値、(d)蒸気温度81℃、水蒸気層の厚さ4cmでの測定値、(e)室温、水蒸気層の厚さ7cmでの測定値である。   In FIG. 5, the wavelength range from 0.8 μm to 4 μm is a measured value at a steam temperature of 127 ° C. and a water vapor layer thickness of 109 cm, and (a) the steam temperature is 127 ° C. when the wavelength is from 4 μm to 34 μm. , Measured value at a steam layer thickness of 109 cm, (b) measured at a steam temperature of 127 ° C., measured at a steam layer thickness of 104 cm, (c) measured at a steam temperature of 127 ° C. and a steam layer thickness of 32.4 cm (D) measured value at a steam temperature of 81 ° C. and a water vapor layer thickness of 4 cm, (e) measured value at room temperature and a water vapor layer thickness of 7 cm.

鋳片10からの放射光の検知素子をSi半導体、PbS半導体、InGaAs半導体の何れか1種とすることで、赤外線感知式表面温度測定器13,13Aの測定波長を前記範囲内とすることができる。特に、Si半導体は水蒸気を良く透過するので、検知素子として好ましい。   By making the detection element of the radiated light from the slab 10 one of Si semiconductor, PbS semiconductor, and InGaAs semiconductor, the measurement wavelength of the infrared sensitive surface temperature measuring devices 13 and 13A can be within the above range. it can. In particular, Si semiconductors are preferable as a sensing element because they are well permeable to water vapor.

また、変換器14は、赤外線感知式表面温度測定器13,13Aを鋳片10の幅方向に鋳片幅以上に亘って往復移動させて測定される鋳片幅方向の温度測定値(鋳片の両側の鋳片の存在しない部分での温度測定値を含む)を、鋳片幅方向距離または測定時間で微分し、その微分値の極大値の位置を鋳片10の端部と判定する機能を有している。   Further, the converter 14 is a temperature measurement value in the slab width direction (slab slab) measured by reciprocating the infrared sensitive surface temperature measuring devices 13 and 13A in the width direction of the slab 10 over the slab width. The temperature of the slabs on both sides of the slab (including temperature measurement values) is differentiated by the slab width direction distance or measurement time, and the position of the maximum value of the differential value is determined as the end of the slab 10 have.

例えば、赤外線感知式表面温度測定器13Aを鋳片10の幅方向に鋳片幅以上に亘って往復移動させて温度測定したときに、図6(A)に示すような温度測定値が得られたとすると、この温度測定値を鋳片幅方向距離または測定時間で微分し、図6(B)に示すような微分値の分布を求め、微分値の二箇所の極大値の位置、つまり、図6(A)と図6(B)とを破線で結ぶ位置を、鋳片10の端部として判定するという機能である。この場合に、微分値の閾値を絶対値で10000以上とし、閾値を越えた極大値の内側の位置を鋳片10の端部と判断することで、より容易に鋳片端部を判定可能となる。尚、集光レンズ16を1つのみ有する赤外線感知式表面温度測定器13の場合には、片側の極大値のみ求められる。   For example, when the temperature is measured by reciprocating the infrared-sensitive surface temperature measuring instrument 13A in the width direction of the slab 10 over the slab width, a temperature measurement value as shown in FIG. 6A is obtained. Then, this temperature measurement value is differentiated by the slab width direction distance or measurement time, and the distribution of the differential value as shown in FIG. 6 (B) is obtained, and the positions of the two maximum values of the differential value, that is, This is a function of determining a position connecting 6 (A) and FIG. 6 (B) with a broken line as an end portion of the slab 10. In this case, the threshold value of the differential value is set to 10,000 or more in absolute value, and the position inside the maximum value exceeding the threshold value is determined as the end portion of the slab 10, so that the slab end portion can be determined more easily. . In the case of the infrared sensitive surface temperature measuring instrument 13 having only one condenser lens 16, only the maximum value on one side is obtained.

