JP5910774B2 - Vein imaging device and electronic device - Google Patents

Vein imaging device and electronic device Download PDF

Info

Publication number
JP5910774B2
JP5910774B2 JP2015044363A JP2015044363A JP5910774B2 JP 5910774 B2 JP5910774 B2 JP 5910774B2 JP 2015044363 A JP2015044363 A JP 2015044363A JP 2015044363 A JP2015044363 A JP 2015044363A JP 5910774 B2 JP5910774 B2 JP 5910774B2
Authority
JP
Japan
Prior art keywords
light
light receiving
electrodes
circuit
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015044363A
Other languages
Japanese (ja)
Other versions
JP2015146203A (en
Inventor
栄二 神田
栄二 神田
英人 石黒
英人 石黒
江口 司
司 江口
藤田 徹司
徹司 藤田
英利 山本
英利 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015044363A priority Critical patent/JP5910774B2/en
Publication of JP2015146203A publication Critical patent/JP2015146203A/en
Application granted granted Critical
Publication of JP5910774B2 publication Critical patent/JP5910774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Input (AREA)
  • Facsimile Heads (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、対象物に光を照射してその反射光を受光するセンシング装置および電子機器に関する。   The present invention relates to a sensing device and an electronic apparatus that irradiates an object with light and receives reflected light.

生体認証装置やイメージスキャナーの中には、読取領域の上に置かれた対象物(例えば指や原稿等)に対して発光部と受光部が同じ側に配置され、対象物に対して発光部から光を照射し、その反射光を受光部で受光して対象物の画像を読み取るものがある。例えば、特許文献1には、光源6からの出射光(近赤外光)を導光板3の背面に形成された複数の反射面11によって指100に照射し、指100からの反射光を複数の画素PXを有する受光素子1で受光することで指100の静脈像を取得する生体情報取得装置50が記載されている。   In a biometric authentication device or an image scanner, a light emitting unit and a light receiving unit are arranged on the same side with respect to an object (for example, a finger or a document) placed on the reading area, and the light emitting unit is disposed on the object. In some cases, an image of an object is read by irradiating light from the light source and receiving the reflected light by a light receiving unit. For example, in Patent Document 1, light emitted from a light source 6 (near infrared light) is irradiated onto a finger 100 by a plurality of reflecting surfaces 11 formed on the back surface of the light guide plate 3, and a plurality of reflected lights from the finger 100 are emitted. A biological information acquisition device 50 that acquires a vein image of the finger 100 by receiving light with a light receiving element 1 having a pixel PX is described.

特開2009−172263号公報JP 2009-172263 A

しかしながら、特許文献1に記載された生体情報取得装置50では、各画素PXに入射する反射光の光路上(各画素PXから鉛直方向に延びる直線上)に、反射光よりも光量が大きい光源6からの出射光を導光する導光板3が存在する。また、光源6からの出射光の一部が、導光板3の背面側に形成された低屈折率層21や反射層(半反射層)40を透過して受光素子1側に漏れ出てしまう。このため受光素子1において指100からの反射光を精度よく受光することができない。また、導光板3や遮光層2によって生体情報取得装置50の厚みが増してしまうという問題もあった。   However, in the biological information acquisition device 50 described in Patent Document 1, the light source 6 has a larger light amount than the reflected light on the optical path of the reflected light incident on each pixel PX (on the straight line extending in the vertical direction from each pixel PX). There is a light guide plate 3 that guides light emitted from the. Further, part of the light emitted from the light source 6 passes through the low refractive index layer 21 and the reflective layer (semi-reflective layer) 40 formed on the back side of the light guide plate 3 and leaks to the light receiving element 1 side. . For this reason, the light receiving element 1 cannot receive the reflected light from the finger 100 with high accuracy. There is also a problem that the thickness of the biological information acquisition device 50 increases due to the light guide plate 3 and the light shielding layer 2.

本発明は、上述した課題に鑑みてなされたものであり、対象物からの反射光を精度よく受光できるようにしつつ装置を薄型化することが可能なセンシング装置、およびこれを用いた電子機器を提供することを課題とする。   The present invention has been made in view of the above-described problems, and provides a sensing device capable of thinning the device while accurately receiving reflected light from an object, and an electronic apparatus using the sensing device. The issue is to provide.

以上の課題を解決するため、本発明の第1の態様に係るセンシング装置は、発光部、受光部および遮光層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、前記発光部は、前記対象物に照射する照射光を発する発光層と、前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過する第1電極と、前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に第1の開口部が形成された第2電極と、前記第1の開口部に対応する位置に設けられ、前記照射光および前記反射光を透過すると共に前記第1電極と前記第2電極とを部分的に絶縁する絶縁層とを備え、前記受光部は、前記反射光を受光する受光素子を備え、前記遮光層は、前記第1の開口部に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に第2の開口部が形成されており、前記対象物側から平面視した場合に、前記遮光層は前記第1の開口部と重なり、前記受光素子の受光面が前記第2の開口部内に位置する、ことを特徴とする。   In order to solve the above-described problems, a sensing device according to a first aspect of the present invention includes a light emitting unit, a light receiving unit, and a light shielding layer, irradiates light from the light emitting unit to an object, and from the object In the sensing device that receives the reflected light of the light receiving unit, the light emitting unit and the light receiving unit are provided on the same side with respect to the object, the light emitting unit is located on the object side from the light receiving unit, The light emitting unit includes: a light emitting layer that emits irradiation light that irradiates the object; a first electrode that is positioned closer to the object than the light emitting layer and transmits the irradiation light and the reflected light; and the light emitting layer. A second electrode located on the light receiving portion side that shields the irradiation light and the reflected light and has a first opening; and a position corresponding to the first opening; and the irradiation light And transmitting the reflected light and the An insulating layer that partially insulates one electrode from the second electrode, the light receiving unit includes a light receiving element that receives the reflected light, and the light blocking layer corresponds to the first opening. Provided at a position to shield the irradiation light and the reflected light, and a second opening is formed. When viewed in plan from the object side, the light shielding layer overlaps the first opening. The light receiving surface of the light receiving element is located in the second opening.

この構成によれば、対象物側から平面視した場合に、発光層のうち受光素子の受光面に対応する位置とその周辺(第1の開口部に対応する部分)は、絶縁層によって絶縁されるので照射光を発光しない非発光領域になる。従って、受光素子の受光面に入射する反射光の光路上には、反射光よりも光量が大きい照射光を発光する発光領域が存在しない。また、遮光層と第2電極によって第2の開口部以外の部分が遮光されるので、受光素子の受光面には対象物からの反射光のうち真上からの反射光が入射される。また、発光層(発光領域)から出射された照射光が第1の開口部を通って受光素子の受光面に直接入射することも遮光層と第2電極によって抑えることができる。よって、受光素子において対象物からの反射光を精度よく受光することができる。また、第1電極、第2電極、発光層、絶縁層、遮光層を設ける必要があるものの、これらの各要素は極めて薄く形成することができるので、特許文献1に記載された発明に比べ、センシング装置の厚さを薄くすることができる。   According to this configuration, when viewed in plan from the object side, the position corresponding to the light receiving surface of the light receiving element in the light emitting layer and its periphery (the portion corresponding to the first opening) are insulated by the insulating layer. Therefore, it becomes a non-light-emitting region that does not emit irradiation light. Therefore, there is no light emitting region that emits irradiation light having a larger light quantity than the reflected light on the optical path of the reflected light incident on the light receiving surface of the light receiving element. Further, since the portion other than the second opening is shielded by the light shielding layer and the second electrode, reflected light from directly above the reflected light from the object is incident on the light receiving surface of the light receiving element. Further, it is possible to suppress the irradiation light emitted from the light emitting layer (light emitting region) from directly entering the light receiving surface of the light receiving element through the first opening by the light shielding layer and the second electrode. Therefore, it is possible to accurately receive the reflected light from the object in the light receiving element. Moreover, although it is necessary to provide a 1st electrode, a 2nd electrode, a light emitting layer, an insulating layer, and a light shielding layer, since each of these elements can be formed very thinly, compared with the invention described in patent document 1, The thickness of the sensing device can be reduced.

なお、対象物は、生体の一部(例えば、指、手のひら、手の甲、眼等)であってもよいし、文書や画像が印刷された紙やOHP(OverHead Projector)シート等であってもよい。また、発光層が発する光の波長は任意に定めることができる。つまり、照射光や反射光は、例えば近赤外光であってもよいし、可視光であってもよい。また、第1電極と第2電極は、第1電極が陽極で第2電極が陰極であってもよいし、第1電極が陰極で第2電極が陽極であってもよい。また、第2の開口部の形状や受光素子の受光面の形状は、矩形、円形、楕円、六角形等、任意に定めることができる。また、第2の開口部の大きさと受光面の大きさは、第2の開口部の方が受光面より小さくてもよいし、その逆であってもよいし、両者が同じ大きさであってもよい。また、必ずしも受光面の全てが第2の開口部内に位置している必要はなく、少なくとも受光面の一部が第2の開口部内に位置していればよい。また、遮光層は、例えば、図2、図17、図18にBMとして示す位置に設けることができる。   The target object may be a part of a living body (for example, a finger, palm, back of the hand, eyes, etc.), paper on which a document or image is printed, an OHP (OverHead Projector) sheet, or the like. . Further, the wavelength of light emitted from the light emitting layer can be arbitrarily determined. That is, the irradiation light and the reflected light may be, for example, near infrared light or visible light. Further, the first electrode and the second electrode may be such that the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode. Further, the shape of the second opening and the shape of the light receiving surface of the light receiving element can be arbitrarily determined, such as a rectangle, a circle, an ellipse, and a hexagon. In addition, the size of the second opening and the size of the light receiving surface may be smaller in the second opening than in the light receiving surface, or vice versa, or both may be the same size. May be. Further, it is not always necessary that the entire light receiving surface is located in the second opening, and at least a part of the light receiving surface only needs to be located in the second opening. Further, the light shielding layer can be provided, for example, at a position shown as BM in FIGS. 2, 17, and 18.

また、本発明の第2の態様に係るセンシング装置は、発光部、受光部および遮光層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、前記発光部は、前記対象物に照射する照射光を発する発光層と、前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過する第1電極と、前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた第2電極および第3電極と、前記第2電極と前記第3電極との間の離間領域に対応する位置に設けられ、前記照射光および前記反射光を透過すると共に前記第2電極および前記第3電極と前記第1電極とを部分的に絶縁する絶縁層とを備え、前記受光部は、前記反射光を受光する受光素子を備え、前記遮光層は、前記離間領域に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に開口部が形成されており、前記対象物側から平面視した場合に、前記遮光層は前記離間領域と重なり、前記受光素子の受光面が前記開口部内に位置する、ことを特徴とする。   The sensing device according to the second aspect of the present invention includes a light emitting unit, a light receiving unit, and a light shielding layer, irradiates light from the light emitting unit to the object, and receives the reflected light from the object. In the sensing device that receives light at a part, the light emitting part and the light receiving part are provided on the same side with respect to the object, the light emitting part is located on the object side from the light receiving part, and the light emitting part is A light emitting layer that emits irradiation light for irradiating an object, a first electrode that is positioned on the object side from the light emitting layer, and that transmits the irradiation light and the reflected light, and that is positioned on the light receiving unit side from the light emitting layer And the second electrode and the third electrode, which are shielded from the irradiation light and the reflected light, and are provided apart from each other, and a position corresponding to a separation region between the second electrode and the third electrode. The irradiated light and the reflected light An insulating layer that transmits and partially insulates the second electrode and the third electrode from the first electrode, the light receiving unit includes a light receiving element that receives the reflected light, and the light shielding layer includes: Provided at a position corresponding to the separation region, and shields the irradiation light and the reflected light and has an opening, and when viewed in plan from the object side, the light shielding layer is separated from the separation region. It overlaps and the light-receiving surface of the said light receiving element is located in the said opening part, It is characterized by the above-mentioned.

この構成であっても第1の態様に係るセンシング装置と同様の効果を奏する。つまり、開口部を有する1つの第2電極の代わりに、互いに離間して設けられた2つの電極(第2電極および第3電極)を用いてもよい。なお、この構成の場合も、第1電極が陽極で第2電極および第3電極が陰極であってもよいし、第1電極が陰極で第2電極および第3電極が陽極であってもよい。   Even with this configuration, the same effects as those of the sensing device according to the first aspect are achieved. That is, instead of one second electrode having an opening, two electrodes (second electrode and third electrode) provided apart from each other may be used. Also in this configuration, the first electrode may be an anode and the second electrode and the third electrode may be a cathode, or the first electrode may be a cathode and the second electrode and the third electrode may be an anode. .

また、第1の態様に係るセンシング装置において、前記遮光層は、前記第1電極の前記対象物側から前記第2電極までの間に設けられていてもよい。同様に第2の態様に係るセンシング装置においても、前記遮光層は、前記第1電極の前記対象物側から前記第2電極および前記第3電極までの間に設けられていてもよい。   In the sensing device according to the first aspect, the light shielding layer may be provided between the object side of the first electrode and the second electrode. Similarly, in the sensing device according to the second aspect, the light shielding layer may be provided between the first electrode and the second electrode and the third electrode from the object side.

また、本発明の第3の態様に係るセンシング装置は、発光部、受光部および複数の遮光層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、前記発光部は、前記対象物に照射する照射光を発する発光層と、前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過する第1電極と、前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた複数の第2電極と、隣り合う前記第2電極間の離間領域ごとに当該離間領域に対応する位置に設けられ、前記照射光および前記反射光を透過すると共に前記第1電極と前記第2電極とを部分的に絶縁する複数の絶縁層とを備え、前記受光部は、前記反射光を受光する複数の受光素子を備え、前記複数の遮光層の各々は、互いに異なる前記離間領域に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に1以上の開口部が形成されており、前記対象物側から平面視した場合に、前記離間領域の各々は前記遮光層と重なり、各々の前記開口部内には前記受光素子の受光面が1つずつ位置する、ことを特徴とする。
この構成であっても第1の態様に係るセンシング装置と同様の効果を奏する。つまり、受光素子を複数備えると共に、第2電極と絶縁層と遮光層についても各々を複数備える構成であってもよい。
The sensing device according to the third aspect of the present invention includes a light emitting unit, a light receiving unit, and a plurality of light shielding layers, irradiates light from the light emitting unit to the object, and reflects reflected light from the object. In the sensing device that receives light by the light receiving unit, the light emitting unit and the light receiving unit are provided on the same side with respect to the object, the light emitting unit is located on the object side from the light receiving unit, and the light emitting unit is A light emitting layer that emits irradiation light for irradiating the object; a first electrode that is positioned closer to the object than the light emitting layer and transmits the irradiation light and the reflected light; and the light receiving unit side from the light emitting layer A plurality of second electrodes that are shielded from the irradiation light and the reflected light and spaced apart from each other, and are provided at positions corresponding to the separation regions for each separation region between the adjacent second electrodes. The irradiation light and the A plurality of insulating layers that transmit incident light and partially insulate the first electrode and the second electrode, and the light receiving unit includes a plurality of light receiving elements that receive the reflected light, and When each of the light shielding layers is provided at a position corresponding to the different separation area, shields the irradiation light and the reflected light, and has one or more openings, and is viewed in plan from the object side In addition, each of the separation regions overlaps with the light shielding layer, and one light receiving surface of the light receiving element is located in each opening.
Even with this configuration, the same effects as those of the sensing device according to the first aspect are achieved. That is, a configuration in which a plurality of light receiving elements are provided and a plurality of second electrodes, insulating layers, and light shielding layers are also provided may be employed.

また、本発明の第4の態様に係るセンシング装置は、発光部、受光部および複数の遮光層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、前記発光部は、前記対象物に照射する照射光を発する発光層と、前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過すると共に互いに離間して設けられた複数の第1電極と、前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に、互いに離間して設けられ、前記複数の第1電極と交差する複数の第2電極と、隣り合う前記第2電極間の離間領域ごとに当該離間領域に対応する位置に設けられ、前記照射光および前記反射光を透過すると共に前記第1電極と前記第2電極とを部分的に絶縁する複数の絶縁層とを備え、前記受光部は、前記反射光を受光する複数の受光素子を備え、前記複数の遮光層の各々は、互いに異なる前記離間領域に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に1以上の開口部が形成されており、前記対象物側から平面視した場合に、前記離間領域の各々は前記遮光層と重なり、各々の前記開口部内には前記受光素子の受光面が1つずつ位置する、ことを特徴とする。
この構成であっても第1の態様に係るセンシング装置と同様の効果を奏する。つまり、第1電極についても互いに離間して設けられた複数の電極であってよい。
The sensing device according to the fourth aspect of the present invention includes a light emitting unit, a light receiving unit, and a plurality of light shielding layers, irradiates light from the light emitting unit to the object, and reflects reflected light from the object. In the sensing device that receives light by the light receiving unit, the light emitting unit and the light receiving unit are provided on the same side with respect to the object, the light emitting unit is located on the object side from the light receiving unit, and the light emitting unit is A light emitting layer that emits irradiation light for irradiating the object, and a plurality of first electrodes that are located on the object side from the light emitting layer and that transmit the irradiation light and the reflected light and are spaced apart from each other And a plurality of second electrodes that are located closer to the light receiving part than the light emitting layer, shield the irradiation light and the reflected light, and are spaced apart from each other and intersect the plurality of first electrodes. Space between the matching second electrodes A plurality of insulating layers, each of which is provided at a position corresponding to the separation region, transmits the irradiation light and the reflected light, and partially insulates the first electrode and the second electrode; The unit includes a plurality of light receiving elements that receive the reflected light, and each of the plurality of light shielding layers is provided at a position corresponding to the different separation region, and shields the irradiation light and the reflected light. The openings described above are formed, and when viewed in plan from the object side, each of the separation regions overlaps the light shielding layer, and one light receiving surface of the light receiving element is provided in each opening. It is characterized by being located.
Even with this configuration, the same effects as those of the sensing device according to the first aspect are achieved. That is, the first electrode may also be a plurality of electrodes provided apart from each other.

また、第3の態様に係るセンシング装置において、前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として一部の前記第2電極を選択する第1の駆動回路と、前記複数の受光素子のうち、前記対象物側から平面視した場合に、前記第1の駆動回路が選択した一部の前記第2電極に隣り合う前記受光素子から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路とを備える構成としてもよい。   In the sensing device according to the third aspect, a first drive that selects a part of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes. When the circuit and the plurality of light receiving elements are viewed in plan from the object side, they are incident on the light receiving surface from the light receiving elements adjacent to a part of the second electrodes selected by the first drive circuit. It is good also as a structure provided with the read-out circuit which reads the received light signal which shows the light quantity of the said reflected light.

この構成によれば、対象物側から平面視した場合に、発光層のうち第1の駆動回路が選択した一部の第2電極に対応する部分だけから照射光を発光させることができる。また、第1の駆動回路が選択した一部の第2電極に隣り合う受光素子、すなわち発光層のうち照射光を発光した部分の近傍に位置する受光素子だけから受光信号を読み出すことができる。従って、照射光の発光範囲と受光信号の読出範囲を一部に限定して駆動することができるので、センシング装置の消費電力を低減することができる。   According to this configuration, when viewed in plan from the object side, irradiation light can be emitted only from a portion corresponding to the second electrode selected by the first drive circuit in the light emitting layer. Further, the light reception signal can be read out only from the light receiving elements adjacent to a part of the second electrodes selected by the first drive circuit, that is, the light receiving elements located in the vicinity of the portion of the light emitting layer that emits the irradiation light. Accordingly, the light emission range of the irradiation light and the read range of the received light signal can be limited to a part of the drive, so that the power consumption of the sensing device can be reduced.

また、上述したセンシング装置において、前記対象物の画像を読み取る読取領域のうち前記対象物が置かれた領域を検出し、検出結果に基づいて前記第1の駆動回路が選択する一部の前記第2電極を決定する制御回路を備える構成としてもよい。
この場合、読取領域の上に置かれた対象物のサイズや位置に応じて照射光の発光範囲と受光信号の読出範囲を決定することができる。
Further, in the above-described sensing device, a part of the reading area for reading the image of the object is detected and an area where the object is placed is detected, and a part of the first driving circuit selected by the first drive circuit based on the detection result is detected. It is good also as a structure provided with the control circuit which determines 2 electrodes.
In this case, the emission range of the irradiated light and the read range of the received light signal can be determined according to the size and position of the object placed on the reading area.

