JP5910720B1 - Paper manufacturing apparatus and waste water treatment method - Google Patents

Paper manufacturing apparatus and waste water treatment method Download PDF

Info

Publication number
JP5910720B1
JP5910720B1 JP2014262399A JP2014262399A JP5910720B1 JP 5910720 B1 JP5910720 B1 JP 5910720B1 JP 2014262399 A JP2014262399 A JP 2014262399A JP 2014262399 A JP2014262399 A JP 2014262399A JP 5910720 B1 JP5910720 B1 JP 5910720B1
Authority
JP
Japan
Prior art keywords
unit
paper manufacturing
paper
treated water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014262399A
Other languages
Japanese (ja)
Other versions
JP2016121422A (en
Inventor
勝彦 日▲高▼
勝彦 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014262399A priority Critical patent/JP5910720B1/en
Priority to KR1020150159535A priority patent/KR102451248B1/en
Priority to CN201510980217.8A priority patent/CN105735045B/en
Application granted granted Critical
Publication of JP5910720B1 publication Critical patent/JP5910720B1/en
Publication of JP2016121422A publication Critical patent/JP2016121422A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/02Agents for preventing deposition on the paper mill equipment, e.g. pitch or slime control
    • D21H21/04Slime-control agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paper (AREA)
  • Treatment Of Sludge (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

【課題】防臭性をよりいっそう高めるための酸化剤の添加条件を見出すとともに、紙製造装置の腐食を抑え、コストの低減を図る。【解決手段】本発明の紙製造装置1は、原料から紙を製造する紙製造部10から排水された水を処理する排水処理部30と、処理水、スカム及び汚泥からなる群より選択される少なくとも一以上(以下、「処理水等」ともいう。)を、紙製造部10と同一の紙製造部10又は他の紙製造部10’に供給する処理水等供給部40と、排水処理部30又は処理水等供給部40における処理水等に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤を供給する弱酸化剤供給部50と、一以上の紙製造部10,10’等のうち、処理水等供給部40によって処理水等が供給される紙製造部10,10’の少なくとも一つに殺菌剤を供給する殺菌剤供給部60とを備える。【選択図】図1An object of the present invention is to find an addition condition of an oxidant for further improving the deodorization property, and to suppress the corrosion of a paper manufacturing apparatus and to reduce the cost. A paper manufacturing apparatus according to the present invention is selected from the group consisting of a wastewater treatment unit for treating water drained from a paper production unit for producing paper from raw materials, and treated water, scum and sludge. A treated water supply unit 40 for supplying at least one (hereinafter also referred to as “treated water”) to the same paper manufacturing unit 10 as the paper manufacturing unit 10 or another paper manufacturing unit 10 ′, and a wastewater processing unit. 30 or a weak oxidant supply unit 50 that supplies a weak oxidant having a redox potential of an aqueous solution smaller than that of an aqueous solution of sodium hypochlorite to treated water or the like in the treated water or the like supply unit 40; Of the above paper manufacturing units 10, 10 ′, etc., a sterilizing agent supply unit 60 for supplying a sterilizing agent to at least one of the paper manufacturing units 10, 10 ′ to which treated water is supplied by the processing water supply unit 40; Is provided. [Selection] Figure 1

Description

本発明は、紙製造装置及び排水処理方法に関する。   The present invention relates to a paper manufacturing apparatus and a wastewater treatment method.

製紙工場において、紙製造工程とその後段の排水処理工程は、pHが中性で多量の澱粉を含み、水温も30〜40℃前後の環境が多いことから、非常に微生物が繁殖しやすく、腐敗しやすい傾向にある。さらに、紙製造工程と排水処理工程では、一般的に硫酸アルミニウムを原料・薬品の定着剤・凝集剤として多量に使用しているため、硫酸根が、紙製造工程あるいはその後段の排水工程に多量に含まれている。このような環境の中では、硫酸塩還元菌の活動が活発になり、硫酸根が硫化水素に還元され、異臭の原因となり得る。また、硫化水素以外にも、異臭の原因としては、主に微生物による澱粉の代謝物として発生する有機酸(ギ酸、酢酸、プロピオン酸、乳酸、酪酸等)も含まれる。これらは、工場内の作業環境のほか、近隣環境にも影響を及ぼし得るため、異臭の原因となり得る物質の発生を抑えることは、極めて重要である。   In paper mills, the paper manufacturing process and the subsequent wastewater treatment process are neutral in pH, contain a large amount of starch, and have a water temperature of around 30-40 ° C. It tends to be easy to do. Furthermore, in the paper manufacturing process and wastewater treatment process, aluminum sulfate is generally used in large quantities as a raw material, chemical fixing agent, and flocculant, so a large amount of sulfate radicals are used in the paper manufacturing process or the subsequent drainage process. Included. In such an environment, the activity of sulfate-reducing bacteria becomes active, and sulfate radicals are reduced to hydrogen sulfide, which can cause off-flavors. In addition to hydrogen sulfide, the causes of off-flavors include organic acids (formic acid, acetic acid, propionic acid, lactic acid, butyric acid, etc.) that are mainly generated as metabolites of starch by microorganisms. Since these can affect not only the working environment in the factory but also the surrounding environment, it is extremely important to suppress the generation of substances that can cause off-flavors.

これまで、製紙工場における異臭の発生は、主に排水処理工程に由来すると考えられ、亜塩素酸ソーダに例示される弱酸化剤の使用等、一般的な消臭・防臭の対策がなされていた。しかしながら、紙製造工程の消臭・防臭対策については、費用に見合う適切な技術が確立されていない。   Until now, the generation of off-flavors in paper mills is thought to be mainly due to the wastewater treatment process, and general deodorizing and deodorizing measures such as the use of weak oxidants exemplified by sodium chlorite have been taken. . However, for deodorizing and deodorizing measures in the paper manufacturing process, appropriate technology that meets the cost has not been established.

紙製造工程の消臭・防臭対策に関し、白水系統水槽又は回収スカム系統水槽に、pH4以上の次亜塩素酸ナトリウム水溶液を投入し、いずれかの槽中の有効塩素濃度を100〜10ppmに調整し、それぞれの槽を防臭処理することが提案されている(例えば、特許文献1参照)。   Regarding deodorizing and deodorizing measures in the paper manufacturing process, a sodium hypochlorite aqueous solution of pH 4 or higher is introduced into a white water system tank or a recovery scum system tank, and the effective chlorine concentration in either tank is adjusted to 100 to 10 ppm. It has been proposed to deodorize each tank (see, for example, Patent Document 1).