変換器14は、連続鋳造機の制御用計算機(図示せず)から入力される、温度を測定している鋳片10の情報(図6の場合の鋳片幅は1400mm)を参照し、図6(A)の「鋳片幅」と表示した範囲の測定値を鋳片10の幅方向温度分布として別途設けたモニター(図示せず)或いは記憶装置に出力するように構成されている。即ち、図6(A)からも、温度が一旦低下し、その後上昇する温度極小値の位置を鋳片端部と判定することができるが、図6(B)の手法を併用することで、より一層鋳片端部を判定することが正確且つ容易となる。これにより、鋳片端部をより正確に把握することができ、鋳片幅方向の表面温度分布を正確に求めることが可能となる。   The converter 14 refers to the information of the slab 10 measuring the temperature (the slab width in the case of FIG. 6 is 1400 mm), which is input from a control computer (not shown) of the continuous casting machine. The measurement value in the range indicated as “slab width” in FIG. 6A is output to a monitor (not shown) or a storage device separately provided as a temperature distribution in the width direction of the slab 10. That is, also from FIG. 6 (A), the position of the temperature minimum value where the temperature once decreases and then increases can be determined as the slab end, but by using the method of FIG. 6 (B) together, It becomes accurate and easy to determine the end of the single-layer slab. Thereby, the slab end can be grasped more accurately, and the surface temperature distribution in the slab width direction can be accurately obtained.

尚、変換器14は、赤外線感知式表面温度測定器13,13Aで測定した温度測定値の生データ(図6(A)に相当)、及び、生データの微分値(図6(B)に相当)も、モニター或いは記憶装置に出力するように構成されている。また、図6(B)は、図6(A)に示す温度測定値を測定時間(0.01秒)で微分した結果であり、微分値を絶対値で表示している。また、図6の横軸は、赤外線感知式表面温度測定器13Aを、鋳片10の幅以上の範囲に亘って往復スライダー21の左側から右側に移動させたときの移動距離に対応するカウント数である。   Note that the converter 14 includes raw data (corresponding to FIG. 6A) of temperature measurement values measured by the infrared-sensitive surface temperature measuring devices 13 and 13A and differential values of the raw data (FIG. 6B). Is also configured to output to a monitor or storage device. FIG. 6B shows the result of differentiating the temperature measurement value shown in FIG. 6A with the measurement time (0.01 seconds), and the differential value is displayed as an absolute value. Further, the horizontal axis of FIG. 6 represents the count number corresponding to the moving distance when the infrared sensitive surface temperature measuring device 13A is moved from the left side to the right side of the reciprocating slider 21 over the range of the slab 10 or more. It is.

この構成のスラブ連続鋳造機1において、取鍋からタンディッシュ2に溶鋼9を注入してタンディッシュ2に所定量の溶鋼9を滞留させ、次いで、タンディッシュ2に滞留させた溶鋼9を、浸漬ノズル4を介して鋳型5に注入する。鋳型内の溶鋼上には、保温剤、潤滑剤、酸化防止剤などとして機能するモールドパウダー(図示せず)を添加する。   In the slab continuous casting machine 1 having this configuration, the molten steel 9 is poured from the ladle into the tundish 2 so that a predetermined amount of the molten steel 9 is retained in the tundish 2, and then the molten steel 9 retained in the tundish 2 is immersed. It is injected into the mold 5 through the nozzle 4. A mold powder (not shown) that functions as a heat insulating agent, a lubricant, an antioxidant, or the like is added onto the molten steel in the mold.

鋳型5に注入された溶鋼9は、鋳型5で冷却されて凝固シェル11を形成し、内部に未凝固相12を有する鋳片10として、鋳型5の下方に設けられた複数対の鋳片支持ロール6に支持されつつ、ピンチロールの駆動力により鋳型5の下方に連続的に引き抜かれる。鋳片10は、これらの鋳片支持ロール6を通過する間、二次冷却帯で冷却され、凝固シェル11の厚みを増大し、やがて内部までの凝固を完了する。内部までの凝固を完了した鋳片10は、ガス切断機8によって切断されて鋳片10aとなる。   The molten steel 9 injected into the mold 5 is cooled by the mold 5 to form a solidified shell 11 and supports a plurality of pairs of slabs provided below the mold 5 as a slab 10 having an unsolidified phase 12 therein. While being supported by the roll 6, it is continuously pulled out below the mold 5 by the driving force of the pinch roll. The slab 10 is cooled in the secondary cooling zone while passing through these slab support rolls 6 to increase the thickness of the solidified shell 11 and eventually complete the solidification to the inside. The slab 10 that has been solidified to the inside is cut by the gas cutter 8 to become a slab 10a.