また、第4の態様に係るセンシング装置において、前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として一部の前記第2電極を選択する第1の駆動回路と、前記複数の第1電極のうち、前記駆動信号を供給する対象として一部の前記第1電極を選択する第2の駆動回路と、前記複数の受光素子のうち、前記対象物側から平面視した場合に、前記第1の駆動回路が選択した一部の前記第2電極と、前記第2の駆動回路が選択した一部の前記第1電極とが重なる部分に隣り合う前記受光素子から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路とを備える構成としてもよい。
この構成の場合も、照射光の発光範囲と受光信号の読出範囲を一部に限定して駆動することができるので、センシング装置の消費電力を低減することができる。
In the sensing device according to the fourth aspect, a first drive that selects a part of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes. A circuit, a second drive circuit that selects a part of the first electrodes as a target for supplying the drive signal among the plurality of first electrodes, and the target side of the plurality of light receiving elements. The light receiving element adjacent to a portion where a part of the second electrodes selected by the first drive circuit and a part of the first electrodes selected by the second drive circuit overlap in a plan view And a readout circuit that reads a light reception signal indicating the amount of the reflected light incident on the light receiving surface.
Also in this configuration, it is possible to drive the light emitting range of the irradiated light and the read range of the received light signal to a part, so that the power consumption of the sensing device can be reduced.

また、上述したセンシング装置において、前記対象物の画像を読み取る読取領域のうち前記対象物が置かれた領域を検出し、検出結果に基づいて、前記第1の駆動回路が選択する一部の前記第2電極と、前記第2の駆動回路が選択する一部の前記第1電極とを決定する制御回路を備える構成としてもよい。
この場合も、読取領域の上に置かれた対象物のサイズや位置に応じて照射光の発光範囲と受光信号の読出範囲を決定することができる。
Further, in the above-described sensing device, a part of the reading area for reading the image of the object is detected and an area where the object is placed is detected, and the part of the first drive circuit selected by the first drive circuit based on the detection result It is good also as a structure provided with the control circuit which determines the 2nd electrode and a part of said 1st electrode which the said 2nd drive circuit selects.
Also in this case, the emission range of the irradiated light and the read range of the received light signal can be determined according to the size and position of the object placed on the reading area.

また、第3の態様に係るセンシング装置において、前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、前記読出回路が読み出した前記受光信号に基づいて前記対象物の画像を生成する生成回路とを備え、前記複数の第2電極は複数のグループに分けられ、前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、前記読出回路は、前記第1の駆動回路が前記グループ単位で選択を行うごとに全ての前記受光素子から前記受光信号を読み出し、前記生成回路は、前記第1の駆動回路が前記グループ単位で選択を行うごとに、前記読出回路が読み出した全ての前記受光信号から、前記対象物側から平面視した場合に、少なくとも前記第1の駆動回路が選択した1以上の前記第2電極に隣り合う前記受光素子から読み出した前記受光信号を除き、残りの前記受光信号に基づいて前記対象物の画像を生成するようにしてもよい。   In the sensing device according to the third aspect, a first drive that selects one or more second electrodes as a target to supply a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes. A circuit, a readout circuit that reads a received light signal indicating the amount of reflected light incident on the light receiving surface from each of the plurality of light receiving elements, and an image of the object based on the received light signal read by the readout circuit A plurality of second electrodes divided into a plurality of groups, the first drive circuit sequentially selecting the plurality of second electrodes in units of groups, and the readout circuit includes: Each time the first driving circuit performs selection in units of groups, the light reception signals are read from all the light receiving elements, and the generation circuit performs selection in units of the groups by the first driving circuit. Further, from all the light receiving signals read by the readout circuit, when viewed in plan from the object side, at least from the light receiving elements adjacent to the one or more second electrodes selected by the first drive circuit An image of the object may be generated based on the remaining light reception signals except for the read light reception signals.

この構成によれば、対象物側から平面視した場合に、第1の駆動回路が選択した1以上の第2電極に隣り合う受光素子からの受光信号、すなわち発光層のうち照射光を発光した部分の近傍に位置する受光素子からの受光信号を使用せずに対象物の画像を生成することができる。従って、生体の一部に近赤外光を照射し、その反射光の受光結果から静脈像を生成する場合に、生体の表面(表皮)で反射した表面反射光によって静脈像の画質が低下することを防ぐことができる。   According to this configuration, when viewed in plan from the object side, a light reception signal from a light receiving element adjacent to one or more second electrodes selected by the first drive circuit, that is, light emitted from the light emitting layer is emitted. An image of an object can be generated without using a light reception signal from a light receiving element located in the vicinity of the portion. Therefore, when a part of the living body is irradiated with near-infrared light and a vein image is generated from the result of receiving the reflected light, the image quality of the vein image is degraded by the surface reflected light reflected from the surface (skin) of the living body. Can be prevented.

また、第3の態様に係るセンシング装置において、前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、前記読出回路が読み出した前記受光信号に基づいて前記対象物の画像を生成する生成回路とを備え、前記複数の第2電極は複数のグループに分けられ、前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、前記読出回路は、前記第1の駆動回路が前記グループ単位で選択を行うごとに、前記対象物側から平面視した場合に、少なくとも前記第1の駆動回路が選択した1以上の前記第2電極に隣り合う前記受光素子を除き、残りの前記受光素子から前記受光信号を読み出すようにしてもよい。   In the sensing device according to the third aspect, a first drive that selects one or more second electrodes as a target to supply a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes. A circuit, a readout circuit that reads a received light signal indicating the amount of reflected light incident on the light receiving surface from each of the plurality of light receiving elements, and an image of the object based on the received light signal read by the readout circuit A plurality of second electrodes divided into a plurality of groups, the first drive circuit sequentially selecting the plurality of second electrodes in units of groups, and the readout circuit includes: Each time the first driving circuit performs selection in units of groups, the light reception adjacent to at least one or more second electrodes selected by the first driving circuit when viewed in plan from the object side. Except for the child, it may be from the remainder of the light receiving element to read the received light signal.

この場合も、発光層のうち照射光を発光した部分の近傍に位置する受光素子からの受光信号を使用せずに対象物の画像を生成することができる。従って、照射光や反射光として近赤外光を用いて静脈像を生成する場合に、表面反射光によって静脈像の画質が低下することを防ぐことができる。また、表面反射光が入射した受光素子から受光信号を読み出さずに済むので、センシング装置の消費電力を低減することもできる。   Also in this case, an image of the object can be generated without using a light reception signal from a light receiving element located in the vicinity of the portion of the light emitting layer that has emitted the irradiated light. Therefore, when a vein image is generated using near infrared light as irradiation light or reflected light, it is possible to prevent the image quality of the vein image from being deteriorated due to the surface reflected light. In addition, since it is not necessary to read out the light reception signal from the light receiving element on which the surface reflected light is incident, the power consumption of the sensing device can be reduced.

また、第4の態様に係るセンシング装置において、前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、前記複数の第1電極のうち、前記駆動信号を供給する対象として1以上の前記第1電極を選択する第2の駆動回路と、前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、前記読出回路が読み出した前記受光信号に基づいて前記対象物の画像を生成する生成回路とを備え、前記複数の第1電極と前記複数の第2電極は複数のグループに分けられ、前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、前記第2の駆動回路は、前記複数の第1電極を前記グループ単位で順次選択し、前記読出回路は、前記第1の駆動回路と前記第2の駆動回路が前記グループ単位で選択を行うごとに全ての前記受光素子から前記受光信号を読み出し、前記生成回路は、前記第1の駆動回路と前記第2の駆動回路が前記グループ単位で選択を行うごとに、前記読出回路が読み出した全ての前記受光信号から、前記対象物側から平面視した場合に、少なくとも、前記第1の駆動回路が選択した1以上の前記第2電極と、前記第2の駆動回路が選択した1以上の前記第1電極とが重なる部分に最も近い前記受光素子から読み出した前記受光信号を除き、残りの前記受光信号に基づいて前記対象物の画像を生成するようにしてもよい。   In the sensing device according to the fourth aspect, a first drive that selects one or more second electrodes as a target to supply a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes. A circuit, a second drive circuit that selects one or more of the first electrodes as a target for supplying the drive signal among the plurality of first electrodes, and an incident on the light receiving surface from each of the plurality of light receiving elements A reading circuit that reads a light reception signal indicating the amount of the reflected light, and a generation circuit that generates an image of the object based on the light reception signal read by the reading circuit, the plurality of first electrodes, The plurality of second electrodes are divided into a plurality of groups, the first drive circuit sequentially selects the plurality of second electrodes in the group unit, and the second drive circuit includes the plurality of first electrodes. The group single The readout circuit reads out the received light signals from all the light receiving elements each time the first drive circuit and the second drive circuit perform selection in units of groups, and the generation circuit includes: Every time the first drive circuit and the second drive circuit make a selection in units of groups, from all the received light signals read by the readout circuit, at least when viewed in plan from the object side, The light reception signal read from the light receiving element closest to the portion where the one or more second electrodes selected by the first drive circuit and the one or more first electrodes selected by the second drive circuit overlap. The image of the object may be generated based on the remaining received light signal.

この構成であっても、対象物側から平面視した場合に、第1の駆動回路が選択した1以上の第2電極と、第2の駆動回路が選択した1以上の第1電極とが重なる部分に最も近い受光素子からの受光信号、すなわち発光層のうち照射光を発光した部分に最も近い受光素子からの受光信号を使用せずに対象物の画像を生成することができる。従って、照射光や反射光として近赤外光を用いて静脈像を生成する場合に、表面反射光によって静脈像の画質が低下することを防ぐことができる。   Even in this configuration, when viewed in plan from the object side, the one or more second electrodes selected by the first drive circuit and the one or more first electrodes selected by the second drive circuit overlap. An image of the object can be generated without using the light reception signal from the light receiving element closest to the part, that is, the light reception signal from the light receiving element closest to the part emitting the irradiation light in the light emitting layer. Therefore, when a vein image is generated using near infrared light as irradiation light or reflected light, it is possible to prevent the image quality of the vein image from being deteriorated due to the surface reflected light.

また、第4の態様に係るセンシング装置において、前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、前記複数の第1電極のうち、前記駆動信号を供給する対象として1以上の前記第1電極を選択する第2の駆動回路と、前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、前記読出回路が読み出した前記受光信号に基づいて前記対象物の画像を生成する生成回路とを備え、前記複数の第1電極と前記複数の第2電極は複数のグループに分けられ、前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、前記第2の駆動回路は、前記複数の第1電極を前記グループ単位で順次選択し、前記読出回路は、前記第1の駆動回路と前記第2の駆動回路が前記グループ単位で選択を行うごとに、前記対象物側から平面視した場合に、少なくとも、前記第1の駆動回路が選択した1以上の前記第2電極と、前記第2の駆動回路が選択した1以上の前記第1電極とが重なる部分に最も近い前記受光素子を除き、残りの前記受光素子から前記受光信号を読み出すようにしてもよい。   In the sensing device according to the fourth aspect, a first drive that selects one or more second electrodes as a target to supply a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes. A circuit, a second drive circuit that selects one or more of the first electrodes as a target for supplying the drive signal among the plurality of first electrodes, and an incident on the light receiving surface from each of the plurality of light receiving elements A reading circuit that reads a light reception signal indicating the amount of the reflected light, and a generation circuit that generates an image of the object based on the light reception signal read by the reading circuit, the plurality of first electrodes, The plurality of second electrodes are divided into a plurality of groups, the first drive circuit sequentially selects the plurality of second electrodes in the group unit, and the second drive circuit includes the plurality of first electrodes. The group single The readout circuit is selected at least when the first drive circuit and the second drive circuit make a selection in units of the group when viewed in plan from the object side. The remaining light receiving elements except for the light receiving element closest to the portion where the one or more second electrodes selected by the driving circuit and the one or more first electrodes selected by the second driving circuit overlap. The received light signal may be read out.

この場合も、発光層のうち照射光を発光した部分の近傍に位置する受光素子からの受光信号を使用せずに対象物の画像を生成することができる。従って、照射光や反射光として近赤外光を用いて静脈像を生成する場合に、表面反射光によって静脈像の画質が低下することを防ぐことができる。また、表面反射光が入射した受光素子から受光信号を読み出さずに済むので、センシング装置の消費電力を低減することもできる。   Also in this case, an image of the object can be generated without using a light reception signal from a light receiving element located in the vicinity of the portion of the light emitting layer that has emitted the irradiated light. Therefore, when a vein image is generated using near infrared light as irradiation light or reflected light, it is possible to prevent the image quality of the vein image from being deteriorated due to the surface reflected light. In addition, since it is not necessary to read out the light reception signal from the light receiving element on which the surface reflected light is incident, the power consumption of the sensing device can be reduced.

また、上述したいずれかのセンシング装置において、前記発光層は近赤外光を発する構成であってもよい。つまり、照射光や反射光は近赤外光であってもよい。この場合、生体の一部に近赤外光を照射し、その反射光を受光することで静脈像を生成することができる。   In any of the sensing devices described above, the light emitting layer may emit near infrared light. That is, the irradiation light and the reflected light may be near infrared light. In this case, a vein image can be generated by irradiating a part of the living body with near-infrared light and receiving the reflected light.

また、本発明に係る電子機器は、上述したいずれかのセンシング装置を備える。電子機器には、例えば、静脈、指紋、網膜、虹彩等に基づいて生体認証を行う各種の生体認証装置の他、イメージスキャナー、複写機、ファクシミリ、バーコードリーダー等の画像読取装置が含まれる。また、電子機器は、生体認証機能を備えたパーソナルコンピューターや携帯電話機等であってもよい。   An electronic device according to the present invention includes any one of the sensing devices described above. Electronic devices include, for example, various types of biometric authentication devices that perform biometric authentication based on veins, fingerprints, retinas, irises, and the like, as well as image reading devices such as image scanners, copiers, facsimiles, and barcode readers. In addition, the electronic device may be a personal computer or a mobile phone having a biometric authentication function.

第1実施形態に係る生体認証装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biometrics apparatus which concerns on 1st Embodiment. センシングユニットの断面図である。It is sectional drawing of a sensing unit. 陰極と受光素子の配置を示す平面図である。It is a top view which shows arrangement | positioning of a cathode and a light receiving element. 1つの受光素子に着目した場合の各層の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of each layer at the time of paying attention to one light receiving element. 第2実施形態に係り、陰極と受光素子の配置を示す平面図である。It is a top view which concerns on 2nd Embodiment and shows arrangement | positioning of a cathode and a light receiving element. 1つの受光素子に着目した場合の各層の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of each layer at the time of paying attention to one light receiving element. 第3実施形態に係り、陽極と陰極と受光素子の配置を示す平面図である。It is a top view which concerns on 3rd Embodiment and shows arrangement | positioning of an anode, a cathode, and a light receiving element. 1つの受光素子に着目した場合の各層の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of each layer at the time of paying attention to one light receiving element. 第4実施形態に係る生体認証装置の発光部の回路構成を示す図である。It is a figure which shows the circuit structure of the light emission part of the biometrics apparatus which concerns on 4th Embodiment. 受光部の回路構成を示す図である。It is a figure which shows the circuit structure of a light-receiving part. 静脈像の生成動作について説明するための図である。It is a figure for demonstrating the production | generation operation | movement of a vein image. 第4実施形態の変形例について説明するための図である。It is a figure for demonstrating the modification of 4th Embodiment. 第5実施形態に係る生体認証装置の発光部の回路構成を示す図である。It is a figure which shows the circuit structure of the light emission part of the biometrics apparatus which concerns on 5th Embodiment. 静脈像の生成動作について説明するための図である。It is a figure for demonstrating the production | generation operation | movement of a vein image. 第6実施形態に係り、照射光の発光範囲と受光信号の読出範囲を示す図である。It is a figure which concerns on 6th Embodiment and shows the light emission range of irradiated light, and the read range of a received light signal. 第6実施形態の変形例について説明するための図である。It is a figure for demonstrating the modification of 6th Embodiment. センシングユニットの断面図(変形例)である。It is sectional drawing (modified example) of a sensing unit. センシングユニットの断面図(変形例)である。It is sectional drawing (modified example) of a sensing unit. 陽極と陰極と受光素子の配置の変形例を示す図である。It is a figure which shows the modification of arrangement | positioning of an anode, a cathode, and a light receiving element.

以下、図面を参照して本発明に係る実施の形態を説明する。なお、図面において各層や各部材の寸法の比率は実際のものと適宜異なる。
<A.第1実施形態>
図1は、第1実施形態に係る生体認証装置1の構成を示すブロック図である。
同図に示す生体認証装置1は、指Fの静脈像を撮像して本人認証を行う装置であり、センシングユニット2と、記憶部40と、制御部50と、出力部60とを備える。また、センシングユニット2は、カバーガラス10と、発光部20と、受光部30とを備える。カバーガラス10は、撮像領域を覆うガラスの保護カバーである。このカバーガラス10の上に認証対象となる者の指F(例えば右手の人差し指)が置かれる。発光部20は、例えば、有機EL(Electro Luminescent)材料で形成された発光層と、陽極と、陰極と、絶縁層とを備え、指Fに照射する照射光ILを発する。照射光ILは近赤外光であり、その波長は、例えば750〜3000nm(より好ましくは800〜900nm)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the ratio of dimensions of each layer and each member is appropriately different from the actual one.
<A. First Embodiment>
FIG. 1 is a block diagram showing a configuration of the biometric authentication device 1 according to the first embodiment.
A biometric authentication device 1 shown in FIG. 1 is a device that captures a vein image of a finger F and performs personal authentication, and includes a sensing unit 2, a storage unit 40, a control unit 50, and an output unit 60. The sensing unit 2 includes a cover glass 10, a light emitting unit 20, and a light receiving unit 30. The cover glass 10 is a glass protective cover that covers the imaging region. On the cover glass 10, a finger F (for example, an index finger of the right hand) of a person to be authenticated is placed. The light emitting unit 20 includes, for example, a light emitting layer formed of an organic EL (Electro Luminescent) material, an anode, a cathode, and an insulating layer, and emits irradiation light IL that irradiates the finger F. The irradiation light IL is near-infrared light, and the wavelength thereof is, for example, 750 to 3000 nm (more preferably 800 to 900 nm).

発光部20から出射された照射光IL(近赤外光)は、カバーガラス10の下側から指Fに照射され、指Fの内部に到達すると散乱し、その一部が反射光RLとして受光部30側に向かう。静脈を流れる還元ヘモグロビンは近赤外光を吸収する性質がある。このため近赤外光用のイメージセンサーを用いて指Fを撮像すると、指Fの皮下にある静脈部分が周辺組織に比べて暗く写る。この明暗の差による紋様が静脈像となる。受光部30は、近赤外光用のイメージセンサーであり、マトリクス状に配列された複数の受光素子を備える。各受光素子は、入射光(指Fからの反射光RL)をその光量に応じた信号レベルを有する電気信号(受光信号)に変換する。   Irradiation light IL (near infrared light) emitted from the light emitting unit 20 is irradiated on the finger F from the lower side of the cover glass 10 and scattered when reaching the inside of the finger F, and a part thereof is received as reflected light RL. Head toward the part 30 side. Reduced hemoglobin flowing through veins has the property of absorbing near infrared light. For this reason, when the finger F is imaged using an image sensor for near infrared light, the vein portion under the finger F appears darker than the surrounding tissue. The pattern due to this difference in brightness becomes a vein image. The light receiving unit 30 is an image sensor for near infrared light, and includes a plurality of light receiving elements arranged in a matrix. Each light receiving element converts incident light (reflected light RL from the finger F) into an electric signal (light receiving signal) having a signal level corresponding to the amount of light.

なお、発光部20や受光部30の具体的な構造については後述するが、図1に示すように発光部20と受光部30は、カバーガラス10の上に置かれた指Fに対して同じ側(図中下側)に位置する。また、発光部20は受光部30よりもカバーガラス10側(図中上側)に位置する。   Although specific structures of the light emitting unit 20 and the light receiving unit 30 will be described later, the light emitting unit 20 and the light receiving unit 30 are the same with respect to the finger F placed on the cover glass 10 as shown in FIG. Located on the side (lower side in the figure). Further, the light emitting unit 20 is located on the cover glass 10 side (upper side in the drawing) than the light receiving unit 30.

