JP2012222484A - Sensing device and electronic device - Google Patents

Sensing device and electronic device Download PDF

Info

Publication number
JP2012222484A
JP2012222484A JP2011084242A JP2011084242A JP2012222484A JP 2012222484 A JP2012222484 A JP 2012222484A JP 2011084242 A JP2011084242 A JP 2011084242A JP 2011084242 A JP2011084242 A JP 2011084242A JP 2012222484 A JP2012222484 A JP 2012222484A
Authority
JP
Japan
Prior art keywords
light
layer
light emitting
light receiving
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011084242A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yamamoto
英利 山本
Tetsuji Fujita
徹司 藤田
Eiji Kanda
栄二 神田
Hideto Ishiguro
英人 石黒
Tsukasa Eguchi
司 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011084242A priority Critical patent/JP2012222484A/en
Publication of JP2012222484A publication Critical patent/JP2012222484A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To thin a device while suppressing incidence of direct light from a light emitting layer and scattered light made incident obliquely from an object on a light receiving surface of a light receiving element.SOLUTION: A light emitting part 20 includes a light emitting layer 26 which emits irradiation light IL, a first electrode 22 which transmits the irradiation light IL and reflected light RL, and second and third electrodes 24 which shield the irradiation light IL and the reflected light RL and are provided away from each other. The light receiving part 30 includes a light receiving element D which receives the reflected light RL. A light shielding layer BM shields the irradiation light and the reflected light, and has an opening. An insulation layer 28 is an insulator which covers the light shielding layer BM and transmits the irradiation light and the reflected light. In the plane view from the side of an object F, the light shielding layer BM and the insulation layer 28 overlap with the separation region between the second and third electrodes 24, and the light receiving surface of the light receiving element D is positioned inside the opening of the light shielding layer BM. In the insulation layer 28, a surface in contact with the light emitting layer 26 includes a slope inclined to a surface of the first electrode 22, and an angle formed by the slope and a surface in contact with the first electrode 22 is an acute angle.

Description

本発明は、対象物に光を照射してその反射光を受光するセンシング装置および電子機器に関する。   The present invention relates to a sensing device and an electronic apparatus that irradiates an object with light and receives reflected light.

生体認証装置やイメージスキャナーの中には、読取領域の上に置かれた対象物(例えば指や原稿など)に対して発光部と受光部が同じ側に配置され、対象物に対して発光部から光を照射し、その反射光を受光部で受光して対象物の画像を読み取るものがある。例えば特許文献1に記載された撮像装置101では、画素110毎に光源ユニット111(発光部)と検出素子113(受光部)と遮光層126を備え、撮像対象129側から順に、光源ユニット111、遮光層126、検出素子113を配置することで、光源ユニット111と検出素子113の間を遮光層126によって部分的に遮光し、検出素子113に光源ユニット111からの直接光が入射するのを防ぐと共に、検出素子113に対して撮像対象129から斜めに入射する散乱光を減らしている。また、この撮像装置101は、光源ユニット111を形成したガラス基板124と、遮光層126を形成したガラス基板125とを貼り合わせた構造を有している。   In a biometric authentication device or an image scanner, a light emitting unit and a light receiving unit are arranged on the same side with respect to an object (for example, a finger or a document) placed on the reading area, and the light emitting unit is disposed on the object. In some cases, an image of an object is read by irradiating light from the light source and receiving the reflected light by a light receiving unit. For example, an imaging apparatus 101 described in Patent Document 1 includes a light source unit 111 (light emitting unit), a detection element 113 (light receiving unit), and a light shielding layer 126 for each pixel 110, and sequentially from the imaging target 129 side, By arranging the light shielding layer 126 and the detection element 113, the light shielding layer 126 partially shields light between the light source unit 111 and the detection element 113, and prevents direct light from the light source unit 111 from entering the detection element 113. At the same time, scattered light obliquely incident on the detection element 113 from the imaging target 129 is reduced. The imaging device 101 has a structure in which a glass substrate 124 on which a light source unit 111 is formed and a glass substrate 125 on which a light shielding layer 126 is formed are bonded together.

特開2009−3821号公報(図3、段落0031〜0035)Japanese Patent Laying-Open No. 2009-3821 (FIG. 3, paragraphs 0031 to 0035)

しかしながら、特許文献1に記載された撮像装置101では、光源ユニット111と検出素子113の間に遮光層126を形成したガラス基板125が介在するため装置の厚みが増してしまう。
本発明は、上述した課題に鑑みてなされたものであり、受光素子の受光面に発光層からの直接光や対象物から斜めに入射した散乱光が入射することを抑制しつつ装置を薄型化することが可能なセンシング装置、およびこれを用いた電子機器を提供することを課題とする。
However, in the imaging device 101 described in Patent Document 1, the thickness of the device increases because the glass substrate 125 on which the light shielding layer 126 is formed is interposed between the light source unit 111 and the detection element 113.
The present invention has been made in view of the above-described problems, and thins the apparatus while suppressing direct light from a light emitting layer or scattered light incident obliquely from an object from entering a light receiving surface of a light receiving element. It is an object of the present invention to provide a sensing device that can be used, and an electronic device using the sensing device.

以上の課題を解決するため、本発明の第1の態様に係るセンシング装置は、発光部、受光部、遮光層および絶縁層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、前記発光部は、前記対象物に照射する照射光を発する発光層と、前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過する第1電極と、前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた第2電極および第3電極とを備え、前記受光部は、前記反射光を受光する受光素子を備え、前記遮光層は、前記第1電極の前記発光層側の表面のうち前記第2電極および前記第3電極間の離間領域に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に開口部が形成され、前記絶縁層は、前記離間領域に対応する位置に設けられ、前記遮光層を覆うと共に前記照射光および前記反射光を透過する絶縁体であり、前記対象物側から平面視した場合に、前記遮光層および前記絶縁層は前記離間領域と重なり、前記受光素子の受光面は前記開口部内に位置し、前記絶縁層において、前記発光層に接する面は前記第1電極の表面に対して傾斜した斜面を含み、当該斜面と前記第1電極に接する面とのなす角は鋭角であることを特徴とする。   In order to solve the above problems, a sensing device according to a first aspect of the present invention includes a light emitting unit, a light receiving unit, a light shielding layer, and an insulating layer, irradiates light from the light emitting unit to an object, and In the sensing device that receives reflected light from an object by the light receiving unit, the light emitting unit and the light receiving unit are provided on the same side with respect to the object, and the light emitting unit is closer to the object side than the light receiving unit. And the light emitting unit is a light emitting layer that emits irradiation light that irradiates the object, a first electrode that is positioned closer to the object than the light emitting layer and transmits the irradiation light and the reflected light, and A second electrode and a third electrode, which are located on the light receiving part side of the light emitting layer and shield the irradiation light and the reflected light and are spaced apart from each other, the light receiving part receiving the reflected light The light-shielding layer , Provided in a position corresponding to a separation region between the second electrode and the third electrode on the light emitting layer side surface of the first electrode, and shields the irradiation light and the reflected light and forms an opening. The insulating layer is an insulator that is provided at a position corresponding to the separation region, covers the light shielding layer and transmits the irradiation light and the reflected light, and when viewed in plan from the object side, The light shielding layer and the insulating layer overlap with the separation region, the light receiving surface of the light receiving element is located in the opening, and the surface of the insulating layer that contacts the light emitting layer is inclined with respect to the surface of the first electrode The angle between the inclined surface and the surface in contact with the first electrode is an acute angle.

この構成によれば、第2電極と第3電極と遮光層は、照射光と反射光を遮光する機能を有する。また、絶縁層は、対象物側から平面視した場合に、発光層のうち少なくとも第2電極と第3電極の間の離間領域に対応する部分(すなわち受光素子の受光面に対応する部分)を、照射光を発光しない非発光領域にする。したがって、発光層(発光領域)から出射された照射光が離間領域を通って受光素子の受光面に直接入射することを抑制することができる。また、第2電極と第3電極と遮光層は、対象物側から平面視した場合に開口部以外の部分を遮光するので、対象物から斜めに入射してきた反射光(散乱光)が受光素子の受光面に入射することを抑制することもできる。また、遮光層は、第2電極および第3電極と第1電極との間(発光部内)に設けられるので、特許文献1に記載されているように光源ユニット111(発光部)と検出素子113(受光部)の間に遮光層126を形成したガラス基板125を介在させる必要がない。したがって、受光素子の受光面に発光層からの直接光や対象物から斜めに入射した散乱光が入射することを抑制しつつ、センシング装置を薄型化することができる。   According to this configuration, the second electrode, the third electrode, and the light shielding layer have a function of shielding the irradiation light and the reflected light. The insulating layer has at least a portion corresponding to a separation region between the second electrode and the third electrode (that is, a portion corresponding to the light receiving surface of the light receiving element) in the light emitting layer when viewed in plan from the object side. In a non-light emitting area that does not emit irradiated light. Therefore, it is possible to suppress the irradiation light emitted from the light emitting layer (light emitting region) from directly entering the light receiving surface of the light receiving element through the separated region. Further, since the second electrode, the third electrode, and the light shielding layer shield light from portions other than the opening when viewed from the object side, reflected light (scattered light) incident obliquely from the object is received by the light receiving element. It is also possible to suppress the incidence on the light receiving surface. Further, since the light shielding layer is provided between the second electrode, the third electrode, and the first electrode (within the light emitting unit), as described in Patent Document 1, the light source unit 111 (light emitting unit) and the detection element 113 are provided. There is no need to interpose the glass substrate 125 on which the light shielding layer 126 is formed between the (light receiving portions). Therefore, it is possible to reduce the thickness of the sensing device while suppressing direct light from the light emitting layer and scattered light incident obliquely from the object from entering the light receiving surface of the light receiving element.

また、上記の構成によれば、第1電極の表面(発光層側)に設けられた遮光層は絶縁層で覆われる。また、絶縁層において、発光層に接する面は第1電極の表面に対して傾斜した斜面を含み、当該斜面と第1電極に接する面とのなす角は鋭角である。したがって、第1電極の表面に遮光層と絶縁層を積層した後、その上に発光層を形成する場合に、断切れを生じさせることなく発光層を形成することができるので、第2電極および第3電極と第1電極との間でのショートやリークを防ぐことができる。   Moreover, according to said structure, the light shielding layer provided in the surface (light emitting layer side) of the 1st electrode is covered with an insulating layer. In the insulating layer, the surface in contact with the light emitting layer includes an inclined surface inclined with respect to the surface of the first electrode, and the angle formed by the inclined surface and the surface in contact with the first electrode is an acute angle. Therefore, when the light emitting layer is formed on the surface of the first electrode after laminating the light shielding layer and the insulating layer, the light emitting layer can be formed without causing breakage. A short circuit or leakage between the third electrode and the first electrode can be prevented.