このような連続鋳造操業において、赤外線感知式表面温度測定器13または赤外線感知式表面温度測定器13Aを用いて鋳片10の表面温度を測定する。その際に、赤外線感知式表面温度測定器13,13Aを鋳片幅方向に往復移動させながら測温してもよく、また、一定の位置に固定して測温してもよい。これは、鋳片10の表面温度を測定する目的に応じて決めればよい。   In such a continuous casting operation, the surface temperature of the slab 10 is measured using the infrared sensitive surface temperature measuring device 13 or the infrared sensitive surface temperature measuring device 13A. At that time, the temperature may be measured while reciprocating the infrared sensitive surface temperature measuring devices 13 and 13A in the width direction of the slab, or the temperature may be measured while being fixed at a fixed position. This may be determined according to the purpose of measuring the surface temperature of the slab 10.

また、赤外線感知式表面温度測定器13,13Aを鋳片幅方向に鋳片幅以上に亘って往復移動させながら鋳片10の表面温度を測定する際には、赤外線感知式表面温度測定器13,13Aは、温度測定値を鋳片幅方向距離または測定時間で微分して鋳片10の端部位置を確認し、確認した鋳片端部に基づいて鋳片幅方向の表面温度分布を定め、定めた鋳片幅方向の表面温度分布を、別途設けたモニター或いは記憶装置に出力する。   When the surface temperature of the slab 10 is measured while reciprocating the infrared-sensitive surface temperature measuring devices 13 and 13A in the slab width direction over the slab width, the infrared-sensitive surface temperature measuring device 13 is used. , 13A, the temperature measurement value is differentiated by the slab width direction distance or the measurement time, the end position of the slab 10 is confirmed, the surface temperature distribution in the slab width direction is determined based on the confirmed slab end part, The determined surface temperature distribution in the slab width direction is output to a separately provided monitor or storage device.

このようにして鋳片10の表面温度を測定することにより、鋳片10の端部を正確に把握しながら、鋳片表面に残留する二次冷却水、二次冷却水から生成される水蒸気及び水蒸気の凝縮した白水煙の影響を受けることなく、精度良く且つ長期間に亘って安定して連続鋳造中の鋳片10の幅方向表面温度分布を測定することが実現される。   By measuring the surface temperature of the slab 10 in this way, the secondary cooling water remaining on the slab surface, the water vapor generated from the secondary cooling water and It is possible to accurately and stably measure the surface temperature distribution in the width direction of the slab 10 during continuous casting without being affected by the white water smoke condensed with water vapor over a long period of time.

尚、図1では、赤外線感知式表面温度測定器13,13Aが、鋳造方向の一箇所に設置されているが、鋳造方向の二箇所以上としてもよく、また、2つの集光レンズを有する赤外線感知式表面温度測定器13Aの替わりに、放射エネルギー測定方向がそれぞれ反対方向である赤外線感知式表面温度測定器13を同じ位置に鋳片幅方向に2基並べて配置することも可能である。更に、集光レンズ16を鋳片表面の垂直線Zに対して180度回転可能に構成し、赤外線感知式表面温度測定器の移動方向と放射エネルギー測定方向とが一致するように、赤外線感知式表面温度測定器13の移動方向に応じて集光レンズを回転させながら測定するようにすることもできる。また更に、図1に示す連続鋳造機は垂直曲げ型連続鋳造機であるが、本発明は垂直曲げ型連続鋳造機に限定されるものではなく、湾曲型連続鋳造機であってもまた垂直型連続鋳造機であっても、上記と同様に本発明を適用することができる。   In FIG. 1, the infrared-sensitive surface temperature measuring devices 13 and 13A are installed at one location in the casting direction. However, two or more locations in the casting direction may be used, and an infrared ray having two condenser lenses. Instead of the sensing surface temperature measuring device 13A, two infrared sensing surface temperature measuring devices 13 whose radiant energy measurement directions are opposite to each other may be arranged side by side in the slab width direction at the same position. Further, the condensing lens 16 is configured to be rotatable by 180 degrees with respect to the vertical line Z on the surface of the slab, and the infrared sensing type so that the moving direction of the infrared sensing type surface temperature measuring device coincides with the radiant energy measuring direction. It is also possible to measure while rotating the condenser lens according to the moving direction of the surface temperature measuring device 13. Furthermore, the continuous casting machine shown in FIG. 1 is a vertical bending type continuous casting machine, but the present invention is not limited to the vertical bending type continuous casting machine, and even if it is a curved type continuous casting machine, the vertical type Even in a continuous casting machine, the present invention can be applied in the same manner as described above.