記憶部40は、フラッシュメモリやハードディスク等の不揮発性メモリであり、本人認証用のマスター静脈像として、事前に登録された指F(例えば右手の人差し指)の静脈像が記憶されている。制御部50は、CPU(Central Processing Unit)やRAM(Random Access Memory)を備え、発光部20の点灯や消灯を制御する。また、制御部50は、受光部30に備わる各受光素子から受光信号を読み出し、読み出した1フレーム分(撮像領域分)の受光信号に基づいて指Fの静脈像を生成する。また、制御部50は、生成した静脈像を記憶部40に登録されているマスター静脈像と照合し、本人認証を行う。例えば、制御部50は、照合する2つの静脈像の特徴(例えば静脈の枝分かれの数や位置等)を比較し、類似度が予め定められた閾値以上であった場合に、カバーガラス10の上に指Fを置いた者が記憶部40にマスター静脈像が登録されている本人であると認証する。出力部60は、例えば表示部や音声報知部であり、表示や音声によって認証結果を報知する。   The storage unit 40 is a non-volatile memory such as a flash memory or a hard disk, and stores a vein image of a finger F registered in advance (for example, the index finger of the right hand) as a master vein image for personal authentication. The control unit 50 includes a CPU (Central Processing Unit) and a RAM (Random Access Memory), and controls turning on and off of the light emitting unit 20. In addition, the control unit 50 reads a light reception signal from each light receiving element included in the light receiving unit 30, and generates a vein image of the finger F based on the read light reception signal for one frame (for the imaging region). Further, the control unit 50 collates the generated vein image with the master vein image registered in the storage unit 40 and performs personal authentication. For example, the control unit 50 compares the characteristics of two vein images to be compared (for example, the number and position of branching veins), and if the similarity is equal to or higher than a predetermined threshold, The person who puts the finger F on is authenticated as the person whose master vein image is registered in the storage unit 40. The output unit 60 is, for example, a display unit or a voice notification unit, and notifies the authentication result by display or voice.

図2は、センシングユニット2の断面図である。
同図において受光部30(近赤外光用のイメージセンサー)の上面には、複数の受光素子Dがマトリクス状に配置されている。各受光素子Dは、受光面に入射された反射光RL(近赤外光)をその光量に応じた信号レベルを有する受光信号に変換する。また、受光部30の上側に対向配置された対向基板GSは、例えば透明なガラスや透明なプラスチック等、近赤外光に対して透過性の高い材料で形成されている。この対向基板GSの上側には、撮像領域の全面にわたってレンズアレイLAとカバーガラス10が設けられている。レンズアレイLAとカバーガラス10は、近赤外光に対して透過性の高い材料で形成されている。レンズアレイLAは複数のマイクロレンズMLをマトリクス状に並べたものである。マイクロレンズMLの配列ピッチは受光素子Dの配列ピッチと同じであり、各マイクロレンズMLは、指Fからの反射光RLを真下に位置する受光素子Dの受光面に結像する。
FIG. 2 is a cross-sectional view of the sensing unit 2.
In the figure, a plurality of light receiving elements D are arranged in a matrix on the upper surface of a light receiving unit 30 (image sensor for near infrared light). Each light receiving element D converts the reflected light RL (near infrared light) incident on the light receiving surface into a light receiving signal having a signal level corresponding to the light quantity. In addition, the counter substrate GS disposed to face the upper side of the light receiving unit 30 is formed of a material having high transparency to near infrared light, such as transparent glass or transparent plastic. Above the counter substrate GS, a lens array LA and a cover glass 10 are provided over the entire surface of the imaging region. The lens array LA and the cover glass 10 are made of a material that is highly transmissive to near infrared light. The lens array LA has a plurality of microlenses ML arranged in a matrix. The arrangement pitch of the microlenses ML is the same as the arrangement pitch of the light receiving elements D, and each microlens ML forms an image of the reflected light RL from the finger F on the light receiving surface of the light receiving element D located directly below.

一方、対向基板GSの下側には、発光部20と複数の遮光層BMが設けられている。まず、対向基板GSの下面には、撮像領域の全面にわたって陽極22が形成されている。陽極22は、有機EL層26(または遮光層BMと絶縁層28と有機EL層26)を挟んで陰極24と対向する膜体の電極(導電体)であり、近赤外光に対して透過性が高く、かつ導電性の高い材料で形成されている。一方、陰極24は、複数の受光素子Dの各々と対応する位置に開口部が設けられた電極(導電体)であり、近赤外光に対して遮光性が高く、かつ導電性の高い材料で形成されている。また、陰極24の下側や陰極24の各開口部は、近赤外光に対して透過性の高い材料で形成された封止層29で覆われている。なお、図3は、陰極24と受光素子Dの配置を示す平面図である。同図に示すように、陰極24に設けられた各開口部の形状は正方形であり、陰極24はカバーガラス10側から平面視したとき井桁状の形状を有する。開口部の配列ピッチは受光素子Dの配列ピッチと同じであり、開口部と受光素子D(受光面)は1対1で対応する。また、各々の開口部内に受光素子D(受光面)が1つずつ含まれる。なお、陰極24は透明電極と遮光層で構成されていてもよい。すなわち、近赤外光に対して透過性が高く、かつ導電性の高い材料で形成された井桁状の透明電極と、近赤外光に対して遮光性が高い材料で形成された井桁状の遮光層とを重ね合わせて陰極24を構成してもよい。   On the other hand, a light emitting unit 20 and a plurality of light shielding layers BM are provided below the counter substrate GS. First, the anode 22 is formed over the entire surface of the imaging region on the lower surface of the counter substrate GS. The anode 22 is a film body electrode (conductor) facing the cathode 24 across the organic EL layer 26 (or the light shielding layer BM, the insulating layer 28, and the organic EL layer 26), and transmits the near-infrared light. It is made of a highly conductive and highly conductive material. On the other hand, the cathode 24 is an electrode (conductor) provided with an opening at a position corresponding to each of the plurality of light receiving elements D, and is a material having a high light shielding property against near infrared light and a high conductivity. It is formed with. In addition, the lower side of the cathode 24 and each opening of the cathode 24 are covered with a sealing layer 29 made of a material that is highly transmissive to near infrared light. FIG. 3 is a plan view showing the arrangement of the cathode 24 and the light receiving element D. As shown in the figure, each opening provided in the cathode 24 has a square shape, and the cathode 24 has a cross-like shape when viewed from the cover glass 10 side. The arrangement pitch of the openings is the same as the arrangement pitch of the light receiving elements D, and the openings and the light receiving elements D (light receiving surfaces) have a one-to-one correspondence. In addition, one light receiving element D (light receiving surface) is included in each opening. The cathode 24 may be composed of a transparent electrode and a light shielding layer. That is, a transparent electrode in the form of a girder that is made of a material that is highly transmissive to near-infrared light and has high conductivity, and a girder-like transparent electrode that is made of a material that has a high light-shielding property to near-infrared light. The cathode 24 may be configured by overlapping the light shielding layer.

図2に戻り、陽極22の下面には、陰極24に設けられた各開口部と対応する位置に遮光層BMが設けられている。各遮光層BMは、近赤外光に対して遮光性の高い材料で形成され、受光素子Dの受光面と対応する位置に開口部が設けられている。各受光素子Dの受光面の中心は、真上に位置する遮光層BMの開口部に含まれる。各遮光層BM(各開口部)は、真上に位置するマイクロレンズMLを透過してきた反射光RLを、真下に位置にする受光素子Dの受光面に入射させる。   Returning to FIG. 2, a light shielding layer BM is provided on the lower surface of the anode 22 at a position corresponding to each opening provided in the cathode 24. Each light shielding layer BM is formed of a material having a high light shielding property with respect to near-infrared light, and an opening is provided at a position corresponding to the light receiving surface of the light receiving element D. The center of the light receiving surface of each light receiving element D is included in the opening of the light shielding layer BM located directly above. Each light shielding layer BM (each opening) causes the reflected light RL that has passed through the microlens ML positioned directly above to be incident on the light receiving surface of the light receiving element D positioned directly below.

また、各遮光層BMは、遮光層BMごとに絶縁層28によって覆われている。各絶縁層28は、近赤外光に対して透過性が高く、かつ絶縁性の高い材料で形成されている。各絶縁層28は、陽極22と陰極24を部分的に絶縁し、有機EL層26に近赤外光を発光しない非発光領域を形成する。なお、各絶縁層28は陰極24の各開口部に対応する位置に設けられているので、有機EL層26のうち各受光素子Dの受光面に対応する位置とその周辺を非発光領域にする。つまり、各受光素子Dの受光面に入射する反射光RLの光路上(各受光素子Dの受光面からZ軸方向に延びる直線上)には、有機EL層26のうち近赤外光を発光する発光領域が存在しない。   Each light shielding layer BM is covered with an insulating layer 28 for each light shielding layer BM. Each insulating layer 28 is formed of a material having high transparency to near infrared light and high insulation. Each insulating layer 28 partially insulates the anode 22 and the cathode 24, and forms a non-light emitting region that does not emit near infrared light in the organic EL layer 26. Since each insulating layer 28 is provided at a position corresponding to each opening of the cathode 24, a position corresponding to the light receiving surface of each light receiving element D in the organic EL layer 26 and its periphery are set as non-light emitting regions. . That is, near-infrared light is emitted from the organic EL layer 26 on the optical path of the reflected light RL incident on the light receiving surface of each light receiving element D (on a straight line extending in the Z-axis direction from the light receiving surface of each light receiving element D). There is no light emitting area to perform.

有機EL層26は、近赤外光に対して透過性が高い有機EL材料で形成された発光層であり、撮像領域の全面にわたって形成されている。有機EL層26は、電流を供給することで正孔と電子が結合し、近赤外光を発する。また、有機EL層26は陽極22と陰極24で挟まれた部分が発光するが、絶縁層28が形成された部分は陽極22と陰極24が絶縁されるので、図2に示すように有機EL層26のうちハッチングで示す部分(陽極22と陰極24で直接挟まれた部分)が近赤外光を発光する発光領域になり、それ以外の部分は非発光領域になる。このように有機EL層26には発光領域と非発光領域が存在する。なお、有機EL層26の発光領域は、カバーガラス10側から平面視したとき、図3においてハッチングで示す部分になる。同図に示すように発光領域は各受光素子Dの周囲を取り囲むように形成されるので、指Fに対して均一な強度の近赤外光(照射光IR)を照射することができる。   The organic EL layer 26 is a light emitting layer formed of an organic EL material having a high transmittance with respect to near-infrared light, and is formed over the entire imaging region. The organic EL layer 26 emits near-infrared light by combining holes and electrons by supplying current. Further, the organic EL layer 26 emits light at the portion sandwiched between the anode 22 and the cathode 24, but the portion where the insulating layer 28 is formed is insulated from the anode 22 and the cathode 24. Therefore, as shown in FIG. Of the layer 26, the hatched portion (the portion directly sandwiched between the anode 22 and the cathode 24) is a light emitting region that emits near infrared light, and the other portions are non-light emitting regions. Thus, the organic EL layer 26 has a light emitting region and a non-light emitting region. The light emitting region of the organic EL layer 26 is a portion indicated by hatching in FIG. 3 when viewed from the cover glass 10 side. As shown in the figure, since the light emitting region is formed so as to surround each light receiving element D, the finger F can be irradiated with near infrared light (irradiation light IR) with uniform intensity.

図4は、1つの受光素子Dに着目した場合の各層の配置を示す模式図である。
同図において最下層に位置する受光素子Dの受光面は円形の形状を有する。また、その上には、受光素子Dの受光面よりも大きな正方形の開口部を有する陰極24が設けられている。一方、最上層には全面にわたって陽極22が設けられ、その下には、陰極24の開口部よりも大きな正方形の外形を有する遮光層BMが設けられている。遮光層BMの中心には受光素子Dの受光面よりも小さな円形の開口部が設けられており、この開口部以外の部分が遮光層BMと陰極24によって遮光される。このように遮光層BMと陰極24は、カバーガラス10側から平面視したとき、遮光層BMの開口部以外の部分を覆い、受光素子Dの受光窓として機能する。また、遮光層BMの下には絶縁層28が設けられている。絶縁層28は、遮光層BMよりも大きな外形(正方形)を有し、遮光層BMの全面を覆う。また、絶縁層28の下には全面にわたって有機EL層26が設けられている。有機EL層26は、陽極22と陰極24に挟まれ、かつ絶縁層28によって絶縁されていない部分が発光する。従って、同図に示す有機EL層26のうちハッチングで示す周辺部分が発光領域になり、その内側部分が非発光領域になる。
FIG. 4 is a schematic diagram showing the arrangement of each layer when focusing on one light receiving element D.
In the figure, the light receiving surface of the light receiving element D located at the lowermost layer has a circular shape. Further, a cathode 24 having a square opening larger than the light receiving surface of the light receiving element D is provided thereon. On the other hand, the anode 22 is provided over the entire uppermost layer, and a light shielding layer BM having a square outer shape larger than the opening of the cathode 24 is provided below the anode 22. A circular opening smaller than the light receiving surface of the light receiving element D is provided at the center of the light shielding layer BM, and portions other than the opening are shielded by the light shielding layer BM and the cathode 24. Thus, the light shielding layer BM and the cathode 24 cover a portion other than the opening of the light shielding layer BM and function as a light receiving window of the light receiving element D when viewed from the cover glass 10 side. An insulating layer 28 is provided under the light shielding layer BM. The insulating layer 28 has a larger outer shape (square) than the light shielding layer BM and covers the entire surface of the light shielding layer BM. An organic EL layer 26 is provided under the insulating layer 28 over the entire surface. The portion of the organic EL layer 26 that is sandwiched between the anode 22 and the cathode 24 and is not insulated by the insulating layer 28 emits light. Therefore, in the organic EL layer 26 shown in the figure, the peripheral portion indicated by hatching is a light emitting region, and the inner portion thereof is a non-light emitting region.

図4からも明らかとなるように、有機EL層26のうち受光素子Dの受光面に対応する位置とその周辺は非発光領域になる。従って、受光素子Dの受光面に入射する反射光RLの光路上には、反射光RLよりも光量が大きい照射光ILを発光する発光領域が存在しない。また、遮光層BMと陰極24によって遮光層BMの開口部以外の部分が遮光されるので、受光素子Dの受光面には、真上に位置するマイクロレンズMLを透過してきた反射光RLが入射され、隣のマイクロレンズML等から斜めに入射してきた反射光RL(散乱光)が受光素子Dの受光面に入射するのを抑制することができる。   As is apparent from FIG. 4, the position corresponding to the light receiving surface of the light receiving element D in the organic EL layer 26 and its periphery are non-light emitting regions. Therefore, on the optical path of the reflected light RL incident on the light receiving surface of the light receiving element D, there is no light emitting region that emits the irradiation light IL having a light amount larger than that of the reflected light RL. Further, since the light shielding layer BM and the cathode 24 shield the portions other than the opening of the light shielding layer BM, the reflected light RL transmitted through the microlens ML located right above is incident on the light receiving surface of the light receiving element D. Thus, the reflected light RL (scattered light) incident obliquely from the adjacent microlens ML or the like can be prevented from entering the light receiving surface of the light receiving element D.

次に、生体認証装置1の動作について説明する。
制御部50は、図示を省略した接触センサー等を用いてカバーガラス10の上に指Fが置かれたことを検知すると、陽極22と陰極24の間に電流を供給し、有機EL層26(発光領域)を発光させる。有機EL層26から出射された照射光IL(近赤外光)は、陽極22、対向基板GS、レンズアレイLA、カバーガラス10を介して指Fに照射され、指Fの内部に到達すると散乱し、その一部が反射光RLとして受光部30側に向かう。また、指Fからの反射光RLの一部が、カバーガラス10、レンズアレイLA、対向基板GS、陽極22、遮光層BMの開口部、絶縁層28、有機EL層26(非発光領域)、陰極24の開口部、封止層29を介して受光素子Dの受光面に入射される。各受光素子Dは、受光面に入射された反射光RLをその光量に応じた信号レベルを有する受光信号に変換する。制御部50は、各受光素子Dから受光信号を読み出し、読み出した1フレーム分の受光信号に基づいて指Fの静脈像を生成する。また、制御部50は、生成した静脈像を記憶部40に登録されているマスター静脈像と照合して本人認証を行い、認証結果を出力部60から出力する。
Next, the operation of the biometric authentication device 1 will be described.
When the control unit 50 detects that the finger F is placed on the cover glass 10 by using a contact sensor or the like (not shown), the control unit 50 supplies current between the anode 22 and the cathode 24, and the organic EL layer 26 ( (Light emitting area) is turned on. Irradiation light IL (near infrared light) emitted from the organic EL layer 26 is irradiated onto the finger F through the anode 22, the counter substrate GS, the lens array LA, and the cover glass 10, and is scattered when reaching the inside of the finger F. A part of the light travels toward the light receiving unit 30 as reflected light RL. Further, a part of the reflected light RL from the finger F includes a cover glass 10, a lens array LA, a counter substrate GS, an anode 22, an opening of a light shielding layer BM, an insulating layer 28, an organic EL layer 26 (non-light emitting region), The light is incident on the light receiving surface of the light receiving element D through the opening of the cathode 24 and the sealing layer 29. Each light receiving element D converts the reflected light RL incident on the light receiving surface into a light receiving signal having a signal level corresponding to the amount of light. The control unit 50 reads a light reception signal from each light receiving element D, and generates a vein image of the finger F based on the read light reception signal for one frame. Further, the control unit 50 collates the generated vein image with the master vein image registered in the storage unit 40 to perform personal authentication, and outputs an authentication result from the output unit 60.

以上説明したように本実施形態によれば、有機EL層26のうち各受光素子Dの受光面に対応する位置とその周辺は非発光領域になる。従って、各受光素子Dの受光面に入射する反射光RLの光路上には、反射光RLよりも光量が大きい照射光ILを発光する発光領域が存在しない。また、各遮光層BMと陰極24によって各遮光層BMの開口部以外の部分が遮光される。従って、各受光素子Dの受光面には真上に位置するマイクロレンズMLを透過してきた反射光RLが入射され、隣のマイクロレンズML等から斜めに入射してきた反射光RL(散乱光)の入射を抑制することができる。また、有機EL層26(発光領域)から出射された照射光ILが陰極24の開口部を通って各受光素子Dの受光面に直接入射することも陰極24と各遮光層BMによって抑制することができる。よって、各受光素子Dにおいて指Fからの反射光RLを精度よく受光することが可能になるので、静脈像の撮像精度を高めることができる。また、陽極22、陰極24、有機EL層26、絶縁層28、遮光層BMを設ける必要があるものの、これらの各要素は極めて薄く形成することができるので、特許文献1に記載された発明に比べ、生体認証装置1(センシングユニット2)のZ軸方向の厚さを薄くすることができる。   As described above, according to the present embodiment, the position corresponding to the light receiving surface of each light receiving element D in the organic EL layer 26 and its periphery are non-light emitting regions. Therefore, on the optical path of the reflected light RL incident on the light receiving surface of each light receiving element D, there is no light emitting region that emits the irradiation light IL having a light amount larger than that of the reflected light RL. Further, the portions other than the openings of the respective light shielding layers BM are shielded from light by the respective light shielding layers BM and the cathodes 24. Therefore, the reflected light RL that has passed through the microlens ML located directly above is incident on the light receiving surface of each light receiving element D, and the reflected light RL (scattered light) that is incident obliquely from the adjacent microlens ML or the like. Incident can be suppressed. In addition, the irradiation light IL emitted from the organic EL layer 26 (light emitting region) is prevented from directly entering the light receiving surface of each light receiving element D through the opening of the cathode 24 by the cathode 24 and each light shielding layer BM. Can do. Therefore, each light receiving element D can receive the reflected light RL from the finger F with high accuracy, so that the imaging accuracy of the vein image can be increased. Moreover, although it is necessary to provide the anode 22, the cathode 24, the organic EL layer 26, the insulating layer 28, and the light shielding layer BM, each of these elements can be formed extremely thin, so that the invention described in Patent Document 1 is used. In comparison, the thickness of the biometric authentication device 1 (sensing unit 2) in the Z-axis direction can be reduced.

<B.第2実施形態>
上述した第1実施形態において、複数の開口部を有する1つの陰極24(図3)を、図5に示すように互いに離間して配置された複数の陰極24’としてもよい。各陰極24’は、Y軸方向に延在する帯状の形状を有し、受光部30に備わる複数の受光素子Dと重ならないよう互いに離間して配置される。この場合、第1実施形態における各遮光層BMや各絶縁層28についても、図5において隣り合う陰極24’間の離間領域を覆うようにその外形等を変形する必要がある。
<B. Second Embodiment>
In the first embodiment described above, one cathode 24 (FIG. 3) having a plurality of openings may be a plurality of cathodes 24 ′ arranged apart from each other as shown in FIG. Each cathode 24 ′ has a strip shape extending in the Y-axis direction, and is arranged apart from each other so as not to overlap the plurality of light receiving elements D provided in the light receiving unit 30. In this case, each light shielding layer BM and each insulating layer 28 in the first embodiment also needs to be modified in outer shape or the like so as to cover the separation region between the adjacent cathodes 24 ′ in FIG.