なお、対象物は、生体の一部(例えば、指、手のひら、手の甲、眼など)であってもよいし、文書や画像が印刷された紙やOHP(OverHead Projector)シートなどであってもよい。また、発光層が発する光の波長は任意に定めることができる。つまり、照射光と反射光は、例えば近赤外光であってもよいし、可視光であってもよい。また、第1〜第3電極は、第1電極が陽極で第2電極および第3電極が陰極であってもよいし、第1電極が陰極で第2電極および第3電極が陽極であってもよい。また、開口部や受光面の形状は、矩形、円形、楕円、六角形など任意に定めることができる。また、開口部の大きさと受光面の大きさは、開口部の方が受光面より大きくてもよいし、その逆であってもよいし、両者が同じ大きさであってもよい。また、必ずしも受光面の全てが開口部内に位置している必要はなく、少なくとも受光面の一部が開口部内に位置していればよい。また、鋭角とは直角(90度)より小さい角度である。   The target object may be a part of a living body (for example, a finger, palm, back of the hand, eyes, etc.), paper on which a document or image is printed, an OHP (OverHead Projector) sheet, or the like. . Further, the wavelength of light emitted from the light emitting layer can be arbitrarily determined. That is, the irradiation light and the reflected light may be, for example, near infrared light or visible light. In addition, the first to third electrodes may be such that the first electrode is an anode and the second electrode and the third electrode are cathodes, the first electrode is a cathode and the second and third electrodes are anodes. Also good. Further, the shape of the opening and the light receiving surface can be arbitrarily determined such as a rectangle, a circle, an ellipse, and a hexagon. In addition, the size of the opening and the size of the light receiving surface may be larger in the opening than in the light receiving surface, or vice versa, or both may be the same size. Further, it is not always necessary that the entire light receiving surface is located in the opening, and it is sufficient that at least a part of the light receiving surface is located in the opening. The acute angle is an angle smaller than a right angle (90 degrees).

また、本発明の第2の態様に係るセンシング装置は、発光部、受光部、複数の遮光層および複数の絶縁層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、前記発光部は、前記対象物に照射する照射光を発する発光層と、前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過する第1電極と、前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた複数の第2電極とを備え、前記受光部は、前記反射光を受光する複数の受光素子を備え、前記複数の遮光層の各々は、前記第1電極の前記発光層側の表面のうち隣り合う前記第2電極間ごとに存在する離間領域の各々に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に1以上の開口部が形成され、前記複数の絶縁層の各々は、前記離間領域の各々に対応する位置に設けられ、前記遮光層を覆うと共に前記照射光および前記反射光を透過する絶縁体であり、前記対象物側から平面視した場合に、前記離間領域の各々は前記遮光層および前記絶縁層と重なり、各々の前記開口部内には前記受光素子の受光面が1つずつ位置し、前記複数の絶縁層の各々において、前記発光層に接する面は前記第1電極の表面に対して傾斜した斜面を含み、当該斜面と前記第1電極に接する面とのなす角は鋭角であることを特徴とする。   In addition, a sensing device according to a second aspect of the present invention includes a light emitting unit, a light receiving unit, a plurality of light shielding layers, and a plurality of insulating layers, irradiates light from the light emitting unit to the object, and the object In the sensing device that receives reflected light from the light receiving unit, the light emitting unit and the light receiving unit are provided on the same side with respect to the object, and the light emitting unit is located on the object side from the light receiving unit. The light emitting unit includes a light emitting layer that emits irradiation light that irradiates the object, a first electrode that is positioned closer to the object than the light emitting layer and transmits the irradiation light and the reflected light, and the light emitting layer A plurality of second electrodes that are positioned closer to the light receiving unit, shield the irradiation light and the reflected light, and are spaced apart from each other, and the light receiving unit receives the reflected light. Each of the plurality of light shielding layers. Is provided at a position corresponding to each of the separated regions existing between the adjacent second electrodes on the light emitting layer side surface of the first electrode, and shields the irradiation light and the reflected light and 1 The openings are formed, and each of the plurality of insulating layers is an insulator that is provided at a position corresponding to each of the separation regions, covers the light shielding layer, and transmits the irradiation light and the reflected light. When viewed in plan from the object side, each of the separation regions overlaps the light shielding layer and the insulating layer, and one light receiving surface of the light receiving element is located in each of the openings, In each of the insulating layers, a surface in contact with the light emitting layer includes an inclined surface inclined with respect to the surface of the first electrode, and an angle formed by the inclined surface and the surface in contact with the first electrode is an acute angle. And

このように第2電極と受光素子と遮光層(開口部)と絶縁層をそれぞれ複数備える構成であってもよい。この場合も第1の態様に係るセンシング装置と同様の効果を奏する。なお、開口部の数と受光素子の数は必ずしも一致する必要はなく、開口部の数より受光素子の数が多くてもよい。   As described above, a configuration in which a plurality of second electrodes, light receiving elements, light shielding layers (openings), and insulating layers are provided may be employed. Also in this case, the same effect as that of the sensing device according to the first aspect is obtained. Note that the number of openings and the number of light receiving elements do not necessarily match, and the number of light receiving elements may be larger than the number of openings.

また、上述したいずれかのセンシング装置において、前記遮光層は絶縁体であってもよい。遮光層を絶縁体にすれば、遮光層が絶縁体でない場合に比べ、遮光層と絶縁層を積層した部分の厚さを薄くすることができる。   In any of the sensing devices described above, the light shielding layer may be an insulator. If the light shielding layer is made of an insulator, the thickness of the portion where the light shielding layer and the insulating layer are stacked can be made thinner than when the light shielding layer is not an insulator.

また、第2の態様に係るセンシング装置において、前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1または複数の前記第2電極を選択する駆動回路を備えてもよい。
この場合、対象物側から平面視した場合に、発光層のうち駆動回路が選択した1又は複数の第2電極に対応する部分を発光させることができる。したがって、例えば、発光層のうち一部の第2電極に対応する部分だけを一斉に発光させて照射光の発光範囲を一部に限定することができる。また、発光層のうち全ての第2電極に対応する部分を一斉に発光させることや、第2電極を1つずつ順番に選択し、選択した第2電極に対応する部分を順次発光させることもできる。
In the sensing device according to the second aspect, a driving circuit that selects one or a plurality of the second electrodes as a target for supplying a driving signal for causing the light emitting layer to emit light among the plurality of second electrodes. You may prepare.
In this case, when viewed in plan from the object side, the portion corresponding to the one or more second electrodes selected by the drive circuit in the light emitting layer can be caused to emit light. Therefore, for example, only the part corresponding to a part of the second electrodes in the light emitting layer can be made to emit light all at once, thereby limiting the emission range of the irradiation light to a part. In addition, the portions corresponding to all the second electrodes in the light emitting layer can emit light all at once, or the second electrodes can be selected one by one in order and the portions corresponding to the selected second electrodes can be caused to emit light sequentially. it can.

また、上述したいずれかのセンシング装置において、前記発光層は、前記対象物を撮像する撮像領域の全面にわたって形成されていてもよい。この場合、発光層のパターニングが不要なので、製造過程での歩留まりを低減することができる。また、第1電極と第2電極の間のリークも抑制することができる。   In any one of the sensing devices described above, the light emitting layer may be formed over the entire imaging region for imaging the object. In this case, since the patterning of the light emitting layer is unnecessary, the yield in the manufacturing process can be reduced. In addition, leakage between the first electrode and the second electrode can be suppressed.

また、上述したいずれかのセンシング装置において、前記発光層は近赤外光を発してもよい。つまり、照射光と反射光は近赤外光であってもよい。この場合、生体の一部に近赤外光を照射し、その反射光を受光することで静脈像を生成することができる。   In any of the sensing devices described above, the light emitting layer may emit near infrared light. That is, the irradiation light and the reflected light may be near infrared light. In this case, a vein image can be generated by irradiating a part of the living body with near-infrared light and receiving the reflected light.

また、本発明に係る電子機器は、上述したいずれかのセンシング装置を備える。電子機器には、例えば、静脈、指紋、網膜、虹彩などに基づいて生体認証を行う各種の生体認証装置の他、イメージスキャナー、複写機、ファクシミリ、バーコードリーダーなどの画像読取装置が含まれる。また、電子機器は、生体認証機能を備えたパーソナルコンピューターや携帯電話機などであってもよい。   An electronic device according to the present invention includes any one of the sensing devices described above. Electronic devices include, for example, various types of biometric authentication devices that perform biometric authentication based on veins, fingerprints, retinas, irises, and the like, and image reading devices such as image scanners, copiers, facsimiles, and barcode readers. Further, the electronic device may be a personal computer or a mobile phone provided with a biometric authentication function.

生体認証装置の構成を示すブロック図である。It is a block diagram which shows the structure of a biometrics authentication apparatus. センシングユニットの断面図である。It is sectional drawing of a sensing unit. 図2に示した絶縁層の拡大図である。FIG. 3 is an enlarged view of the insulating layer shown in FIG. 2. 陰極と遮光層と絶縁層と受光素子の配置を示す平面図である。It is a top view which shows arrangement | positioning of a cathode, a light shielding layer, an insulating layer, and a light receiving element. 1つの受光素子に着目した場合の各層の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of each layer at the time of paying attention to one light receiving element. 発光部の回路構成を示す図である。It is a figure which shows the circuit structure of a light emission part. 陽極と陰極の間のリークを説明するための図である。It is a figure for demonstrating the leak between an anode and a cathode. 陰極と遮光層と絶縁層と受光素子の配置の変形例を示す平面図である。It is a top view which shows the modification of arrangement | positioning of a cathode, a light shielding layer, an insulating layer, and a light receiving element.

以下、図面を参照して本発明に係る実施の形態を説明する。なお、図面において各層や各部材の寸法の比率は実際のものと適宜異なる。
<1.実施形態>
図1は、生体認証装置1の構成を示すブロック図である。
同図に示す生体認証装置1は、指Fの静脈像を撮像して本人認証を行う装置であり、センシングユニット2と、記憶部40と、制御部50と、出力部60とを備える。また、センシングユニット2は、カバーガラス10と、発光部20と、受光部30とを備える。カバーガラス10は、撮像領域を覆うガラスの保護カバーである。このカバーガラス10の上に認証対象となる者の指F(例えば右手の人差し指)が置かれる。発光部20は、例えば、有機EL(Electro Luminescent)材料で形成された発光層と、陽極と、陰極とを備え、指Fに照射する照射光ILを発する。照射光ILは、例えば600〜1200nm程度の波長を有する近赤外光である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the ratio of dimensions of each layer and each member is appropriately different from the actual one.
<1. Embodiment>
FIG. 1 is a block diagram showing the configuration of the biometric authentication device 1.
A biometric authentication device 1 shown in FIG. 1 is a device that captures a vein image of a finger F and performs personal authentication, and includes a sensing unit 2, a storage unit 40, a control unit 50, and an output unit 60. The sensing unit 2 includes a cover glass 10, a light emitting unit 20, and a light receiving unit 30. The cover glass 10 is a glass protective cover that covers the imaging region. On the cover glass 10, a finger F (for example, an index finger of the right hand) of a person to be authenticated is placed. The light emitting unit 20 includes, for example, a light emitting layer formed of an organic EL (Electro Luminescent) material, an anode, and a cathode, and emits irradiation light IL for irradiating the finger F. The irradiation light IL is near infrared light having a wavelength of about 600 to 1200 nm, for example.