特開2005−336636号公報JP 2005-336636 A

しかしながら、特許文献1記載の手法では、酸化剤として用いられる次亜塩素酸ナトリウムは、白水系統水槽及び回収スカム系統水槽の内部に残留するデンプンや、汚泥及びスカムに含まれる有機物等と反応し、酸素と塩化ナトリウムに分解する。このため、防臭処理の管理者は、次亜塩素酸ナトリウムが分解することを見越して、次亜塩素酸ナトリウムを過剰に投入することを要する。この過剰な投入が、循環水に含まれる塩類の高濃度化、ポリマー薬品(粘剤、消泡剤、ろ水性及び歩留向上剤等)の品質劣化を誘因し得る。さらに、次亜塩素酸ナトリウムは、高い酸化力を有することから、次亜塩素酸ナトリウムの過剰な投入が、白水系統水槽、回収スカム系統水槽をはじめとした装置及び配管の金属類を腐食し、紙製造系の操業に影響を及ぼし得る。そして、紙製造工程は数多くのタンク、チェストを保有した複雑な工程であり、どこにどのように消臭・防臭薬品を添加するのかを検討することが費用対効果を最大限にするのに重要になるが、当該発明では十分に検討されていない。   However, in the technique described in Patent Document 1, sodium hypochlorite used as an oxidant reacts with starch remaining in the white water system tank and the recovery scum system tank, organic matter contained in sludge and scum, and the like. Decomposes into oxygen and sodium chloride. For this reason, the manager of the deodorizing treatment requires that sodium hypochlorite be excessively added in anticipation of decomposition of sodium hypochlorite. This excessive input can lead to a high concentration of salts contained in the circulating water and quality deterioration of polymer chemicals (such as a sticking agent, an antifoaming agent, a freeness of water, and a yield improving agent). Furthermore, since sodium hypochlorite has a high oxidizing power, excessive addition of sodium hypochlorite corrodes the metal of equipment and piping including white water system water tank and recovery scum system water tank, May affect paper manufacturing operations. The paper manufacturing process is a complex process with numerous tanks and chests, and it is important to consider where and how to add deodorant and deodorant chemicals to maximize cost effectiveness. However, this invention has not been fully studied.

以上のことから、紙製造装置において、酸化剤の添加条件が防臭性に寄与するため、酸化剤の添加条件をよりいっそう好適にすることが求められている。   From the above, in the paper manufacturing apparatus, since the addition condition of the oxidant contributes to the deodorization property, it is required to make the addition condition of the oxidant more suitable.

本発明は、以上のような課題を解決するためになされたものであり、その目的は、防臭性をよりいっそう高めるための酸化剤の添加条件を見出すとともに、紙製造装置の腐食を抑え、コストの低減を図ることである。   The present invention has been made to solve the above-mentioned problems, and its purpose is to find out the conditions for adding an oxidant for further improving the deodorizing property, and to suppress the corrosion of the paper manufacturing apparatus and reduce the cost. It is intended to reduce this.

本発明者らは、以上のような課題を解決するために鋭意研究を重ねた。その結果、原料から紙を製造する紙製造部からの排水を処理することによって生じる処理水、スカム及び汚泥からなる群より選択される少なくとも一以上に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤を供給することで、酸化剤の使用量を抑えることができるだけではなく、紙製造部における硫酸塩還元菌や酢酸菌などの殺菌をするために用いる殺菌剤の添加効果を高めることができ、結果として、防臭性をよりいっそう高めつつ、紙製造装置の腐食を抑え、コストの低減に寄与することを見出し、本発明を完成するに至った。具体的に、本発明は以下のものを提供する。   The present inventors have intensively studied to solve the above problems. As a result, the oxidation-reduction potential of the aqueous solution is hypochlorous acid with respect to at least one selected from the group consisting of treated water, scum and sludge generated by treating wastewater from the paper production department that produces paper from raw materials. By supplying a weak oxidizer that is lower than the redox potential of an aqueous solution of sodium, not only can the amount of oxidant be used, but also to sterilize sulfate-reducing bacteria and acetic acid bacteria in the paper production department. The effect of adding the bactericide to be used can be enhanced, and as a result, the present inventors have found that the paper manufacturing apparatus can be prevented from being corroded and the cost can be reduced while further improving the deodorizing property. Specifically, the present invention provides the following.

(1)本発明は、原料から紙を製造する紙製造部から排水された水を処理する排水処理部と、前記排水処理部で処理が施された処理水、前記排水処理部に存在するスカム及び前記排水処理部に存在する汚泥からなる群より選択される少なくとも一以上を、前記紙製造部と同一の又は他の紙製造部に供給する処理水等供給部と、前記排水処理部又は前記処理水等供給部における前記処理水、前記スカム及び前記汚泥からなる群より選択される少なくとも一以上に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤を供給する弱酸化剤供給部と、一以上の紙製造部のうち、前記処理水等供給部によって前記処理水、前記スカム及び前記汚泥からなる群より選択される少なくとも一以上が供給される紙製造部の少なくとも一つに殺菌剤を供給する殺菌剤供給部とを備える紙製造装置である。   (1) The present invention relates to a waste water treatment unit that treats water drained from a paper manufacturing unit that produces paper from raw materials, treated water treated in the waste water treatment unit, and scum present in the waste water treatment unit And at least one selected from the group consisting of sludge present in the wastewater treatment unit, a treated water supply unit for supplying the same or other paper production unit as the paper production unit, and the wastewater treatment unit or the Weak oxidation in which the redox potential of the aqueous solution is smaller than the redox potential of the aqueous solution of sodium hypochlorite for at least one selected from the group consisting of the treated water, the scum and the sludge in the treated water supply unit At least one selected from the group consisting of the treated water, the scum, and the sludge is supplied by the treated water supply unit among the weak oxidizing agent supply unit that supplies the agent and the one or more paper manufacturing units. A paper making apparatus and a sterilizing agent supply unit for supplying a disinfectant to at least one production unit.

(2)また、本発明は、前記排水処理部に含まれる水に対し、第1の酸化還元電位を測定する第1酸化還元電位測定部と、前記第1酸化還元電位測定部での測定結果が第1の閾値以上になるように前記弱酸化剤の供給条件を制御する弱酸化剤制御部とをさらに備える、(1)に記載の紙製造装置である。   (2) Moreover, this invention is a measurement result in the 1st oxidation-reduction potential measurement part which measures the 1st oxidation-reduction potential with respect to the water contained in the waste water treatment part, and the 1st oxidation-reduction potential measurement part. The paper manufacturing apparatus according to (1), further comprising: a weak oxidant control unit that controls a supply condition of the weak oxidant so that is equal to or greater than a first threshold value.