図6は、第2実施形態における各層の配置を示す模式図である。
なお、受光素子Dと陽極22は、第1実施形態で説明したものと同じである。同図に示すようにY軸方向に延在する2本の陰極24’は、受光素子Dの受光面を挟んでその両隣(図中左右)に位置する。この2本の陰極24’の離間幅をW1としたとき、遮光層BM’のX軸方向の幅W2はW1よりも大きい。遮光層BM’は、Y軸方向に延在する帯状の外形を有する。また、遮光層BM’は、受光素子Dの受光面に対応する位置に受光面よりも小さな円形の開口部を有する。なお、図5に示したように受光素子DはY軸方向に沿って複数配列されているから、各遮光層BM’にもY軸方向に沿って複数の開口部が形成されている。
FIG. 6 is a schematic diagram showing the arrangement of each layer in the second embodiment.
The light receiving element D and the anode 22 are the same as those described in the first embodiment. As shown in the figure, the two cathodes 24 ′ extending in the Y-axis direction are positioned on both sides (left and right in the figure) with the light receiving surface of the light receiving element D in between. When the separation width of the two cathodes 24 ′ is W1, the width W2 in the X-axis direction of the light shielding layer BM ′ is larger than W1. The light shielding layer BM ′ has a belt-like outer shape extending in the Y-axis direction. The light shielding layer BM ′ has a circular opening smaller than the light receiving surface at a position corresponding to the light receiving surface of the light receiving element D. As shown in FIG. 5, since a plurality of light receiving elements D are arranged along the Y-axis direction, a plurality of openings are formed along the Y-axis direction in each light shielding layer BM ′.

また、絶縁層28’のX軸方向の幅W3は、遮光層BM’の幅W2よりも大きい。絶縁層28’についても遮光層BM’と同様にY軸方向に延在する帯状の外形を有する。絶縁層28’と遮光層BM’は、2本の陰極24’間の離間領域を覆い、絶縁層28’と遮光層BM’の両端(X軸方向)は両隣の陰極24’と重なる。また、有機EL層26’は全面にわたって分布しているが、陽極22’と陰極24’に挟まれ、かつ絶縁層28’によって絶縁されていない部分が発光する。従って、同図に示すように有機EL層26’のうちハッチングで示す両脇部分が発光領域になり、その内側部分が非発光領域になる。なお、本実施形態において複数の陰極24’には同時に電流が供給される。従って、有機EL層26’の発光領域は、カバーガラス10側から平面視したとき、図5においてハッチングで示す部分になる。   Further, the width W3 in the X-axis direction of the insulating layer 28 'is larger than the width W2 of the light shielding layer BM'. The insulating layer 28 ′ also has a strip-like outer shape extending in the Y-axis direction, like the light shielding layer BM ′. The insulating layer 28 ′ and the light shielding layer BM ′ cover a separation area between the two cathodes 24 ′, and both ends (X-axis direction) of the insulating layer 28 ′ and the light shielding layer BM ′ overlap with the adjacent cathodes 24 ′. Further, although the organic EL layer 26 'is distributed over the entire surface, the portion sandwiched between the anode 22' and the cathode 24 'and not insulated by the insulating layer 28' emits light. Accordingly, as shown in the figure, the both side portions indicated by hatching in the organic EL layer 26 ′ become the light emitting region, and the inner portion thereof becomes the non-light emitting region. In the present embodiment, current is simultaneously supplied to the plurality of cathodes 24 ′. Therefore, the light emitting region of the organic EL layer 26 ′ is a portion indicated by hatching in FIG. 5 when viewed in plan from the cover glass 10 side.

以上の構成であっても、有機EL層26’のうち各受光素子Dの受光面に対応する位置とその周辺は非発光領域になる。従って、各受光素子Dの受光面に入射する反射光RLの光路上には、反射光RLよりも光量が大きい照射光ILを発光する発光領域が存在しない。また、遮光層BM’とその両脇の2本の陰極24’によって遮光層BM’の開口部以外の部分が遮光される。従って、各受光素子Dの受光面には、真上に位置するマイクロレンズMLを透過してきた反射光RLが入射される。よって、第1実施形態と同様の効果を奏する。   Even in the above configuration, the position corresponding to the light receiving surface of each light receiving element D in the organic EL layer 26 ′ and the periphery thereof are non-light emitting regions. Therefore, on the optical path of the reflected light RL incident on the light receiving surface of each light receiving element D, there is no light emitting region that emits the irradiation light IL having a light amount larger than that of the reflected light RL. Further, the light shielding layer BM 'and the two cathodes 24' on both sides of the light shielding layer BM 'shield light from portions other than the opening. Therefore, the reflected light RL that has passed through the microlens ML located directly above is incident on the light receiving surface of each light receiving element D. Therefore, the same effects as those of the first embodiment are obtained.

<C.第3実施形態>
上述した第1実施形態において、陰極24に加え、陽極22についても図7に示すように互いに離間して配置された複数の陽極22’としてもよい。各陽極22’は、X軸方向に延在する帯状の形状を有し、受光部30に備わる複数の受光素子Dと重ならないよう互いに離間して配置される。
<C. Third Embodiment>
In the first embodiment described above, in addition to the cathode 24, the anode 22 may also be a plurality of anodes 22 ′ arranged apart from each other as shown in FIG. Each anode 22 ′ has a belt-like shape extending in the X-axis direction, and is disposed apart from each other so as not to overlap with the plurality of light receiving elements D provided in the light receiving unit 30.

図8は、第3実施形態における各層の配置を示す模式図である。
なお、遮光層BM’と絶縁層28’と陰極24’と受光素子Dについては、第2実施形態で説明したものと同じである。同図に示すようにX軸方向に延在する2本の陽極22’は、受光素子Dの受光面を挟んでその両隣(図中上下)に位置する。また、陽極22’間の離間幅は、陰極24’間の離間幅と同じW1になる。有機EL層26’は全面にわたって分布しているが、陽極22’と陰極24’に挟まれ、かつ絶縁層28’によって絶縁されていない部分が発光する。従って、同図に示すように有機EL層26’のうちハッチングで示す四隅の部分が発光領域になり、その他の部分が非発光領域になる。なお、本実施形態において複数の陽極22’と複数の陰極24’には同時に電流が供給される。従って、有機EL層26’の発光領域は、カバーガラス10側から平面視したとき、図7においてハッチングで示す部分になる。
FIG. 8 is a schematic diagram showing the arrangement of each layer in the third embodiment.
The light shielding layer BM ′, the insulating layer 28 ′, the cathode 24 ′, and the light receiving element D are the same as those described in the second embodiment. As shown in the figure, the two anodes 22 ′ extending in the X-axis direction are positioned on both sides (upper and lower sides in the figure) across the light receiving surface of the light receiving element D. Further, the separation width between the anodes 22 'is the same W1 as the separation width between the cathodes 24'. The organic EL layer 26 'is distributed over the entire surface, but a portion sandwiched between the anode 22' and the cathode 24 'and not insulated by the insulating layer 28' emits light. Therefore, as shown in the figure, the hatched four corners of the organic EL layer 26 'are light emitting regions, and the other portions are non-light emitting regions. In the present embodiment, current is simultaneously supplied to the plurality of anodes 22 ′ and the plurality of cathodes 24 ′. Accordingly, the light emitting region of the organic EL layer 26 ′ is a portion indicated by hatching in FIG. 7 when viewed from the cover glass 10 side.

以上の構成であっても、有機EL層26’のうち各受光素子Dの受光面に対応する位置とその周辺は非発光領域になる。また、遮光層BM’とその両脇の2本の陰極24’によって遮光層BM’の開口部以外の部分が遮光される。従って、第1実施形態と同様の効果を奏する。   Even in the above configuration, the position corresponding to the light receiving surface of each light receiving element D in the organic EL layer 26 ′ and the periphery thereof are non-light emitting regions. Further, the light shielding layer BM 'and the two cathodes 24' on both sides of the light shielding layer BM 'shield light from portions other than the opening. Therefore, the same effects as those of the first embodiment are obtained.

<D.第4実施形態>
ところで、各受光素子Dの受光面に入射する反射光RLには、指Fの表面(表皮)で反射した光が含まれる。このような表面反射光は静脈像の撮像精度を低下させる。そこで、本実施形態では、表面反射光による撮像精度の低下を防ぐことが可能な生体認証装置について説明する。
<D. Fourth Embodiment>
By the way, the reflected light RL incident on the light receiving surface of each light receiving element D includes light reflected by the surface (skin) of the finger F. Such surface reflected light reduces the imaging accuracy of the vein image. Therefore, in the present embodiment, a biometric authentication device that can prevent a reduction in imaging accuracy due to surface reflected light will be described.

図9は、第4実施形態に係る生体認証装置の発光部20Aの回路構成を示す図である。
同図に示すように発光部20Aには、撮像領域の全面を覆う陽極22と、Y軸方向に延在するn本の陰極241〜24nが設けられている。なお、以下の説明において各陰極を特に区別する必要がない場合は、陰極24と記載する。また、本実施形態において、陽極22と、複数の陰極24と、有機EL層26と、複数の絶縁層28と、複数の遮光層BMの配置については、上述した第2実施形態と同じである。また、発光部20Aには、陰極駆動回路200が設けられている。陰極駆動回路200は、制御部50から供給されるクロック信号と制御信号に従って、n本の陰極241〜24nの中から、電流を供給する1または複数の陰極24を順次選択する。つまり、陰極駆動回路200によって選択された1以上の陰極24と、陽極22との間に電流が供給され、有機EL層26が発光する。例えば、陰極駆動回路200が全ての陰極241〜24nを選択している場合、有機EL層26の発光領域は図中ハッチングで示す部分になる。
FIG. 9 is a diagram illustrating a circuit configuration of the light emitting unit 20A of the biometric authentication device according to the fourth embodiment.
As shown in the figure, the light emitting section 20A is provided with an anode 22 covering the entire surface of the imaging region and n cathodes 24 1 to 24 n extending in the Y-axis direction. In the following description, when it is not necessary to distinguish each cathode, it is referred to as a cathode 24. In the present embodiment, the arrangement of the anode 22, the plurality of cathodes 24, the organic EL layer 26, the plurality of insulating layers 28, and the plurality of light shielding layers BM is the same as in the second embodiment described above. . Further, a cathode driving circuit 200 is provided in the light emitting unit 20A. The cathode driving circuit 200 sequentially selects one or a plurality of cathodes 24 that supply current from the n cathodes 24 1 to 24 n in accordance with a clock signal and a control signal supplied from the control unit 50. That is, current is supplied between the one or more cathodes 24 selected by the cathode driving circuit 200 and the anode 22, and the organic EL layer 26 emits light. For example, when the cathode driving circuit 200 selects all the cathodes 24 1 to 24 n , the light emitting region of the organic EL layer 26 is a portion indicated by hatching in the drawing.

図10は、受光部30の回路構成を示す図である。
同図に示すように撮像領域Sには、Y方向に延在するn本の走査線と、X方向に延在するm本の読出線とが形成され、走査線と読出線との交差に対応してm(行)×n(列)個の受光素子D11〜Dmnが配置されている。なお、以下の説明において各受光素子を特に区別する必要がない場合は、受光素子Dと記載する。制御部50は、受光センサー走査回路300に対してクロック信号と走査用の制御信号を供給する。また、制御部50は、受光信号読出回路400に対してクロック信号と読出制御用の制御信号を供給する。受光センサー走査回路300は、マトリクス状に配置されたm×n個の受光素子Dを、走査信号X1〜Xnを用いて順次選択する。また、受光信号読出回路400は、受光センサー走査回路300によって順次選択される1列分(m個)の受光素子Dからm本の読出線を介して受光信号Y1〜Ymを読み出し、これらを制御部50に出力する。なお、図10に示す受光部30の回路構成は、本実施形態に限らず各実施形態で共通である。
FIG. 10 is a diagram illustrating a circuit configuration of the light receiving unit 30.
As shown in the figure, in the imaging region S, n scanning lines extending in the Y direction and m readout lines extending in the X direction are formed, and at the intersection of the scanning lines and the readout lines. Correspondingly, m (row) × n (column) light receiving elements D 11 to D mn are arranged. In addition, in the following description, when it is not necessary to distinguish each light receiving element in particular, it is described as a light receiving element D. The control unit 50 supplies a clock signal and a scanning control signal to the light receiving sensor scanning circuit 300. The control unit 50 supplies a clock signal and a control signal for reading control to the light receiving signal reading circuit 400. The light receiving sensor scanning circuit 300 sequentially selects m × n light receiving elements D arranged in a matrix using the scanning signals X1 to Xn. The light reception signal readout circuit 400 reads out the light reception signals Y1 to Ym from the light receiving elements D for one column (m pieces) sequentially selected by the light receiving sensor scanning circuit 300 through m readout lines and controls them. To the unit 50. Note that the circuit configuration of the light receiving unit 30 illustrated in FIG. 10 is not limited to the present embodiment, and is common to the respective embodiments.

図11は、静脈像の生成動作について説明するための図である。
n本の陰極241〜24nは複数のグループに分けられている。同図に示す例の場合は、3つのグループに分けられており、第1グループには陰極241,陰極244,陰極247…が含まれ、第2グループには陰極242,陰極245,陰極248…が含まれ、第3グループには陰極243,陰極246,陰極249…が含まれる。また、陰極駆動回路200は、n本の陰極241〜24nをグループごとに順次選択する。つまり、同図に示す例の場合、陰極駆動回路200は、期間T1において第1グループに属する陰極241,陰極244,陰極247…を選択し、期間T2において第2グループに属する陰極242,陰極245,陰極248…を選択し、期間T3において第3グループに属する陰極243,陰極246,陰極249…を選択する。
FIG. 11 is a diagram for explaining a vein image generation operation.
The n cathodes 24 1 to 24 n are divided into a plurality of groups. In the example shown in the figure, it is divided into three groups. The first group includes a cathode 24 1 , a cathode 24 4 , a cathode 24 7 ..., And the second group includes a cathode 24 2 and a cathode 24. 5 , cathodes 24 8 ..., And the third group includes cathodes 24 3 , cathodes 24 6 , cathodes 24 9 . The cathode driving circuit 200 sequentially selects n cathodes 24 1 to 24 n for each group. In other words, in the example shown in the figure, the cathode driving circuit 200 selects the cathode 24 1 , the cathode 24 4 , the cathode 24 7 ... Belonging to the first group in the period T1, and the cathode 24 belonging to the second group in the period T2. 2 , cathode 24 5 , cathode 24 8 ... Are selected in period T3, and cathode 24 3 , cathode 24 6 , cathode 24 9 .

この場合、期間T1では、有機EL層26のうち陰極241,陰極244,陰極247…に対応する部分がストライプ状に発光し、期間T2では、有機EL層26のうち陰極242,陰極245,陰極248…に対応する部分がストライプ状に発光し、期間T3では、有機EL層26のうち陰極243,陰極246,陰極249…に対応する部分がストライプ状に発光する。 In this case, in the period T1, portions of the organic EL layer 26 corresponding to the cathode 24 1 , the cathode 24 4 , the cathode 24 7 ... Emit light in a stripe shape, and in the period T2, the cathode 24 2 , The portions corresponding to the cathode 24 5 , cathode 24 8 ... Emit light in a stripe shape, and in the period T3, the portions corresponding to the cathode 24 3 , cathode 24 6 , cathode 24 9 . To do.

一方、受光センサー走査回路300と受光信号読出回路400は、陰極駆動回路200がn本の陰極241〜24nをグループごとに順次選択する都度、全ての受光素子D(m×n個)から受光信号を読み出す。従って、制御部50には、期間T1における1フレーム分の受光信号と、期間T2における1フレーム分の受光信号と、期間T3における1フレーム分の受光信号とが入力される。 On the other hand, the light-receiving sensor scanning circuit 300 and the light-receiving signal readout circuit 400 are arranged so that all the light-receiving elements D (m × n) each time the cathode driving circuit 200 sequentially selects n cathodes 24 1 to 24 n for each group. Read the received light signal. Therefore, the light receiving signal for one frame in the period T1, the light receiving signal for one frame in the period T2, and the light receiving signal for one frame in the period T3 are input to the control unit 50.

ところで、例えば、陰極駆動回路200が陰極244を選択した場合、有機EL層26のうち陰極244に対応する部分がストライプ状に発光するが、この際、陰極244を挟んでその両隣に位置する2列の受光素子D13〜Dm3,D14〜Dm4の各々については、発光領域からの距離が近いため、受光面に入射する反射光RLに指Fの表皮で反射した表面反射光が含まれてしまう。 Incidentally, for example, if the cathode driving circuit 200 selects the cathode 24 4, a portion corresponding to the cathode 24 4 of the organic EL layer 26 emits light in stripes, this time, on its both sides across the cathode 24 4 Since each of the two rows of light receiving elements D 13 to D m3 and D 14 to D m4 is located at a short distance from the light emitting region, the surface reflection reflected by the skin of the finger F on the reflected light RL incident on the light receiving surface. Light is included.

このため制御部50は、期間T1における1フレーム分の受光信号から、期間T1での各発光領域の近傍に位置する受光素子Dから読み出した受光信号を除去し、その残りを静脈像生成用の受光信号とする。つまり、制御部50は、期間T1における1フレーム分の受光信号から、期間T1において陰極駆動回路200が選択していた1列目,4列目,7列目…の各陰極24(各発光領域)の両隣に位置する1列目,3列目,4列目,6列目,7列目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる2列目,5列目,8列目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。   Therefore, the control unit 50 removes the received light signal read from the light receiving element D located in the vicinity of each light emitting region in the period T1 from the received light signal for one frame in the period T1, and the rest is used for generating a vein image. The received light signal. That is, the control unit 50 detects each cathode 24 (each light emitting region) in the first column, the fourth column, the seventh column,... Selected by the cathode driving circuit 200 in the period T1 from the light reception signal for one frame in the period T1. ), The received light signals read from the light receiving elements D in the first, third, fourth, sixth, seventh,... Adjacent to both sides are removed, and the remaining second and fifth columns are removed. The received light signals read from the respective light receiving elements D in the eyes, the eighth column,.

また、制御部50は、期間T2における1フレーム分の受光信号から、期間T2での各発光領域の近傍に位置する受光素子Dから読み出した受光信号を除去し、その残りを静脈像生成用の受光信号とする。つまり、制御部50は、期間T2における1フレーム分の受光信号から、期間T2において陰極駆動回路200が選択していた2列目,5列目,8列目…の各陰極24(各発光領域)の両隣に位置する1列目,2列目,4列目,5列目,7列目,8列目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる3列目,6列目,9列目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。   Further, the control unit 50 removes the received light signal read from the light receiving element D located in the vicinity of each light emitting region in the period T2 from the received light signal for one frame in the period T2, and the rest is used for generating a vein image. The received light signal. That is, the control unit 50 detects each cathode 24 (each light emitting region) in the second column, the fifth column, the eighth column,... Selected by the cathode driving circuit 200 in the period T2 from the light reception signal for one frame in the period T2. ), The received light signals read from the respective light receiving elements D in the first, second, fourth, fifth, seventh, eighth,... The received light signals read from the light receiving elements D in the 6th, 9th,..., Rows are used as the received light signals for vein image generation.

同様に、制御部50は、期間T3における1フレーム分の受光信号から、期間T3での各発光領域の近傍に位置する受光素子Dから読み出した受光信号を除去し、その残りを静脈像生成用の受光信号とする。つまり、制御部50は、期間T3における1フレーム分の受光信号から、期間T3において陰極駆動回路200が選択していた3列目,6列目,9列目…の各陰極24(各発光領域)の両隣に位置する2列目,3列目,5列目,6列目,8列目,9列目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる1列目,4列目,7列目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。   Similarly, the control unit 50 removes the received light signal read from the light receiving element D located in the vicinity of each light emitting region in the period T3 from the received light signal for one frame in the period T3, and uses the rest for vein image generation. The received light signal. That is, the control unit 50 detects each cathode 24 (each light emitting region) in the third column, the sixth column, the ninth column,... Selected by the cathode driving circuit 200 in the period T3 from the light reception signal for one frame in the period T3. ), The received light signals read from the light receiving elements D in the second, third, fifth, sixth, eighth, ninth,... The received light signals read from the respective light receiving elements D in the fourth, fourth, seventh,... Are used as light reception signals for vein image generation.

この後、制御部50は、期間T1における静脈像生成用の受光信号(2列目,5列目,8列目…の各受光素子Dから読み出した受光信号)と、期間T2における静脈像生成用の受光信号(3列目,6列目,9列目…の各受光素子Dから読み出した受光信号)と、期間T3における静脈像生成用の受光信号(1列目,4列目,7列目…の各受光素子Dから読み出した受光信号)とを合成し、静脈像を生成する。このように期間T1,T2,T3における静脈像生成用の受光信号を合成することで、表面反射光が入射した受光素子Dからの受光信号を使用せずに静脈像を生成することができるので、表面反射光による撮像精度の低下を防ぎ、静脈像の撮像精度を高めることができる。   Thereafter, the control unit 50 receives light signals for vein image generation in the period T1 (light reception signals read from the light receiving elements D in the second column, the fifth column, the eighth column,...) And the vein image generation in the period T2. Light reception signals (light reception signals read from the respective light receiving elements D in the third, sixth, ninth,...) And light reception signals for generating vein images in the period T3 (first, fourth, and seventh columns). Are combined with the light receiving signals read from the light receiving elements D in the columns, and a vein image is generated. By combining the light reception signals for generating the vein images in the periods T1, T2, and T3 in this way, a vein image can be generated without using the light reception signal from the light receiving element D on which the surface reflected light is incident. Therefore, it is possible to prevent the imaging accuracy from being deteriorated due to the surface reflected light, and to improve the imaging accuracy of the vein image.