図1に示すスラブ連続鋳造機において、図2に示す赤外線感知式表面温度測定器を使用した本発明の実施例を説明する。   In the slab continuous casting machine shown in FIG. 1, an embodiment of the present invention using the infrared sensitive surface temperature measuring device shown in FIG. 2 will be described.

使用したスラブ連続鋳造機の設備長は45mであり、厚みが250mm、最大幅2000mmのスラブ鋳片の鋳造が可能な設備である。鋳型の上端から鋳型の下端までが1mであり、鋳型直下から機端までの44mの範囲が二次冷却帯であり、この二次冷却帯を、およそ11m毎に、鋳型直下側から機端側に向いて、第1冷却ゾーン、第2冷却ゾーン、第3冷却ゾーン、第4冷却ゾーンの4つの二次冷却ゾーンに分け、それぞれの二次冷却ゾーン毎に冷却条件を設定した。図1において、A−A’位置からB−B’位置直上の鋳片支持ロールまでの範囲が第1冷却ゾーン、B−B’位置からC−C’位置直上の鋳片支持ロールまでの範囲が第2冷却ゾーン、C−C’位置からD−D’位置直上の鋳片支持ロールまでの範囲が第3冷却ゾーン、D−D’位置から機端の鋳片支持ロールまでの範囲が第4冷却ゾーンである。二次冷却帯の各二次冷却ゾーンにはエアーミストスプレーノズルが配置されており、このエアーミストスプレーノズルから噴射されるエアーミストにより、鋳片は冷却される。   The equipment length of the used slab continuous casting machine is 45 m, and the equipment is capable of casting a slab slab having a thickness of 250 mm and a maximum width of 2000 mm. The distance from the upper end of the mold to the lower end of the mold is 1 m, and the range of 44 m from the position immediately below the mold to the end of the machine is the secondary cooling zone. Then, it was divided into four secondary cooling zones, a first cooling zone, a second cooling zone, a third cooling zone, and a fourth cooling zone, and cooling conditions were set for each secondary cooling zone. In FIG. 1, the range from the AA ′ position to the slab support roll immediately above the BB ′ position is the first cooling zone, and the range from the BB ′ position to the slab support roll immediately above the CC ′ position. Is the second cooling zone, the range from the CC ′ position to the slab support roll immediately above the DD ′ position is the third cooling zone, the range from the DD ′ position to the slab support roll at the end of the machine is the first 4 cooling zones. An air mist spray nozzle is disposed in each secondary cooling zone of the secondary cooling zone, and the slab is cooled by the air mist sprayed from the air mist spray nozzle.

この構成のスラブ連続鋳造機を用い、幅2000mmのスラブ鋳片を1.2m/minの鋳造速度で鋳造する際に本発明を適用した(本発明例1)。   The present invention was applied when casting a slab slab having a width of 2000 mm at a casting speed of 1.2 m / min using the slab continuous casting machine having this configuration (Invention Example 1).

鋳片からの放射光の検知素子をSi半導体(波長=0.91μm)とする赤外線感知式表面温度測定器を、集光レンズと鋳片表面との距離が300mmとなるように、第2冷却ゾーンと第3冷却ゾーンとの間に設置し、保護カバーから噴出するパージ用空気の流量を30NL/minとし、鋳片幅方向に鋳片幅以上に亘って往復移動させながら、鋳片の表面温度を測定した。使用した赤外線感知式表面温度測定器は、集光レンズの放射エネルギー測定方向が鋳片表面の垂直線に対して鋳片幅方向に3度傾斜している赤外線感知式表面温度測定器である。片道10秒、一往復20秒で赤外線感知式表面温度測定器を往復させた。   Infrared sensing type surface temperature measuring device in which the detecting element of the radiated light from the slab is Si semiconductor (wavelength = 0.91 μm) is second cooled so that the distance between the condenser lens and the slab surface is 300 mm. The surface of the slab is placed between the zone and the third cooling zone, the flow rate of the purge air ejected from the protective cover is set to 30 NL / min, and reciprocates over the slab width in the slab width direction. The temperature was measured. The infrared-sensitive surface temperature measuring instrument used is an infrared-sensitive surface temperature measuring instrument in which the radiant energy measuring direction of the condenser lens is inclined 3 degrees in the slab width direction with respect to the vertical line of the slab surface. The infrared sensitive surface temperature measuring device was reciprocated in one way 10 seconds and one reciprocation 20 seconds.