(3)また、本発明は、前記第1の閾値が−250mV以上の所定の値である、(2)に記載の紙製造装置。   (3) Moreover, this invention is a paper manufacturing apparatus as described in (2) whose said 1st threshold value is a predetermined value of -250 mV or more.

(4)また、本発明は、前記殺菌剤が、次亜塩素酸塩と、アンモニウム塩、アミン、アミド及びイミドからなる群から選択される1以上の化合物との反応生成物である結合型塩素化合物を含む、(1)から(3)のいずれかに記載の紙製造装置。   (4) In the present invention, the sterilizing agent is a bonded chlorine, which is a reaction product of hypochlorite and one or more compounds selected from the group consisting of ammonium salts, amines, amides and imides. The paper manufacturing apparatus in any one of (1) to (3) containing a compound.

(5)また、本発明は、前記処理水等供給部によって前記処理水、前記スカム及び前記汚泥からなる群より選択される少なくとも一以上が供給される紙製造部に含まれる水に対し、第2の酸化還元電位を測定する第2酸化還元電位測定部と、前記第2酸化還元電位測定部での測定結果が第2の閾値以上になるように前記殺菌剤の供給条件を制御する殺菌剤制御部とをさらに備える、(1)から(4)のいずれかに記載の紙製造装置である。   (5) Further, the present invention provides a first solution for water contained in a paper manufacturing unit to which at least one selected from the group consisting of the treated water, the scum and the sludge is supplied by the treated water supply unit. A second redox potential measuring unit that measures the redox potential of 2 and a bactericide that controls the supply conditions of the bactericide so that a measurement result of the second redox potential measuring unit is equal to or greater than a second threshold value. The paper manufacturing apparatus according to any one of (1) to (4), further including a control unit.

(6)また、本発明は、前記第2の閾値が−250mV以上の所定の値である、(5)に記載の紙製造装置である。   (6) Moreover, this invention is a paper manufacturing apparatus as described in (5) whose said 2nd threshold value is predetermined value of -250 mV or more.

(7)また、本発明は、原料から紙を製造する紙製造部からの排水を処理することによって生じる処理水、スカム及び汚泥からなる群より選択される少なくとも一以上に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤で処理するとともに、一以上の紙製造部のうち、前記弱酸化剤で処理された弱酸化剤処理水が供給される紙製造部の少なくとも一つに対して殺菌剤を供給する、排水処理方法である。   (7) Further, the present invention provides an aqueous redox solution for at least one selected from the group consisting of treated water, scum, and sludge generated by treating waste water from a paper manufacturing department that produces paper from raw materials. Treated with a weak oxidizing agent whose potential is lower than the redox potential of an aqueous solution of sodium hypochlorite, and supplied with the weak oxidizing agent treated water treated with the weak oxidizing agent in one or more paper production departments A wastewater treatment method for supplying a disinfectant to at least one of the paper manufacturing departments.

本発明によると、防臭性がよりいっそう高まるとともに、紙製造装置の腐食が抑えられ、コストの低減にも寄与できる。   According to the present invention, the deodorizing property is further enhanced, the corrosion of the paper manufacturing apparatus is suppressed, and the cost can be reduced.

本実施形態に係る紙製造装置1の概略構成を説明するためのブロック図である。It is a block diagram for demonstrating schematic structure of the paper manufacturing apparatus 1 which concerns on this embodiment.

以下、本発明の実施形態を説明するが、この実施形態が本発明を限定するものではない。   Hereinafter, although embodiment of this invention is described, this embodiment does not limit this invention.

<紙製造装置1>
図1は、本発明の一実施形態に係る紙製造装置1の概略構成を示す。紙製造装置1は、原料から紙を製造する紙製造部10から排水部20を介して排水された水を処理する排水処理部30と、排水処理部30で処理が施された処理水、前記排水処理部に存在するスカム及び前記排水処理部に存在する汚泥からなる群より選択される少なくとも一以上(以下、「処理水等」ともいう。)を、紙製造部10と同一の紙製造部10又は他の紙製造部10’に供給する処理水等供給部40と、排水処理部30又は処理水等供給部40における処理水等に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤を供給する弱酸化剤供給部50と、一以上の紙製造部10,10’のうち、処理水等供給部40によって処理水等が供給される紙製造部10,10’の少なくとも一つに殺菌剤を供給する殺菌剤供給部60とを備える。
<Paper manufacturing apparatus 1>
FIG. 1 shows a schematic configuration of a paper manufacturing apparatus 1 according to an embodiment of the present invention. The paper manufacturing apparatus 1 includes a wastewater treatment unit 30 for treating water drained from a paper production unit 10 for producing paper from raw materials through a drainage unit 20, treated water treated by the wastewater treatment unit 30, At least one selected from the group consisting of scum present in the wastewater treatment unit and sludge present in the wastewater treatment unit (hereinafter also referred to as “treated water”) is the same paper production unit as the paper production unit 10 10 or other treated water supply unit 40 to be supplied to the paper manufacturing unit 10 'and the treated water in the wastewater treatment unit 30 or the treated water supply unit 40, the redox potential of the aqueous solution is sodium hypochlorite. Paper to which treated water or the like is supplied by the treated water supply unit 40 among the weak oxidant supply unit 50 that supplies a weak oxidant smaller than the redox potential of the aqueous solution and the one or more paper manufacturing units 10 and 10 ′. Kill at least one of the manufacturing departments 10 and 10 ' And a sterilizing agent supply unit 60 for supplying the agent.

〔紙製造部10〕
紙製造部10は、原料である木材及び古紙等から紙を製造する機能を有する。紙製造部10の構成は、特に限定されるものでなく、一般的な構成であれば足りる。例えば、紙製造部10は、原料からパルプを製造するパルプ製造部11と、このパルプ製造部11で製造されたパルプを調成し、抄紙する調成・抄紙部12と、調成・抄紙の過程で生じる白水を回収する白水回収部13とを有する。
[Paper Manufacturing Department 10]
The paper manufacturing unit 10 has a function of manufacturing paper from wood, used paper, and the like as raw materials. The configuration of the paper manufacturing unit 10 is not particularly limited, and a general configuration is sufficient. For example, the paper manufacturing unit 10 includes a pulp manufacturing unit 11 that manufactures pulp from raw materials, a preparation / papermaking unit 12 that forms and makes pulp manufactured by the pulp manufacturing unit 11, and A white water recovery unit 13 for recovering white water generated in the process.

