JP5913913B2 - Indoor condenser - Google Patents

Indoor condenser Download PDF

Info

Publication number
JP5913913B2
JP5913913B2 JP2011243557A JP2011243557A JP5913913B2 JP 5913913 B2 JP5913913 B2 JP 5913913B2 JP 2011243557 A JP2011243557 A JP 2011243557A JP 2011243557 A JP2011243557 A JP 2011243557A JP 5913913 B2 JP5913913 B2 JP 5913913B2
Authority
JP
Japan
Prior art keywords
refrigerant
side tank
inflow
outlet
inlet pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011243557A
Other languages
Japanese (ja)
Other versions
JP2013100924A (en
Inventor
真治 河野
真治 河野
祐介 飯野
祐介 飯野
雄一 松元
雄一 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2011243557A priority Critical patent/JP5913913B2/en
Priority to US14/353,754 priority patent/US20140305158A1/en
Priority to PCT/JP2012/078490 priority patent/WO2013069571A1/en
Priority to DE112012004635.8T priority patent/DE112012004635T5/en
Publication of JP2013100924A publication Critical patent/JP2013100924A/en
Application granted granted Critical
Publication of JP5913913B2 publication Critical patent/JP5913913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Geometry (AREA)

Description

本発明は、室内側凝縮器に関し、特に車両空調ヒートポンプシステムのHVACユニット内に収容される室内側凝縮器に関する。   The present invention relates to an indoor condenser, and more particularly to an indoor condenser accommodated in an HVAC unit of a vehicle air conditioning heat pump system.

この種の凝縮器として、例えば車両用空調装置の冷媒回路に用いられ、チューブ及びフィンを上下方向に積層してなる熱交換のコアと、チューブの一端部が側部に接続される冷媒流入出側タンクと、チューブの他端部が側部に接続される冷媒ターン側タンクと、冷媒流入出側タンク内を冷媒流入室と冷媒流出室とに仕切る隔壁と、冷媒流入出側タンクに接続され、冷媒流入室に連通される冷媒入口管と、冷媒流入出側タンクに接続され、冷媒流出室に連通される冷媒出口管とを備えた熱交換器が知られている(例えば特許文献1参照)。   This type of condenser is used in, for example, a refrigerant circuit of a vehicle air conditioner, and includes a heat exchange core formed by stacking tubes and fins in the vertical direction, and a refrigerant inflow / outflow in which one end of the tube is connected to the side. A side tank, a refrigerant turn side tank with the other end of the tube connected to the side, a partition that partitions the refrigerant inflow / outflow side tank into a refrigerant inflow chamber and a refrigerant outflow chamber, and a refrigerant inflow / outflow side tank. There is known a heat exchanger including a refrigerant inlet pipe communicated with the refrigerant inflow chamber and a refrigerant outlet pipe connected to the refrigerant inflow / outlet side tank and communicated with the refrigerant outflow chamber (see, for example, Patent Document 1). ).

上記コアは、冷媒が冷媒入口管から冷媒流入出側タンクを経た後で熱交換を行う往路側コア部と、冷媒が往路側コア部を流通し、冷媒ターン側タンクを経た後で熱交換を行う復路側コア部とから構成され、冷媒が往路側コア部、復路側コア部の順に横流れ方向に流れる、いわゆるカウンタフロー型の冷媒横流れを採用することで、コアに通風される空気と冷媒との間で効率的な熱交換を可能としている。   The core includes an outward core portion that performs heat exchange after the refrigerant passes through the refrigerant inflow / outlet tank from the refrigerant inlet pipe, and heat exchange after the refrigerant passes through the outward core portion and passes through the refrigerant turn side tank. Air flow through the core and the refrigerant by adopting a so-called counter-flow type refrigerant cross flow, which is composed of a return-side core portion to perform, and the refrigerant flows in the cross-flow direction in the order of the forward-side core portion and the return-side core portion. Enables efficient heat exchange.

特許第4334311号公報Japanese Patent No. 4334311

上記従来技術の熱交換器を車両空調ヒートポンプシステムのHVAC(Heating Ventilation & Air Conditioning)ユニット内に収容し、いわゆるサブクール度S.C(deg)を増大した室内側凝縮器として使用することで、コアにおいて冷媒の温度を効果的に低下し、液冷媒を増大することができるため、冷媒回路において上記凝縮器の下流に設けられた膨張弁に液冷媒を確実に流入させることができる。   The above-mentioned conventional heat exchanger is accommodated in a HVAC (Heating Ventilation & Air Conditioning) unit of a vehicle air-conditioning heat pump system. By using C (deg) as an increased indoor condenser, it is possible to effectively reduce the temperature of the refrigerant in the core and increase the liquid refrigerant, so that the refrigerant circuit is provided downstream of the condenser. The liquid refrigerant can surely flow into the expansion valve.

しかしながら、上記従来技術では、冷媒出口管はコアの下端部よりも上側に接続されているため、冷媒出口管よりも下側に位置するチューブに液冷媒が滞留したり、当該チューブにおいて液冷媒が逆流したりすることにより、復路側コア部における冷媒流れが悪化し、復路側コア部の特に冷媒出口管近傍の低温領域(サブクール領域)の冷媒の温度分布が不均一になる。従って、車両用空調装置の空気吹出口から車室内に吹き出される空気の温度が、例えば運転席側吹出口と助手席側吹出口とによって異なり、HVACユニットにおける吹出空気温度が不均一となるおそれがある。   However, in the above prior art, since the refrigerant outlet pipe is connected to the upper side of the lower end portion of the core, the liquid refrigerant stays in the tube positioned below the refrigerant outlet pipe, or the liquid refrigerant flows in the tube. By flowing backward, the refrigerant flow in the return-side core portion deteriorates, and the temperature distribution of the refrigerant in the low-temperature region (subcool region) in the return-side core portion, particularly in the vicinity of the refrigerant outlet pipe, becomes uneven. Therefore, the temperature of the air blown into the vehicle interior from the air outlet of the vehicle air conditioner differs depending on, for example, the driver side air outlet and the passenger side air outlet, and the air temperature in the HVAC unit may be uneven. There is.