鋳造開始から15分経過した時点において鋳型内に注入した部位に相当する鋳片の表面温度の測定結果を図7に示す。図7は、赤外線感知式表面温度測定器を、鋳片幅の中心位置を中心として往復スライダーの左側及び右側にそれぞれ1000mmを超えた位置まで移動させたときに得られた温度測定値である。集光レンズの放射エネルギーの測定方向が鋳片表面の垂直線に対して鋳片幅方向に3度傾斜しているので、集光レンズの放射エネルギー測定方向と相対する側の鋳片端部では、鋳片短辺面の放射エネルギーが検出され、図7に示すように、周囲よりも相対的に温度の低い鋳片端部を明確に識別でき、温度の極小値の位置であるA位置が鋳片端部であることを確認できた。尚、図7のA位置よりも左側の領域では、赤外線感知式表面温度測定器は鋳片の短辺面の温度を測定している。   FIG. 7 shows the measurement result of the surface temperature of the slab corresponding to the portion injected into the mold at the time when 15 minutes have elapsed from the start of casting. FIG. 7 shows temperature measurement values obtained when the infrared-sensitive surface temperature measuring instrument was moved to positions on the left and right sides of the reciprocating slider about 1000 mm each centering on the center position of the slab width. Since the measurement direction of the radiant energy of the condenser lens is inclined 3 degrees in the slab width direction with respect to the vertical line of the slab surface, at the end of the slab opposite to the radiant energy measurement direction of the condenser lens, The radiant energy of the short side of the slab is detected, and as shown in FIG. 7, the end of the slab whose temperature is relatively lower than the surrounding can be clearly identified, and the position A, which is the position of the minimum temperature, is the end of the slab. I was able to confirm that In addition, in the area | region on the left side from the A position of FIG. 7, the infrared sensitive surface temperature measuring device is measuring the temperature of the short side surface of a slab.

図8は、図7に示す温度測定値を鋳片幅方向距離(距離間隔=0.01mm)で微分した結果を示す図である。図8に示すA位置は図7に示すA位置と対応しており、微分値の極大値の位置が鋳片端部と一致している。微分値に閾値を設けることで、鋳片端部の検出が確実になることが分った。尚、図8に示す微分値は絶対値である。   FIG. 8 is a diagram showing a result obtained by differentiating the temperature measurement value shown in FIG. 7 by a slab width direction distance (distance interval = 0.01 mm). The position A shown in FIG. 8 corresponds to the position A shown in FIG. 7, and the position of the maximum value of the differential value coincides with the slab end. It was found that by providing a threshold value for the differential value, it is possible to reliably detect the end portion of the slab. The differential values shown in FIG. 8 are absolute values.

実施例1で使用したスラブ連続鋳造機において、図4に示す、2つの集光レンズを有する赤外線感知式表面温度測定器を使用して、幅2000mmのスラブ鋳片を1.2m/minの鋳造速度で鋳造する際に本発明を適用した(本発明例2)。   In the slab continuous casting machine used in Example 1, a slab slab having a width of 2000 mm was cast at a rate of 1.2 m / min using an infrared sensitive surface temperature measuring instrument having two condenser lenses shown in FIG. The present invention was applied when casting at a speed (Invention Example 2).

鋳片からの放射光の検知素子をSi半導体(波長=0.91μm)とする赤外線感知式表面温度測定器を、それぞれの集光レンズと鋳片表面との距離が300mmとなるように、第2冷却ゾーンと第3冷却ゾーンとの間に設置し、それぞれの保護カバーから噴出するパージ用空気の流量を30NL/minとし、鋳片幅方向に鋳片幅以上に亘って往復移動させながら、鋳片の表面温度を測定した。使用した赤外線感知式表面温度測定器は、それぞれの集光レンズの放射エネルギー測定方向が鋳片表面の垂直線に対してそれぞれ鋳片幅方向の反対側に3度傾斜している赤外線感知式表面温度測定器である。片道10秒、一往復20秒で赤外線感知式表面温度測定器を往復させた。   Infrared sensing type surface temperature measuring device using a Si semiconductor (wavelength = 0.91 μm) as the detection element of the radiated light from the slab, so that the distance between each condensing lens and the slab surface is 300 mm. 2 between the cooling zone and the third cooling zone, the flow rate of the purge air ejected from each protective cover is 30 NL / min, while reciprocating over the slab width in the slab width direction, The surface temperature of the slab was measured. The infrared-sensitive surface temperature measuring instrument used is an infrared-sensitive surface in which the radiant energy measurement direction of each condensing lens is inclined 3 degrees on the opposite side of the slab width direction with respect to the vertical line of the slab surface. It is a temperature measuring instrument. The infrared sensitive surface temperature measuring device was reciprocated in one way 10 seconds and one reciprocation 20 seconds.