なお、n本の陰極241〜24nを3つ以上のグループに分けてもよい。例えば、n本の陰極241〜24nを4つのグループに分け、第1グループに陰極241,陰極245,陰極249…を含み、第1グループに陰極242,陰極246,陰極2410…を含み、第3グループに陰極243,陰極247,陰極2411…を含み、第4グループに陰極244,陰極248,陰極2412…を含む構成としてもよい。この場合、制御部50は、例えば、陰極駆動回路200が第1グループに属する1列目,5列目,9列目…の各陰極24を選択しているときに読み出した1フレーム分の受光信号から、陰極駆動回路200が選択していた各陰極24(各発光領域)の両隣に位置する1列目,4列目,5列目,8列目,9列目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる2列目,3列目,6列目,7列目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。 The n cathodes 24 1 to 24 n may be divided into three or more groups. For example, n cathodes 24 1 to 24 n are divided into four groups, the first group includes cathode 24 1 , cathode 24 5 , cathode 24 9 ..., And the first group includes cathode 24 2 , cathode 24 6 , cathode comprises 24 10 ... cathode 24 3 in the third group, the cathode 24 7, includes a cathode 24 11 ... cathode 24 4 to the fourth group, the cathode 24 8, cathode 24 12 ... may be configured to include a. In this case, for example, the control unit 50 receives one frame of light received when the cathode driving circuit 200 selects the cathodes 24 in the first column, the fifth column, the ninth column, etc. belonging to the first group. The first, fourth, fifth, eighth, ninth,... Light receiving elements D located on both sides of each cathode 24 (each light emitting region) selected by the cathode driving circuit 200 from the signal. The received light signals read from the light receiving elements D in the second, third, sixth, seventh,..., Remaining columns are used as the received light signals for vein image generation.

また、n本の陰極241〜24nをn個のグループに分けてもよい。この場合、制御部50は、例えば、陰極駆動回路200が1列目の陰極241を選択しているときに読み出した1フレーム分の受光信号から、陰極241(発光領域)の隣に位置する1列目の各受光素子Dから読み出した受光信号を除去すると共に、3列目以降の各受光素子Dから読み出した受光信号を除去し、その残りとなる2列目の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。 Further, the n cathodes 24 1 to 24 n may be divided into n groups. In this case, for example, the controller 50 is positioned next to the cathode 24 1 (light emitting region) from the light reception signal for one frame read out when the cathode driving circuit 200 selects the cathode 24 1 in the first column. The received light signal read from each light receiving element D in the first column is removed, and the received light signal read from each light receiving element D in the third and subsequent columns is removed, and from the remaining light receiving elements D in the second column. The read light reception signal is used as a light reception signal for vein image generation.

ここで、1列目の各受光素子Dから読み出した受光信号を除去する理由は、表面反射光による撮像精度の低下を防ぐためである。これに対し、3列目以降の各受光素子Dから読み出した受光信号を除去する理由は、例えば、n−1列目やn列目の各受光素子Dは、発光領域からの距離が遠いため、反射光RLを受光することができない、あるいは反射光RLを受光することができても静脈像の生成に適したレベルの反射光RLではないためである。このように制御部50は、1フレーム分の受光信号から静脈像生成用の受光信号を取得する際に、陰極駆動回路200が選択していた1以上の陰極24(発光領域)の両隣に位置する各受光素子Dから読み出した受光信号だけでなく、発光領域からの距離が遠く、静脈像の生成に適したレベルの反射光RLを得ることができない各受光素子Dから読み出した受光信号を除去することもある。   Here, the reason why the light reception signal read from each light receiving element D in the first column is removed is to prevent a decrease in imaging accuracy due to the surface reflected light. On the other hand, the reason for removing the received light signals read from the light receiving elements D in the third and subsequent columns is, for example, that the light receiving elements D in the (n−1) th column and the nth column are far from the light emitting region. This is because the reflected light RL cannot be received, or even though the reflected light RL can be received, the reflected light RL is not at a level suitable for generating a vein image. As described above, the control unit 50 is positioned next to one or more cathodes 24 (light emitting regions) selected by the cathode driving circuit 200 when acquiring the light receiving signal for generating the vein image from the light receiving signal for one frame. In addition to the received light signal read from each light receiving element D, the received light signal read from each light receiving element D that is far from the light emitting region and cannot obtain the reflected light RL at a level suitable for generating a vein image is removed. Sometimes.

また、図12に示すように、櫛歯状の形状を有する2つの陰極24A,24Bを設けると共に、陰極24Aと陰極24Bの間の各離間領域に2列ずつ受光素子Dを配置することで、2フレーム分の受光信号から1つの静脈像を生成することができる。なお、同図に示す例の場合、陰極駆動回路200は、期間T1において陰極24Aを選択し、期間T2において陰極24Bを選択する。また、期間T1では、有機EL層26のうち陰極24Aと重なる部分の一部(図中点線で示す領域)が発光し、期間T2では、有機EL層26のうち陰極24Bと重なる部分の一部(図中点線で示す領域)が発光する。   In addition, as shown in FIG. 12, by providing two cathodes 24A and 24B having a comb-like shape, and disposing two rows of light receiving elements D in each separated region between the cathode 24A and the cathode 24B, One vein image can be generated from the light reception signals for two frames. Note that in the example shown in the figure, the cathode driving circuit 200 selects the cathode 24A in the period T1, and selects the cathode 24B in the period T2. In the period T1, a part of the organic EL layer 26 that overlaps the cathode 24A (a region indicated by a dotted line in the drawing) emits light, and in the period T2, a part of the organic EL layer 26 that overlaps the cathode 24B. (A region indicated by a dotted line in the figure) emits light.

この場合、制御部50は、期間T1における1フレーム分の受光信号から、陰極24Aの両隣に位置する2列目,3列目,6列目,7列目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる1列目,4列目,5列目,8列目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。また、制御部50は、期間T2における1フレーム分の受光信号から、陰極24Bの両隣に位置する1列目,4列目,5列目,8列目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる2列目,3列目,6列目,7列目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。   In this case, the control unit 50 reads out from the light receiving signals for one frame in the period T1 from the light receiving elements D in the second column, the third column, the sixth column, the seventh column, ... adjacent to the cathode 24A. The received light signals are removed, and the remaining received light signals from the first, fourth, fifth, eighth,... Light receiving elements D are used as the received light signals for vein image generation. Further, the control unit 50 receives light received from the light receiving elements D in the first column, the fourth column, the fifth column, the eighth column,... Located on both sides of the cathode 24B from the light reception signal for one frame in the period T2. The signal is removed, and the remaining light receiving signals read from the light receiving elements D in the second column, the third column, the sixth column, the seventh column,... Are used as the received light signals for vein image generation.

また、制御部50は、期間T1における静脈像生成用の受光信号(1列目,4列目,5列目,8列目…の各受光素子Dから読み出した受光信号)と、期間T2における静脈像生成用の受光信号(2列目,3列目,6列目,7列目…の各受光素子Dから読み出した受光信号)とを合成し、静脈像を生成する。この場合も、期間T1,T2における静脈像生成用の受光信号を合成することで、表面反射光が入射した受光素子Dからの受光信号を使用せずに静脈像を生成することができるので、表面反射光による撮像精度の低下を防ぎ、静脈像の撮像精度を高めることができる。また、2フレーム分の受光信号から1つの静脈像を生成することができるので、図11の場合に比べ、静脈像の生成に要する時間を短縮することや、静脈像の生成に要する消費電力を低減することができる。   In addition, the control unit 50 receives light signals for vein image generation in the period T1 (light reception signals read from the respective light receiving elements D in the first column, the fourth column, the fifth column, the eighth column,...) And the period T2. A light reception signal for generating a vein image (light reception signals read from the light receiving elements D in the second column, the third column, the sixth column, the seventh column,...) Is synthesized to generate a vein image. Also in this case, since the vein image can be generated without using the light receiving signal from the light receiving element D on which the surface reflected light is incident by synthesizing the light receiving signal for generating the vein image in the periods T1 and T2. It is possible to prevent the imaging accuracy from being lowered due to the surface reflected light, and to improve the imaging accuracy of the vein image. Further, since one vein image can be generated from the light reception signals for two frames, the time required for generating the vein image can be shortened and the power consumption required for generating the vein image can be reduced compared to the case of FIG. Can be reduced.

また、受光センサー走査回路300と受光信号読出回路400を用いて受光信号を読み出す際に、静脈像生成用の受光信号だけを読み出すようにしてもよい。例えば、図11に示した例の場合、受光センサー走査回路300と受光信号読出回路400は、期間T1において、陰極駆動回路200が選択している1列目,4列目,7列目…の各陰極24(各発光領域)の両隣に位置する1列目,3列目,4列目,6列目,7列目…の各受光素子Dを読出対象から除外し、その残りとなる2列目,5列目,8列目…の各受光素子Dから受光信号を読み出す。   In addition, when the received light signal is read using the received light sensor scanning circuit 300 and the received light signal reading circuit 400, only the received light signal for vein image generation may be read. For example, in the case of the example shown in FIG. 11, the light receiving sensor scanning circuit 300 and the light receiving signal readout circuit 400 are arranged in the first column, the fourth column, the seventh column, etc. selected by the cathode driving circuit 200 in the period T1. The first, third, fourth, sixth, seventh,... Light receiving elements D located on both sides of each cathode 24 (each light emitting region) are excluded from the reading target, and the remaining 2 A light reception signal is read from each light receiving element D in the column, the fifth column, the eighth column,.

また、受光センサー走査回路300と受光信号読出回路400は、期間T2において、陰極駆動回路200が選択している2列目,5列目,8列目…の各陰極24(各発光領域)の両隣に位置する1列目,2列目,4列目,5列目,7列目,8列目…の各受光素子Dを読出対象から除外し、その残りとなる3列目,6列目,9列目…の各受光素子Dから受光信号を読み出す。同様に、受光センサー走査回路300と受光信号読出回路400は、期間T3において、陰極駆動回路200が選択している3列目,6列目,9列目…の各陰極24(各発光領域)の両隣に位置する2列目,3列目,5列目,6列目,8列目,9列目…の各受光素子Dを読出対象から除外し、その残りとなる1列目,4列目,7列目…の各受光素子Dから受光信号を読み出す。   In addition, the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 are provided for each cathode 24 (each light emitting region) in the second column, the fifth column, the eighth column,... Selected by the cathode driving circuit 200 in the period T2. The first, second, fourth, fifth, seventh, eighth,... Light receiving elements D located on both sides are excluded from the readout target, and the remaining third, sixth, and sixth columns. The light reception signal is read out from each light receiving element D in the ninth, ninth row,. Similarly, in the light receiving sensor scanning circuit 300 and the light receiving signal readout circuit 400, the cathode 24 (each light emitting region) in the third column, the sixth column, the ninth column, etc. selected by the cathode driving circuit 200 in the period T3. , The second, third, fifth, sixth, eighth, ninth,... Light receiving elements D located on both sides of the first and fourth columns are excluded from the readout target. A light reception signal is read from each light receiving element D in the column, the seventh column, and so on.

また、制御部50は、期間T1において読み出した受光信号と、期間T2において読み出した受光信号と、期間T3において読み出した受光信号とを合成し、静脈像を生成する。この場合も、表面反射光が入射した受光素子Dからの受光信号を使用せずに静脈像を生成することができるので、表面反射光による撮像精度の低下を防ぎ、静脈像の撮像精度を高めることができる。また、受光センサー走査回路300における走査回数や、受光信号読出回路400における受光信号の読出数を減らすことができるので、消費電力を低減することもできる。   The control unit 50 combines the light reception signal read in the period T1, the light reception signal read in the period T2, and the light reception signal read in the period T3 to generate a vein image. Also in this case, the vein image can be generated without using the light reception signal from the light receiving element D on which the surface reflected light is incident, so that the imaging accuracy due to the surface reflected light is prevented from being lowered and the imaging accuracy of the vein image is increased. be able to. In addition, since the number of scans in the light receiving sensor scanning circuit 300 and the number of light reception signal readouts in the light reception signal readout circuit 400 can be reduced, power consumption can also be reduced.

<E.第5実施形態>
上述した第4実施形態において、陰極241〜24nだけでなく陽極22についても互いに離間して配置された複数の陽極とし、電流を供給する陽極も選択できるようにすることが可能である。
<E. Fifth Embodiment>
In the fourth embodiment described above, it is possible to select not only the cathodes 24 1 to 24 n but also the anode 22 as a plurality of anodes spaced apart from each other, and to select an anode that supplies current.

図13は、第5実施形態に係る生体認証装置の発光部20Bの回路構成を示す図である。同図に示すように発光部20Bには、X軸方向に延在するm本の陽極221〜22mと、Y軸方向に延在するn本の陰極241〜24nが設けられている。なお、以下の説明において各陽極を特に区別する必要がない場合は、陽極22と記載する。また、本実施形態において、複数の陽極22と、複数の陰極24と、有機EL層26と、複数の絶縁層28と、複数の遮光層BMの配置については、上述した第3実施形態と同じである。 FIG. 13 is a diagram illustrating a circuit configuration of the light emitting unit 20B of the biometric authentication device according to the fifth embodiment. As shown in the figure, the light emitting section 20B is provided with m anodes 22 1 to 22 m extending in the X-axis direction and n cathodes 24 1 to 24 n extending in the Y-axis direction. Yes. In the following description, each anode is referred to as an anode 22 when it is not necessary to distinguish between the anodes. In the present embodiment, the arrangement of the plurality of anodes 22, the plurality of cathodes 24, the organic EL layer 26, the plurality of insulating layers 28, and the plurality of light shielding layers BM is the same as that in the third embodiment described above. It is.

また、発光部20Bには、第4実施形態で説明した陰極駆動回路200の他に、陽極駆動回路250が設けられている。陽極駆動回路250は、制御部50から供給されるクロック信号と制御信号に従って、m本の陽極221〜22mの中から、電流を供給する1または複数の陽極22を順次選択する。つまり、陽極駆動回路250によって選択された1以上の陽極22と、陰極駆動回路200によって選択された1以上の陰極24との間に電流が供給され、有機EL層26が発光する。例えば、陽極駆動回路250が全ての陽極221〜22mを選択しており、かつ陰極駆動回路200も全ての陰極241〜24nを選択している場合、有機EL層26の発光領域は図中ハッチングで示す部分になる。なお、本実施形態における受光部30の回路構成は、第4実施形態(図10)と同じでよい。 In addition to the cathode driving circuit 200 described in the fourth embodiment, an anode driving circuit 250 is provided in the light emitting unit 20B. The anode drive circuit 250 sequentially selects one or a plurality of anodes 22 that supply current from the m anodes 22 1 to 22 m in accordance with a clock signal and a control signal supplied from the control unit 50. That is, current is supplied between the one or more anodes 22 selected by the anode driving circuit 250 and the one or more cathodes 24 selected by the cathode driving circuit 200, and the organic EL layer 26 emits light. For example, when the anode drive circuit 250 selects all the anodes 22 1 to 22 m and the cathode drive circuit 200 also selects all the cathodes 24 1 to 24 n , the light emitting region of the organic EL layer 26 is It becomes a part shown by hatching in the figure. The circuit configuration of the light receiving unit 30 in the present embodiment may be the same as that in the fourth embodiment (FIG. 10).

図14は、静脈像の生成動作について説明するための図である。
m本の陽極221〜22mとn本の陰極241〜24nは、複数のグループに分けられている。同図に示す例の場合は、3つのグループに分けられており、第1グループには、全ての陰極241〜24nと、陽極221,陽極224,陽極227…が含まれる。また、第2グループには、全ての陰極241〜24nと、陽極222,陽極225,陽極228…が含まれる。また、第3グループには、全ての陰極241〜24nと、陽極223,陽極226,陽極229…が含まれる。
FIG. 14 is a diagram for explaining a vein image generation operation.
The m anodes 22 1 to 22 m and the n cathodes 24 1 to 24 n are divided into a plurality of groups. In the example shown in the figure, it is divided into three groups, and the first group includes all the cathodes 24 1 to 24 n , the anode 22 1 , the anode 22 4 , the anode 22 7 . The second group includes all the cathodes 24 1 to 24 n , the anode 22 2 , the anode 22 5 , the anode 22 8 . The third group includes all the cathodes 24 1 to 24 n , the anode 22 3 , the anode 22 6 , the anode 22 9 .

陰極駆動回路200は、n本の陰極241〜24nをグループごとに順次選択する。なお、同図に示す例の場合は、全てのグループに全陰極241〜24nが属しているので、陰極駆動回路200は、期間T1〜T3の全てにおいて全陰極241〜24nを選択することになる。また、陽極駆動回路250は、m本の陽極221〜22mをグループごとに順次選択する。つまり、同図に示す例の場合、陽極駆動回路250は、期間T1において第1グループに属する陽極221,陽極224,陽極227…を選択し、期間T2において第2グループに属する陽極222,陽極225,陽極228…を選択し、期間T3において第3グループに属する陽極223,陽極226,陽極229…を選択する。 The cathode driving circuit 200 sequentially selects n cathodes 24 1 to 24 n for each group. In the example shown in the figure, since all the cathodes 24 1 to 24 n belong to all the groups, the cathode driving circuit 200 selects all the cathodes 24 1 to 24 n in all the periods T1 to T3. Will do. The anode driving circuit 250 sequentially selects m anodes 22 1 to 22 m for each group. In other words, in the example shown in the figure, the anode driving circuit 250 selects the anode 22 1 , the anode 22 4 , the anode 22 7 ... Belonging to the first group in the period T1, and the anode 22 belonging to the second group in the period T2. 2 , anode 22 5 , anode 22 8 ... Are selected in period T 3 and anode 22 3 , anode 22 6 , anode 22 9 ... Belonging to the third group are selected.

この場合、期間T1では、有機EL層26のうち、全陰極241〜24nと、陽極221,陽極224,陽極227…とが重なる部分の一部(図中黒で示す領域)が発光する。また、期間T2では、有機EL層26のうち、全陰極241〜24nと、陽極222,陽極225,陽極228…とが重なる部分の一部(図中ハッチングで示す領域)が発光する。また、期間T3では、有機EL層26のうち、全陰極241〜24nと、陽極223,陽極226,陽極229…とが重なる部分の一部(図中網掛けで示す領域)が発光する。 In this case, in the period T1, a part of the organic EL layer 26 where all the cathodes 24 1 to 24 n overlap with the anode 22 1 , the anode 22 4 , the anode 22 7 . Emits light. In the period T2, a part of the organic EL layer 26 where all the cathodes 24 1 to 24 n overlap with the anode 22 2 , the anode 22 5 , the anode 22 8 . Emits light. Further, in the period T3, a part of the portion of the organic EL layer 26 where all the cathodes 24 1 to 24 n overlap with the anode 22 3 , the anode 22 6 , the anode 22 9 . Emits light.

一方、受光センサー走査回路300および受光信号読出回路400は、陰極駆動回路200と陽極駆動回路250がグループ単位で選択を行う都度、全ての受光素子D(m×n個)から受光信号を読み出す。従って、制御部50には、期間T1における1フレーム分の受光信号と、期間T2における1フレーム分の受光信号と、期間T3における1フレーム分の受光信号とが入力される。   On the other hand, the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 read the light receiving signals from all the light receiving elements D (m × n) each time the cathode driving circuit 200 and the anode driving circuit 250 perform selection in units of groups. Therefore, the light receiving signal for one frame in the period T1, the light receiving signal for one frame in the period T2, and the light receiving signal for one frame in the period T3 are input to the control unit 50.

制御部50は、期間T1における1フレーム分の受光信号から、期間T1での各発光領域の近傍に位置する受光素子Dから読み出した受光信号を除去し、その残りを静脈像生成用の受光信号とする。つまり、制御部50は、期間T1における1フレーム分の受光信号から、期間T1において陽極駆動回路250が選択していた1行目,4行目,7行目…の各陽極22の両隣(図中上下)に位置する1行目,3行目,4行目,6行目,7行目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる2行目,5行目,8行目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。   The control unit 50 removes the light reception signal read from the light receiving element D located in the vicinity of each light emitting region in the period T1 from the light reception signal for one frame in the period T1, and the remaining light reception signal for generating a vein image And That is, the control unit 50 is adjacent to the anodes 22 in the first row, the fourth row, the seventh row,... Selected by the anode driving circuit 250 in the period T1 from the light reception signal for one frame in the period T1 (see FIG. The received light signals read from the respective light receiving elements D in the first, third, fourth, sixth, seventh,. The received light signals read from the respective light receiving elements D in the eyes, the eighth row, and so on are used as the received light signals for vein image generation.