また、上記従来技術では、冷媒入口管は冷媒流入出側タンクの側部の冷媒出口管よりも上側のずれた位置に接続されているため、往路側コア部において比較的高温となる冷媒入口管近傍の高温領域(スーパーヒート領域)と、復路側コア部において比較的低温となる冷媒出口管近傍の低温領域(サブクール領域)とが重ならずにずれた位置に存在することとなる。従って、往路側コア部の上記スーパーヒート領域と復路側コア部の上記サブクール領域との顕熱部同士の熱交換による温度の相殺が円滑に行われないことから、結果として、特に復路側コア部の冷媒出口管近傍の上記サブクール領域の冷媒の温度分布の不均一、ひいては上記吹出空気温度のばらつきを更に助長するおそれがある。   Further, in the above prior art, since the refrigerant inlet pipe is connected to a position shifted from the refrigerant outlet pipe on the side of the refrigerant inflow / outlet side tank above the refrigerant outlet pipe, the refrigerant inlet pipe having a relatively high temperature in the forward path side core portion. The nearby high temperature region (superheat region) and the low temperature region (subcool region) near the refrigerant outlet pipe, which is relatively low in the return path side core portion, are present at positions shifted without overlapping. Accordingly, since the temperature is not offset smoothly by heat exchange between the sensible heat portions of the superheat region of the outward path side core portion and the subcool region of the return path side core portion, as a result, the return side core portion particularly There is a risk that the temperature distribution of the refrigerant in the subcooling region in the vicinity of the refrigerant outlet pipe will be uneven, and thus the variation in the temperature of the blown air may be further promoted.

本発明は上述の事情に基づいてなされたもので、その目的とするところは、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを小さくすることができる室内側凝縮器を提供することにある。   The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide an indoor condenser that can reduce the variation in the air temperature at each air outlet in the HVAC unit. is there.

上記の目的を達成するため、本発明の室内側凝縮器は、車両空調ヒートポンプシステムのHVACユニット内に収容する室内側凝縮器であって、チューブ及びフィンを積層してなる熱交換のコアと、チューブの一端部が接続される冷媒流入出側タンクと、チューブの他端部が接続される冷媒ターン側タンクと、冷媒流入出側タンク内を冷媒流入室と冷媒流出室とに仕切る隔壁と、冷媒流入出側タンクに接続され、冷媒流入室に連通される冷媒入口管と、冷媒流入出側タンクに接続され、冷媒流出室に連通される冷媒出口管とを備え、冷媒入口管及び冷媒出口管は、コアを構成する各チューブのうちの最下端チューブよりも下側に位置付けられた冷媒流入出側タンクの底端部に接続され、冷媒出口管の内径は冷媒入口管の内径以上に設定されている(請求項1)。 In order to achieve the above object, an indoor condenser of the present invention is an indoor condenser accommodated in an HVAC unit of a vehicle air conditioning heat pump system, and a heat exchange core formed by stacking tubes and fins, A refrigerant inflow / outflow side tank to which one end of the tube is connected, a refrigerant turn side tank to which the other end of the tube is connected, a partition partitioning the refrigerant inflow / outflow side tank into a refrigerant inflow chamber and a refrigerant outflow chamber; A refrigerant inlet pipe connected to the refrigerant inflow / outflow side tank and communicated with the refrigerant inflow chamber, and a refrigerant outlet pipe connected to the refrigerant inflow / outflow side tank and communicated with the refrigerant outflow chamber. The pipe is connected to the bottom end of the refrigerant inflow / outflow side tank positioned below the lowest end tube of the tubes constituting the core, and the inner diameter of the refrigerant outlet pipe is set to be equal to or larger than the inner diameter of the refrigerant inlet pipe. that it has been ( Claim 1).

好ましくは、コアは、冷媒が冷媒入口管から冷媒流入出側タンクを経た後で熱交換を行う往路側コア部と、冷媒が往路側コア部を流通し、冷媒ターン側タンクを経た後で熱交換を行う復路側コア部とから構成され、冷媒入口管と冷媒出口管とは、前記隔壁に対称点を有する点対称位置であり、且つ隔壁の垂直方向からみて互いにオーバーラップする位置において前記冷媒流入出側タンクの底端部に接続される(請求項2)。
前記冷媒入口管と前記冷媒出口管とは、隔壁を対称軸とする線対称位置において冷媒流入出側タンクの底端部に接続される(請求項3)。
Preferably, the core is configured to perform heat exchange after the refrigerant passes through the refrigerant inflow / outflow side tank from the refrigerant inlet pipe, and heat flows after the refrigerant passes through the forward path side core and passes through the refrigerant turn side tank. The refrigerant inlet pipe and the refrigerant outlet pipe are point-symmetrical positions having a symmetric point with respect to the partition wall, and the refrigerant at a position overlapping each other when viewed from the vertical direction of the partition wall. It is connected to the bottom end of the inflow / outflow side tank (Claim 2).
The refrigerant inlet pipe and the refrigerant outlet pipe are connected to the bottom end portion of the refrigerant inflow / outflow side tank at a line-symmetrical position with the partition wall as an axis of symmetry.