鋳造開始から15分経過した時点において鋳型内に注入した部位に相当する鋳片の表面温度の測定結果を図9に示す。図9の下側の図は、赤外線感知式表面温度測定器を図4の紙面の左側から右側に移動させたときに図4の紙面の左側に配置した集光レンズで測定した表面温度の測定値を示し、図9の上側の図は、赤外線感知式表面温度測定器を図4の紙面の右側から左側に移動させたときに図4の紙面の右側に配置した集光レンズで測定した表面温度の測定値を示している。この場合には、鋳片の左右両方の端部位置を測温値から容易に判定することができた。   FIG. 9 shows the measurement results of the surface temperature of the slab corresponding to the portion injected into the mold at the time when 15 minutes have elapsed from the start of casting. The lower diagram of FIG. 9 shows the measurement of the surface temperature measured by the condensing lens arranged on the left side of FIG. 4 when the infrared sensitive surface temperature measuring instrument is moved from the left side to the right side of FIG. 9 shows the surface measured by the condenser lens arranged on the right side of the paper of FIG. 4 when the infrared-sensitive surface temperature measuring instrument is moved from the right side of the paper of FIG. 4 to the left side. The measured value of temperature is shown. In this case, both the left and right end positions of the slab could be easily determined from the temperature measurement value.

また比較のために、本発明例2を実施する際に、ハンディタイプの二次元赤外線放射温度計を用い、第2冷却ゾーンと第3冷却ゾーンとの隙間を、セグメント上から望み込んで鋳片表面温度の分布を測定した(比較例1)。この二次元赤外線放射温度計の測定波長は7.5〜14μmである。本発明例2による温度測定後の1分後に、この二次元赤外線放射温度計で鋳片の表面温度分布を測定した。図10に、本発明例2における鋳片の表面温度分布の測定結果に併せて比較例1による測定結果を破線で示す。   For comparison, when carrying out Example 2 of the present invention, a handy-type two-dimensional infrared radiation thermometer was used, and a gap between the second cooling zone and the third cooling zone was desired from above the slab. The surface temperature distribution was measured (Comparative Example 1). The measurement wavelength of this two-dimensional infrared radiation thermometer is 7.5 to 14 μm. One minute after the temperature measurement according to Invention Example 2, the surface temperature distribution of the slab was measured with this two-dimensional infrared radiation thermometer. In FIG. 10, the measurement result by the comparative example 1 is shown with a broken line together with the measurement result of the surface temperature distribution of the slab in Example 2 of this invention.

図10に示すように、比較例1では、水蒸気や鋳片表面の残留冷却水に邪魔されて、ところどころで表面温度が落ちこんでいるのに比べて、本発明例2では、表面温度の落ち込みが全くなく、水蒸気や冷却水に影響することなく測定できることが確認できた。   As shown in FIG. 10, in Comparative Example 1, the surface temperature drops in some places compared to the water temperature and the residual cooling water on the surface of the slab, and the surface temperature drops in places. It was confirmed that measurement was possible without any influence on water vapor or cooling water.

また比較のために、集光レンズの放射エネルギー測定方向が鋳片表面の垂直線と平行である赤外線感知式表面温度測定器を用いて表面温度を測定した(比較例2)。この赤外線感知式表面温度測定器は、集光レンズの放射エネルギー測定方向が鋳片表面の垂直線と平行である以外は、本発明例2で使用した赤外線感知式表面温度測定器と同一仕様であり、本発明例2で使用した赤外線感知式表面温度測定器よりも鋳片支持ロール1本分下流側の位置に、集光レンズと鋳片表面との距離が300mmとなるように設置し、保護カバーから噴出するパージ用空気の流量を30NL/minとした。   For comparison, the surface temperature was measured using an infrared sensitive surface temperature measuring device in which the radiant energy measurement direction of the condenser lens was parallel to the vertical line of the slab surface (Comparative Example 2). This infrared sensitive surface temperature measuring instrument has the same specifications as the infrared sensitive surface temperature measuring instrument used in Example 2 of the present invention, except that the radiant energy measurement direction of the condenser lens is parallel to the vertical line of the slab surface. Yes, at a position on the downstream side of the slab support roll from the infrared-sensitive surface temperature measuring instrument used in Example 2 of the present invention, so that the distance between the condenser lens and the slab surface is 300 mm, The flow rate of purge air ejected from the protective cover was set to 30 NL / min.