発光部20から出射された照射光IL(近赤外光)は、カバーガラス10の下側から指Fに照射され、指Fの内部に到達すると散乱し、その一部が反射光RLとして受光部30側に向かう。静脈を流れる還元ヘモグロビンは近赤外光を吸収する性質がある。このため近赤外光用のイメージセンサーを用いて指Fを撮像すると、指Fの皮下にある静脈部分が周辺組織に比べて暗く写る。この明暗の差による紋様が静脈像となる。受光部30は、近赤外光用のイメージセンサーであり、マトリクス状に配列された複数の受光素子を備える。各受光素子は、入射光(指Fからの反射光RL)をその光量に応じた信号レベルを有する電気信号(受光信号)に変換する。   Irradiation light IL (near infrared light) emitted from the light emitting unit 20 is irradiated on the finger F from the lower side of the cover glass 10 and scattered when reaching the inside of the finger F, and a part thereof is received as reflected light RL. Head toward the part 30 side. Reduced hemoglobin flowing through veins has the property of absorbing near infrared light. For this reason, when the finger F is imaged using an image sensor for near infrared light, the vein portion under the finger F appears darker than the surrounding tissue. The pattern due to this difference in brightness becomes a vein image. The light receiving unit 30 is an image sensor for near infrared light, and includes a plurality of light receiving elements arranged in a matrix. Each light receiving element converts incident light (reflected light RL from the finger F) into an electric signal (light receiving signal) having a signal level corresponding to the amount of light.

なお、発光部20や受光部30の具体的な構造については後述するが、図1に示すように発光部20と受光部30は、カバーガラス10の上に置かれた指Fに対して同じ側(図中下側)に位置する。また、発光部20は受光部30よりもカバーガラス10側(図中上側)に位置する。   Although specific structures of the light emitting unit 20 and the light receiving unit 30 will be described later, the light emitting unit 20 and the light receiving unit 30 are the same with respect to the finger F placed on the cover glass 10 as shown in FIG. Located on the side (lower side in the figure). Further, the light emitting unit 20 is located on the cover glass 10 side (upper side in the drawing) than the light receiving unit 30.

記憶部40は、フラッシュメモリやハードディスクなどの不揮発性メモリであり、本人認証用のマスター静脈像として、事前に登録された指F(例えば右手の人差し指)の静脈像が記憶されている。制御部50は、CPU(Central Processing Unit)やRAM(Random Access Memory)を備え、発光部20の点灯や消灯を制御する。また、制御部50は、受光部30に備わる各受光素子から受光信号を読み出し、読み出した1フレーム分(撮像領域分)の受光信号に基づいて指Fの静脈像を生成する。また、制御部50は、生成した静脈像を記憶部40に登録されているマスター静脈像と照合し、本人認証を行う。例えば、制御部50は、照合する2つの静脈像の特徴(例えば静脈の枝分かれの数や位置など)を比較し、類似度が予め定められた閾値以上であった場合に、カバーガラス10の上に指Fを置いた者が記憶部40にマスター静脈像が登録されている本人であると認証する。出力部60は、例えば表示部や音声報知部であり、表示や音声によって認証結果を報知する。   The storage unit 40 is a non-volatile memory such as a flash memory or a hard disk, and stores a vein image of a finger F registered in advance (for example, the index finger of the right hand) as a master vein image for personal authentication. The control unit 50 includes a CPU (Central Processing Unit) and a RAM (Random Access Memory), and controls turning on and off of the light emitting unit 20. In addition, the control unit 50 reads a light reception signal from each light receiving element included in the light receiving unit 30, and generates a vein image of the finger F based on the read light reception signal for one frame (for the imaging region). Further, the control unit 50 collates the generated vein image with the master vein image registered in the storage unit 40 and performs personal authentication. For example, the control unit 50 compares the characteristics of two vein images to be collated (for example, the number and position of vein branches), and if the similarity is equal to or higher than a predetermined threshold, The person who puts the finger F on is authenticated as the person whose master vein image is registered in the storage unit 40. The output unit 60 is, for example, a display unit or a voice notification unit, and notifies the authentication result by display or voice.

図2は、センシングユニット2の断面図である。
センシングユニット2は、大別すると、基板31上に複数の受光素子Dがマトリクス状に配置されたセンサー基板3と、基板21上(同図では基板21の下面)に陽極22と複数の遮光層BMと複数の絶縁層28と有機EL層26と複数の陰極24が積層された発光素子基板4と、基板10上(同図では基板10の下面)にレンズアレイLAが形成されたレンズ基板5とに分けられる。つまり、これら3枚の基板3〜5を貼り合わせてセンシングユニット2が作製される。なお、センサー基板3と発光素子基板4の間には封止層29が介在する。また、基板10は、図1におけるカバーガラス10に相当する。
FIG. 2 is a cross-sectional view of the sensing unit 2.
The sensing unit 2 is roughly classified into a sensor substrate 3 in which a plurality of light receiving elements D are arranged in a matrix on a substrate 31, and an anode 22 and a plurality of light shielding layers on the substrate 21 (the lower surface of the substrate 21 in the figure). A light emitting element substrate 4 in which a BM, a plurality of insulating layers 28, an organic EL layer 26, and a plurality of cathodes 24 are laminated, and a lens substrate 5 on which a lens array LA is formed on the substrate 10 (the lower surface of the substrate 10 in the figure). And divided. That is, the sensing unit 2 is manufactured by bonding these three substrates 3 to 5 together. A sealing layer 29 is interposed between the sensor substrate 3 and the light emitting element substrate 4. The substrate 10 corresponds to the cover glass 10 in FIG.

基板31の上面に配置された各受光素子Dは、受光面に入射された反射光RL(近赤外光)をその光量に応じた信号レベルを有する受光信号に変換する。受光素子Dは、例えば、CCD(Charge Coupled Device)素子であってもよいし、CIGS(Copper Indium Gallium DiSelenide)やマイクロクリスタルシリコンを光電変換用の材料として用いたものであってもよい。なお、基板31としては、近赤外光に対する透過性が高いガラス基板や石英基板の他、セラミックスや金属のシートなど、近赤外光を透過しない板材を採用することができる。   Each light receiving element D disposed on the upper surface of the substrate 31 converts the reflected light RL (near infrared light) incident on the light receiving surface into a light receiving signal having a signal level corresponding to the light quantity. The light receiving element D may be, for example, a CCD (Charge Coupled Device) element, or may use CIGS (Copper Indium Gallium DiSelenide) or microcrystal silicon as a material for photoelectric conversion. As the substrate 31, a plate material that does not transmit near-infrared light, such as a ceramic substrate or a metal sheet, can be used in addition to a glass substrate or a quartz substrate that has high transparency to near-infrared light.

基板10(カバーガラス10)の下面には、撮像領域の全面にわたってレンズアレイLAが形成されている。レンズアレイLAは、複数のマイクロレンズMLをマトリクス状に並べたものであり、ガラスや石英など、近赤外光に対して透過性の高い材料で形成される。マイクロレンズMLの配列ピッチは受光素子Dの配列ピッチと同じであり、各マイクロレンズMLは、指Fからの反射光RLを真下に位置する受光素子Dの受光面に結像する。   On the lower surface of the substrate 10 (cover glass 10), a lens array LA is formed over the entire surface of the imaging region. The lens array LA is formed by arranging a plurality of microlenses ML in a matrix, and is formed of a material having high transmissivity to near-infrared light such as glass or quartz. The arrangement pitch of the microlenses ML is the same as the arrangement pitch of the light receiving elements D, and each microlens ML forms an image of the reflected light RL from the finger F on the light receiving surface of the light receiving element D located directly below.

基板21はガラス基板や石英基板であり、その下面には撮像領域の全面にわたって陽極22が形成されている。陽極22は、有機EL層26を挟んで複数の陰極24と対向する膜体の電極(導電体)であり、近赤外光に対して透過性が高く、かつ導電性の高い材料で形成される。陽極22の構成材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、In、SnO、Sb含有SnO、Al含有ZnOなどの酸化物や、Au、Pt、Ag、Cuまたはこれらを含む合金などが挙げられる。なお、これらのうちの2種以上を組み合わせてもよい。また、陽極22の膜厚は、材料にもよるが、例えば、10〜200nm程度であるのが好ましく、50〜150nm程度であるのがより好ましい。 The substrate 21 is a glass substrate or a quartz substrate, and an anode 22 is formed on the lower surface of the substrate 21 over the entire imaging region. The anode 22 is a film-like electrode (conductor) facing the plurality of cathodes 24 with the organic EL layer 26 interposed therebetween, and is formed of a material having high transparency to near infrared light and high conductivity. The Examples of the constituent material of the anode 22 include oxides such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), In 3 O 3 , SnO 2 , Sb-containing SnO 2 , and Al-containing ZnO, Au, Pt, Examples thereof include Ag, Cu, and alloys containing these. Two or more of these may be combined. Moreover, although the film thickness of the anode 22 is based also on material, it is preferable that it is about 10-200 nm, for example, and it is more preferable that it is about 50-150 nm.

一方、複数の陰極24の各々はY軸方向に延在する帯状の膜体電極(導電体)であり、隣り合う陰極24同士はX軸方向に所定の離間幅を有する。各陰極24は、近赤外光に対して遮光性が高く、かつ導電性の高い材料で形成される。陰極24の構成材料としては、例えば、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rb、Crまたはこれらを含む合金などが挙げられる。また、これらのうちの2種以上を組み合わせてもよい。なお、特に、Al、MgAgなどが好ましい。また、陰極24の膜厚は、少なくとも近赤外光を不透過にするだけの厚みが必要であり、材料にもよるが、例えば、100〜1000nm程度であるのが好ましく、100〜500nm程度であるのがより好ましい。陰極24は、有機EL層26の表面(同図では有機EL層26の下面)にマスク蒸着法でパターニングされる。また、各陰極24の下側や陰極24間の離間領域は、近赤外光に対して透過性の高い材料で形成された封止層29で覆われている。封止層29の構成材料としては、例えば、アクリル系やエポキシ系の樹脂材料(有機材料)の他、SiONなどの無機材料が挙げられる。   On the other hand, each of the plurality of cathodes 24 is a strip-shaped film body electrode (conductor) extending in the Y-axis direction, and adjacent cathodes 24 have a predetermined separation width in the X-axis direction. Each cathode 24 is formed of a material having a high light shielding property against near infrared light and a high conductivity. Examples of the constituent material of the cathode 24 include Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, Yb, Ag, Cu, Al, Cs, Rb, Cr, and alloys containing these. Can be mentioned. Two or more of these may be combined. In particular, Al, MgAg and the like are preferable. Further, the thickness of the cathode 24 needs to be at least a thickness that does not transmit near-infrared light, and depends on the material, but is preferably about 100 to 1000 nm, for example, about 100 to 500 nm. More preferably. The cathode 24 is patterned on the surface of the organic EL layer 26 (the lower surface of the organic EL layer 26 in the figure) by a mask vapor deposition method. In addition, the lower side of each cathode 24 and the separation region between the cathodes 24 are covered with a sealing layer 29 formed of a material that is highly transmissive to near infrared light. Examples of the constituent material of the sealing layer 29 include an inorganic material such as SiON in addition to an acrylic or epoxy resin material (organic material).