本発明によれば、冷媒入口管及び冷媒出口管がコアを構成する各チューブのうちの最下端チューブよりも下側に位置付けられた冷媒流入出側タンクの底端部に接続されることにより、コアを流れる冷媒を重力によって冷媒流入出側タンク、冷媒出口管に順次導出することができるため、冷媒出口管よりも下側にチューブが位置付けられることによって生じるチューブへの液冷媒の滞留や当該チューブにおける液冷媒の逆流を防止することができる。従って、すべてのチューブにおいて冷媒を円滑に流すことができるため、復路側コア部の特に冷媒出口管近傍のサブクール領域の冷媒の温度分布の不均一、ひいてはコア全体における冷媒の温度分布の不均一を抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを小さくすることができる
また、冷媒出口管の内径は冷媒入口管の内径以上であることにより、冷媒出口管から冷媒が流出し易くなり、チューブにおいて冷媒を更に円滑に流すことができるため、コア全体における冷媒の温度分布の不均一を更に効果的に抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを更に効果的に小さくすることができる(請求項1)。
According to the present invention, the refrigerant inlet pipe and the refrigerant outlet pipe are connected to the bottom end portion of the refrigerant inflow / outlet side tank positioned below the lowermost end tube of the tubes constituting the core, Since the refrigerant flowing through the core can be sequentially led out to the refrigerant inflow / outlet side tank and the refrigerant outlet pipe by gravity, the liquid refrigerant stays in the tube generated by the tube being positioned below the refrigerant outlet pipe and the tube The back flow of the liquid refrigerant in can be prevented. Accordingly, since the refrigerant can flow smoothly in all the tubes, the temperature distribution of the refrigerant in the subcooling region in the vicinity of the refrigerant outlet pipe in the return side core portion, in particular, the temperature distribution of the refrigerant in the entire core is reduced. It is possible to suppress the variation in the air temperature at each air outlet in the HVAC unit .
Further, since the refrigerant outlet pipe has an inner diameter equal to or larger than the inner diameter of the refrigerant inlet pipe, the refrigerant easily flows out from the refrigerant outlet pipe, and the refrigerant can flow more smoothly in the tube. Can be more effectively suppressed, and variations in the air temperature at each air outlet in the HVAC unit can be further effectively reduced .

また、本発明によれば、冷媒入口管と冷媒出口管とは、隔壁に対称点を有する点対称位置であり、且つ隔壁の垂直方向からみて互いにオーバーラップする位置において冷媒流入出側タンクの底端部に接続されることにより、往路側コア部において比較的高温となる冷媒入口管近傍のスーパーヒート領域と、復路側コア部において比較的低温となる冷媒出口管近傍のサブクール領域との少なくとも一部が重なるようにしてコアを形成することができる。従って、往路側コア部のスーパーヒート領域と復路側コア部のサブクール領域との顕熱部同士の熱交換による温度の相殺によりコア全体における冷媒の温度分布の不均一を効果的に抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを効果的に小さくすることができる(請求項2)。 Further, according to the present invention, the refrigerant inlet pipe and the refrigerant outlet pipe are point-symmetrical positions having a symmetric point in the partition wall , and are located at the bottom of the refrigerant inflow / outlet side tank at a position overlapping each other when viewed from the vertical direction of the partition wall. By being connected to the end portion , at least one of a superheat region in the vicinity of the refrigerant inlet pipe that becomes relatively high temperature in the forward path side core portion and a subcool region in the vicinity of the refrigerant outlet tube that becomes relatively low temperature in the return path side core portion. The core can be formed such that the portions overlap. Therefore, non-uniformity in the temperature distribution of the refrigerant in the entire core is effectively suppressed by offsetting the temperature due to heat exchange between the sensible heat portions of the superheat region of the forward path side core portion and the subcool region of the return path side core portion, and the HVAC Variations in the air temperature at each air outlet in the unit can be effectively reduced (claim 2).

また、本発明によれば、冷媒入口管と冷媒出口管とは、隔壁を対称軸とする線対称位置において冷媒流入出側タンクの底端部に接続されることにより、上記スーパーヒート領域と、上記サブクール領域とが完全に重なるようにしてコアを形成することができる。従って、往路側コア部のスーパーヒート領域と復路側コア部のサブクール領域との顕熱部同士の熱交換による温度の相殺により、コア全体における冷媒の温度分布の不均一を更に効果的に抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを更に効果的に小さくすることができる(請求項3)。 Further, according to the present invention, the refrigerant inlet pipe and the refrigerant outlet pipe are connected to the bottom end portion of the refrigerant inflow / outlet side tank at a line-symmetrical position with the partition wall as the axis of symmetry, so that the superheat region, The core can be formed so as to completely overlap the subcool region. Therefore, by canceling the temperature by heat exchange between the sensible heat portions of the superheat region of the outward path side core portion and the subcool region of the return path side core portion, uneven temperature distribution of the refrigerant in the entire core is further effectively suppressed. The variation in the air temperature at each air outlet in the HVAC unit can be further effectively reduced.

本発明の一実施形態に係る凝縮器の概略構成を示した正面図である。It is the front view which showed schematic structure of the condenser which concerns on one Embodiment of this invention. 図1の凝縮器を下側からみた底面図である。It is the bottom view which looked at the condenser of Drawing 1 from the lower side. 図1の凝縮器のA−A方向断面図である。It is an AA direction sectional view of the condenser of FIG. 従来と本実施形態との凝縮器を通風された出口空気の最大温度差ΔTmax(℃)をサブクール度S.C(deg)の増大に応じて示したグラフである。The maximum temperature difference ΔTmax (° C.) of the outlet air that has been passed through the condenser between the conventional and the present embodiment is expressed as the subcool degree S.D. It is the graph shown according to the increase in C (deg). 本発明の別の実施形態に係る凝縮器の概略構成を示した正面図である。It is the front view which showed schematic structure of the condenser which concerns on another embodiment of this invention. 図5の凝縮器を下側からみた底面図である。It is the bottom view which looked at the condenser of Drawing 5 from the lower part. 図5の凝縮器を右側からみた側面図である。It is the side view which looked at the condenser of FIG. 5 from the right side. 図5の凝縮器のB−B方向断面図である。It is a BB direction sectional view of the condenser of FIG.