[パルプ製造部11]
パルプ製造部11は、原料からパルプを製造し、このパルプを調成・抄紙部12に供給する機能を有する。一例として、パルプ製造部11は、古紙を離解し、古紙パルプを製造する古紙パルパ111と、損紙をパルプ化したブロークパルプを収容するブロークタンク112と、古紙パルパ111及びブロークタンク112から供給された原料を混合するミキシングチェスト113と、ミキシングチェスト113で混合された混合原料に粘剤等の抄紙薬品を加え、パルプとするマシンチェスト114と、マシンチェスト114から送られたパルプを貯留する種箱115とを含んで構成される。
[Pulp Manufacturing Department 11]
The pulp manufacturing unit 11 has a function of manufacturing pulp from raw materials and supplying the pulp to the preparation / papermaking unit 12. As an example, the pulp manufacturing unit 11 is supplied from a used paper pulper 111 that disaggregates used paper to produce used paper pulp, a broke tank 112 that contains broke pulp obtained by pulping waste paper, and a used paper pulper 111 and a broke tank 112. Mixing chest 113 for mixing raw materials, machine chest 114 for adding papermaking chemicals such as a sticker to the mixed raw materials mixed in mixing chest 113 to make pulp, and seed box for storing pulp sent from machine chest 114 115.

[調成・抄紙部12]
調成・抄紙部12は、パルプ製造部11で製造されたパルプを調成し、抄紙する機能を有する。一例として、調成・抄紙部12は、種箱115に収容されたパルプを白水とともに、スクリーン122、クリーナ123へと順次移送するポンプ121と、パルプに含まれる異物を除去するスクリーン122及びクリーナ123と、ワイヤーパート125のワイヤに、適正な濃度、供給速度及び供給角度でパルプを供給するインレット124と、パルプの脱水を行うワイヤーパート125及びプレスパート126と、ワイヤーパート125及びプレスパート126でパルプから脱水された水等を白水として受容する白水サイロ127とを含んで構成される。白水サイロ127に受容された白水の一部は、ポンプ121へと供給され、残りは、回収部13へと供給される。
[Preparation / papermaking section 12]
The preparation / papermaking unit 12 has a function of preparing and papermaking the pulp manufactured by the pulp manufacturing unit 11. As an example, the preparation / papermaking unit 12 includes a pump 121 that sequentially transfers the pulp contained in the seed box 115 to the screen 122 and the cleaner 123 together with white water, and the screen 122 and the cleaner 123 that remove foreign matters contained in the pulp. And an inlet 124 for supplying pulp to the wire of the wire part 125 at an appropriate concentration, supply speed and supply angle, a wire part 125 and a press part 126 for dewatering the pulp, and a pulp in the wire part 125 and the press part 126 And a white water silo 127 that receives water dehydrated from the white water as white water. Part of the white water received by the white water silo 127 is supplied to the pump 121, and the rest is supplied to the collection unit 13.

[回収部13]
回収部13は、調成・抄紙部12から供給された白水を回収する機能を有する。一例として、回収部13は、調成・抄紙部12から供給された白水を回収装置132へと移送するシールピット131と、白水をろ過し、回収水として回収する回収装置132と、この回収装置132で回収された回収水を回収する回収水タンク133とを含んで構成される。回収水の一部は、さらにろ過され、古紙パルパ111やブロークタンク112へと戻される等によって再利用される。そして、残りの回収水は、排水部20に移送された後、排水処理部30に供される。
[Recovery unit 13]
The collection unit 13 has a function of collecting white water supplied from the preparation / papermaking unit 12. As an example, the recovery unit 13 includes a seal pit 131 that transfers white water supplied from the preparation / papermaking unit 12 to the recovery device 132, a recovery device 132 that filters white water and recovers it as recovered water, and the recovery device. And a recovered water tank 133 for recovering the recovered water recovered at 132. A part of the recovered water is further filtered and reused by being returned to the waste paper pulper 111 or the broke tank 112. The remaining recovered water is transferred to the drainage unit 20 and then supplied to the drainage treatment unit 30.

〔排水部20〕
紙製造部10の説明に続き、排水部20について説明する。排水部20は、回収水タンク133に貯められた回収水の一部を排水する機能を有する。
[Drainage 20]
Following the description of the paper manufacturing unit 10, the drainage unit 20 will be described. The drainage unit 20 has a function of draining a part of the collected water stored in the collected water tank 133.

〔排水処理部30〕
排水処理部30は、排水部20から排水された水を処理する機能を有する。排水処理部30として、沈殿法、加圧浮上法、活性汚泥法等によって処理されるための槽のほか、槽に発生する汚泥及びスカムの貯留部、並びに処理水の貯留部等も含まれる。なお、「スカム」とは、微生物、菌、懸濁物質、繊維質等が浮上したものをいう。
[Wastewater treatment unit 30]
The drainage treatment unit 30 has a function of treating the water drained from the drainage unit 20. The waste water treatment unit 30 includes a tank for processing by a sedimentation method, a pressurized flotation method, an activated sludge method, and the like, a storage unit for sludge and scum generated in the tank, a storage unit for treated water, and the like. “Scum” refers to a surface of microorganisms, fungi, suspended solids, fibers and the like.

必須ではないが、弱酸化剤制御部51における弱酸化剤の供給条件を好適に制御するため、排水処理部30は、異臭物質に係るパラメータを測定する異臭パラメータ測定部31を有することが好ましい。異臭パラメータ測定部31の詳細については、後に説明する。   Although not essential, it is preferable that the waste water treatment unit 30 includes the off-flavor parameter measurement unit 31 that measures a parameter related to off-flavor substances in order to appropriately control the supply conditions of the weak oxidant in the weak oxidant control unit 51. Details of the off-flavor parameter measuring unit 31 will be described later.

〔処理水等供給部40〕
処理水等供給部40は、排水処理部30で処理が施された処理水のほか、排水処理部30に存在するスカム及び排水処理部30に存在する汚泥を、上述した紙製造部10と同一の紙製造部10又は他の紙製造部10’に供給する機能を有する。本実施形態では、紙製造部10と排水処理部30との間で水が循環する構成となっているが、これに限るものではない。紙製造部10からの排水を排水処理部30で処理し、処理水等を、処理水等供給部40を介して他の紙製造部10’に直列的に供給する態様であってもよい。
[Treatment water supply unit 40]
The treated water supply unit 40 is the same as the paper manufacturing unit 10 described above for the scum present in the wastewater treatment unit 30 and the sludge present in the wastewater treatment unit 30 in addition to the treated water treated in the wastewater treatment unit 30. The paper supply unit 10 or another paper manufacture unit 10 '. In the present embodiment, the water is circulated between the paper manufacturing unit 10 and the waste water treatment unit 30, but is not limited thereto. The waste water from the paper manufacturing unit 10 may be processed by the waste water processing unit 30, and the treated water or the like may be supplied in series to another paper manufacturing unit 10 ′ via the treated water supply unit 40.