また、陽極22の下面には複数の遮光層BMが設けられている。各遮光層BMはY軸方向に延在する帯状の外形を有する。また、各遮光層BMには複数の開口部が形成されている。遮光層BMは、絶縁性が高く、かつ近赤外光に対して遮光性が高く反射率が低い材料で形成される。遮光層BMの構成材料としては、例えば、Cr、TiN(チタンナイトライド)などが挙げられる。遮光層BMは、陽極22の表面(同図では陽極22の下面)にフォトリソグラフィー法でパターニングされる。このため開口部のサイズが極めて小さくても高精度に開口部を形成することが可能である。   A plurality of light shielding layers BM are provided on the lower surface of the anode 22. Each light shielding layer BM has a belt-like outer shape extending in the Y-axis direction. Each light shielding layer BM has a plurality of openings. The light shielding layer BM is formed of a material having high insulation properties and high light shielding properties with respect to near infrared light and low reflectance. Examples of the constituent material of the light shielding layer BM include Cr and TiN (titanium nitride). The light shielding layer BM is patterned on the surface of the anode 22 (the lower surface of the anode 22 in the figure) by a photolithography method. Therefore, the opening can be formed with high accuracy even if the size of the opening is extremely small.

また、各遮光層BMは、遮光層BMごとに絶縁層28で覆われる。各絶縁層28はY軸方向に延在する帯状の形状を有する。また、同図に示すように各絶縁層28の断面は台形状であり、各絶縁層28の両端(X軸方向)には有機EL層26の断切れを防ぐためバンク(斜面)が形成されている。絶縁層28は、近赤外光に対して透過性が高く、かつ絶縁性の高い材料で形成される。絶縁層28の構成材料としては、例えばアクリル樹脂などが挙げられる。絶縁層28はフォトリソグラフィー法でパターニングすることができるため、バンクを高精度に形成することが可能である。また、遮光層BMと絶縁層28は絶縁体であるので、陽極22と陰極24を部分的に絶縁し、有機EL層26に近赤外光を発光しない非発光領域を形成する。   Each light shielding layer BM is covered with an insulating layer 28 for each light shielding layer BM. Each insulating layer 28 has a strip shape extending in the Y-axis direction. Further, as shown in the figure, the cross section of each insulating layer 28 is trapezoidal, and banks (slopes) are formed at both ends (X-axis direction) of each insulating layer 28 to prevent the organic EL layer 26 from being cut off. ing. The insulating layer 28 is formed of a material that is highly transmissive to near infrared light and has high insulating properties. Examples of the constituent material of the insulating layer 28 include acrylic resin. Since the insulating layer 28 can be patterned by a photolithography method, a bank can be formed with high accuracy. Further, since the light shielding layer BM and the insulating layer 28 are insulators, the anode 22 and the cathode 24 are partially insulated, and a non-light emitting region that does not emit near infrared light is formed in the organic EL layer 26.

なお、同図に示すように、各受光素子Dの受光面の真上には、陰極24間の離間領域と、絶縁層28と、遮光層BMの開口部が位置する。すなわち、複数の陰極24は、各受光素子Dの受光面の真上に離間領域が位置するように形成される。また、各受光素子Dの受光面の真上に開口部が位置するように複数の遮光層BMと複数の絶縁層28が形成される。また、各開口部は、真上に位置するマイクロレンズMLを透過してきた反射光RLを、真下に位置にする受光素子Dの受光面に入射させる。   As shown in the figure, the space between the cathodes 24, the insulating layer 28, and the opening of the light shielding layer BM are located immediately above the light receiving surface of each light receiving element D. In other words, the plurality of cathodes 24 are formed so that the separated regions are located directly above the light receiving surfaces of the respective light receiving elements D. In addition, a plurality of light shielding layers BM and a plurality of insulating layers 28 are formed so that the openings are located immediately above the light receiving surfaces of the respective light receiving elements D. In addition, each opening causes the reflected light RL transmitted through the microlens ML positioned directly above to enter the light receiving surface of the light receiving element D positioned directly below.

有機EL層26は、近赤外光に対して透過性が高い有機EL材料で形成された発光層であり、撮像領域の全面にわたって形成されている。有機EL層26は、電流を供給することで正孔と電子が結合し、近赤外光を発する。有機EL層26の構成材料としては、例えば、ドーパント−ランタニド系近赤外発光錯体、ポルフィリン誘導体、フタロシアニン誘導体、ピラン誘導体、チアジアゾール誘導体、ホスト−ナフタセン誘導体、キノリン誘導体(Alq)、アントラセン誘導体、カルバゾール誘導体などが挙げられる。有機EL層26は陽極22と陰極24で挟まれた部分が発光するが、上述したように遮光層BMと絶縁層28は絶縁体であるので、遮光層BMと絶縁層28が形成された部分は陽極22と陰極24が絶縁される。このため図2においてハッチングで示す部分(陽極22と陰極24で直接挟まれた部分)が近赤外光を発光する発光領域になり、それ以外の部分は非発光領域になる。このように有機EL層26には発光領域と非発光領域が存在する。 The organic EL layer 26 is a light emitting layer formed of an organic EL material having a high transmittance with respect to near-infrared light, and is formed over the entire imaging region. The organic EL layer 26 emits near-infrared light by combining holes and electrons by supplying current. As a constituent material of the organic EL layer 26, for example, a dopant-lanthanide-based near infrared light emitting complex, porphyrin derivative, phthalocyanine derivative, pyran derivative, thiadiazole derivative, host-naphthacene derivative, quinoline derivative (Alq 3 ), anthracene derivative, carbazole Derivatives and the like. The organic EL layer 26 emits light at the portion sandwiched between the anode 22 and the cathode 24. However, since the light shielding layer BM and the insulating layer 28 are insulators as described above, the portion where the light shielding layer BM and the insulating layer 28 are formed. The anode 22 and the cathode 24 are insulated. Therefore, the hatched portion in FIG. 2 (the portion directly sandwiched between the anode 22 and the cathode 24) is a light emitting region that emits near infrared light, and the other portions are non-light emitting regions. Thus, the organic EL layer 26 has a light emitting region and a non-light emitting region.

ここで、陰極24と遮光層BMは近赤外光を遮光する機能を有する。また、遮光層BMと絶縁層28は絶縁体であるので、有機EL層26のうち陰極24間の離間領域に対応する部分(すなわち各受光素子Dの受光面に対応する部分)とその周辺を非発光領域にすることができる。また、遮光層BMは近赤外光に対する反射率が低い。したがって、陰極24と遮光層BMと絶縁層28は、有機EL層26(発光領域)から出射された照射光ILが離間領域を通って各受光素子Dの受光面に直接入射することを抑制することができる。また、このように有機EL層26の非発光領域を定めることができると、各受光素子Dの受光面に入射する反射光RLの光路上(同図において各受光素子Dの受光面からZ軸方向に延びる直線上)から、反射光RLよりも光量が大きい照射光ILを発光する発光領域を排除することができる。このため各受光素子Dにおける反射光RLの受光精度を高めることもできる。   Here, the cathode 24 and the light shielding layer BM have a function of shielding near infrared light. Further, since the light shielding layer BM and the insulating layer 28 are insulators, the portion corresponding to the separation region between the cathodes 24 in the organic EL layer 26 (that is, the portion corresponding to the light receiving surface of each light receiving element D) and its periphery. It can be a non-light emitting area. Further, the light shielding layer BM has a low reflectance with respect to near infrared light. Therefore, the cathode 24, the light shielding layer BM, and the insulating layer 28 suppress the irradiation light IL emitted from the organic EL layer 26 (light emitting region) from directly entering the light receiving surface of each light receiving element D through the separated region. be able to. In addition, when the non-light-emitting region of the organic EL layer 26 can be determined in this way, on the optical path of the reflected light RL incident on the light-receiving surface of each light-receiving element D (in FIG. (On a straight line extending in the direction), it is possible to exclude a light emitting region that emits the irradiation light IL having a larger light quantity than the reflected light RL. For this reason, the light receiving accuracy of the reflected light RL in each light receiving element D can be increased.

また、陰極24と遮光層BMは、近赤外光を遮光する機能を有しているので、同図に破線の矢印で示すように、隣のマイクロレンズMLなどから斜めに入射してきた反射光RL(いわゆる散乱光)を遮光し、クロストークを抑制することができる。なお、開口部のサイズ、陰極24間の離間幅、遮光層BMと陰極24と封止層29の厚さなどを調整することで、反射光RLのクロストークを低減することができる。例えば、開口部のサイズや陰極24間の離間幅を小さくしたり、遮光層BMや陰極24の厚さを大きくしたりすれば、クロストークを低減することが可能である。このため開口部のサイズ、陰極24間の離間幅、遮光層BMと陰極24と封止層29の厚さなどは、クロストークができるだけ生じないようにその値が定められている。   Further, since the cathode 24 and the light shielding layer BM have a function of shielding near-infrared light, the reflected light incident obliquely from the adjacent microlens ML or the like as indicated by a broken line arrow in FIG. RL (so-called scattered light) can be shielded and crosstalk can be suppressed. Note that the crosstalk of the reflected light RL can be reduced by adjusting the size of the opening, the spacing between the cathodes 24, the thickness of the light shielding layer BM, the cathode 24, and the sealing layer 29, and the like. For example, the crosstalk can be reduced by reducing the size of the opening or the spacing between the cathodes 24, or increasing the thickness of the light shielding layer BM or the cathode 24. For this reason, the values of the size of the opening, the spacing between the cathodes 24, the thickness of the light shielding layer BM, the cathode 24, and the sealing layer 29 are determined so that crosstalk does not occur as much as possible.

図3は、図2に示した絶縁層28の拡大図である。
陽極22の表面(有機EL層26側)には、開口部を有する遮光層BMがフォトリソグラフィー法によってパターニングされる。また、その上には遮光層BMを覆うように絶縁層28がフォトリソグラフィー法によってパターニングされる。絶縁層28のうち有機EL層26と接する面は、陽極22の表面に対して傾斜したバンク(斜面)を含む。また、絶縁層28のうち陽極22と接する面とバンクとのなす角αは、鋭角(直角よりも小さい角度)である。陽極22の表面に遮光層BMと絶縁層28を積層した後、その上に有機EL層26を形成する場合、遮光層BMと絶縁層28によって段差が生じることになる。しかしながら、段差の両脇部分が絶縁層28のバンクによってなだらかな斜面になるため、断切れを生じさせることなく有機EL層26を撮像領域の全面にわたって連続して形成することができる。このため有機EL層26の断切れによる陽極22−陰極24間でのショートやリークを防ぐことが可能になる。
FIG. 3 is an enlarged view of the insulating layer 28 shown in FIG.
On the surface of the anode 22 (on the organic EL layer 26 side), a light shielding layer BM having an opening is patterned by a photolithography method. In addition, the insulating layer 28 is patterned by photolithography so as to cover the light shielding layer BM. The surface of the insulating layer 28 that contacts the organic EL layer 26 includes a bank (slope) that is inclined with respect to the surface of the anode 22. In addition, the angle α formed between the surface of the insulating layer 28 in contact with the anode 22 and the bank is an acute angle (an angle smaller than a right angle). When the light shielding layer BM and the insulating layer 28 are stacked on the surface of the anode 22 and then the organic EL layer 26 is formed thereon, a step is generated by the light shielding layer BM and the insulating layer 28. However, since both sides of the step become gentle slopes due to the banks of the insulating layer 28, the organic EL layer 26 can be continuously formed over the entire surface of the imaging region without causing breaks. For this reason, it is possible to prevent a short circuit or a leak between the anode 22 and the cathode 24 due to the disconnection of the organic EL layer 26.