以下に本発明の一実施形態に係る凝縮器1について図面を参照して説明する。
図1は凝縮器1の概略構成を模式的に示した正面図であり、図2は図1の凝縮器1を下側からみた底面図であり、図3は図1の凝縮器1のA−A方向断面図である。
凝縮器1は例えば図示しない車両空調ヒートポンプシステムのヒートポンプサイクルを構成する冷媒回路に組み込まれ、当該車両空調ヒートポンプシステムの図示しないHVAC(Heating Ventilation & Air Conditioning)ユニット内に収容される室内側凝縮器である。
Hereinafter, a condenser 1 according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a front view schematically showing a schematic configuration of the condenser 1, FIG. 2 is a bottom view of the condenser 1 of FIG. 1 viewed from below, and FIG. 3 is an A view of the condenser 1 of FIG. It is -A direction sectional drawing.
The condenser 1 is, for example, an indoor condenser that is incorporated in a refrigerant circuit that constitutes a heat pump cycle of a vehicle air conditioning heat pump system (not shown) and is accommodated in an HVAC (Heating Ventilation & Air Conditioning) unit (not shown) of the vehicle air conditioning heat pump system. is there.

凝縮器1は、冷媒流路を形成する多数のチューブ2が上下方向に配され、各チューブ2間にはコルゲートフィン(フィン)4が接合されている。フィン4は凝縮器1における空気の通風流路を形成し、各チューブ2内を流れる冷媒と外気との熱交換を促進する。こうしてチューブ2とフィン4とを上下方向に交互に配列して積層することで熱交換のコア6が形成され、コア6の上下端部はサイドプレート8で覆われている。   In the condenser 1, a large number of tubes 2 forming a refrigerant flow path are arranged in the vertical direction, and corrugated fins (fins) 4 are joined between the tubes 2. The fins 4 form an air flow passage in the condenser 1 and promote heat exchange between the refrigerant flowing in each tube 2 and the outside air. In this way, the tubes 2 and the fins 4 are alternately arranged in the vertical direction and stacked to form the heat exchange core 6, and the upper and lower ends of the core 6 are covered with the side plates 8.

コア6の右端部にはチューブ2の右端部が接続される冷媒流入出側タンク10が配置され、一方、コア6の左端部にはチューブ2の左端部が接続される冷媒ターン側タンク12が配置されている。
図2及び図3に示すように、冷媒流入出側タンク10内は、チューブ2の配列方向、即ち冷媒流入出側タンク10の長手方向に延設される隔壁14によって冷媒流入室16と冷媒流出室18とに完全に仕切られている。一方、冷媒ターン側タンク12内もチューブ2の配列方向、即ち冷媒ターン側タンク12の長手方向に延設される複数の連通孔20が貫通された隔壁22によって冷媒流入室24と冷媒流出室26とに区画されている。
A refrigerant inflow / outlet tank 10 to which the right end of the tube 2 is connected is disposed at the right end of the core 6, while a refrigerant turn side tank 12 to which the left end of the tube 2 is connected is disposed at the left end of the core 6. Has been placed.
As shown in FIGS. 2 and 3, the refrigerant inflow / outflow side tank 10 has a refrigerant inflow chamber 16 and a refrigerant outflow by a partition wall 14 extending in the arrangement direction of the tubes 2, that is, in the longitudinal direction of the refrigerant inflow / outflow side tank 10. It is completely partitioned from the chamber 18. On the other hand, the refrigerant inflow chamber 24 and the refrigerant outflow chamber 26 are also formed in the refrigerant turn side tank 12 by a partition wall 22 through which a plurality of communication holes 20 extending in the arrangement direction of the tubes 2, that is, in the longitudinal direction of the refrigerant turn side tank 12. It is divided into and.

また、冷媒流入出側タンク10の底端部10aには冷媒入口管28及び冷媒出口管30が接続され、冷媒入口管28は冷媒流入室16に連通され、冷媒出口管30は冷媒流出室18に連通されている。
また、コア6は、冷媒入口管28から冷媒流入出側タンク10の冷媒流入室16を経た後の冷媒が流入される往路側コア部6Aと、往路側コア部6Aから冷媒ターン側タンク12の冷媒流入室24、連通孔20、冷媒流出室26を経た後の冷媒が流入される復路側コア部6Bとから構成されている。
A refrigerant inlet pipe 28 and a refrigerant outlet pipe 30 are connected to the bottom end 10 a of the refrigerant inflow / outlet side tank 10, the refrigerant inlet pipe 28 communicates with the refrigerant inflow chamber 16, and the refrigerant outlet pipe 30 is connected to the refrigerant outflow chamber 18. It is communicated to.
In addition, the core 6 includes a forward-side core portion 6A into which the refrigerant flows from the refrigerant inlet pipe 28 through the refrigerant inflow chamber 16 of the refrigerant inflow / outlet-side tank 10, and the refrigerant turn-side tank 12 from the forward-side core portion 6A. It is composed of a refrigerant inflow chamber 24, a communication hole 20, and a return side core portion 6B into which the refrigerant flows after passing through the refrigerant outflow chamber 26.

このように構成される凝縮器1では、冷媒が往路側コア部6A、復路側コア部6Bの順に横流れ方向に流れる、いわゆるカウンタフロー型を採用しており、コア6に通風される空気とコア6を流れる冷媒との間で効率的な熱交換が可能である。
ここで、本実施形態では、上述したように、冷媒入口管28及び冷媒出口管30は冷媒流入出側タンク10の底端部10aに接続され、冷媒流入出側タンク10の底端部10aは各チューブ2のうちの最下端チューブ2aよりも下側に位置付けられている。換言すると、冷媒入口管28及び冷媒出口管30はコア6よりも下側の位置で冷媒流入出側タンク10に接続されている。
The condenser 1 configured in this manner employs a so-called counter flow type in which the refrigerant flows in the transverse direction in the order of the forward path side core portion 6A and the backward path side core portion 6B. Efficient heat exchange is possible with the refrigerant flowing through 6.
Here, in this embodiment, as described above, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 are connected to the bottom end portion 10a of the refrigerant inflow / outflow side tank 10, and the bottom end portion 10a of the refrigerant inflow / outflow side tank 10 is It is positioned below the lowermost end tube 2 a of each tube 2. In other words, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 are connected to the refrigerant inflow / outlet side tank 10 at a position below the core 6.