図11に、この赤外線感知式表面温度測定器を用いて、本発明例2と同時期に鋳片が存在しない範囲まで測定したときの温度分布を示す。図11に示すように、比較例2では、鋳片端部を通過するときにも温度測定値は単調に増加する、或いは、単調に減少しており、どの位置が鋳片端部であるのか不明であった。これに対して、本発明例2では、鋳片端部を通過する際の温度の極小値を得ることができ、鋳片端部を明確に確認することができた。   FIG. 11 shows the temperature distribution when this infrared-sensitive surface temperature measuring device is used to measure up to a range where no slabs exist at the same time as Example 2 of the present invention. As shown in FIG. 11, in Comparative Example 2, the temperature measurement value monotonously increases or monotonously decreases even when passing through the slab end, and it is unknown which position is the slab end. there were. On the other hand, in Example 2 of this invention, the minimum value of the temperature at the time of passing through the slab end portion could be obtained, and the slab end portion could be clearly confirmed.

1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 鋳片支持ロール
7 搬送ロール
8 ガス切断機
9 溶鋼
10 鋳片
11 凝固シェル
12 未凝固相
13 赤外線感知式表面温度測定器
14 変換器
15 光ファイバー
16 集光レンズ
17 保護カバー
18 ガス導入管
19 タイロッド
20 セグメントフレーム
21 往復スライダー
22 支持台座
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Casting piece support roll 7 Conveying roll 8 Gas cutting machine 9 Molten steel 10 Cast piece 11 Solidified shell 12 Unsolidified phase 13 Infrared sensing type surface temperature measuring instrument 14 Conversion 15 Optical fiber 16 Condensing lens 17 Protective cover 18 Gas introduction pipe 19 Tie rod 20 Segment frame 21 Reciprocating slider 22 Support base

Claims (3)

赤外線感知式表面温度測定器によって連続鋳造中の鋳片の表面温度を測定する、連続鋳造機内での鋳片表面温度の測定方法であって、赤外線感知式表面温度測定器の鋳片表面からの放射エネルギー測定方向が鋳片表面の垂直線に対して鋳片幅方向に1〜60度の範囲で傾斜している赤外線感知式表面温度測定器を用い、前記赤外線感知式表面温度測定器の集光レンズと鋳片表面との距離を100〜800mmの範囲内とし、且つ、前記赤外線感知式表面温度測定器から鋳片に向かって10NL/min以上の気体を噴射して該気体によって前記集光レンズと鋳片表面との間及び鋳片の被測温箇所から二次冷却水及び蒸気を排斥しながら、前記赤外線感知式表面温度測定器で鋳片の表面温度を測定することを特徴とする、連続鋳造機内での鋳片表面温度の測定方法。   A method for measuring a slab surface temperature in a continuous casting machine, wherein the surface temperature of a slab during continuous casting is measured by an infrared-sensitive surface temperature measuring device, wherein Using an infrared sensitive surface temperature measuring instrument whose radiant energy measuring direction is inclined in the range of 1 to 60 degrees in the slab width direction with respect to the vertical line of the slab surface, The distance between the optical lens and the slab surface is within a range of 100 to 800 mm, and a gas of 10 NL / min or more is jetted from the infrared-sensitive surface temperature measuring instrument toward the slab, and the light is condensed by the gas. The surface temperature of the slab is measured with the infrared-sensitive surface temperature measuring instrument while discharging secondary cooling water and steam between the lens and the slab surface and from the temperature-measured portion of the slab. Slab in a continuous casting machine Method of measuring the surface temperature. 前記赤外線感知式表面温度測定器は、それぞれ鋳片幅方向の反対側に傾斜している2つの放射エネルギー測定方向を有する赤外線感知式表面温度測定器であることを特徴とする、請求項1に記載の連続鋳造機内での鋳片表面温度の測定方法。   The infrared-sensitive surface temperature measuring device according to claim 1, wherein the infrared-sensitive surface temperature measuring device has two radiant energy measuring directions inclined to opposite sides of the slab width direction. A method for measuring a slab surface temperature in the continuous casting machine described. 前記赤外線感知式表面温度測定器を鋳片の幅方向で往復移動させて鋳片の表面温度を測定し、得られた鋳片幅方向の温度測定値を鋳片幅方向距離または測定時間で微分し、その微分値の極大値の位置を鋳片の端部と判定して鋳片の表面温度分布を測定することを特徴とする、請求項1または請求項2に記載の連続鋳造機内での鋳片表面温度の測定方法。   The surface temperature of the slab is measured by reciprocating the infrared-sensitive surface temperature measuring device in the width direction of the slab, and the obtained temperature measurement value in the slab width direction is differentiated by the distance or measurement time in the slab width direction. The position of the maximum value of the differential value is determined as the end of the slab and the surface temperature distribution of the slab is measured, and the continuous casting machine according to claim 1 or 2, Method for measuring the slab surface temperature.
JP2011036946A 2011-02-23 2011-02-23 Measuring method of cast slab surface temperature in continuous casting machine Withdrawn JP2012170995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036946A JP2012170995A (en) 2011-02-23 2011-02-23 Measuring method of cast slab surface temperature in continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036946A JP2012170995A (en) 2011-02-23 2011-02-23 Measuring method of cast slab surface temperature in continuous casting machine