なお、絶縁層28を設けず、遮光層BMの上に直接、有機EL層26を形成することが考えられる。しかしながら、この場合、有機EL材料の付きまわりが悪くなり、特に開口部内や遮光層BMとの境目部分において有機EL材料を隙間無く積層することが難しくなる。このため有機EL層26が局所的に薄くなったり、有機EL層26に断切れが生じたりして、陽極22と陰極24の間でショートやリークを引き起こすおそれがある。   It is conceivable to form the organic EL layer 26 directly on the light shielding layer BM without providing the insulating layer 28. However, in this case, the surroundings of the organic EL material are deteriorated, and it becomes difficult to laminate the organic EL material without any gap particularly in the opening or at the boundary with the light shielding layer BM. For this reason, the organic EL layer 26 may be locally thinned or the organic EL layer 26 may be cut off, causing a short circuit or a leak between the anode 22 and the cathode 24.

図4は、陰極24と遮光層BMと絶縁層28と受光素子Dの配置を示す平面図である。
同図に示すように各陰極24は、Y軸方向に延在する帯状の形状を有し、互いに離間して設けられている。各遮光層BMはY軸方向に延在する帯状の外形を有する。また、各遮光層BMにはY軸方向に沿って複数の開口部が形成されている。各絶縁層28はY軸方向に延在する帯状の形状を有し、遮光層BMの全面を覆う。カバーガラス10側から平面視したとき、陰極24間の離間領域は遮光層BMと絶縁層28によって覆われ、遮光層BMと絶縁層28の両端(X軸方向)は両隣の陰極24と重なる。また、同図に示すように、開口部の配列ピッチは受光素子Dの配列ピッチと同じであり、開口部と受光素子D(受光面)は1対1で対応する。各開口部の形状は、例えば一辺の長さが5〜20μm程度の正方形であり、カバーガラス10側から平面視したとき、各々の開口部内に受光素子D(受光面)が1つずつ含まれる。このように陰極24と遮光層BMは、カバーガラス10側から平面視したとき、開口部以外の部分を覆い、各受光素子Dの受光窓として機能する。
FIG. 4 is a plan view showing the arrangement of the cathode 24, the light shielding layer BM, the insulating layer 28, and the light receiving element D.
As shown in the figure, each cathode 24 has a strip shape extending in the Y-axis direction, and is provided apart from each other. Each light shielding layer BM has a belt-like outer shape extending in the Y-axis direction. Each light shielding layer BM has a plurality of openings along the Y-axis direction. Each insulating layer 28 has a strip shape extending in the Y-axis direction and covers the entire surface of the light shielding layer BM. When viewed in plan from the cover glass 10 side, the space between the cathodes 24 is covered by the light shielding layer BM and the insulating layer 28, and both ends (X-axis direction) of the light shielding layer BM and the insulating layer 28 overlap the adjacent cathodes 24. As shown in the figure, the arrangement pitch of the openings is the same as the arrangement pitch of the light receiving elements D, and the openings correspond to the light receiving elements D (light receiving surfaces) on a one-to-one basis. The shape of each opening is, for example, a square having a side length of about 5 to 20 μm, and one light receiving element D (light receiving surface) is included in each opening when viewed from the cover glass 10 side. . Thus, the cathode 24 and the light shielding layer BM cover portions other than the opening when viewed in plan from the cover glass 10 side, and function as a light receiving window of each light receiving element D.

また、同図においてハッチングで示す部分(各陰極24の中央部分)が有機EL層26の発光領域に相当する。つまり、有機EL層26の発光領域は、カバーガラス10側から平面視したとき、撮像領域の全面にわたってストライプ状に形成される。したがって、指Fに対して均一な強度の近赤外光(照射光IR)を照射することができ、各受光素子Dに対する光量ムラもない。   In addition, the hatched portion (the central portion of each cathode 24) in the drawing corresponds to the light emitting region of the organic EL layer 26. That is, the light emitting region of the organic EL layer 26 is formed in a stripe shape over the entire surface of the imaging region when viewed in plan from the cover glass 10 side. Therefore, the finger F can be irradiated with near-infrared light (irradiation light IR) of uniform intensity, and there is no unevenness in the amount of light for each light receiving element D.

図5は、1つの受光素子Dに着目した場合の各層の配置を示す模式図である。
同図において最下層に位置する受光素子Dの受光面は円形の形状を有する。また、その上には、Y軸方向に延在する2本の陰極24が受光素子Dの受光面を挟んでその両脇(図中左右)に位置する。一方、最上層には全面にわたって陽極22が設けられ、その下にはY軸方向に延在する遮光層BMが位置する。2本の陰極24間の離間幅をW1としたとき、遮光層BMのX軸方向の幅W2はW1よりも大きい。また、遮光層BMは、受光素子Dの受光面に対応する位置に受光面よりも大きな正方形の開口部を有する。この開口部以外の部分は陰極24と遮光層BMによって遮光される。遮光層BMの下にはY軸方向に延在する絶縁層28が位置する。絶縁層28は、X軸方向の幅W3が遮光層BMの幅W2よりも大きく、遮光層BMの全面を覆う。また、絶縁層28の下には全面にわたって有機EL層26が設けられている。遮光層BMと絶縁層28は絶縁体であるので、有機EL層26のうち、図中ハッチングで示す両脇部分が発光領域になり、その内側部分が非発光領域になる。
FIG. 5 is a schematic diagram showing the arrangement of each layer when focusing on one light receiving element D. FIG.
In the figure, the light receiving surface of the light receiving element D located at the lowermost layer has a circular shape. Further, two cathodes 24 extending in the Y-axis direction are positioned on both sides (left and right in the drawing) with the light receiving surface of the light receiving element D interposed therebetween. On the other hand, the uppermost layer is provided with the anode 22 over the entire surface, and the light shielding layer BM extending in the Y-axis direction is positioned below the anode 22. When the separation width between the two cathodes 24 is W1, the width W2 in the X-axis direction of the light shielding layer BM is larger than W1. The light shielding layer BM has a square opening larger than the light receiving surface at a position corresponding to the light receiving surface of the light receiving element D. Parts other than the opening are shielded from light by the cathode 24 and the light shielding layer BM. An insulating layer 28 extending in the Y-axis direction is located under the light shielding layer BM. The insulating layer 28 has a width W3 in the X-axis direction larger than the width W2 of the light shielding layer BM, and covers the entire surface of the light shielding layer BM. An organic EL layer 26 is provided under the insulating layer 28 over the entire surface. Since the light-shielding layer BM and the insulating layer 28 are insulators, both side portions of the organic EL layer 26 indicated by hatching in the drawing are light emitting regions and the inner portions thereof are non-light emitting regions.

図6は、発光部20の回路構成を示す図である。
同図に示すように発光部20には陰極駆動回路200が設けられている。陰極駆動回路200は、制御部50から供給されるクロック信号と制御信号に基づいて、n本の陰極24〜24の中から電流を供給する1または複数の陰極24を選択する。陰極駆動回路200によって選択された1以上の陰極24と、陽極22との間に電流が供給され、有機EL層26が発光する。例えば、陰極駆動回路200が全ての陰極24〜24を同時に選択すると、有機EL層26のうち全ての陰極24〜24に対応する部分が一斉に発光する。この場合、撮像領域の全面がストライプ状に発光することになる。また、陰極駆動回路200が陰極24〜24を同時に選択すると、有機EL層26のうち陰極24〜24に対応する部分だけが一斉に発光する。また、陰極駆動回路200が陰極24〜24を1本ずつ順次選択すると、有機EL層26のうち陰極駆動回路200によって選択された陰極24に対応する部分が順次発光する。
FIG. 6 is a diagram illustrating a circuit configuration of the light emitting unit 20.
As shown in the figure, the light emitting unit 20 is provided with a cathode drive circuit 200. The cathode drive circuit 200 selects one or more cathodes 24 that supply current from the n cathodes 24 1 to 24 n based on the clock signal and the control signal supplied from the control unit 50. A current is supplied between the one or more cathodes 24 selected by the cathode driving circuit 200 and the anode 22, and the organic EL layer 26 emits light. For example, when the cathode drive circuit 200 selects all the cathodes 24 1 to 24 n at the same time, portions of the organic EL layer 26 corresponding to all the cathodes 24 1 to 24 n emit light at the same time. In this case, the entire surface of the imaging region emits light in a stripe shape. Also, when the cathode driving circuit 200 selects the cathode 24 1-24 4 simultaneously, only the portion corresponding to the cathode 24 1-24 4 in the organic EL layer 26 emits light simultaneously. When the cathode driving circuit 200 sequentially selects the cathodes 24 1 to 24 n one by one, portions of the organic EL layer 26 corresponding to the cathode 24 selected by the cathode driving circuit 200 emit light sequentially.

なお、有機EL層26のうち全ての陰極24〜24に対応する部分を一斉に発光させるだけであれば、陰極駆動回路200は不要である。この場合、制御部50は、発光部20を点灯させるタイミングになると、全ての陰極24〜24と陽極22との間に電流を供給し、有機EL層26を発光させればよい。 Note that the cathode drive circuit 200 is not required if only the portions corresponding to all the cathodes 24 1 to 24 n in the organic EL layer 26 are allowed to emit light at the same time. In this case, the control unit 50 may supply current between all the cathodes 24 1 to 24 n and the anode 22 to light up the organic EL layer 26 at the timing when the light emitting unit 20 is turned on.

次に、生体認証装置1の動作について説明する。
制御部50は、図示を省略した接触センサーなどを用いてカバーガラス10の上に指Fが置かれたことを検知すると、陽極22と1以上の陰極24との間に電流を供給し、有機EL層26を発光させる。例えば、制御部50は、陰極駆動回路200を制御して全ての陰極24〜24を同時に選択し、有機EL層26のうち全ての陰極24〜24に対応する部分を一斉に発光させる。有機EL層26(発光領域)から出射された照射光IL(近赤外光)は、陽極22、基板21、レンズアレイLA、カバーガラス10を介して指Fに照射され、指Fの内部に到達すると散乱し、その一部が反射光RLとして受光部30側に向かう。また、指Fからの反射光RLの一部が、カバーガラス10、レンズアレイLA、基板21、陽極22、遮光層BMの開口部、絶縁層28、有機EL層26、陰極24間の離間領域、封止層29を介して受光素子Dの受光面に入射される。各受光素子Dは、受光面に入射された反射光RLをその光量に応じた信号レベルを有する受光信号に変換する。制御部50は、各受光素子Dから受光信号を読み出し、読み出した1フレーム分の受光信号に基づいて指Fの静脈像を生成する。また、制御部50は、生成した静脈像を記憶部40に登録されているマスター静脈像と照合して本人認証を行い、認証結果を出力部60から出力する。
Next, the operation of the biometric authentication device 1 will be described.
When the control unit 50 detects that the finger F is placed on the cover glass 10 using a contact sensor (not shown) or the like, the control unit 50 supplies current between the anode 22 and the one or more cathodes 24, and organically The EL layer 26 is caused to emit light. For example, the control unit 50 controls the cathode driving circuit 200 to select all the cathodes 24 1 to 24 n at the same time, and simultaneously emits portions corresponding to all the cathodes 24 1 to 24 n in the organic EL layer 26. Let Irradiation light IL (near-infrared light) emitted from the organic EL layer 26 (light emitting region) is applied to the finger F through the anode 22, the substrate 21, the lens array LA, and the cover glass 10, and is applied to the inside of the finger F. When it reaches, it scatters, and a part thereof is reflected light RL toward the light receiving unit 30 side. Further, a part of the reflected light RL from the finger F is a separation region between the cover glass 10, the lens array LA, the substrate 21, the anode 22, the opening of the light shielding layer BM, the insulating layer 28, the organic EL layer 26, and the cathode 24. The light is incident on the light receiving surface of the light receiving element D through the sealing layer 29. Each light receiving element D converts the reflected light RL incident on the light receiving surface into a light receiving signal having a signal level corresponding to the amount of light. The control unit 50 reads a light reception signal from each light receiving element D, and generates a vein image of the finger F based on the read light reception signal for one frame. Further, the control unit 50 collates the generated vein image with the master vein image registered in the storage unit 40 to perform personal authentication, and outputs an authentication result from the output unit 60.