また、図3に示すように、冷媒入口管28と冷媒出口管30とは、隔壁14からの冷媒入口管28及び冷媒出口管30の管中心までの距離dがほぼ同じであって、隔壁14を対称軸とする線対称位置において冷媒流入出側タンク10に接続されている。
更に、冷媒出口管30の内径Doは冷媒入口管28の内径Di以上に予め設定されている。
Further, as shown in FIG. 3, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 have substantially the same distance d from the partition wall 14 to the center of the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30. Is connected to the refrigerant inflow / outflow side tank 10 at a line-symmetrical position with respect to the axis of symmetry.
Further, the inner diameter Do of the refrigerant outlet pipe 30 is set in advance to be equal to or larger than the inner diameter Di of the refrigerant inlet pipe 28.

以上のように本実施形態の凝縮器1は、冷媒出口管30がコア6よりも下側の位置で冷媒流入出側タンク10に接続されることにより、コア6を流れる冷媒を重力によって冷媒流入出側タンク10、冷媒出口管30に順次導出することができるため、冷媒出口管30よりも下側にチューブ2が位置付けられることによって生じるチューブ2への液冷媒の滞留や当該チューブ2における液冷媒の逆流を防止することができる。従って、すべてのチューブ2において冷媒を円滑に流すことができるため、復路側コア部の特に冷媒出口管近傍の低温領域(サブクール領域)の冷媒の温度分布の不均一、ひいてはコア6全体における冷媒の温度分布の不均一を抑制し、HVACユニットにおける空気のフット吹出口等の各吹出口の吹出空気温度のばらつきを小さくすることができる。   As described above, in the condenser 1 according to the present embodiment, the refrigerant outlet pipe 30 is connected to the refrigerant inflow / outflow side tank 10 at a position below the core 6 so that the refrigerant flowing through the core 6 flows into the refrigerant by gravity. Since the liquid can be sequentially led to the outlet tank 10 and the refrigerant outlet pipe 30, the liquid refrigerant stays in the tube 2 and the liquid refrigerant in the tube 2 is generated when the tube 2 is positioned below the refrigerant outlet pipe 30. Can be prevented. Accordingly, since the refrigerant can flow smoothly in all the tubes 2, the temperature distribution of the refrigerant in the low temperature region (subcool region) particularly in the vicinity of the refrigerant outlet pipe of the return path side core portion is uneven, and as a result The uneven temperature distribution can be suppressed, and the variation in the air temperature at each air outlet, such as an air foot outlet, in the HVAC unit can be reduced.

また、冷媒入口管28と冷媒出口管30とは隔壁14を対称軸とする線対称位置において冷媒流入出側タンク10に接続されることにより、往路側コア部6Aにおいて比較的高温となる冷媒入口管28近傍の高温領域(スーパーヒート領域)と、復路側コア部6Bにおいて比較的低温となる冷媒出口管30近傍の低温領域(サブクール領域)とが完全に重なるようにしてコア6を形成することができる。従って、往路側コア部6Aのスーパーヒート領域と復路側コア部6Bのサブクール領域との顕熱部同士の熱交換による温度の相殺により、コア6全体における冷媒の温度分布の不均一を更に効果的に抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを更に効果的に小さくすることができる。   In addition, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 are connected to the refrigerant inflow / outflow side tank 10 at a line-symmetrical position with the partition wall 14 as the axis of symmetry, so that the refrigerant inlet that becomes relatively high in the forward path side core portion 6A. The core 6 is formed such that the high temperature region (superheat region) in the vicinity of the pipe 28 and the low temperature region (subcool region) in the vicinity of the refrigerant outlet pipe 30 that is relatively low in the return path side core portion 6B completely overlap. Can do. Therefore, non-uniformity in the temperature distribution of the refrigerant in the entire core 6 is further effectively achieved by canceling out the temperature due to heat exchange between the sensible heat portions of the superheat region of the outward path side core portion 6A and the subcool region of the return path side core portion 6B. Therefore, the variation in the air temperature at each air outlet in the HVAC unit can be further effectively reduced.

また、冷媒出口管30の内径Doは冷媒入口管28の内径Di以上であることにより、冷媒出口管30から冷媒が流出し易くなり、チューブ2において冷媒を更に円滑に流すことができるため、コア6全体における冷媒の温度分布の不均一を更に効果的に抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを更に効果的に小さくすることができる。   In addition, since the inner diameter Do of the refrigerant outlet pipe 30 is equal to or larger than the inner diameter Di of the refrigerant inlet pipe 28, the refrigerant easily flows out from the refrigerant outlet pipe 30, and the refrigerant can flow more smoothly in the tube 2. 6 can further effectively suppress non-uniformity in the temperature distribution of the refrigerant in the whole, and can further effectively reduce the variation in the temperature of the air blown from each air outlet in the HVAC unit.

具体的には、図4の凝縮器1に通風された後の空気である出口空気の最大温度差ΔTmax(℃)をサブクール度S.C(deg)の増大に応じて示したグラフを参照して説明する。この図における破線は冷媒が縦流れとなるコア6を有するカウンタフロー型の従来凝縮器の場合を示し、実線は本実施形態の場合を示している。尚、従来凝縮器は図1に示す凝縮器1を90°時計回りに回転させた状態で使用した場合を想定しており、冷媒出口管の配置箇所によって重力を利用した冷媒の導出が行えないことから、復路側コア部の冷媒出口管近傍における冷媒は滞留や逆流を生じている。   Specifically, the maximum temperature difference ΔTmax (° C.) of the outlet air that is the air after being passed through the condenser 1 of FIG. A description will be given with reference to a graph shown in accordance with an increase in C (deg). The broken line in this figure shows the case of a counter flow type conventional condenser having a core 6 in which the refrigerant is in a longitudinal flow, and the solid line shows the case of this embodiment. In addition, the conventional condenser assumes the case where the condenser 1 shown in FIG. 1 is used in a state in which the condenser 1 is rotated 90 ° clockwise, and the refrigerant cannot be derived using gravity depending on the position of the refrigerant outlet pipe. For this reason, the refrigerant in the vicinity of the refrigerant outlet pipe of the return-side core portion is stagnant or backflowed.