〔弱酸化剤供給部50〕
弱酸化剤供給部50は、排水処理部30又は処理水等供給部40における処理水、スカム及び汚泥からなる群より選択される少なくとも一以上に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤を供給する機能を有する。図1では、弱酸化剤供給部50は、排水処理部30における処理水、スカム及び汚泥からなる群より選択される少なくとも一以上に対して弱酸化剤を供給する態様となっているが、これに限るものではなく、弱酸化剤供給部50は、処理水等供給部40における処理水等に対して弱酸化剤を供給する態様であってもよい。
[Weak oxidant supply unit 50]
The weak oxidant supply unit 50 has an aqueous redox potential of sodium hypochlorite with respect to at least one selected from the group consisting of treated water, scum and sludge in the wastewater treatment unit 30 or the treated water supply unit 40. It has a function of supplying a weak oxidant smaller than the redox potential of the aqueous solution. In FIG. 1, the weak oxidant supply unit 50 is configured to supply a weak oxidant to at least one selected from the group consisting of treated water, scum and sludge in the wastewater treatment unit 30. The embodiment is not limited to this, and the weak oxidant supply unit 50 may be configured to supply a weak oxidant to the treated water or the like in the treated water supply unit 40.

[弱酸化剤]
本明細書において、「弱酸化剤」とは、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも低い酸化剤をいう。このとき、弱酸化剤の水溶液の濃度と、次亜塩素酸ナトリウムの水溶液の濃度とは等しいものとする。水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも高いと、酸化剤が、排水処理部30等の内部に残留するデンプンや、汚泥及びスカムに含まれる有機物等と反応し、分解する。このため、硫化物や硫化水素等を分解するには、多量の酸化剤を要することになり、排水処理部30に多量の酸化剤を供給しないと、硫化水素の発生を好適に抑制できない可能性があるため、好ましくない。
[Weak oxidizing agent]
In the present specification, “weak oxidant” refers to an oxidant whose redox potential of an aqueous solution is lower than the redox potential of an aqueous solution of sodium hypochlorite. At this time, it is assumed that the concentration of the aqueous solution of the weak oxidizing agent is equal to the concentration of the aqueous solution of sodium hypochlorite. When the redox potential of the aqueous solution is higher than the redox potential of the aqueous sodium hypochlorite solution, the oxidizing agent reacts with starch remaining inside the wastewater treatment unit 30 or the like, organic matter contained in sludge and scum, etc. , Disassemble. For this reason, in order to decompose sulfides, hydrogen sulfide, etc., a large amount of oxidant is required, and unless a large amount of oxidant is supplied to the waste water treatment unit 30, generation of hydrogen sulfide may not be suitably suppressed. This is not preferable.

弱酸化剤の水溶液の酸化還元電位は、次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも低ければ特に限定されるものでないが、少ない供給量で硫化水素の発生を持続的に抑制できるようにするため、弱酸化剤の水溶液の酸化還元電位は、濃度100mg/L、pH7、25℃(純水、10mmol/L pH7リン酸バッファ添加)の条件において、500mV以下であることが好ましく、400mV以下であることがより好ましい。   The redox potential of the aqueous solution of the weak oxidizer is not particularly limited as long as it is lower than the redox potential of the aqueous solution of sodium hypochlorite, but the generation of hydrogen sulfide can be continuously suppressed with a small supply amount. Therefore, the redox potential of the aqueous solution of the weak oxidant is preferably 500 mV or less, and 400 mV or less, under the conditions of a concentration of 100 mg / L, pH 7, 25 ° C. (pure water, 10 mmol / L pH 7 phosphate buffer added). It is more preferable that

弱酸化剤の具体例として、2−ブロモ−2−ニトロプロパン−1,3−ジオール(BNP)、2,2−ジブロモ−2−ニトロ−1−エタノール(DBNE)、2,2−ジブロモ−3−ニトリロプロピオンアミド(DBNPA)、過酸化水素、亜塩素酸塩、クロロスルファミン酸塩又は過酢酸等が挙げられる。参考までに、これらの弱酸化剤の特性を表1に示す。中でも、実施例に挙げたように弱酸化剤は、2−ブロモ−2−ニトロプロパン−1,3−ジオール、過酸化水素、亜塩素酸塩が好ましい。適切な弱酸化剤は対象水に含まれる有機物や還元物質、細菌の種類等によって異なり、用途に応じて適宜選択すればよい。

Figure 0005910720
Specific examples of weak oxidizing agents include 2-bromo-2-nitropropane-1,3-diol (BNP), 2,2-dibromo-2-nitro-1-ethanol (DBNE), and 2,2-dibromo-3. -Nitrilopropionamide (DBNPA), hydrogen peroxide, chlorite, chlorosulfamate or peracetic acid. For reference, the properties of these weak oxidants are shown in Table 1. Among these, as mentioned in the examples, the weak oxidizing agent is preferably 2-bromo-2-nitropropane-1,3-diol, hydrogen peroxide, or chlorite. The appropriate weak oxidant varies depending on the organic substance, the reducing substance, the type of bacteria, etc. contained in the target water, and may be appropriately selected depending on the application.
Figure 0005910720

なお、弱酸化剤の種類は、1種類を単独で用いてもよいし、複数種類を併用してもよい。   In addition, the kind of weak oxidizing agent may be used individually by 1 type, and may use multiple types together.

[弱酸化剤制御部51]
必須の態様ではないが、弱酸化剤供給部50は、弱酸化剤供給部50における弱酸化剤の供給条件を制御する弱酸化剤制御部51を有することが好ましい。本明細書において、「弱酸化剤の供給条件」とは、単位時間あたりの添加量、添加時間、添加頻度又は添加を行う箇所等をいう。
[Weak Oxidant Control Unit 51]
Although not an essential aspect, the weak oxidant supply unit 50 preferably includes a weak oxidant control unit 51 that controls the supply conditions of the weak oxidant in the weak oxidant supply unit 50. In the present specification, the “weak oxidant supply condition” refers to an addition amount per unit time, an addition time, an addition frequency, a place where addition is performed, or the like.