以上説明したように本実施形態によれば、陰極24と遮光層BMは近赤外光を遮光する機能を有する。また、絶縁体である遮光層BMと絶縁層28は、有機EL層26のうち陰極24間の離間領域に対応する部分(すなわち各受光素子Dの受光面に対応する部分)とその周辺を非発光領域にする。また、遮光層BMは近赤外光に対する反射率が低い。したがって、有機EL層26(発光領域)から出射された照射光ILが離間領域を通って各受光素子Dの受光面に直接入射することを抑制することができる。また、陰極24と遮光層BMは、カバーガラス10側から平面視したとき受光窓(開口部)以外の部分を遮光するので、隣のマイクロレンズMLなどから斜めに入射してきた反射光RL(散乱光)が各受光素子Dの受光面に入射することを抑制することもできる。また、遮光層BMは、陽極22と陰極24の間(発光部20内)に設けられるので、特許文献1に記載されているように光源ユニット111(発光部)と検出素子113(受光部)の間に遮光層126を形成したガラス基板125を介在させる必要がない。したがって、各受光素子Dの受光面に有機EL層26からの直接光や隣のマイクロレンズMLなどから斜めに入射してきた散乱光が入射することを抑制しつつ、生体認証装置1(センシングユニット2)のZ軸方向の厚さを薄くすることができる。また、陰極24と遮光層BMを1つの基板上(発光素子基板4)に形成しているので、基板の貼り合わせによる陰極24と遮光層BMの位置ズレも生じない。   As described above, according to the present embodiment, the cathode 24 and the light shielding layer BM have a function of shielding near infrared light. Further, the light shielding layer BM and the insulating layer 28, which are insulators, cover the portion corresponding to the separation region between the cathodes 24 in the organic EL layer 26 (that is, the portion corresponding to the light receiving surface of each light receiving element D) and its periphery. Set to light emitting area. Further, the light shielding layer BM has a low reflectance with respect to near infrared light. Therefore, it is possible to suppress the irradiation light IL emitted from the organic EL layer 26 (light emitting region) from directly entering the light receiving surface of each light receiving element D through the separated region. Further, since the cathode 24 and the light shielding layer BM shield light from portions other than the light receiving window (opening) when viewed in plan from the cover glass 10 side, the reflected light RL (scattering light) incident obliquely from the adjacent microlens ML or the like. Light) can be prevented from entering the light receiving surface of each light receiving element D. Further, since the light shielding layer BM is provided between the anode 22 and the cathode 24 (in the light emitting unit 20), as described in Patent Document 1, the light source unit 111 (light emitting unit) and the detection element 113 (light receiving unit). There is no need to interpose a glass substrate 125 on which a light shielding layer 126 is formed. Therefore, the biometric authentication device 1 (sensing unit 2) is suppressed while suppressing direct light from the organic EL layer 26 or scattered light incident obliquely from the adjacent microlens ML or the like from entering the light receiving surface of each light receiving element D. ) In the Z-axis direction can be reduced. Further, since the cathode 24 and the light shielding layer BM are formed on one substrate (the light emitting element substrate 4), the positional deviation between the cathode 24 and the light shielding layer BM due to the bonding of the substrates does not occur.

また、本実施形態によれば、陽極22の表面(有機EL層26側)に設けられた遮光層BMは絶縁層28で覆われる。また、絶縁層28において、有機EL層26に接する面は陽極22の表面に対して傾斜した斜面(バンク)を含み、この斜面と陽極22に接する面とのなす角αは鋭角である。したがって、断切れを生じさせることなく有機EL層26を形成することができるので、陽極22−陰極24間でのショートやリークを防ぐことができる。   Further, according to the present embodiment, the light shielding layer BM provided on the surface of the anode 22 (on the organic EL layer 26 side) is covered with the insulating layer 28. In the insulating layer 28, the surface in contact with the organic EL layer 26 includes an inclined surface (bank) inclined with respect to the surface of the anode 22, and the angle α formed by this inclined surface and the surface in contact with the anode 22 is an acute angle. Therefore, since the organic EL layer 26 can be formed without causing breakage, a short circuit or leakage between the anode 22 and the cathode 24 can be prevented.

また、本実施形態によれば、絶縁体である遮光層BMと絶縁層28は、有機EL層26のうち陰極24間の離間領域に対応する部分とその周辺を非発光領域にする。このため各受光素子Dの受光面に入射する反射光RLの光路上から、反射光RLよりも光量が大きい照射光ILを発光する発光領域を排除することができる。したがって、各受光素子Dにおける反射光RLの受光精度を高め、静脈像の撮像精度を向上することができる。   Further, according to the present embodiment, the light shielding layer BM and the insulating layer 28 which are insulators make the portion corresponding to the separation region between the cathodes 24 in the organic EL layer 26 and the periphery thereof a non-light emitting region. For this reason, it is possible to exclude a light emitting region that emits the irradiation light IL having a light amount larger than that of the reflected light RL from the optical path of the reflected light RL incident on the light receiving surface of each light receiving element D. Therefore, the light receiving accuracy of the reflected light RL in each light receiving element D can be increased, and the imaging accuracy of the vein image can be improved.

また、本実施形態によれば、陰極駆動回路200によって陰極24をライン駆動することができる。したがって、例えば、撮像領域のうち一部の陰極24に対応する部分だけを発光させて照射光ILの発光範囲を一部に限定することができる。また、撮像領域のうち全ての陰極24に対応する部分を一斉に発光させることや、陰極24を1本ずつ順番に選択し、選択した陰極24に対応する部分を順次発光させることもできる。   Further, according to the present embodiment, the cathode 24 can be line-driven by the cathode driving circuit 200. Therefore, for example, only the part corresponding to some of the cathodes 24 in the imaging area can emit light, and the emission range of the irradiation light IL can be limited to a part. Further, it is possible to simultaneously emit light corresponding to all the cathodes 24 in the imaging region, or to sequentially select the cathodes 24 one by one and sequentially emit light corresponding to the selected cathodes 24.

また、本実施形態によれば、有機EL層26の発光領域は、カバーガラス10側から平面視したとき、図4においてハッチングで示す部分になる。したがって、指Fに対して均一な強度の近赤外光を照射することができ、各受光素子Dに対する光量ムラもない。また、本実施形態によれば、撮像領域の全面に有機EL層26を成膜すればよいので、有機EL層26のパターニングが不要であり、製造過程での歩留まりを低減することができる。また、図7に示すように、例えば画素毎に有機EL層26と陰極24を形成した場合、図中破線で示す部分で陽極22と陰極24の間にリークが生じることがある。本実施形態によれば、このようなリークも抑制することができる。   Further, according to the present embodiment, the light emitting region of the organic EL layer 26 becomes a portion indicated by hatching in FIG. 4 when viewed from the cover glass 10 side. Therefore, the finger F can be irradiated with near-infrared light having a uniform intensity, and there is no unevenness in the amount of light for each light receiving element D. Further, according to the present embodiment, since the organic EL layer 26 may be formed on the entire surface of the imaging region, patterning of the organic EL layer 26 is unnecessary, and the yield in the manufacturing process can be reduced. Further, as shown in FIG. 7, for example, when the organic EL layer 26 and the cathode 24 are formed for each pixel, a leak may occur between the anode 22 and the cathode 24 at a portion indicated by a broken line in the drawing. According to this embodiment, such a leak can also be suppressed.

なお、遮光層BMを排除し、陰極だけで受光窓を形成することが考えられる。この場合、例えば、撮像領域に相当する外形を有し、各受光素子Dの受光面に対応する位置に開口部が形成された陰極を用いればよい。但し、陰極は、有機EL層26の表面(図2では有機EL層26の下面)にパターニングする必要がある。有機EL層26上でのフォトリソグラフィー法によるパターニングは、有機EL層26にダメージを与えてしまうため、マスク蒸着法で行うのが一般的である。しかしながら、マスク蒸着法の場合、開口部のサイズが小さいと高精度に開口部を形成することが難しく、製造工程での歩留まりの増大や製造コストの上昇を招く。これに対し、本実施形態によれば、陰極24と遮光層BMを重ねて受光窓を形成しており、受光窓を形成するために陰極24と遮光層BMを作製する必要があるものの、遮光層BM(開口部)をフォトリソグラフィー法でパターニングしているため、陰極24(離間領域)についてはマスク蒸着法であっても十分に高精度な受光窓を形成することが可能である。このため陰極のみで受光窓を形成する場合に比べ、製造工程での歩留まりの増大や製造コストの上昇を招くことなく高精度な受光窓を形成することができる。   It is conceivable to eliminate the light shielding layer BM and form the light receiving window with only the cathode. In this case, for example, a cathode having an outer shape corresponding to the imaging region and having an opening formed at a position corresponding to the light receiving surface of each light receiving element D may be used. However, the cathode needs to be patterned on the surface of the organic EL layer 26 (the lower surface of the organic EL layer 26 in FIG. 2). Patterning by the photolithography method on the organic EL layer 26 is generally performed by a mask vapor deposition method because the organic EL layer 26 is damaged. However, in the case of the mask vapor deposition method, if the size of the opening is small, it is difficult to form the opening with high accuracy, resulting in an increase in yield in the manufacturing process and an increase in manufacturing cost. On the other hand, according to the present embodiment, the cathode 24 and the light shielding layer BM are overlapped to form a light receiving window, and the cathode 24 and the light shielding layer BM need to be produced in order to form the light receiving window. Since the layer BM (opening) is patterned by the photolithography method, a sufficiently high-accuracy light receiving window can be formed for the cathode 24 (spaced region) even by the mask vapor deposition method. For this reason, compared with the case where the light receiving window is formed only by the cathode, it is possible to form the light receiving window with high accuracy without increasing the yield in the manufacturing process and increasing the manufacturing cost.

<2.変形例>
本発明は上述した実施形態に限定されるものではなく、例えば以下の変形が可能である。また、以下に示す2以上の変形を適宜組み合わせることもできる。
<2. Modification>
The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. Also, two or more of the following modifications can be combined as appropriate.