この結果から明らかなように、本実施形態の場合には、サブクール度S.Cが如何なる値であっても、出口空気の最大温度差ΔTmaxを従来凝縮器に比して10℃程度低減することができており、コア6全体における冷媒の温度分布の不均一を効果的に抑制できたことが判る。
本発明は、上述の実施形態に制約されるものではなく種々の変形が可能である。
As is clear from this result, in the case of this embodiment, the subcool degree S.I. Whatever the value of C, the maximum temperature difference ΔTmax of the outlet air can be reduced by about 10 ° C. compared to the conventional condenser, and the temperature distribution of the refrigerant in the entire core 6 can be effectively reduced. It turns out that it was able to suppress.
The present invention is not limited to the above-described embodiment, and various modifications can be made.

例えば、上記実施形態では、冷媒入口管28及び冷媒出口管30は冷媒流入出側タンク10の底端部10aに接続されているが、冷媒出口管30がコア6よりも下側の位置で冷媒流入出側タンク10に接続されていれば良く、上記実施形態に限定されない。
具体的には、図5〜図8を参照して本発明の別の実施形態の凝縮器について説明する。 図5は凝縮器32の概略構成を模式的に示した正面図であり、図6は図5の凝縮器32を下側からみた底面図であり、図7は図5の凝縮器32を右側からみた側面図であり、図8は図5の凝縮器32のB−B方向断面図である。尚、図1と同じ構成については同じ符号を付して説明を省略する。
For example, in the above embodiment, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 are connected to the bottom end portion 10 a of the refrigerant inflow / outlet side tank 10, but the refrigerant outlet pipe 30 is located at a position below the core 6 in the refrigerant. What is necessary is just to be connected to the inflow / outflow side tank 10, and it is not limited to the said embodiment.
Specifically, a condenser according to another embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a front view schematically showing the schematic configuration of the condenser 32, FIG. 6 is a bottom view of the condenser 32 of FIG. 5 viewed from below, and FIG. 7 is a right side of the condenser 32 of FIG. FIG. 8 is a cross-sectional view taken along the line BB of the condenser 32 of FIG. 5. In addition, the same code | symbol is attached | subjected about the same structure as FIG. 1, and description is abbreviate | omitted.

図5〜図7に示すように、本実施形態の冷媒流入出側タンク34は、その長手方向の長さが冷媒ターン側タンク12よりも長く形成され、冷媒流入出側タンク34の側部34aは最下端チューブ2aよりも下側に十分な長さを有している。従って、冷媒入口管28及び冷媒出口管30は冷媒流入出側タンク34の側部34aの最下端チューブ2aよりも下側の部分、即ちコア6よりも下側の位置で冷媒流入出側タンク34に接続されている。   As shown in FIGS. 5 to 7, the refrigerant inflow / outflow side tank 34 of the present embodiment has a longer length in the longitudinal direction than the refrigerant turn side tank 12, and a side portion 34 a of the refrigerant inflow / outflow side tank 34. Has a sufficient length below the lowermost end tube 2a. Therefore, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 are located on the lower side of the bottom end tube 2 a of the side part 34 a of the refrigerant inflow / outlet side tank 34, that is, at the position below the core 6, and the refrigerant inflow / outlet side tank 34. It is connected to the.

また、図8に示すように、冷媒入口管28と冷媒出口管30とは、隔壁14からの冷媒入口管28及び冷媒出口管30の管中心までの距離dがほぼ同じであって、隔壁14を対称軸とする線対称位置において冷媒流入出側タンク34に接続され、冷媒出口管30の内径Doは冷媒入口管28の内径Di以上に予め設定されている。
このように本実施形態の凝縮器32においても、冷媒出口管30がコア6よりも下側の位置で冷媒流入出側タンク34に接続されることにより、チューブ2への液冷媒の滞留や当該チューブ2における液冷媒の逆流を防止し、しかも、往路側コア部6Aのスーパーヒート領域と復路側コア部6Bのサブクール領域との顕熱部同士の熱交換による温度の相殺によりコア6全体における冷媒の温度分布の不均一を抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを効果的に小さくすることができる。
Further, as shown in FIG. 8, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 have substantially the same distance d from the partition wall 14 to the center of the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30. Is connected to the refrigerant inflow / outflow side tank 34 at a line-symmetrical position with respect to the axis of symmetry, and the inner diameter Do of the refrigerant outlet pipe 30 is preset to be larger than the inner diameter Di of the refrigerant inlet pipe 28.
As described above, also in the condenser 32 of the present embodiment, the refrigerant outlet pipe 30 is connected to the refrigerant inflow / outflow side tank 34 at a position below the core 6, so that the liquid refrigerant stays in the tube 2 and The refrigerant in the entire core 6 is prevented by the backflow of the liquid refrigerant in the tube 2 and the temperature is canceled by heat exchange between the sensible heat portions of the superheat region of the forward path side core portion 6A and the subcool region of the return path side core portion 6B. The non-uniformity of the temperature distribution can be suppressed, and the variation in the air temperature at each air outlet in the HVAC unit can be effectively reduced.

また、上記各実施形態では、冷媒入口管28と冷媒出口管30とは、隔壁14から冷媒入口管28及び冷媒出口管30の管中心までの距離dがほぼ同じであって、隔壁14を対称軸とする線対称位置において冷媒流入出側タンク34に接続される。しかし、これに限らず、冷媒入口管28と冷媒出口管30とを隔壁14を対称軸とする点対称位置であり、且つ隔壁14の垂直方向からみて互いにオーバーラップする位置において冷媒流入出側タンク34に接続するようにしても良い。   In each of the above embodiments, the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 have the same distance d from the partition wall 14 to the center of the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30, and the partition wall 14 is symmetric. The refrigerant is connected to the refrigerant inflow / outflow side tank 34 at a line-symmetrical position as an axis. However, the present invention is not limited to this, and the refrigerant inlet / outlet side tank is located at a point-symmetrical position in which the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 are symmetrical with respect to the partition wall 14 and overlap each other when viewed from the vertical direction of the partition wall 14. 34 may be connected.