また、制御部50は、期間T2における1フレーム分の受光信号から、期間T2での各発光領域の近傍に位置する受光素子Dから読み出した受光信号を除去し、その残りを静脈像生成用の受光信号とする。つまり、制御部50は、期間T2における1フレーム分の受光信号から、期間T2において陽極駆動回路250が選択していた2行目,5行目,8行目…の各陽極22の両隣(図中上下)に位置する1行目,2行目,4行目,5行目,7行目,8行目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる3行目,6行目,9行目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。   Further, the control unit 50 removes the received light signal read from the light receiving element D located in the vicinity of each light emitting region in the period T2 from the received light signal for one frame in the period T2, and the rest is used for generating a vein image. The received light signal. That is, the control unit 50 is adjacent to each anode 22 in the second row, the fifth row, the eighth row,... Selected by the anode driving circuit 250 in the period T2 from the light reception signal for one frame in the period T2 (see FIG. The received light signals read from the respective light receiving elements D in the first row, the second row, the fourth row, the fifth row, the seventh row, the eighth row,. The received light signals read from the respective light receiving elements D in the 6th, 6th, 9th, etc. lines are used as received light signals for vein image generation.

同様に、制御部50は、期間T3における1フレーム分の受光信号から、期間T3での各発光領域の近傍に位置する受光素子Dから読み出した受光信号を除去し、その残りを静脈像生成用の受光信号とする。つまり、制御部50は、期間T3における1フレーム分の受光信号から、期間T3において陽極駆動回路250が選択していた3行目,6行目,9行目…の各陽極22の両隣(図中上下)に位置する2行目,3行目,5行目,6行目,8行目,9行目…の各受光素子Dから読み出した受光信号を除去し、その残りとなる1行目,4行目,7行目…の各受光素子Dから読み出した受光信号を静脈像生成用の受光信号とする。   Similarly, the control unit 50 removes the received light signal read from the light receiving element D located in the vicinity of each light emitting region in the period T3 from the received light signal for one frame in the period T3, and uses the rest for vein image generation. The received light signal. That is, the control unit 50 is adjacent to the anodes 22 in the third row, the sixth row, the ninth row,... Selected by the anode drive circuit 250 in the period T3 from the light reception signal for one frame in the period T3 (see FIG. The received light signals read from the respective light receiving elements D in the second, third, fifth, sixth, eighth, ninth,... The received light signals read from the respective light receiving elements D in the 4th, 4th, 7th rows, and so on are used as received light signals for vein image generation.

この後、制御部50は、期間T1における静脈像生成用の受光信号(2行目,5行目,8行目…の各受光素子Dから読み出した受光信号)と、期間T2における静脈像生成用の受光信号(3行目,6行目,9行目…の各受光素子Dから読み出した受光信号)と、期間T3における静脈像生成用の受光信号(1行目,4行目,7行目…の各受光素子Dから読み出した受光信号)とを合成し、静脈像を生成する。以上の構成であっても、期間T1,T2,T3における静脈像生成用の受光信号を合成することで、表面反射光が入射した受光素子Dからの受光信号を使用せずに静脈像を生成することができるので、第4実施形態と同様の効果を奏する。   Thereafter, the control unit 50 receives a light reception signal for generating a vein image in the period T1 (light reception signals read from the respective light receiving elements D in the second row, the fifth row, the eighth row,...) And the vein image generation in the period T2. Light reception signals (light reception signals read from the respective light receiving elements D in the third, sixth, ninth,...) And light reception signals for generating vein images in the period T3 (first, fourth, seventh). Are combined with the light receiving signals read from the respective light receiving elements D in the row... To generate a vein image. Even with the configuration described above, a vein image is generated without using the light receiving signal from the light receiving element D on which the surface reflected light is incident by synthesizing the light receiving signals for generating the vein images in the periods T1, T2, and T3. Therefore, the same effect as in the fourth embodiment can be obtained.

なお、第4実施形態の場合と同様に本実施形態においても、m本の陽極221〜22mとn本の陰極241〜24nを3つ以上のグループに分けてもよい。また、制御部50は、1フレーム分の受光信号から静脈像生成用の受光信号を取得する際に、陽極駆動回路250が選択していた1以上の陽極22と、陰極駆動回路200が選択していた1以上の陰極24とが重なる部分(発光領域)の近傍に位置する各受光素子Dから読み出した受光信号だけでなく、発光領域からの距離が遠く、静脈像の生成に適したレベルの反射光RLを得ることができない各受光素子Dから読み出した受光信号を除去してもよい。 As in the fourth embodiment, in this embodiment, m anodes 22 1 to 22 m and n cathodes 24 1 to 24 n may be divided into three or more groups. The control unit 50 selects one or more anodes 22 selected by the anode driving circuit 250 and the cathode driving circuit 200 when acquiring a light receiving signal for generating a vein image from the light receiving signals for one frame. In addition to the received light signal read from each light receiving element D located in the vicinity of the portion where the one or more cathodes 24 overlapped (light emitting region), the distance from the light emitting region is long and suitable for the generation of vein images. You may remove the light reception signal read from each light receiving element D which cannot obtain reflected light RL.

また、受光センサー走査回路300と受光信号読出回路400を用いて受光信号を読み出す際に、静脈像生成用の受光信号だけを読み出すようにしてもよい。例えば、図14に示した例の場合、受光センサー走査回路300と受光信号読出回路400は、期間T1において、陽極駆動回路250が選択している1行目,4行目,7行目…の各陽極22の両隣(図中上下)に位置する1行目,3行目,4行目,6行目,7行目…の各受光素子Dを読出対象から除外し、その残りとなる2行目,5行目,8行目…の各受光素子Dから受光信号を読み出す。   In addition, when the received light signal is read using the received light sensor scanning circuit 300 and the received light signal reading circuit 400, only the received light signal for vein image generation may be read. For example, in the case of the example shown in FIG. 14, the light receiving sensor scanning circuit 300 and the light receiving signal readout circuit 400 have the first row, the fourth row, the seventh row, etc. selected by the anode driving circuit 250 in the period T1. The first, third, fourth, sixth, seventh,... Light receiving elements D located on both sides (upper and lower in the figure) of each anode 22 are excluded from the reading target, and the remaining 2 A light reception signal is read from each light receiving element D in the row, the fifth row, the eighth row, and so on.

また、受光センサー走査回路300と受光信号読出回路400は、期間T2において、陽極駆動回路250が選択している2行目,5行目,8行目…の各陽極22の両隣(図中上下)に位置する1行目,2行目,4行目,5行目,7行目,8行目…の各受光素子Dを読出対象から除外し、その残りとなる3行目,6行目,9行目…の各受光素子Dから受光信号を読み出す。同様に、受光センサー走査回路300と受光信号読出回路400は、期間T3において、陽極駆動回路250が選択している3行目,6行目,9行目…の各陽極22の両隣(図中上下)に位置する2行目,3行目,5行目,6行目,8行目,9行目…の各受光素子Dを読出対象から除外し、その残りとなる1行目,4行目,7行目…の各受光素子Dから受光信号を読み出す。   Further, the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 are adjacent to the anodes 22 in the second row, the fifth row, the eighth row,. 1), 2nd line, 4th line, 5th line, 7th line, 8th line, etc., are excluded from the reading target, and the remaining 3rd line, 6th line The received light signal is read from each of the light receiving elements D in the 9th row, the 9th row, and so on. Similarly, the light receiving sensor scanning circuit 300 and the light receiving signal readout circuit 400 are adjacent to the anodes 22 in the third row, the sixth row, the ninth row,... Selected by the anode driving circuit 250 in the period T3 (in the drawing). The second, third, fifth, sixth, eighth, ninth,... Light receiving elements D positioned on the upper and lower sides are excluded from the reading target, and the remaining first and fourth lines 4 A light reception signal is read from each light receiving element D in the row, the seventh row, and so on.

また、制御部50は、期間T1において読み出した受光信号と、期間T2において読み出した受光信号と、期間T3において読み出した受光信号とを合成し、静脈像を生成する。この場合も、表面反射光が入射した受光素子Dからの受光信号を使用せずに静脈像を生成することができるので、表面反射光による撮像精度の低下を防ぎ、静脈像の撮像精度を高めることができる。また、受光センサー走査回路300における走査回数や、受光信号読出回路400における受光信号の読出数を減らすことができるので、消費電力を低減することもできる。   The control unit 50 combines the light reception signal read in the period T1, the light reception signal read in the period T2, and the light reception signal read in the period T3 to generate a vein image. Also in this case, the vein image can be generated without using the light reception signal from the light receiving element D on which the surface reflected light is incident, so that the imaging accuracy due to the surface reflected light is prevented from being lowered and the imaging accuracy of the vein image is increased. be able to. In addition, since the number of scans in the light receiving sensor scanning circuit 300 and the number of light reception signal readouts in the light reception signal readout circuit 400 can be reduced, power consumption can also be reduced.

<F.第6実施形態>
上述した各実施形態では本発明を生体認証装置に適用した場合について説明したが、原稿等の画像を読み取るイメージスキャナーに本発明を適用することもできる。この場合、照射光ILや反射光RLとして近赤外光の代わりに可視光を用いる。つまり、発光部20(有機EL層26)は、照射光ILとして近赤外光の代わりに可視光を発光し、受光部30(各受光素子D)は、反射光RLとして近赤外光の代わりに可視光を受光する。また、カバーガラス10、レンズアレイLA、対向基板GS、陽極22、絶縁層28、有機EL層26および封止層29は、可視光に対して透過性の高い材料で形成され、陰極24および遮光層BMは、可視光に対して遮光性の高い材料で形成される。
<F. Sixth Embodiment>
In each of the above-described embodiments, the case where the present invention is applied to a biometric authentication apparatus has been described. However, the present invention can also be applied to an image scanner that reads an image such as a document. In this case, visible light is used as the irradiation light IL and the reflected light RL instead of near infrared light. That is, the light emitting unit 20 (organic EL layer 26) emits visible light instead of near infrared light as the irradiation light IL, and the light receiving unit 30 (each light receiving element D) emits near infrared light as the reflected light RL. Instead, it receives visible light. Further, the cover glass 10, the lens array LA, the counter substrate GS, the anode 22, the insulating layer 28, the organic EL layer 26, and the sealing layer 29 are formed of a material that is highly transmissive to visible light, and the cathode 24 and the light shield. The layer BM is formed of a material having a high light blocking property with respect to visible light.

ところで、本発明を適用したイメージスキャナーが図9に示した発光部20Aと図10に示した受光部30を備える場合、撮像領域Sの上に置かれた原稿のサイズや位置に応じて照射光ILの発光範囲と受光信号の読出範囲を定めることで、消費電力を低減することができる。例えば、撮像領域Sに対し、図15(A)に示すように原稿Mが置かれた場合を考える。なお、撮像領域Sには、その全面を覆う1つの陽極22と、Y軸方向に延存する240本の陰極241〜24240が設けられているものとする。また、撮像領域Sには、180(行)×240(列)個の受光素子D11〜D180,240がマトリクス状に配置されているものとする。 By the way, when the image scanner to which the present invention is applied includes the light emitting unit 20A shown in FIG. 9 and the light receiving unit 30 shown in FIG. 10, the irradiation light depends on the size and position of the document placed on the imaging region S. The power consumption can be reduced by defining the light emission range of the IL and the read range of the received light signal. For example, consider a case where a document M is placed on the imaging region S as shown in FIG. In the imaging region S, it is assumed that one anode 22 covering the entire surface and 240 cathodes 24 1 to 24 240 extending in the Y-axis direction are provided. In the imaging region S, 180 (row) × 240 (column) light receiving elements D 11 to D 180,240 are arranged in a matrix.

この場合、イメージスキャナーは、まず、プリスキャンを行って撮像領域Sの上に置かれた原稿Mのサイズや位置を検出する。なお、プリスキャンは、本スキャンの前に、本スキャンよりも粗い解像度で原稿Mをスキャンすることである。例えば、プリスキャンを行う場合、陰極駆動回路200は、240本の陰極241〜24240の中から、陰極2410,陰極2420,陰極2430,…陰極24240を選択する。つまり、陰極駆動回路200は、10本ごとに1本の割合で陰極24を選択する。これによりプリスキャンを行う場合には、陰極駆動回路200が選択した計24本の各陰極24と、陽極22との間に電流が供給され、有機EL層26が発光する。 In this case, the image scanner first performs pre-scanning to detect the size and position of the document M placed on the imaging area S. Note that the pre-scan is to scan the document M at a coarser resolution than the main scan before the main scan. For example, when performing pre-scanning, the cathode drive circuit 200 selects the cathode 24 10 , the cathode 24 20 , the cathode 24 30 ,..., The cathode 24 240 from the 240 cathodes 24 1 to 24 240 . That is, the cathode drive circuit 200 selects the cathode 24 at a rate of one for every ten. Thus, when pre-scanning is performed, current is supplied between the total of 24 cathodes 24 selected by the cathode driving circuit 200 and the anode 22, and the organic EL layer 26 emits light.

、 また、受光センサー走査回路300と受光信号読出回路400は、プリスキャンを行う場合に、例えば、10列目,20列目,30列目,…240列目の各受光素子Dから受光信号を読み出す。なお、受光センサー走査回路300と受光信号読出回路400は、プリスキャンを行う場合に、Y軸方向(行方向)についても、10行目,20行目,30行目,…180行目等、適宜間引きを行って受光信号を読み出すことができる。また、制御部50は、プリスキャンによって読み出した各受光信号に基づいて原稿Mが置かれた領域を検出する。例えば、図15(A)の場合、原稿Mが置かれた領域は、X軸方向が1列目〜180列目までの範囲で、Y軸方向が1行目〜120行目までの範囲であると検出される。このようにして原稿Mが置かれた領域を検出すると、制御部50は、検出した領域に応じて、本スキャンを行う場合の照射光ILの発光範囲LAと受光信号の読出範囲RAを決定する。 In addition, the light receiving sensor scanning circuit 300 and the light receiving signal readout circuit 400, when performing pre-scan, for example, receive light receiving signals from the light receiving elements D in the 10th, 20th, 30th,... 240th columns. read out. The light receiving sensor scanning circuit 300 and the light receiving signal readout circuit 400 also perform the 10th row, the 20th row, the 30th row,. The light reception signal can be read out by performing thinning as appropriate. Further, the control unit 50 detects an area where the document M is placed based on each light reception signal read out by the pre-scan. For example, in the case of FIG. 15A, the area where the document M is placed is in the range from the first column to the 180th column in the X-axis direction and in the range from the first row to the 120th row in the Y-axis direction. It is detected that there is. When the area where the document M is placed is detected in this way, the control unit 50 determines the emission range LA of the irradiation light IL and the read range RA of the received light signal when performing the main scan according to the detected area. .

例えば、図15(A)の場合、照射光ILの発光範囲LAと受光信号の読出範囲RAを図中一点鎖線で示す範囲に決定することができる。この場合、制御部50は、本スキャンを行う場合に陰極駆動回路200が選択する陰極24を、陰極241〜24180に決定する。また、制御部50は、本スキャンを行う場合に受光センサー走査回路300と受光信号読出回路400が受光信号を読み出す受光素子Dを、1列目〜180列目までの計32400個の受光素子D11〜D180,180に決定する。 For example, in the case of FIG. 15A, the emission range LA of the irradiation light IL and the readout range RA of the received light signal can be determined as a range indicated by a one-dot chain line in the drawing. In this case, the control unit 50 determines the cathodes 24 1 to 24 180 as the cathodes 24 selected by the cathode driving circuit 200 when performing the main scan. In addition, the control unit 50 performs a total of 32400 light receiving elements D from the first column to the 180th column as the light receiving elements D from which the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 read out the received light signals when performing the main scan. 11 to D 180,180 .

従って、本スキャンでは、陰極駆動回路200が陰極241〜24180を選択するので、陰極24181〜24240に対応する部分については有機EL層26を発光させずに済む。また、本スキャンでは、受光センサー走査回路300と受光信号読出回路400が1列目〜180列目までの計32400個の受光素子D11〜D180,180から受光信号を読み出すので、181列目〜240列目までの計10800個の受光素子D1,181〜D180,240については受光信号を読み出さずに済む。従って、イメージスキャナーの消費電力を低減することができる。 Accordingly, in the main scan, the cathode driving circuit 200 selects the cathodes 24 1 to 24 180 , so that the organic EL layer 26 does not need to emit light for the portions corresponding to the cathodes 24 181 to 24 240 . In the main scan, the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 read the light receiving signals from a total of 32400 light receiving elements D 11 to D 180,180 from the first column to the 180th column. For a total of 10800 light receiving elements D 1,181 to D 180,240 up to the row, it is not necessary to read out the light receiving signals. Therefore, the power consumption of the image scanner can be reduced.

なお、図15(A)の場合、制御部50は、本スキャンを行う場合に受光センサー走査回路300と受光信号読出回路400が受光信号を読み出す受光素子Dを、1列目〜180列目で、かつ1行目〜120行目までの計21600個の受光素子D11〜D120,180に決定することもできる。この場合、受光信号の読出範囲RAを狭めることができるので、消費電力をさらに低減できる。 In the case of FIG. 15A, the control unit 50 selects the light receiving elements D from which the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 read the received light signals in the first to 180th columns when performing the main scan. In addition, a total of 21,600 light receiving elements D 11 to D 120,180 from the first line to the 120th line can be determined. In this case, the read range RA of the received light signal can be narrowed, so that the power consumption can be further reduced.

また、本発明を適用したイメージスキャナーが図13に示した発光部20Bと図10に示した受光部30を備える場合についても、撮像領域Sの上に置かれた原稿のサイズや位置に応じて照射光ILの発光範囲LAと受光信号の読出範囲RAを定めることで、消費電力を低減することができる。例えば、撮像領域Sに対し、図15(B)に示すように原稿Mが置かれた場合を考える。なお、撮像領域Sには、X軸方向に延存する180本の陽極221〜22180と、Y軸方向に延存する240本の陰極241〜24240が設けられているものとする。また、撮像領域Sには、180(行)×240(列)個の受光素子D11〜D180,240がマトリクス状に配置されているものとする。 Further, when the image scanner to which the present invention is applied includes the light emitting unit 20B illustrated in FIG. 13 and the light receiving unit 30 illustrated in FIG. 10, the image scanner also depends on the size and position of the document placed on the imaging region S. By determining the light emission range LA of the irradiation light IL and the light reception signal readout range RA, the power consumption can be reduced. For example, consider a case where a document M is placed on the imaging region S as shown in FIG. In the imaging region S, 180 anodes 22 1 to 22 180 extending in the X-axis direction and 240 cathodes 24 1 to 24 240 extending in the Y-axis direction are provided. In the imaging region S, 180 (row) × 240 (column) light receiving elements D 11 to D 180,240 are arranged in a matrix.

この場合もイメージスキャナーは、プリスキャンを行って撮像領域S上に置かれた原稿Mのサイズや位置を検出する。例えば、陰極駆動回路200は、前述したようにプリスキャンを行う場合、陰極2410,陰極2420,陰極2430,…陰極24240を選択する。また、陽極駆動回路250は、プリスキャンを行う場合、180本の陽極221〜22180の中から、例えば、陽極2210,陽極2220,陽極2230,…陽極22180を選択する。つまり、陽極駆動回路250についても10本ごとに1本の割合で陽極22を選択する。これによりプリスキャンを行う場合には、陽極駆動回路250が選択した計18本の各陽極22と、陰極駆動回路200が選択した計24本の各陰極24との間に電流が供給され、有機EL層26が発光する。 Also in this case, the image scanner performs pre-scanning to detect the size and position of the document M placed on the imaging area S. For example, the cathode drive circuit 200 selects the cathode 24 10 , the cathode 24 20 , the cathode 24 30 ,..., The cathode 24 240 when performing the pre-scan as described above. Further, when performing the pre-scan, the anode driving circuit 250 selects, for example, the anode 22 10 , the anode 22 20 , the anode 22 30 ,... The anode 22 180 from the 180 anodes 22 1 to 22 180 . That is, for the anode drive circuit 250, the anode 22 is selected at a rate of one for every ten. Thus, when pre-scanning is performed, current is supplied between the total of 18 anodes 22 selected by the anode drive circuit 250 and the total of 24 cathodes 24 selected by the cathode drive circuit 200. The EL layer 26 emits light.