[変形例1]
受光素子Dの配列パターンはマトリクス状に限定されない。例えば、チェス柄(市松模様)における黒または白の配列パターンとなるように受光素子Dを並べてもよい。これは開口部の配列パターンについても同様である。また、スイープ型の生体認証装置に本発明を適用してもよい。この場合、図8に示すように受光素子Dや開口部はX軸方向に沿って一列に並んでいればよい。また、各遮光層BMには開口部が1つだけ設けられる。
[Modification 1]
The arrangement pattern of the light receiving elements D is not limited to a matrix. For example, the light receiving elements D may be arranged so as to form a black or white array pattern in a chess pattern (checkered pattern). The same applies to the arrangement pattern of the openings. Further, the present invention may be applied to a sweep-type biometric authentication device. In this case, as shown in FIG. 8, the light receiving elements D and the openings need only be arranged in a line along the X-axis direction. Each light shielding layer BM is provided with only one opening.

[変形例2]
遮光層BMは、少なくとも近赤外光の遮光機能を有していればよく、必ずしも絶縁性の高い材料や近赤外光に対する反射率が低い材料で形成されている必要はない。但し、遮光層BMを絶縁体にすれば、遮光層BMが絶縁体でない場合に比べ、遮光層BMと絶縁層28を積層した部分の厚さを薄くすることができる。また、遮光層BMには、必ずしも全ての受光素子D(受光面)に対応する位置に開口部が設けられていなくてもよい。例えば、受光量(積算量)による受光素子Dの光電変換特性の変化を補正するため、あるいは反射光RLが全く入射されていない状態における受光信号の値を基準値として取得するため、撮像領域の端部などに、受光面の上側が遮光層BMで完全に覆われた受光素子Dが設けられていてもよい。また、陰極24は少なくとも2つ以上あればよく、受光素子Dと遮光層BMと開口部と絶縁層28についても少なくとも1つずつ以上あればよい。
[Modification 2]
The light-shielding layer BM only needs to have at least a function of shielding near-infrared light, and is not necessarily formed of a highly insulating material or a material with low reflectivity for near-infrared light. However, if the light shielding layer BM is made of an insulator, the thickness of the portion where the light shielding layer BM and the insulating layer 28 are stacked can be made thinner than when the light shielding layer BM is not an insulator. In addition, the light shielding layer BM does not necessarily have openings provided at positions corresponding to all the light receiving elements D (light receiving surfaces). For example, in order to correct the change in the photoelectric conversion characteristics of the light receiving element D due to the amount of received light (integrated amount), or to obtain the value of the received light signal in a state where no reflected light RL is incident as a reference value, A light receiving element D in which the upper side of the light receiving surface is completely covered with the light shielding layer BM may be provided at the end or the like. Further, it is sufficient that at least two cathodes 24 are provided, and at least one light receiving element D, light shielding layer BM, opening, and insulating layer 28 may be provided.

[変形例3]
受光素子Dの受光面の形状は、円形に限らず、矩形や六角形など任意の形状にすることができる。遮光層BMの開口部の形状についても正方形に限らず任意の形状であってよい。また、受光面の大きさと開口部の大きさは、両者が同じ大きさであってもよいし、受光面の方が開口部より大きくてもよい。また、カバーガラス10側から平面視したとき、受光面の中心(または重心)が開口部内に位置することが望ましいが、少なくとも受光面の一部が開口部内に位置していればよい。
[Modification 3]
The shape of the light receiving surface of the light receiving element D is not limited to a circle, and may be any shape such as a rectangle or a hexagon. The shape of the opening of the light shielding layer BM is not limited to a square but may be an arbitrary shape. The size of the light receiving surface and the size of the opening may be the same, or the light receiving surface may be larger than the opening. Further, when viewed in plan from the cover glass 10 side, it is desirable that the center (or the center of gravity) of the light receiving surface is located in the opening, but at least a part of the light receiving surface may be located in the opening.

[変形例4]
発光層として有機EL層26の他に、正孔輸送層、正孔注入層、電子輸送層、電子注入層が含まれていてもよい。正孔輸送層や正孔注入層の構成材料としては、例えば、テトラアリールベンジジン誘導体、テトラアリールジアミノフルオレン化合物などが挙げられる。また、電子輸送層の構成材料としては、例えば、キノリン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ピリジン誘導体、ピリミジン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレン誘導体、アザインドリジン誘導体などが挙げられる。また、電子注入層の構成材料としては、例えば、アルカリ金属カルコゲナイド(酸化物、硫化物、セレン化物、テルル化物)、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物などが挙げられ、これらのうちの2種以上を組み合わせてもよい。なお、上述した電子注入層の構成材料については、Li、Na、Ba、Ca、Sr、Yb、Al、Ga、In、Cd、Mg、Si、Ta、SbおよびZnのうちの少なくとも1つの元素を含む酸化物、窒化物または酸化窒化物などであってもよく、さらに、これらのうちの2種以上を組み合わせてもよい。また、有機EL材料ではなく、無機EL材料や発光ポリマーを用いて発光層を形成してもよい。また、発光層は、電圧の印加によって光を発する電圧駆動型であってもよい。また、陽極22と陰極24の極性を逆にしてもよい。
[Modification 4]
As the light emitting layer, in addition to the organic EL layer 26, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer may be included. Examples of the constituent material for the hole transport layer and the hole injection layer include tetraarylbenzidine derivatives and tetraaryldiaminofluorene compounds. Examples of the constituent material of the electron transport layer include quinoline derivatives, oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, azaindolizine derivatives, and the like. . Examples of the constituent material of the electron injection layer include alkali metal chalcogenides (oxides, sulfides, selenides, tellurides), alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides. And two or more of these may be combined. In addition, about the constituent material of the electron injection layer mentioned above, at least one element of Li, Na, Ba, Ca, Sr, Yb, Al, Ga, In, Cd, Mg, Si, Ta, Sb, and Zn is used. It may be an oxide, a nitride, an oxynitride, or the like, and two or more of these may be combined. Further, the light emitting layer may be formed using an inorganic EL material or a light emitting polymer instead of the organic EL material. Further, the light emitting layer may be a voltage driven type that emits light by application of a voltage. Further, the polarity of the anode 22 and the cathode 24 may be reversed.

[変形例5]
静脈認証の対象となる生体の部位は、手のひら、手の甲、眼などであってもよい。また、近赤外光以外の光を遮光するバンドパスフィルター(光学フィルター)を設けてもよい。例えば、バンドパスフィルターは、基板21と陽極22の間や、カバーガラス10とレンズアレイLAの間に設けることができる。また、近赤外光の代わりに可視光を使用し、指紋や虹彩に基づいて生体認証を行う生体認証装置に本発明を適用することもできる。この場合、発光部20(有機EL層26)は、照射光ILとして可視光を発する。また、受光部30(各受光素子D)は、反射光RLとして可視光を受光する。また、カバーガラス10、レンズアレイLA、基板21、陽極22、絶縁層28、有機EL層26および封止層29は、可視光に対して透過性の高い材料で形成され、陰極24および遮光層BMは、可視光に対して遮光性の高い材料で形成される。
[Modification 5]
The part of the living body subject to vein authentication may be the palm, the back of the hand, the eye, or the like. Further, a band pass filter (optical filter) that blocks light other than near infrared light may be provided. For example, the band pass filter can be provided between the substrate 21 and the anode 22 or between the cover glass 10 and the lens array LA. In addition, the present invention can be applied to a biometric authentication device that uses visible light instead of near infrared light and performs biometric authentication based on fingerprints and irises. In this case, the light emitting unit 20 (organic EL layer 26) emits visible light as the irradiation light IL. In addition, the light receiving unit 30 (each light receiving element D) receives visible light as the reflected light RL. The cover glass 10, the lens array LA, the substrate 21, the anode 22, the insulating layer 28, the organic EL layer 26, and the sealing layer 29 are formed of a material that is highly transmissive to visible light, and the cathode 24 and the light shielding layer. The BM is formed of a material having a high light blocking property with respect to visible light.

[変形例6]
例えば、生体認証機能を有するパーソナルコンピューターや携帯電話機などに本発明を適用することができる。また、イメージスキャナー、複写機、ファクシミリ、バーコードリーダーなどの画像読取装置に本発明を適用することもできる。なお、画像読取装置に本発明を適用する場合も、照射光ILや反射光RLとして近赤外光の代わりに可視光を用いることになる。
[Modification 6]
For example, the present invention can be applied to a personal computer or a mobile phone having a biometric authentication function. Further, the present invention can also be applied to an image reading apparatus such as an image scanner, a copying machine, a facsimile, or a barcode reader. Note that when the present invention is applied to an image reading apparatus, visible light is used instead of near-infrared light as the irradiation light IL and the reflected light RL.

1…生体認証装置、2…センシングユニット、3…センサー基板、4…発光素子基板、5…レンズ基板、10…カバーガラス/基板、20…発光部、30…受光部、40…記憶部、50…制御部、60…出力部、F…指、IL…照射光、RL…反射光、BM…遮光層、D…受光素子、21…基板、22…陽極、24,24〜24…陰極、26…有機EL層、28…絶縁層、29…封止層、31…基板、LA…レンズアレイ、ML…マイクロレンズ、200…陰極駆動回路。
DESCRIPTION OF SYMBOLS 1 ... Biometric authentication apparatus, 2 ... Sensing unit, 3 ... Sensor substrate, 4 ... Light emitting element substrate, 5 ... Lens substrate, 10 ... Cover glass / board | substrate, 20 ... Light emission part, 30 ... Light-receiving part, 40 ... Memory | storage part, 50 ... control unit, 60 ... output unit, F ... finger, IL ... irradiation light, RL ... reflected light, BM ... light blocking layer, D ... light-receiving element, 21 ... substrate, 22 ... anode, 24, 24 1 to 24 n ... cathode , 26 ... organic EL layer, 28 ... insulating layer, 29 ... sealing layer, 31 ... substrate, LA ... lens array, ML ... microlens, 200 ... cathode drive circuit.