この場合にも、隔壁14から冷媒入口管28及び冷媒出口管30の管中心までの距離dがほぼ同じとなり、往路側コア部6Aにおいて比較的高温となる冷媒入口管28近傍のスーパーヒート領域と、復路側コア部6Bにおいて比較的低温となる冷媒出口管30近傍のサブクール領域との少なくとも一部が重なるようにしてコア6を形成することができる。従って、往路側コア部6Aのスーパーヒート領域と復路側コア部6Bのサブクール領域との顕熱部同士の熱交換による温度の相殺によりコア6全体における冷媒の温度分布の不均一を更に効果的に抑制し、HVACユニットにおける空気の各吹出口の吹出空気温度のばらつきを効果的に小さくすることができる。   Also in this case, the distance d from the partition wall 14 to the center of the refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 is substantially the same, and the superheat region in the vicinity of the refrigerant inlet pipe 28 that is relatively high in the forward path side core portion 6A. The core 6 can be formed such that at least a part of the subcool region in the vicinity of the refrigerant outlet pipe 30 at a relatively low temperature overlaps with the return-side core portion 6B. Therefore, non-uniformity in the temperature distribution of the refrigerant in the entire core 6 is more effectively achieved by offsetting the temperature by heat exchange between the sensible heat portions of the superheat region of the outward path side core portion 6A and the subcool region of the return path side core portion 6B. Therefore, it is possible to effectively reduce the variation in the air temperature at each air outlet in the HVAC unit.

また、上記各実施形態では、冷媒が往路側コア部6A、復路側コア部6Bの順に横流れ方向に流れるカウンタフロー型を採用した凝縮器1,32について説明したが、これら凝縮器1,32の形態に限定されない。具体的には、図4の説明で想定した従来凝縮器のような冷媒縦流れのカウンタフロー型の凝縮器の場合であっても、冷媒出口管30をコア6よりも下側の位置で冷媒流入出側タンク10に接続し、冷媒入口管28及び冷媒出口管30を隔壁14を対称軸とする線対称位置、或いは、隔壁14を対称軸とする点対称位置であり、且つ隔壁14の垂直方向からみて互いにオーバーラップする位置において冷媒流入出側タンク10に接続することにより、上記と同様の効果を得ることが可能であるのは勿論である。   Further, in each of the above embodiments, the condensers 1 and 32 adopting the counter flow type in which the refrigerant flows in the lateral flow direction in the order of the outward path side core portion 6A and the return path side core portion 6B have been described. The form is not limited. Specifically, even in the case of a counterflow type condenser having a longitudinal flow of a refrigerant like the conventional condenser assumed in the description of FIG. 4, the refrigerant outlet pipe 30 is located at a position below the core 6 in the refrigerant. The refrigerant inlet pipe 28 and the refrigerant outlet pipe 30 are connected to the inflow / outlet tank 10 and are in a line-symmetrical position with the partition wall 14 as an axis of symmetry, or a point-symmetrical position with the partition wall 14 as an axis of symmetry, and perpendicular to the partition wall 14. Of course, it is possible to obtain the same effect as described above by connecting to the refrigerant inflow / outflow side tank 10 at positions overlapping each other when viewed from the direction.

1,32 凝縮器(室内側凝縮器)
2 チューブ
2a 最下端チューブ(チューブ)
4 フィン
6 コア
6A 往路側コア部
6B 復路側コア
10,34 冷媒流入出側タンク
12 冷媒ターン側タンク
14 隔壁
16 冷媒流入室
18 冷媒流出室
28 冷媒入口管
30 冷媒出口管
1,32 condenser (indoor condenser)
2 Tube 2a Bottom end tube (tube)
4 Fin 6 Core 6A Outward side core portion 6B Return side core 10, 34 Refrigerant inflow / outlet side tank 12 Refrigerant turn side tank 14 Partition 16 Refrigerant inflow chamber 18 Refrigerant outflow chamber 28 Refrigerant inlet tube 30 Refrigerant outlet tube

Claims (3)