弱酸化剤の供給条件は、異臭を生じ得る物質に係るパラメータに基づいて決定してもよい。異臭を生じ得る物質に係るパラメータとしては、水の酸化還元電位、水中の溶存硫化物濃度、空気中の硫化水素濃度の測定値等が挙げられる。これらのパラメータについては、いずれか1つのパラメータを用いても、2つ以上のパラメータを組み合わせて用いてもよい。1つのパラメータを用いる場合、より簡易な系で防臭することができるため好ましい。2つ以上のパラメータを組み合わせる場合、総合的に供給条件を検討することができ、よりいっそう正確に弱酸化剤の供給条件を見積もることができるため好ましい。   The supply condition of the weak oxidant may be determined based on a parameter relating to a substance that can generate a bad odor. Parameters relating to substances that can cause off-flavors include measured values of redox potential of water, dissolved sulfide concentration in water, hydrogen sulfide concentration in air, and the like. As for these parameters, any one parameter may be used, or two or more parameters may be used in combination. When one parameter is used, it is preferable because deodorization can be achieved with a simpler system. When two or more parameters are combined, it is preferable because the supply conditions can be comprehensively studied and the supply conditions of the weak oxidant can be estimated more accurately.

弱酸化剤の供給条件決定の手法は特に制限されるものではないが、酸化還元電位の低下により有機酸生成微生物や硫酸塩還元菌が繁殖することを未然に防ぐため、後述するパラメータ測定部31での測定結果が任意の閾値以上になるように弱酸化剤の供給条件を制御するのが好ましい。以下、酸化還元電位の例をもとに、弱酸化剤の供給条件の制御の手法を説明する。ここで、後述する第1酸化還元電位測定部における酸化還元電位の測定結果に対する閾値を「第1の閾値」と呼ぶ。   The method for determining the supply conditions of the weak oxidant is not particularly limited, but in order to prevent the organic acid-producing microorganisms and sulfate-reducing bacteria from breeding due to the reduction of the oxidation-reduction potential, the parameter measurement unit 31 described later is used. It is preferable to control the supply condition of the weak oxidant so that the measurement result in the above becomes an arbitrary threshold value or more. Hereinafter, based on the example of the oxidation-reduction potential, a method for controlling the supply condition of the weak oxidant will be described. Here, the threshold for the measurement result of the oxidation-reduction potential in the first oxidation-reduction potential measurement unit described later is referred to as a “first threshold”.

第1の閾値は、特に限定されるものでないが、硫酸塩還元菌が、硫酸イオンを還元し、異臭の原因となり得る硫化水素を発生することを好適に抑制できるようにするため、第1の閾値は、−250mV以上であることが好ましく、−200mV以上であることがより好ましく、−100mV以上であることがさらに好ましい。とりわけ、硫酸塩還元菌の繁殖のみならず、有機酸生成微生物の繁殖も抑制し、硫化水素のみならず、有機酸の生成も好適に抑制できることから、第1の閾値は、0mV以上であることが特に好ましい。   Although the first threshold value is not particularly limited, the first threshold value is preferably set so that the sulfate-reducing bacteria can reduce the sulfate ion and suitably suppress the generation of hydrogen sulfide that can cause a strange odor. The threshold is preferably −250 mV or more, more preferably −200 mV or more, and further preferably −100 mV or more. In particular, not only the growth of sulfate-reducing bacteria but also the growth of organic acid-producing microorganisms can be suppressed, and not only hydrogen sulfide but also the production of organic acids can be suitably suppressed. Therefore, the first threshold value is 0 mV or more. Is particularly preferred.

第1の閾値の上限は特に限定されるものでないが、弱酸化剤の過剰添加によって、殺菌剤のコスト及び環境負荷のリスクが増加することを抑えるため、第1の閾値は、300mV以下であることが好ましく、200mV以下であることがより好ましい。   The upper limit of the first threshold is not particularly limited, but the first threshold is 300 mV or less in order to suppress an increase in the cost of the bactericide and the risk of environmental burden due to excessive addition of a weak oxidizing agent. It is preferable that it is 200 mV or less.

[異臭パラメータ測定部31]
ここで、いったん排水処理部30の説明に戻る。必須ではないが、弱酸化剤制御部41における弱酸化剤の供給条件を好適に制御するため、排水処理部30は、異臭物質に係るパラメータを測定する異臭パラメータ測定部31を有することが好ましい。なお、異臭パラメータ測定部31と異臭パラメータ測定部70とを区別するため、異臭パラメータ測定部31を「第1異臭パラメータ測定部31」ともいい、異臭パラメータ測定部70を「第2異臭パラメータ測定部70」ともいう。
[Odor-odor parameter measurement unit 31]
Here, the description of the waste water treatment unit 30 is once returned. Although not essential, in order to suitably control the supply conditions of the weak oxidant in the weak oxidant control unit 41, the waste water treatment unit 30 preferably includes a odor parameter measurement unit 31 that measures a parameter related to a odor substance. In order to distinguish the odor parameter measurement unit 31 and the odor parameter measurement unit 70, the odor parameter measurement unit 31 is also referred to as a “first odor parameter measurement unit 31”, and the odor parameter measurement unit 70 is referred to as a “second odor parameter measurement unit 31. 70 ".

第1パラメータ測定部31で測定されたパラメータは、弱酸化剤制御部51における弱酸化剤の供給条件の制御に供されてもよい。第1パラメータ測定部31の例として、第1酸化還元電位測定部、第1溶存硫化物濃度測定部、第1硫化水素濃度測定部等が挙げられる。以下、これら3種のパラメータ測定部31について説明する。   The parameter measured by the first parameter measurement unit 31 may be used for control of the weak oxidant supply condition in the weak oxidant control unit 51. Examples of the first parameter measurement unit 31 include a first redox potential measurement unit, a first dissolved sulfide concentration measurement unit, and a first hydrogen sulfide concentration measurement unit. Hereinafter, these three types of parameter measurement units 31 will be described.