また、受光センサー走査回路300と受光信号読出回路400は、プリスキャンを行う場合に、10列目,20列目,30列目,…240列目の各走査線と、10行目,20行目,30行目,…180行目の各読出線とが交差する位置にある計432個の受光素子Dから受光信号を読み出す。また、制御部50は、プリスキャンによって読み出した各受光信号に基づいて原稿Mが置かれた領域を検出し、検出した領域に応じて本スキャンを行う場合の照射光ILの発光範囲LAと受光信号の読出範囲RAを決定する。   Further, the light receiving sensor scanning circuit 300 and the light receiving signal readout circuit 400, when performing pre-scanning, scan lines in the 10th column, 20th column, 30th column,... 240th column, 10th row, 20th row. The received light signals are read from a total of 432 light receiving elements D at positions where the readout lines of the 20th, 30th,. Further, the control unit 50 detects a region where the document M is placed based on each light reception signal read by the pre-scan, and the light emission range LA and the light reception when the main scan is performed according to the detected region. A signal readout range RA is determined.

例えば、図15(B)の場合、照射光ILの発光範囲LAと受光信号の読出範囲RAを図中一点鎖線で示す範囲に決定することができる。この場合、制御部50は、本スキャンを行う場合に陰極駆動回路200が選択する陰極24を、陰極241〜24180に決定する。また、制御部50は、本スキャンを行う場合に陽極駆動回路250が選択する陽極22を、陽極221〜22120に決定する。また、制御部50は、本スキャンを行う場合に受光センサー走査回路300と受光信号読出回路400が受光信号を読み出す受光素子Dを、1列目〜180列目で、かつ1行目〜120行目までの計21600個の受光素子D11〜D120,180に決定する。 For example, in the case of FIG. 15B, the emission range LA of the irradiation light IL and the readout range RA of the received light signal can be determined to be a range indicated by a one-dot chain line in the drawing. In this case, the control unit 50 determines the cathodes 24 1 to 24 180 as the cathodes 24 selected by the cathode driving circuit 200 when performing the main scan. Further, the control unit 50 determines the anodes 22 1 to 22 120 as the anodes 22 selected by the anode drive circuit 250 when performing the main scan. In addition, the control unit 50 selects the light receiving elements D from which the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 read the light receiving signals in the first to 180th columns and the first to 120th rows when performing the main scan. A total of 21600 light receiving elements D 11 to D 120,180 up to the eyes are determined.

従って、本スキャンでは、陰極駆動回路200が陰極241〜24180を選択し、陽極駆動回路250が陽極221〜22120を選択するので、陰極24181〜24240に対応する部分と陽極22121〜22180に対応する部分については有機EL層26を発光させずに済む。また、本スキャンでは、受光センサー走査回路300と受光信号読出回路400が、1列目〜180列目で、かつ1行目〜120行目までの計21600個の受光素子D11〜D120,180から受光信号を読み出すので、181列目〜240列目までの各受光素子Dと121行目〜180行目までの各受光素子D(合計21600個)については受光信号を読み出さずに済む。従って、図15(A)の場合に比べ、照射光ILの発光範囲LAと受光信号の読出範囲RAを狭めることができるので、消費電力をさらに低減することができる。 Accordingly, in this scan, the cathode driving circuit 200 selects the cathodes 24 1 to 24 180 and the anode driving circuit 250 selects the anodes 22 1 to 22 120 , so that the portion corresponding to the cathodes 24 181 to 24 240 and the anode 22 The portions corresponding to 121 to 22 180 need not emit light from the organic EL layer 26. Further, in the main scan, the light receiving sensor scanning circuit 300 and the light receiving signal reading circuit 400 are composed of a total of 21,600 light receiving elements D 11 to D 120,180 in the first to 180th columns and the first to 120th rows. Since the light reception signals are read, it is not necessary to read the light reception signals for the light reception elements D in the 181st to 240th columns and the light reception elements D in the 121st to 180th rows (21600 in total). Therefore, as compared with the case of FIG. 15A, the light emission range LA of the irradiation light IL and the read range RA of the received light signal can be narrowed, so that the power consumption can be further reduced.

なお、プリスキャンを行って照射光ILの発光範囲LAと受光信号の読出範囲RAを決定した後、本スキャンを行う場合に、上述した第4,第5実施形態で説明した表面反射光の影響を排除する駆動(発光制御と読出制御)を行うことで、静脈像の撮像精度を高めることができる。また、例えば、図16に示すように撮像領域Sが予め12個の分割領域S1〜S12に区分されており、プリスキャンを行った結果、原稿Mの置かれた領域が分割領域S1〜S3,S5〜S7であった場合は、照射光IRの発光範囲LAと受光信号の読出範囲RAを分割領域S1〜S3,S5〜S7,S9〜S11(または分割領域S1〜S3,S5〜S7)に決定し、本スキャンを行うようにしてもよい。   When the main scan is performed after the pre-scan is performed and the light emission range LA of the irradiation light IL and the light-receiving signal readout range RA are determined, the influence of the surface reflected light described in the fourth and fifth embodiments described above. By performing driving (light emission control and readout control) to eliminate the above, it is possible to improve the imaging accuracy of the vein image. Further, for example, as shown in FIG. 16, the imaging area S is divided into 12 divided areas S1 to S12 in advance, and as a result of performing the pre-scan, the area where the document M is placed is divided areas S1 to S3. In the case of S5 to S7, the emission range LA of the irradiation light IR and the light reception signal readout range RA are divided into divided regions S1 to S3, S5 to S7, and S9 to S11 (or divided regions S1 to S3, S5 to S7). It may be determined and the main scan may be performed.

また、生体認証装置においても、プリスキャンを行って撮像領域Sのうち指Fが置かれた領域を検出し、検出した領域に応じて本スキャンを行う場合の照射光ILの発光範囲LAと受光信号の読出範囲RAを決定することで、消費電力を低減することができる。   Also in the biometric authentication device, the pre-scan is performed to detect the region where the finger F is placed in the imaging region S, and the light emission range LA and the light reception when the main scan is performed according to the detected region. By determining the signal readout range RA, power consumption can be reduced.

<G.変形例>
本発明は上述した各実施形態に限定されるものではなく、例えば以下の変形が可能である。また、以下に示す2以上の変形を適宜組み合わせることもできる。
<G. Modification>
The present invention is not limited to the above-described embodiments, and for example, the following modifications are possible. Also, two or more of the following modifications can be combined as appropriate.

[変形例1]
例えば、受光量(積算量)による受光素子Dの光電変換特性の変化を補正するため、あるいは反射光RLが全く入射されていない状態における受光信号の値を基準値として取得するため、撮像領域の端部等に、受光面の上側が遮光層BMで完全に覆われた受光素子Dが設けられていてもよい。このように必ずしも全ての受光素子Dに対して本発明に係る構造が適用されている必要はなく、少なくとも1以上の受光素子Dに対して本発明に係る構造が適用されていればよい。つまり、第1実施形態の場合、陰極24の開口部、受光素子D、遮光層BM(開口部)および絶縁層28は、少なくとも1つずつ以上あればよい。また、第2実施形態の場合、陰極24’は少なくとも2つ以上あればよく、受光素子Dと遮光層BM’(開口部)と絶縁層28’は少なくとも1つずつ以上あればよい。
[Modification 1]
For example, in order to correct the change in the photoelectric conversion characteristics of the light receiving element D due to the amount of received light (integrated amount), or to obtain the value of the received light signal in a state where no reflected light RL is incident as a reference value, A light receiving element D in which the upper side of the light receiving surface is completely covered with the light shielding layer BM may be provided at the end or the like. As described above, the structure according to the present invention is not necessarily applied to all the light receiving elements D, and the structure according to the present invention may be applied to at least one light receiving element D. That is, in the case of the first embodiment, at least one or more openings of the cathode 24, the light receiving element D, the light shielding layer BM (opening), and the insulating layer 28 may be provided. In the second embodiment, at least two cathodes 24 ′ may be provided, and at least one light receiving element D, light shielding layer BM ′ (opening), and insulating layer 28 ′ may be provided.

[変形例2]
遮光層BMは、近赤外光に対して遮光性が高く、かつ絶縁性の高い部材で形成されていてもよい。また、遮光層BMや陰極24は、近赤外光に対して反射性が低い材料で形成されているのが望ましい。また、図17に示すように遮光層BMと絶縁層28を有機EL層26の下側に設けてもよい。また、この構成において有機EL層26の上側にも第2の絶縁層を併せて設けてもよい。また、図18に示すように遮光層BMを対向基板GSの下面に設けてもよい。また、陽極22と陰極24の極性を逆にしてもよい。また、発光層として、有機EL層26の他に、正孔輸送層、正孔注入層、電子輸送層、電子注入層等が含まれていてもよいし、発光層は、有機EL材料でなく無機EL材料や発光ポリマー等で形成されていてもよい。また、発光層は、電圧の印加によって光を発する電圧駆動型であってもよい。また、受光素子Dの受光面や遮光層BMの開口部の形状は、円形に限らず、楕円、矩形、六角形等、任意の形状にすることができる。陰極24の開口部の形状や、遮光層BMの形状(外形)、絶縁層28の形状(外形)についても、正方形や長方形に限らず任意の形状であってよい。また、受光素子Dの受光面の大きさと遮光層BMの開口部の大きさは、開口部の方が受光面より大きくてもよいし、両者が同じ大きさであってもよい。また、カバーガラス10側から平面視したとき、受光素子Dの受光面の中心(または重心)が遮光層BMの開口部内に位置することが望ましいが、少なくとも受光面の一部が開口部内に位置していればよい。また、受光素子Dや開口部の配列パターンはマトリクス状に限定されない。例えば、チェス柄(市松模様)における黒または白の配列パターンとなるように受光素子Dや開口部を並べてもよい。また、スイープ型の生体認証装置に本発明を適用してもよい。この場合、例えば図19(A)や図19(B)に示すように、複数の受光素子DはX軸方向に沿って一列に並んでいればよい。また、この場合、各遮光層BMには開口部が1つだけ設けられていればよい。これらの変形は上述した各実施形態に適用可能である。
[Modification 2]
The light shielding layer BM may be formed of a member having a high light shielding property with respect to near infrared light and a high insulating property. The light shielding layer BM and the cathode 24 are preferably formed of a material having low reflectivity with respect to near infrared light. Further, as shown in FIG. 17, the light shielding layer BM and the insulating layer 28 may be provided below the organic EL layer 26. In this configuration, a second insulating layer may also be provided on the upper side of the organic EL layer 26. Further, as shown in FIG. 18, a light shielding layer BM may be provided on the lower surface of the counter substrate GS. Further, the polarity of the anode 22 and the cathode 24 may be reversed. In addition to the organic EL layer 26, the light emitting layer may include a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, and the like. The light emitting layer is not an organic EL material. It may be formed of an inorganic EL material or a light emitting polymer. Further, the light emitting layer may be a voltage driven type that emits light by application of a voltage. In addition, the shape of the light receiving surface of the light receiving element D and the opening of the light shielding layer BM is not limited to a circle, and may be an arbitrary shape such as an ellipse, a rectangle, or a hexagon. The shape of the opening of the cathode 24, the shape (outer shape) of the light shielding layer BM, and the shape (outer shape) of the insulating layer 28 are not limited to squares and rectangles, and may be arbitrary shapes. Further, the size of the light receiving surface of the light receiving element D and the size of the opening of the light shielding layer BM may be larger in the opening than in the light receiving surface, or both may be the same size. Further, when viewed in plan from the cover glass 10 side, it is desirable that the center (or the center of gravity) of the light receiving surface of the light receiving element D is located in the opening of the light shielding layer BM, but at least a part of the light receiving surface is located in the opening. If you do. Further, the arrangement pattern of the light receiving elements D and the openings is not limited to a matrix. For example, the light receiving elements D and the openings may be arranged so as to form a black or white arrangement pattern in a chess pattern (checkered pattern). Further, the present invention may be applied to a sweep-type biometric authentication device. In this case, for example, as shown in FIGS. 19A and 19B, the plurality of light receiving elements D may be arranged in a line along the X-axis direction. In this case, each light shielding layer BM only needs to have one opening. These modifications are applicable to the above-described embodiments.

[変形例3]
静脈認証の対象となる生体の部位は、手のひら、手の甲、眼等であってもよい。また、近赤外光以外の光を遮光するバンドパスフィルター(光学フィルター)を設けてもよい。例えば、バンドパスフィルターは、対向基板GSと陽極22の間や、カバーガラス10とレンズアレイLAの間に設けることができる。また、近赤外光の代わりに可視光を使用し、指紋や虹彩に基づいて生体認証を行う生体認証装置に本発明を適用することもできる。この場合、発光部20(有機EL層26)は、照射光ILとして可視光を発光する。また、受光部30(各受光素子D)は、反射光RLとして可視光を受光する。また、カバーガラス10、レンズアレイLA、対向基板GS、陽極22、絶縁層28、有機EL層26および封止層29は、可視光に対して透過性の高い材料で形成され、陰極24および遮光層BMは、可視光に対して遮光性の高い材料で形成される。これらの変形は第6実施形態を除く各実施形態に適用可能である。
[Modification 3]
The part of the living body subject to vein authentication may be the palm, the back of the hand, the eye, or the like. Further, a band pass filter (optical filter) that blocks light other than near infrared light may be provided. For example, the band pass filter can be provided between the counter substrate GS and the anode 22 or between the cover glass 10 and the lens array LA. In addition, the present invention can be applied to a biometric authentication device that uses visible light instead of near infrared light and performs biometric authentication based on fingerprints and irises. In this case, the light emitting unit 20 (organic EL layer 26) emits visible light as the irradiation light IL. In addition, the light receiving unit 30 (each light receiving element D) receives visible light as the reflected light RL. Further, the cover glass 10, the lens array LA, the counter substrate GS, the anode 22, the insulating layer 28, the organic EL layer 26, and the sealing layer 29 are formed of a material that is highly transmissive to visible light, and the cathode 24 and the light shield. The layer BM is formed of a material having a high light blocking property with respect to visible light. These modifications are applicable to each embodiment except for the sixth embodiment.

[変形例4]
例えば、生体認証機能を有するパーソナルコンピューターや携帯電話機等に本発明を適用することができる。また、イメージスキャナーの他に、複写機、ファクシミリ、バーコードリーダー等の画像読取装置に本発明を適用することもできる。なお、画像読取装置に本発明を適用する場合も、照射光ILや反射光RLとして近赤外光の代わりに可視光を用いることになる。
[Modification 4]
For example, the present invention can be applied to a personal computer or a mobile phone having a biometric authentication function. In addition to the image scanner, the present invention can also be applied to an image reading apparatus such as a copying machine, a facsimile, or a barcode reader. Note that when the present invention is applied to an image reading apparatus, visible light is used instead of near-infrared light as the irradiation light IL and the reflected light RL.

1…生体認証装置(センシング装置)、2,2A,2B…センシングユニット(センシング装置)、10…カバーガラス、20,20A,20B…発光部、30…受光部、40…記憶部、50…制御部(制御回路,生成回路)、60…出力部、F…指(対象物)、IL…照射光、RL…反射光、D,D11〜Dmn…受光素子、GS…対向基板、22,22’,221〜22m…陽極(第1電極)、24,24’,241〜24n,24A,24B…陰極(第2電極、第3電極)、26,26’…有機EL層(発光層)、BM,BM’…遮光層、28,28’…絶縁層、29…封止層、LA…レンズアレイ、ML…マイクロレンズ、200…陰極駆動回路(第1の駆動回路)、250…陽極駆動回路(第2の駆動回路)、300…受光センサー走査回路(読出回路)、400…受光信号読出回路(読出回路)、S…撮像領域(読取領域)、X1〜Xn…走査信号、Y1〜Ym…受光信号、T1〜T3…期間、M…原稿(対象物)、LA…発光範囲、RA…読出範囲、S1〜S12…分割領域。 DESCRIPTION OF SYMBOLS 1 ... Biometric authentication apparatus (sensing apparatus), 2, 2A, 2B ... Sensing unit (sensing apparatus), 10 ... Cover glass, 20, 20A, 20B ... Light emitting part, 30 ... Light receiving part, 40 ... Memory | storage part, 50 ... Control Unit (control circuit, generation circuit), 60 ... output unit, F ... finger (object), IL ... irradiation light, RL ... reflected light, D, D 11 to D mn ... light receiving element, GS ... counter substrate, 22, 22 ', 22 1 to 22 m ... anode (first electrode), 24, 24', 24 1 to 24 n , 24A, 24B ... cathode (second electrode, third electrode), 26, 26 '... organic EL layer (Light emitting layer), BM, BM '... light shielding layer, 28, 28' ... insulating layer, 29 ... sealing layer, LA ... lens array, ML ... microlens, 200 ... cathode drive circuit (first drive circuit), 250... Anode drive circuit (second drive circuit), 300... (Reading circuit), 400... Light receiving signal reading circuit (reading circuit), S... Imaging region (reading region), X1 to Xn... Scanning signal, Y1 to Ym. Object), LA ... light emission range, RA ... reading range, S1-S12 ... divided region.

Claims (14)