車両空調ヒートポンプシステムのHVACユニット内に収容する室内側凝縮器であって、
チューブ及びフィンを積層してなる熱交換のコアと、
前記チューブの一端部が接続される冷媒流入出側タンクと、
前記チューブの他端部が接続される冷媒ターン側タンクと、
前記冷媒流入出側タンク内を冷媒流入室と冷媒流出室とに仕切る隔壁と、
前記冷媒流入出側タンクに接続され、前記冷媒流入室に連通される冷媒入口管と、
前記冷媒流入出側タンクに接続され、前記冷媒流出室に連通される冷媒出口管とを備え、
前記冷媒入口管及び前記冷媒出口管は、前記コアを構成する前記各チューブのうちの最下端チューブよりも下側に位置付けられた前記冷媒流入出側タンクの底端部に接続され
前記冷媒出口管の内径は前記冷媒入口管の内径以上に設定されていることを特徴とする室内側凝縮器。
An indoor condenser to be housed in an HVAC unit of a vehicle air conditioning heat pump system,
A heat exchange core formed by laminating tubes and fins;
A refrigerant inflow / outlet side tank to which one end of the tube is connected;
A refrigerant turn-side tank to which the other end of the tube is connected;
A partition that partitions the refrigerant inflow / outlet side tank into a refrigerant inflow chamber and a refrigerant outflow chamber;
A refrigerant inlet pipe connected to the refrigerant inflow / outlet side tank and communicated with the refrigerant inflow chamber;
A refrigerant outlet pipe connected to the refrigerant inflow / outflow side tank and communicated with the refrigerant outflow chamber;
The refrigerant inlet pipe and the refrigerant outlet pipe are connected to a bottom end portion of the refrigerant inflow / outlet side tank positioned below a lowermost end tube among the tubes constituting the core ,
Indoor condenser inside diameter of the refrigerant outlet pipe, characterized that you have been set to more than the inside diameter of the refrigerant inlet pipe.
前記コアは、冷媒が前記冷媒入口管から前記冷媒流入出側タンクを経た後で熱交換を行う往路側コア部と、冷媒が前記往路側コア部を流通し、前記冷媒ターン側タンクを経た後で熱交換を行う復路側コア部とから構成され、
前記冷媒入口管と前記冷媒出口管とは、前記隔壁に対称点を有する点対称位置であり、且つ隔壁の垂直方向からみて互いにオーバーラップする位置において前記冷媒流入出側タンクの底端部に接続されることを特徴とする請求項1に記載の室内側凝縮器。
The core includes a forward-side core portion that performs heat exchange after the refrigerant passes through the refrigerant inflow / outlet-side tank from the refrigerant inlet pipe, and after the refrigerant passes through the forward-side core portion and passes through the refrigerant turn-side tank. It consists of a return path core that performs heat exchange at
The refrigerant inlet pipe and the refrigerant outlet pipe are connected to the bottom end portion of the refrigerant inflow / outlet side tank at a point-symmetrical position having a symmetric point with respect to the partition and overlapping each other when viewed from the vertical direction of the partition. The indoor condenser according to claim 1, wherein the indoor condenser is provided.
前記冷媒入口管と前記冷媒出口管とは、前記隔壁を対称軸とする線対称位置において前記冷媒流入出側タンクの底端部に接続されることを特徴とする請求項2に記載の室内側凝縮器。   3. The indoor side according to claim 2, wherein the refrigerant inlet pipe and the refrigerant outlet pipe are connected to a bottom end portion of the refrigerant inflow / outlet side tank at a line-symmetrical position with the partition wall as an axis of symmetry. Condenser.
JP2011243557A 2011-11-07 2011-11-07 Indoor condenser Active JP5913913B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011243557A JP5913913B2 (en) 2011-11-07 2011-11-07 Indoor condenser
US14/353,754 US20140305158A1 (en) 2011-11-07 2012-11-02 In-Chamber Condenser
PCT/JP2012/078490 WO2013069571A1 (en) 2011-11-07 2012-11-02 In-chamber condenser
DE112012004635.8T DE112012004635T5 (en) 2011-11-07 2012-11-02 Interior condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243557A JP5913913B2 (en) 2011-11-07 2011-11-07 Indoor condenser

Publications (2)

Publication Number Publication Date
JP2013100924A JP2013100924A (en) 2013-05-23
JP5913913B2 true JP5913913B2 (en) 2016-04-27

Family

ID=48289946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243557A Active JP5913913B2 (en) 2011-11-07 2011-11-07 Indoor condenser

Country Status (4)

Country Link
US (1) US20140305158A1 (en)
JP (1) JP5913913B2 (en)
DE (1) DE112012004635T5 (en)
WO (1) WO2013069571A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880116A (en) * 2014-02-27 2015-09-02 杭州三花研究院有限公司 Header and heat exchanger with same
US10995994B2 (en) * 2014-03-31 2021-05-04 Hamilton Sunstrand Corporation Outlet header of heat exchanger
WO2019183503A2 (en) * 2018-03-22 2019-09-26 Nelumbo Inc. Heat exchangers and methods of manufacture thereof
CN110595111B (en) * 2019-06-28 2021-11-02 杭州三花微通道换热器有限公司 Heat exchanger and multi-refrigerating-system air conditioning unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729419Y2 (en) * 1989-05-01 1995-07-05 株式会社ゼクセル Heat exchanger
JP3866905B2 (en) * 2000-05-30 2007-01-10 松下電器産業株式会社 Heat exchanger and refrigeration cycle equipment
US20080230215A1 (en) * 2005-03-18 2008-09-25 Behr Gmbh & Co. Kg Heat Exchanger with Ventilation
JP5154842B2 (en) * 2007-06-12 2013-02-27 カルソニックカンセイ株式会社 Heat exchanger joint structure
JP2010032145A (en) * 2008-07-30 2010-02-12 Showa Denko Kk Heat exchanger
JP2010197008A (en) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd Heat exchanger
EP2372289B1 (en) * 2010-03-31 2018-11-14 Modine Manufacturing Company Heat exchanger
JP2011230655A (en) * 2010-04-28 2011-11-17 Sanden Corp Vehicle interior heat exchanger

Also Published As

Publication number Publication date
US20140305158A1 (en) 2014-10-16
WO2013069571A1 (en) 2013-05-16
JP2013100924A (en) 2013-05-23
DE112012004635T5 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5486782B2 (en) Evaporator
KR101090225B1 (en) Heat exchanger
JP6202451B2 (en) Heat exchanger and air conditioner
JP4810203B2 (en) Heat exchanger
JP5002797B2 (en) Heat exchanger
JP4047891B2 (en) Heat exchanger
US10047984B2 (en) Evaporator
CN103644685A (en) Heat exchanger and air conditioner with multiple refrigeration systems provided with heat exchanger
JP2006132920A (en) Heat exchanger
JP2006329511A (en) Heat exchanger
JP5913913B2 (en) Indoor condenser
JP5194278B2 (en) Evaporator
JP2013002774A (en) Parallel flow type heat exchanger and air conditioner with the same
JP5890705B2 (en) Heat exchanger
JP5636215B2 (en) Evaporator
JP2005164226A (en) Evaporator and manufacturing method of the same
JP2011257111A5 (en)
CN109642778B (en) Air conditioning unit
JP2008267730A (en) Double row heat exchanger
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2006194576A (en) Evaporator
JP2007040605A (en) Heat exchanger for multistage compression type refrigeration cycle device
CN107208948B (en) Refrigerant evaporator
JP2008256234A (en) Evaporator
CN107806723B (en) Shell-tube condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5913913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350