Claims (7)

発光部、受光部、遮光層および絶縁層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、
前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、
前記発光部は、
前記対象物に照射する照射光を発する発光層と、
前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過する第1電極と、
前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた第2電極および第3電極とを備え、
前記受光部は、
前記反射光を受光する受光素子を備え、
前記遮光層は、
前記第1電極の前記発光層側の表面のうち前記第2電極および前記第3電極間の離間領域に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に開口部が形成され、
前記絶縁層は、
前記離間領域に対応する位置に設けられ、前記遮光層を覆うと共に前記照射光および前記反射光を透過する絶縁体であり、
前記対象物側から平面視した場合に、前記遮光層および前記絶縁層は前記離間領域と重なり、前記受光素子の受光面は前記開口部内に位置し、
前記絶縁層において、前記発光層に接する面は前記第1電極の表面に対して傾斜した斜面を含み、当該斜面と前記第1電極に接する面とのなす角は鋭角である
ことを特徴とするセンシング装置。
In a sensing device comprising a light emitting part, a light receiving part, a light shielding layer and an insulating layer, irradiating light on the object from the light emitting part, and receiving light reflected from the object by the light receiving part,
The light emitting unit and the light receiving unit are provided on the same side with respect to the object, the light emitting unit is located on the object side from the light receiving unit,
The light emitting unit
A light emitting layer that emits irradiation light to irradiate the object;
A first electrode located on the object side of the light emitting layer and transmitting the irradiation light and the reflected light;
A second electrode and a third electrode, which are located closer to the light receiving part than the light emitting layer, shield the irradiation light and the reflected light, and are provided apart from each other;
The light receiving unit is
A light receiving element for receiving the reflected light;
The light shielding layer is
Provided at a position corresponding to a separation region between the second electrode and the third electrode on the light emitting layer side surface of the first electrode to shield the irradiation light and the reflected light and to form an opening. ,
The insulating layer is
An insulator that is provided at a position corresponding to the separation region, covers the light shielding layer and transmits the irradiation light and the reflected light;
When viewed in plan from the object side, the light shielding layer and the insulating layer overlap the separation region, and the light receiving surface of the light receiving element is located in the opening,
In the insulating layer, the surface in contact with the light emitting layer includes an inclined surface inclined with respect to the surface of the first electrode, and an angle formed by the inclined surface and the surface in contact with the first electrode is an acute angle. Sensing device.
発光部、受光部、複数の遮光層および複数の絶縁層を備え、対象物に対して前記発光部から光を照射し、前記対象物からの反射光を前記受光部で受光するセンシング装置において、
前記発光部および前記受光部は前記対象物に対して同じ側に設けられ、前記発光部は前記受光部より前記対象物側に位置し、
前記発光部は、
前記対象物に照射する照射光を発する発光層と、
前記発光層より前記対象物側に位置し、前記照射光および前記反射光を透過する第1電極と、
前記発光層より前記受光部側に位置し、前記照射光および前記反射光を遮光すると共に互いに離間して設けられた複数の第2電極とを備え、
前記受光部は、
前記反射光を受光する複数の受光素子を備え、
前記複数の遮光層の各々は、
前記第1電極の前記発光層側の表面のうち隣り合う前記第2電極間ごとに存在する離間領域の各々に対応する位置に設けられ、前記照射光および前記反射光を遮光すると共に1以上の開口部が形成され、
前記複数の絶縁層の各々は、
前記離間領域の各々に対応する位置に設けられ、前記遮光層を覆うと共に前記照射光および前記反射光を透過する絶縁体であり、
前記対象物側から平面視した場合に、前記離間領域の各々は前記遮光層および前記絶縁層と重なり、各々の前記開口部内には前記受光素子の受光面が1つずつ位置し、
前記複数の絶縁層の各々において、前記発光層に接する面は前記第1電極の表面に対して傾斜した斜面を含み、当該斜面と前記第1電極に接する面とのなす角は鋭角である
ことを特徴とするセンシング装置。
In a sensing device comprising a light emitting unit, a light receiving unit, a plurality of light shielding layers and a plurality of insulating layers, irradiating light on the object from the light emitting unit, and receiving light reflected from the object by the light receiving unit,
The light emitting unit and the light receiving unit are provided on the same side with respect to the object, the light emitting unit is located on the object side from the light receiving unit,
The light emitting unit
A light emitting layer that emits irradiation light to irradiate the object;
A first electrode located on the object side of the light emitting layer and transmitting the irradiation light and the reflected light;
A plurality of second electrodes that are located closer to the light receiving part than the light emitting layer, shield the irradiation light and the reflected light, and are provided apart from each other;
The light receiving unit is
A plurality of light receiving elements for receiving the reflected light;
Each of the plurality of light shielding layers is
The first electrode is provided at a position corresponding to each of the separated regions existing between the adjacent second electrodes on the light emitting layer side surface of the first electrode, and shields the irradiation light and the reflected light and includes at least one An opening is formed,
Each of the plurality of insulating layers is
An insulator that is provided at a position corresponding to each of the separation regions, covers the light shielding layer, and transmits the irradiation light and the reflected light;
When viewed in plan from the object side, each of the separation regions overlaps the light shielding layer and the insulating layer, and one light receiving surface of the light receiving element is located in each opening,
In each of the plurality of insulating layers, a surface in contact with the light emitting layer includes an inclined surface inclined with respect to the surface of the first electrode, and an angle formed by the inclined surface and the surface in contact with the first electrode is an acute angle. Sensing device characterized by.
前記遮光層は絶縁体である
ことを特徴する請求項1または2に記載のセンシング装置。
The sensing device according to claim 1, wherein the light shielding layer is an insulator.
前記複数の第2電極のうち、前記発光層を発光させるための駆動信号を供給する対象として1または複数の前記第2電極を選択する駆動回路を備える
ことを特徴する請求項2または3に記載のセンシング装置。
The drive circuit which selects one or several said 2nd electrode as an object which supplies the drive signal for making the said light emitting layer light-emit among these several 2nd electrodes is provided. The Claim 2 or 3 characterized by the above-mentioned. Sensing device.
前記発光層は、前記対象物を撮像する撮像領域の全面にわたって形成されている
ことを特徴する請求項1乃至4のうちいずれか一項に記載のセンシング装置。
The sensing device according to any one of claims 1 to 4, wherein the light emitting layer is formed over an entire imaging region for imaging the object.
前記発光層は近赤外光を発する
ことを特徴する請求項1乃至5のうちいずれか一項に記載のセンシング装置。
The sensing device according to any one of claims 1 to 5, wherein the light emitting layer emits near infrared light.
請求項1乃至6のうちいずれか一項に記載のセンシング装置を備えたことを特徴とする電子機器。
An electronic apparatus comprising the sensing device according to any one of claims 1 to 6.
JP2011084242A 2011-04-06 2011-04-06 Sensing device and electronic device Withdrawn JP2012222484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084242A JP2012222484A (en) 2011-04-06 2011-04-06 Sensing device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084242A JP2012222484A (en) 2011-04-06 2011-04-06 Sensing device and electronic device

Publications (1)

Publication Number Publication Date
JP2012222484A true JP2012222484A (en) 2012-11-12

Family

ID=47273576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084242A Withdrawn JP2012222484A (en) 2011-04-06 2011-04-06 Sensing device and electronic device

Country Status (1)

Country Link
JP (1) JP2012222484A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038859A (en) * 2013-07-17 2015-02-26 セイコーエプソン株式会社 Light emitting device, method of manufacturing light emitting device, light emitting and receiving device, and electronic apparatus
US9064768B2 (en) 2012-10-01 2015-06-23 Seiko Epson Corporation Imaging apparatus and medical equipment
US9111831B2 (en) 2012-09-26 2015-08-18 Seiko Epson Corporation Imaging apparatus
JP2016111322A (en) * 2014-12-05 2016-06-20 セイコーエプソン株式会社 Photoelectric conversion device, method for manufacturing photoelectric conversion device, and electronic apparatus
WO2016166863A1 (en) * 2015-04-16 2016-10-20 株式会社 東芝 Detection device and processing device
US9559239B2 (en) 2013-12-27 2017-01-31 Seiko Epson Corporation Optical device
CN107068704A (en) * 2016-02-03 2017-08-18 旭景科技股份有限公司 Contact image sensor
JP2020017955A (en) * 2018-07-25 2020-01-30 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor
KR20200036255A (en) * 2018-09-28 2020-04-07 엘지디스플레이 주식회사 Display apparatus including light receving pixel area
CN110970466A (en) * 2018-09-28 2020-04-07 乐金显示有限公司 Display apparatus including light receiving device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9111831B2 (en) 2012-09-26 2015-08-18 Seiko Epson Corporation Imaging apparatus
US9064768B2 (en) 2012-10-01 2015-06-23 Seiko Epson Corporation Imaging apparatus and medical equipment
US9405954B2 (en) 2012-10-01 2016-08-02 Seiko Epson Corporation Imaging apparatus and medical equipment
JP2015038859A (en) * 2013-07-17 2015-02-26 セイコーエプソン株式会社 Light emitting device, method of manufacturing light emitting device, light emitting and receiving device, and electronic apparatus
US9965669B2 (en) 2013-12-27 2018-05-08 Seiko Epson Corporation Optical device
US9559239B2 (en) 2013-12-27 2017-01-31 Seiko Epson Corporation Optical device
JP2016111322A (en) * 2014-12-05 2016-06-20 セイコーエプソン株式会社 Photoelectric conversion device, method for manufacturing photoelectric conversion device, and electronic apparatus
JPWO2016166863A1 (en) * 2015-04-16 2017-11-02 株式会社東芝 Detection device and processing device
WO2016166863A1 (en) * 2015-04-16 2016-10-20 株式会社 東芝 Detection device and processing device
CN107068704A (en) * 2016-02-03 2017-08-18 旭景科技股份有限公司 Contact image sensor
JP2020017955A (en) * 2018-07-25 2020-01-30 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor
JP7291561B2 (en) 2018-07-25 2023-06-15 三星電子株式会社 image sensor
KR20200036255A (en) * 2018-09-28 2020-04-07 엘지디스플레이 주식회사 Display apparatus including light receving pixel area
CN110970466A (en) * 2018-09-28 2020-04-07 乐金显示有限公司 Display apparatus including light receiving device
KR102587657B1 (en) * 2018-09-28 2023-10-12 엘지디스플레이 주식회사 Display apparatus including light receving pixel area
CN110970466B (en) * 2018-09-28 2023-12-26 乐金显示有限公司 Display apparatus including light receiving device

Similar Documents

Publication Publication Date Title
JP2012222484A (en) Sensing device and electronic device
US10339359B2 (en) Display panel and display device
CN108604296B (en) Luminous fingerprint identification panel and fingerprint identification display device comprising same
CN110504275B (en) Array substrate, manufacturing method thereof, display panel and display device
EP3607586B1 (en) Display panel and display apparatus therewith
CN103713448B (en) Camera device and Medical Devices
US8710442B2 (en) Sensing device and electronic apparatus
JP2012221082A (en) Sensing device and electronic apparatus
CN108630727B (en) Organic light emitting diode display device
US11922715B2 (en) Imaging device
KR101981318B1 (en) Transparent Fingerprint Image Scanning Panel and Display Apparatus Comprising The Same
JP2012222483A (en) Sensing device and electronic device
US20210014393A1 (en) Light emitting device, exposure system, imaging display device, imaging device, electronic device, and lighting device
KR20210084766A (en) Display device and method of manufacturing the same
US20190213380A1 (en) Optical fingerprint recognition sensor
US20220130924A1 (en) Apparatus, display apparatus, photoelectric conversion apparatus, electronic equipment, illumination apparatus, and moving object
JP2014007320A (en) Luminaire, electronic apparatus, image pickup device, and inspection device
JP2016164787A (en) Vein imaging device and electronic apparatus
US20240065078A1 (en) Light-emitting apparatus, display apparatus, image pickup apparatus, and electronic apparatus
JP5910774B2 (en) Vein imaging device and electronic device
US20220320452A1 (en) Light-emitting apparatus, display apparatus, imaging apparatus, and electronic equipment
US20230354651A1 (en) Light emitting device, manufacturing method thereof, display device, photoelectric conversion device, electronic apparatus, illumination device, and moving body
US20240074293A1 (en) Display substrate and display device
US20220351540A1 (en) Texture recognition apparatus and electronic apparatus
KR20230144679A (en) Display device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701