(第1酸化還元電位測定部)
第1酸化還元電位測定部は、排水処理部30及び/又は再供給部50内の水の酸化還元電位を測定する機能を有する。第1酸化還元電位測定部の設置箇所は特に制限されるものではないが、微生物や菌の繁殖による水の変化に素早く対応できるようにするため、有機酸生成微生物や硫酸塩還元菌の繁殖が起こりやすい箇所にするのが好ましい。また、第1酸化還元電位測定部は、排水処理部30の水の酸化還元電位を直接測定してもよいし、排水処理部30から採取した水の酸化還元電位を測定してもよい。なお、排水処理部30から水を採取する場合、ろ過等の処理を施してもよい。
(First redox potential measurement unit)
The first oxidation-reduction potential measurement unit has a function of measuring the oxidation-reduction potential of water in the wastewater treatment unit 30 and / or the resupply unit 50. The installation location of the first oxidation-reduction potential measurement unit is not particularly limited, but in order to be able to respond quickly to changes in water due to the growth of microorganisms and fungi, the propagation of organic acid-producing microorganisms and sulfate-reducing bacteria It is preferable to make it easy to occur. The first oxidation-reduction potential measurement unit may directly measure the oxidation-reduction potential of water in the wastewater treatment unit 30, or may measure the oxidation-reduction potential of water collected from the wastewater treatment unit 30. In addition, when collecting water from the waste water treatment part 30, you may perform processes, such as filtration.

(第1溶存硫化物濃度測定部)
第1溶存硫化物濃度測定部は、排水処理部30及び/又は再供給部50内の水の溶存硫化物濃度を測定する機能を有する。第1溶存硫化物濃度測定部の設置箇所は特に制限されるものではないが、微生物や菌の繁殖による水の変化に素早く対応できるようにするため、有機酸生成微生物や硫酸塩還元菌の繁殖が起こりやすい箇所にするのが好ましい。また、第1溶存硫化物濃度測定部は、排水処理部30部の水の溶存硫化物濃度を直接測定してもよいし、排水処理部30から採取した水の溶存硫化物濃度を測定してもよい。なお、排水処理部30から水を採取する場合、ろ過等の処理を施してもよい。
(First dissolved sulfide concentration measurement unit)
The first dissolved sulfide concentration measurement unit has a function of measuring the dissolved sulfide concentration of water in the wastewater treatment unit 30 and / or the resupply unit 50. The location of the first dissolved sulfide concentration measurement unit is not particularly limited, but in order to be able to respond quickly to changes in water due to the growth of microorganisms and fungi, the propagation of organic acid-producing microorganisms and sulfate-reducing bacteria It is preferable to make it a place where the occurrence of a tendency to occur. The first dissolved sulfide concentration measurement unit may directly measure the dissolved sulfide concentration of the water in the wastewater treatment unit 30 parts, or measure the dissolved sulfide concentration of the water collected from the wastewater treatment unit 30. Also good. In addition, when collecting water from the waste water treatment part 30, you may perform processes, such as filtration.

(第1硫化水素濃度測定部)
第1硫化水素濃度測定部は、排水処理部30及び/又は再供給部50付近の空気中の硫化水素濃度を測定する機能を有する。硫化水素濃度の測定部設置箇所は特に制限されるものではないが、硫酸塩還元菌の繁殖による硫化水素の発生に素早く対応できるようにするため、有機酸生成微生物や硫酸塩還元菌の繁殖が起こりやすい箇所付近にするのが好ましい。
(First hydrogen sulfide concentration measurement unit)
The first hydrogen sulfide concentration measurement unit has a function of measuring the hydrogen sulfide concentration in the air near the wastewater treatment unit 30 and / or the resupply unit 50. The location where the hydrogen sulfide concentration measurement unit is installed is not particularly limited, but organic acid-producing microorganisms and sulfate-reducing bacteria can be propagated in order to respond quickly to the generation of hydrogen sulfide due to the propagation of sulfate-reducing bacteria. It is preferable to make it near a place where it easily occurs.

[殺菌剤供給部60、異臭パラメータ測定部70]
紙製造装置1は、一以上の紙製造部10,10’等のうち、処理水等供給部40によって処理水等が供給される紙製造部10,10’等の少なくとも一つに殺菌剤を供給する殺菌剤供給部60と、殺菌剤供給部60から送られる水に対し、異臭パラメータに係る値を測定する異臭パラメータ測定部70とをさらに有することが好ましい。
[Bactericidal agent supply unit 60, odor parameter measurement unit 70]
The paper manufacturing apparatus 1 supplies a sterilizing agent to at least one of the one or more paper manufacturing units 10, 10 ′, etc., to which the treated water is supplied by the processing water supply unit 40, etc. It is preferable to further include a bactericidal agent supply unit 60 to be supplied and a different odor parameter measurement unit 70 that measures a value related to a different odor parameter with respect to water sent from the bactericide supply unit 60.

本発明は、弱酸化剤供給部50での弱酸化剤の供給によって、紙製造装置1における硫化水素の発生量を抑制することに加え、紙製造装置1に殺菌剤供給部14を設けることで、防臭性をよりいっそう高め、かつ、紙製造装置1の腐食を抑え、コストの低減を実現したことに意義を有する。   In the present invention, in addition to suppressing the amount of hydrogen sulfide generated in the paper manufacturing apparatus 1 by supplying the weak oxidant in the weak oxidant supply section 50, the disinfectant supply section 14 is provided in the paper manufacturing apparatus 1. It is significant that the deodorizing property is further improved, the corrosion of the paper manufacturing apparatus 1 is suppressed, and the cost is reduced.

殺菌剤供給部60の設置箇所は特に制限されるものではないが、殺菌剤を紙製造部10,10’の内部で効率よく循環できるようにするため、殺菌剤供給部60を白水サイロ127、回収水タンク133に連通する箇所に設けることが好ましい。また、滞留時間が比較的長く、腐敗が進行しやすい箇所、すなわち古紙パルパ111、ブロークタンク112、ミキシングチェスト113に連通する箇所にも殺菌剤供給部60を設けることが好ましい。   The location of the disinfectant supply unit 60 is not particularly limited, but in order to efficiently circulate the disinfectant inside the paper manufacturing unit 10 or 10 ', the disinfectant supply unit 60 is connected to the white water silo 127, It is preferably provided at a location communicating with the recovered water tank 133. In addition, it is preferable to provide the disinfectant supply unit 60 at a place where the residence time is relatively long and the spoilage is likely to proceed, that is, a place communicating with the waste paper pulper 111, the broke tank 112, and the mixing chest 113.