発光部、受光部遮光層およびカバーガラスを備え、前記カバーガラス上に置かれた生体に対して前記発光部から近赤外光を照射し、前記生体からの反射光を前記受光部で受光し、静脈像を撮像する静脈像撮像装置において、
前記発光部および前記受光部は前記カバーガラスに対して同じ側に設けられ、前記発光部は前記受光部より前記カバーガラス側に位置し、
前記発光部は、
照射光を発する発光層と、
前記発光層より前記カバーガラス側に位置し、前記照射光および前記反射光を透過する第1電極と、
前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に第1の開口部が形成された第2電極と、
前記第1の開口部に対応する位置に設けられ、前記反射光を透過すると共に前記第1電極と前記第2電極とを部分的に絶縁する絶縁層とを備え、
前記受光部は、
前記反射光を受光する受光素子を備え、
前記遮光層は、
前記第1の開口部に対応する位置に設けられ、前記照射光を遮光し前記反射光を透過する第2の開口部が形成されており、
前記カバーガラス側から平面視した場合に、前記遮光層は前記第1の開口部と重なり、前記受光素子の受光面が前記第2の開口部内に位置する
ことを特徴とする静脈像撮像装置
A light emitting unit, a light receiving unit , a light shielding layer, and a cover glass are provided, the living body placed on the cover glass is irradiated with near infrared light from the light emitting unit, and reflected light from the living body is received by the light receiving unit. In a vein image capturing apparatus that captures a vein image ,
The light emitting unit and the light receiving unit are provided on the same side with respect to the cover glass , the light emitting unit is located on the cover glass side from the light receiving unit,
The light emitting unit
A light- emitting layer that emits irradiated light ;
A first electrode located on the cover glass side of the light emitting layer and transmitting the irradiation light and the reflected light;
A second electrode that is located closer to the light receiving part than the light emitting layer, shields the irradiation light and the reflected light, and has a first opening formed thereon;
An insulating layer provided at a position corresponding to the first opening and transmitting the reflected light and partially insulating the first electrode and the second electrode;
The light receiving unit is
A light receiving element for receiving the reflected light;
The light shielding layer is
The first we provided at a position corresponding to the opening is, and the second opening is formed passing through the shields the illumination light the reflected light,
Wherein when viewed in plan from the cover glass side, the light shielding layer overlaps with the first opening, the vein image capturing apparatus characterized by a light receiving surface of the light receiving element is positioned within said second opening.
発光部、受光部遮光層およびカバーガラスを備え、前記カバーガラス上に置かれた生体に対して前記発光部から近赤外光を照射し、前記生体からの反射光を前記受光部で受光し、静脈像を撮像する静脈像撮像装置において、
前記発光部および前記受光部は前記カバーガラスに対して同じ側に設けられ、前記発光部は前記受光部より前記カバーガラス側に位置し、
前記発光部は、
照射光を発する発光層と、
前記発光層より前記カバーガラス側に位置し、前記照射光および前記反射光を透過する第1電極と、
前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた第2電極および第3電極と、
前記第2電極と前記第3電極との間の離間領域に対応する位置に設けられ、前記反射光を透過すると共に前記第2電極および前記第3電極と前記第1電極とを部分的に絶縁する絶縁層とを備え、
前記受光部は、
前記反射光を受光する受光素子を備え、
前記遮光層は、
前記離間領域に対応する位置に設けられ、前記照射光を遮光し前記反射光を透過する開口部が形成されており、
前記カバーガラス側から平面視した場合に、前記遮光層は前記離間領域と重なり、前記受光素子の受光面が前記開口部内に位置する
ことを特徴とする静脈像撮像装置
A light emitting unit, a light receiving unit , a light shielding layer, and a cover glass are provided, the living body placed on the cover glass is irradiated with near infrared light from the light emitting unit, and reflected light from the living body is received by the light receiving unit. and, in have you the vein image capturing apparatus for capturing an image of veins,
The light emitting unit and the light receiving unit are provided on the same side with respect to the cover glass , the light emitting unit is located on the cover glass side from the light receiving unit,
The light emitting unit
A light- emitting layer that emits irradiated light ;
A first electrode located on the cover glass side of the light emitting layer and transmitting the irradiation light and the reflected light;
A second electrode and a third electrode, which are located closer to the light receiving part than the light emitting layer, shield the irradiation light and the reflected light, and are spaced apart from each other;
Provided at a position corresponding to a separation region between the second electrode and the third electrode, transmits the reflected light , and partially insulates the second electrode, the third electrode, and the first electrode And an insulating layer
The light receiving unit is
A light receiving element for receiving the reflected light;
The light shielding layer is
Provided at a position corresponding to the separation region, an opening that blocks the irradiation light and transmits the reflected light is formed,
When viewed in plan from the crystal side, the light shielding layer overlaps with the separation region, the vein image capturing apparatus characterized by a light receiving surface of the light receiving element is positioned in the opening.
前記遮光層は、前記第1電極の前記カバーガラス側から前記第2電極までの間に設けられていることを特徴とする請求項1に記載の静脈像撮像装置The vein image capturing apparatus according to claim 1, wherein the light shielding layer is provided between the first electrode and the second electrode from the cover glass side. 発光部、受光部遮光層およびカバーガラスを備え、前記カバーガラス上に置かれた生体に対して前記発光部から近赤外光を照射し、前記生体からの反射光を前記受光部で受光し、静脈像を撮像する静脈像撮像装置において
前記発光部および前記受光部は前記カバーガラスに対して同じ側に設けられ、前記発光部は前記受光部より前記カバーガラス側に位置し、
前記発光部は、
照射光を発する発光層と、
前記発光層より前記カバーガラス側に位置し、前記照射光および前記反射光を透過する第1電極と、
前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた複数の第2電極と、
隣り合う前記第2電極間の離間領域ごとに当該離間領域に対応する位置に設けられ、前記反射光を透過すると共に前記第1電極と前記第2電極とを部分的に絶縁する複数の絶縁層とを備え、
前記受光部は、
前記反射光を受光する複数の受光素子を備え、
前記複数の遮光層の各々は、
互いに異なる前記離間領域に対応する位置に設けられ、前記照射光を遮光し前記反射光を透過する1以上の開口部が形成されており、
前記カバーガラス側から平面視した場合に、前記離間領域の各々は前記遮光層と重なり、各々の前記開口部内には前記受光素子の受光面が1つずつ位置する
ことを特徴とする静脈像撮像装置
A light emitting unit, a light receiving unit , a light shielding layer, and a cover glass are provided, the living body placed on the cover glass is irradiated with near infrared light from the light emitting unit, and reflected light from the living body is received by the light receiving unit. and, wherein the light emitting unit and the light receiving part have contact the vein image capturing apparatus for capturing an image of veins are provided on the same side with respect to the cover glass, the light-emitting portion is located on the crystal side from the light receiving unit,
The light emitting unit
A light- emitting layer that emits irradiated light ;
A first electrode located on the cover glass side of the light emitting layer and transmitting the irradiation light and the reflected light;
A plurality of second electrodes that are located closer to the light receiving part than the light emitting layer, shield the irradiation light and the reflected light, and are spaced apart from each other;
A plurality of insulating layers that are provided at positions corresponding to the separation regions for each separation region between the adjacent second electrodes, and that transmit the reflected light and partially insulate the first electrode and the second electrode. And
The light receiving unit is
A plurality of light receiving elements for receiving the reflected light;
Each of the plurality of light shielding layers is
One or more openings that are provided at positions corresponding to the different separation areas and shield the irradiation light and transmit the reflected light are formed,
When viewed in plan from the crystal side, each of said separation region overlaps with the light-shielding layer, the vein image captured in each of the said openings, characterized in that the light receiving surface of the light receiving element is positioned one Equipment .
発光部、受光部遮光層およびカバーガラスを備え、前記カバーガラス上に置かれた生体に対して前記発光部から近赤外光を照射し、前記生体からの反射光を前記受光部で受光し、静脈像を撮像する静脈像撮像装置において
前記発光部および前記受光部は前記カバーガラスに対して同じ側に設けられ、前記発光部は前記受光部より前記カバーガラス側に位置し、
前記発光部は、
照射光を発する発光層と、
前記発光層より前記カバーガラス側に位置し、前記照射光および前記反射光を透過すると共に互いに離間して設けられた複数の第1電極と、
前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に、互いに離間して設けられ、前記複数の第1電極と交差する複数の第2電極と、
隣り合う前記第2電極間の離間領域ごとに当該離間領域に対応する位置に設けられ、前記反射光を透過すると共に前記第1電極と前記第2電極とを部分的に絶縁する複数の絶縁層とを備え、
前記受光部は、
前記反射光を受光する複数の受光素子を備え、
前記複数の遮光層の各々は、
互いに異なる前記離間領域に対応する位置に設けられ、前記照射光を遮光し前記反射光を透過する1以上の開口部が形成されており、
前記カバーガラス側から平面視した場合に、前記離間領域の各々は前記遮光層と重なり、各々の前記開口部内には前記受光素子の受光面が1つずつ位置する
ことを特徴とする静脈像撮像装置
A light emitting unit, a light receiving unit , a light shielding layer, and a cover glass are provided, the living body placed on the cover glass is irradiated with near infrared light from the light emitting unit, and reflected light from the living body is received by the light receiving unit. and, wherein the light emitting unit and the light receiving part have contact the vein image capturing apparatus for capturing an image of veins are provided on the same side with respect to the cover glass, the light-emitting portion is located on the crystal side from the light receiving unit,
The light emitting unit
A light- emitting layer that emits irradiated light ;
A plurality of first electrodes that are located on the cover glass side of the light emitting layer and transmit the irradiation light and the reflected light and are spaced apart from each other;
A plurality of second electrodes that are located closer to the light receiving unit than the light emitting layer, shield the irradiation light and the reflected light, are provided apart from each other, and intersect the plurality of first electrodes;
A plurality of insulating layers that are provided at positions corresponding to the separation regions for each separation region between the adjacent second electrodes, and that transmit the reflected light and partially insulate the first electrode and the second electrode. And
The light receiving unit is
A plurality of light receiving elements for receiving the reflected light;
Each of the plurality of light shielding layers is
One or more openings that are provided at positions corresponding to the different separation areas and shield the irradiation light and transmit the reflected light are formed,
When viewed in plan from the crystal side, each of said separation region overlaps with the light-shielding layer, the vein image captured in each of the said openings, characterized in that the light receiving surface of the light receiving element is positioned one Equipment .
前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として一部の前記第2電極を選択する第1の駆動回路と、
前記複数の受光素子のうち、前記カバーガラス側から平面視した場合に、前記第1の駆動回路が選択した一部の前記第2電極に隣り合う前記受光素子から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路とを備える
ことを特徴とする請求項4に記載の静脈像撮像装置
A first drive circuit that selects a part of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes;
Of the plurality of light receiving elements, when viewed in plan from the cover glass side, the reflection incident on the light receiving surface from the light receiving elements adjacent to a part of the second electrodes selected by the first drive circuit The vein image capturing apparatus according to claim 4, further comprising: a reading circuit that reads a light reception signal indicating the amount of light.
前記生体の静脈像を読み取る読取領域のうち前記生体が置かれた領域を検出し、検出結果に基づいて前記第1の駆動回路が選択する一部の前記第2電極を決定する制御回路を備えることを特徴とする請求項6に記載の静脈像撮像装置A control circuit is provided that detects a region where the living body is placed in a reading region for reading a vein image of the living body and determines a part of the second electrodes selected by the first drive circuit based on a detection result. The vein image pickup apparatus according to claim 6. 前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として一部の前記第2電極を選択する第1の駆動回路と、
前記複数の第1電極のうち、前記駆動信号を供給する対象として一部の前記第1電極を選択する第2の駆動回路と、
前記複数の受光素子のうち、前記カバーガラス側から平面視した場合に、前記第1の駆動回路が選択した一部の前記第2電極と、前記第2の駆動回路が選択した一部の前記第1電極とが重なる部分に隣り合う前記受光素子から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路とを備える
ことを特徴とする請求項5に記載の静脈像撮像装置
A first drive circuit that selects a part of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes;
A second drive circuit that selects a part of the first electrodes as a target for supplying the drive signal among the plurality of first electrodes;
Among the plurality of light receiving elements, when viewed in plan from the cover glass side, a part of the second electrode selected by the first driving circuit and a part of the second driving circuit selected by the second driving circuit 6. The vein image pickup according to claim 5, further comprising: a readout circuit that reads a light reception signal indicating a light amount of the reflected light incident on the light receiving surface from the light receiving element adjacent to the portion where the first electrode overlaps. Equipment .
前記生体の静脈像を読み取る読取領域のうち前記生体が置かれた領域を検出し、検出結果に基づいて、前記第1の駆動回路が選択する一部の前記第2電極と、前記第2の駆動回路が選択する一部の前記第1電極とを決定する制御回路を備える
ことを特徴とする請求項8に記載の静脈像撮像装置
An area where the living body is placed is detected in a reading area for reading a vein image of the living body, and a part of the second electrode selected by the first drive circuit based on a detection result; and the second electrode The vein image capturing apparatus according to claim 8, further comprising a control circuit that determines a part of the first electrodes selected by the drive circuit.
前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、
前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、
前記読出回路が読み出した前記受光信号に基づいて前記静脈の画像を生成する生成回路とを備え、
前記複数の第2電極は複数のグループに分けられ、
前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、
前記読出回路は、前記第1の駆動回路が前記グループ単位で選択を行うごとに全ての前記受光素子から前記受光信号を読み出し、
前記生成回路は、前記第1の駆動回路が前記グループ単位で選択を行うごとに、前記読出回路が読み出した全ての前記受光信号から、前記カバーガラス側から平面視した場合に、少なくとも前記第1の駆動回路が選択した1以上の前記第2電極に隣り合う前記受光素子から読み出した前記受光信号を除き、残りの前記受光信号に基づいて前記静脈の画像を生成する
ことを特徴とする請求項4に記載の静脈像撮像装置
A first drive circuit that selects one or more of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes;
A readout circuit that reads a light receiving signal indicating the amount of the reflected light incident on the light receiving surface from each of the plurality of light receiving elements;
A generation circuit for generating an image of the vein based on the received light signal read by the read circuit;
The plurality of second electrodes are divided into a plurality of groups,
The first driving circuit sequentially selects the plurality of second electrodes in the group unit,
The readout circuit reads out the received light signals from all the light receiving elements each time the first drive circuit performs selection in units of groups,
Each time the first driving circuit performs selection in units of groups, the generation circuit has at least the first when viewed from the cover glass side from all the light reception signals read by the reading circuit. The vein image is generated based on the remaining light reception signals except for the light reception signals read from the light receiving elements adjacent to the one or more second electrodes selected by the drive circuit. 4. The vein imaging apparatus according to 4 .
前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、
前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、
前記読出回路が読み出した前記受光信号に基づいて前記静脈の画像を生成する生成回路とを備え、
前記複数の第2電極は複数のグループに分けられ、
前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、
前記読出回路は、前記第1の駆動回路が前記グループ単位で選択を行うごとに、前記カバーガラス側から平面視した場合に、少なくとも前記第1の駆動回路が選択した1以上の前記第2電極に隣り合う前記受光素子を除き、残りの前記受光素子から前記受光信号を読み出すことを特徴とする請求項4に記載の静脈像撮像装置
A first drive circuit that selects one or more of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes;
A readout circuit that reads a light receiving signal indicating the amount of the reflected light incident on the light receiving surface from each of the plurality of light receiving elements;
A generation circuit for generating an image of the vein based on the received light signal read by the read circuit;
The plurality of second electrodes are divided into a plurality of groups,
The first driving circuit sequentially selects the plurality of second electrodes in the group unit,
The readout circuit has at least one or more second electrodes selected by the first drive circuit when viewed from the cover glass side each time the first drive circuit performs selection in units of groups. 5. The vein image pickup apparatus according to claim 4, wherein the light receiving signal is read from the remaining light receiving elements except for the light receiving elements adjacent to each other.
前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、
前記複数の第1電極のうち、前記駆動信号を供給する対象として1以上の前記第1電極を選択する第2の駆動回路と、
前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、
前記読出回路が読み出した前記受光信号に基づいて前記静脈の画像を生成する生成回路とを備え、
前記複数の第1電極と前記複数の第2電極は複数のグループに分けられ、
前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、
前記第2の駆動回路は、前記複数の第1電極を前記グループ単位で順次選択し、
前記読出回路は、前記第1の駆動回路と前記第2の駆動回路が前記グループ単位で選択を行うごとに全ての前記受光素子から前記受光信号を読み出し、
前記生成回路は、前記第1の駆動回路と前記第2の駆動回路が前記グループ単位で選択を行うごとに、前記読出回路が読み出した全ての前記受光信号から、前記カバーガラス側から平面視した場合に、少なくとも、前記第1の駆動回路が選択した1以上の前記第2電極と、前記第2の駆動回路が選択した1以上の前記第1電極とが重なる部分に最も近い前記受光素子から読み出した前記受光信号を除き、残りの前記受光信号に基づいて前記静脈の画像を生成する
ことを特徴とする請求項5に記載の静脈像撮像装置
A first drive circuit that selects one or more of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes;
A second drive circuit that selects one or more of the first electrodes as a target for supplying the drive signal among the plurality of first electrodes;
A readout circuit that reads a light receiving signal indicating the amount of the reflected light incident on the light receiving surface from each of the plurality of light receiving elements;
A generation circuit for generating an image of the vein based on the received light signal read by the read circuit;
The plurality of first electrodes and the plurality of second electrodes are divided into a plurality of groups,
The first driving circuit sequentially selects the plurality of second electrodes in the group unit,
The second driving circuit sequentially selects the plurality of first electrodes in units of groups,
The reading circuit reads the light reception signal from all the light receiving elements each time the first driving circuit and the second driving circuit perform selection in units of groups,
The generation circuit is viewed in plan from the cover glass side from all the received light signals read by the readout circuit each time the first driving circuit and the second driving circuit perform selection in units of groups. In this case, at least from the light receiving element closest to the portion where the one or more second electrodes selected by the first driving circuit and the one or more first electrodes selected by the second driving circuit overlap. The vein image capturing apparatus according to claim 5, wherein an image of the vein is generated based on the remaining received light signal except for the read received light signal.
前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1以上の前記第2電極を選択する第1の駆動回路と、
前記複数の第1電極のうち、前記駆動信号を供給する対象として1以上の前記第1電極を選択する第2の駆動回路と、
前記複数の受光素子の各々から前記受光面に入射した前記反射光の光量を示す受光信号を読み出す読出回路と、
前記読出回路が読み出した前記受光信号に基づいて前記静脈の画像を生成する生成回路とを備え、
前記複数の第1電極と前記複数の第2電極は複数のグループに分けられ、
前記第1の駆動回路は、前記複数の第2電極を前記グループ単位で順次選択し、
前記第2の駆動回路は、前記複数の第1電極を前記グループ単位で順次選択し、
前記読出回路は、前記第1の駆動回路と前記第2の駆動回路が前記グループ単位で選択を行うごとに、前記カバーガラス側から平面視した場合に、少なくとも、前記第1の駆動回路が選択した1以上の前記第2電極と、前記第2の駆動回路が選択した1以上の前記第1電極とが重なる部分に最も近い前記受光素子を除き、残りの前記受光素子から前記受光信号を読み出す
ことを特徴とする請求項5に記載の静脈像撮像装置
A first drive circuit that selects one or more of the second electrodes as a target for supplying a drive signal for causing the light emitting layer to emit light among the plurality of second electrodes;
A second drive circuit that selects one or more of the first electrodes as a target for supplying the drive signal among the plurality of first electrodes;
A readout circuit that reads a light receiving signal indicating the amount of the reflected light incident on the light receiving surface from each of the plurality of light receiving elements;
A generation circuit for generating an image of the vein based on the received light signal read by the read circuit;
The plurality of first electrodes and the plurality of second electrodes are divided into a plurality of groups,
The first driving circuit sequentially selects the plurality of second electrodes in the group unit,
The second driving circuit sequentially selects the plurality of first electrodes in units of groups,
The reading circuit is selected by at least the first driving circuit when viewed in plan from the cover glass side each time the first driving circuit and the second driving circuit select in units of groups. The received light signal is read from the remaining light receiving elements except for the light receiving element closest to the portion where the one or more second electrodes and the one or more first electrodes selected by the second drive circuit overlap. The vein image capturing apparatus according to claim 5.
請求項1乃至1のうちいずれか一項に記載の静脈像撮像装置を備えたことを特徴とする電子機器。 An electronic apparatus comprising the vein image capturing apparatus according to any one of claims 1 to 1 3.
JP2015044363A 2015-03-06 2015-03-06 Vein imaging device and electronic device Active JP5910774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044363A JP5910774B2 (en) 2015-03-06 2015-03-06 Vein imaging device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044363A JP5910774B2 (en) 2015-03-06 2015-03-06 Vein imaging device and electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011084243A Division JP5712746B2 (en) 2011-04-06 2011-04-06 Sensing device and electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016067493A Division JP6103103B2 (en) 2016-03-30 2016-03-30 Vein imaging device and electronic device

Publications (2)

Publication Number Publication Date
JP2015146203A JP2015146203A (en) 2015-08-13
JP5910774B2 true JP5910774B2 (en) 2016-04-27

Family

ID=53890372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044363A Active JP5910774B2 (en) 2015-03-06 2015-03-06 Vein imaging device and electronic device

Country Status (1)

Country Link
JP (1) JP5910774B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174161A (en) * 1988-12-26 1990-07-05 Fuji Xerox Co Ltd Image readout device
JPH03295195A (en) * 1990-04-12 1991-12-26 Mitsubishi Electric Corp Electroluminescence (el) back-light device
JP2005116383A (en) * 2003-10-09 2005-04-28 Pioneer Electronic Corp Backlight device and display device
JP2005317382A (en) * 2004-04-28 2005-11-10 Semiconductor Energy Lab Co Ltd Light emitting device, electronic apparatus and television apparatus
JP2006269225A (en) * 2005-03-23 2006-10-05 Fuji Electric Holdings Co Ltd Organic el display panel, its manufacturing method, and organic el display device provided with the display panel
JP2007198772A (en) * 2006-01-24 2007-08-09 Fujifilm Corp Image recording and reading device
JP4844481B2 (en) * 2007-06-25 2011-12-28 株式会社日立製作所 Imaging apparatus and apparatus equipped with the same
JP5144217B2 (en) * 2007-10-31 2013-02-13 株式会社日立製作所 IMAGING DEVICE, IMAGING DEVICE MANUFACTURING METHOD, AND DEVICE MOUNTING IMAGING DEVICE

Also Published As

Publication number Publication date
JP2015146203A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP5712746B2 (en) Sensing device and electronic device
US10339359B2 (en) Display panel and display device
US10361255B2 (en) Display panel and display device
US10796123B2 (en) Systems and methods for optical sensing using point-based illumination
KR101957913B1 (en) Fingerprint Image Scanning Panel Adaptable To Under-Glass Type Structure and Display Apparatus Comprising The Same
CN107092892B (en) Display panel and display device
CN109598248B (en) Operation method of grain recognition device and grain recognition device
US20190228204A1 (en) Display capable of detecting fingerprint
KR20190069126A (en) 3-dimensional finger print device and electronic device comprising the same
US20090039241A1 (en) Biometric device and information terminal
US11922715B2 (en) Imaging device
JP2012222484A (en) Sensing device and electronic device
US11544958B2 (en) Light detection apparatus and application thereof
KR20180135584A (en) Display capable of detecting finger-print
KR101855464B1 (en) Image sensor package for finger-print and electronic device capable of detecting finger-print
CN111191613A (en) Fingerprint identification structure, fingerprint identification display substrate and manufacturing method thereof
JP6103103B2 (en) Vein imaging device and electronic device
JP2012221082A (en) Sensing device and electronic apparatus
US11132527B2 (en) Photo-sensing detection apparatus, display apparatus, method of fingerprint detection, and method of operating display apparatus
JP2012222483A (en) Sensing device and electronic device
JP5910774B2 (en) Vein imaging device and electronic device
JP4055108B2 (en) Image authentication device
JP4831456B2 (en) Image reading device
KR20180102028A (en) Image sensor package for finger-print and electronic device capable of detecting finger-print
CN110569803B (en) Grain identification assembly, display device and grain identification method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150