Publications (1)

Publication Number Publication Date
JP2012170995A true JP2012170995A (en) 2012-09-10

Family

ID=46974391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036946A Withdrawn JP2012170995A (en) 2011-02-23 2011-02-23 Measuring method of cast slab surface temperature in continuous casting machine

Country Status (1)

Country Link
JP (1) JP2012170995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172052A (en) * 2013-03-06 2014-09-22 Nippon Steel & Sumitomo Metal Method of measuring temperature distribution of cast metal
CN108480582A (en) * 2018-04-28 2018-09-04 邯郸钢铁集团有限责任公司 The system and collection method of water vapour are generated during smartphone strand rapid cooling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172052A (en) * 2013-03-06 2014-09-22 Nippon Steel & Sumitomo Metal Method of measuring temperature distribution of cast metal
CN108480582A (en) * 2018-04-28 2018-09-04 邯郸钢铁集团有限责任公司 The system and collection method of water vapour are generated during smartphone strand rapid cooling

Similar Documents

Publication Publication Date Title
JP2017042827A (en) Apparatus for predicting slab quality and method for the same
US7690841B2 (en) Device for continuous temperature measurement of molten steel in the tundish using optical fiber and infra-red pyrometer
JP2012071330A (en) Method for measuring surface temperature of cast piece within continuous casting machine
JP5703828B2 (en) Method for measuring the slab surface temperature in a continuous casting machine
US7549797B2 (en) Temperature measurement system
US10232433B2 (en) Casting mold and a method for detecting a temperature distribution of molten metal in a casting mold
KR101427073B1 (en) Method and apparatus for measuring surface temperature of cast slab
JP5703827B2 (en) Method for measuring the slab surface temperature in a continuous casting machine
JP2012170995A (en) Measuring method of cast slab surface temperature in continuous casting machine
KR101176006B1 (en) Moving type apparatus for measuring temperature and moving type apparatus for measuring temperature for strip mill
JP5891997B2 (en) Method for measuring the slab surface temperature in a continuous casting machine
KR101219607B1 (en) Apparatus and method for measuring level of mouldflux
JP5611177B2 (en) Ablation abnormality detection device and anomaly detection method
JP5621387B2 (en) Method for detecting surface defects in continuous cast slabs
JP2009204556A (en) Molten metal temperature measuring method
JP5915374B2 (en) Method for measuring surface temperature of continuous cast slab and continuous casting method using this method
KR20120110586A (en) Method for predicting quality of slab using defect index of impurities comeing off submerged entry nozzle
JP5428494B2 (en) Method for detecting slab seam in continuous casting
JP2009214150A (en) Surface defect-determining method for continuously cast slab and method for producing the same
CA2847917C (en) A method and an apparatus for measuring temperature of a fluid stream
JPH04162949A (en) Device for predicting longitudinal crack in continuous casting
JP5707844B2 (en) Breakout detection method and apparatus in continuous casting
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
JP2009160620A (en) Short side shape measuring device for continuously cast slab
JP3843036B2 (en) Lower surface temperature measurement device for metal objects

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513