(殺菌剤)
殺菌剤の一例として、結合塩素型の殺菌剤が挙げられる。結合塩素型の殺菌剤は、遊離塩素を放出する塩素ドナーと、アンモニア、アンモニウム塩又は有機窒素化合物のいずれかとを適当な条件で反応させることによって得られる。塩素ドナーは、特に制限されるものではないが、次亜塩素酸ナトリウムが好ましい。また、アンモニウム塩は特に制限されるものではないが、臭化アンモニウム等のハロゲン化アンモニウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等が好ましく、有機アミンは、スルファミン酸や尿素等が好ましい。これらは、その酸化力の高さによって紙製造部10の循環水の酸化還元電位を上昇させることで、有機酸生成微生物や硫酸塩還元菌が活動できる嫌気状態になることを防止することができる。
(Fungicide)
An example of the bactericidal agent is a combined chlorine type bactericidal agent. A combined chlorine-type disinfectant is obtained by reacting a chlorine donor that releases free chlorine with either ammonia, an ammonium salt, or an organic nitrogen compound under appropriate conditions. The chlorine donor is not particularly limited, but sodium hypochlorite is preferable. Further, the ammonium salt is not particularly limited, but ammonium halide such as ammonium bromide, ammonium chloride, ammonium sulfate, ammonium nitrate and the like are preferable, and the organic amine is preferably sulfamic acid, urea and the like. These can prevent the anaerobic state in which organic acid-producing microorganisms and sulfate-reducing bacteria can be active by increasing the redox potential of the circulating water of the paper manufacturing unit 10 due to its high oxidizing power. .

また、殺菌剤の他の一例として、水中で次亜塩素酸及び/又は次亜臭素酸を生じる化合物が挙げられる。例えば、塩素、二酸化塩素、高度さらし粉、次亜塩素酸、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム、次亜塩素酸アンモニウム、次亜塩素酸マグネシウム、次亜臭素酸、次亜臭素酸ナトリウム、次亜臭素酸カリウム、次亜臭素酸カルシウム、次亜臭素酸アンモニウム、次亜臭素酸マグネシウム、クロル化及び/又はブロム化ヒダントイン類、クロル化及び/又はブロム化イソシアヌル酸及びそのナトリウム塩やカリウム塩等が挙げられる。これらも、その酸化力によって紙製造部10,10’の循環水の酸化還元電位を上昇させることで、有機酸生成微生物や硫酸塩還元菌が活動できる嫌気状態になることを防止できる。   Moreover, the compound which produces | generates hypochlorous acid and / or hypobromite in water as another example of a disinfectant is mentioned. For example, chlorine, chlorine dioxide, advanced bleaching powder, hypochlorous acid, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, ammonium hypochlorite, magnesium hypochlorite, hypobromite, Sodium hypobromite, potassium hypobromite, calcium hypobromite, ammonium hypobromite, magnesium hypobromite, chlorinated and / or brominated hydantoins, chlorinated and / or brominated isocyanuric acid and The sodium salt, potassium salt, etc. are mentioned. These can also prevent the anaerobic state in which the organic acid-producing microorganisms and sulfate-reducing bacteria can be active by raising the oxidation-reduction potential of the circulating water of the paper production unit 10, 10 ′ by its oxidizing power.

そして、殺菌剤の他の一例として、有機殺菌剤が挙げられる。有機殺菌剤として、例えば、2−ブロモ−2−ニトロプロパン−1,3−ジオール、2,2−ジブロモ−2−ニトロ−1−エタノール、2,2−ジブロモ−3−ニトリロプロピオンアミド、1,4−ビス(ブロモアセトキシ)−2−ブテン等が挙げられる。   And an organic germicide is mentioned as another example of a germicide. Examples of organic fungicides include 2-bromo-2-nitropropane-1,3-diol, 2,2-dibromo-2-nitro-1-ethanol, 2,2-dibromo-3-nitrilopropionamide, 1, 4-bis (bromoacetoxy) -2-butene and the like can be mentioned.

なお、殺菌剤の種類は、1種類を単独で用いてもよいし、複数種類を併用してもよい。   In addition, the kind of disinfectant may be used individually by 1 type, and may use multiple types together.

(殺菌剤制御部61)
必須ではないが、殺菌剤供給部60は、殺菌剤供給部14における殺菌剤の供給条件を制御する殺菌剤制御部61を含むことが好ましい。本明細書において、「殺菌剤の供給条件」とは、単位時間あたりの添加量、添加を行う時間、添加を行う頻度又は添加を行う箇所等をいう。
(Bactericide control unit 61)
Although not essential, the bactericide supply unit 60 preferably includes a bactericide control unit 61 that controls the supply conditions of the bactericide in the bactericide supply unit 14. In the present specification, the “bactericide supply condition” refers to the amount of addition per unit time, the time for addition, the frequency of addition, the location for addition, and the like.

殺菌剤の供給条件は、異臭物質に係るパラメータに基づいて決定してもよい。異臭物質に係るパラメータとしては、水の酸化還元電位、水中の溶存硫化物濃度、空気中の硫化水素濃度の測定値等が挙げられる。これらのパラメータについては、いずれか1つのパラメータを用いても、2つ以上のパラメータを組み合わせて用いてもよい。1つのパラメータを用いる場合、より簡易な系で防臭することができるため好ましい。2つ以上のパラメータを組み合わせる場合、総合的に供給条件を検討することができ、よりいっそう正確に弱酸化剤の供給条件を見積もることができるため好ましい。   The supply condition of the bactericide may be determined based on a parameter related to the off-flavor substance. Examples of parameters relating to off-flavors include water redox potential, dissolved sulfide concentration in water, and measured values of hydrogen sulfide concentration in air. As for these parameters, any one parameter may be used, or two or more parameters may be used in combination. When one parameter is used, it is preferable because deodorization can be achieved with a simpler system. When two or more parameters are combined, it is preferable because the supply conditions can be comprehensively studied and the supply conditions of the weak oxidant can be estimated more accurately.

殺菌剤の供給条件決定の手法は、特に制限されるものではないが、酸化還元電位の低下により有機酸生成微生物や硫酸塩還元菌が繁殖することを未然に防ぐため、後述するパラメータ測定部15での測定結果が第2の閾値以上になるように殺菌剤の供給条件を制御するのが好ましい。   The method for determining the supply conditions of the bactericide is not particularly limited, but in order to prevent the organic acid-producing microorganisms and sulfate-reducing bacteria from breeding due to the reduction of the oxidation-reduction potential, the parameter measurement unit 15 described later is used. It is preferable to control the supply conditions of the bactericidal agent so that the measurement result at is equal to or greater than the second threshold value.

第2の閾値は、特に限定されるものでないが、硫酸塩還元菌が、硫酸イオンを還元し、異臭の原因となり得る硫化水素を発生することを好適に抑制できるようにするため、第2の閾値は、−250mV以上であることが好ましく、−200mV以上であることがより好ましく、−100mV以上であることがさらに好ましい。とりわけ、硫酸塩還元菌の繁殖のみならず、有機酸生成微生物の繁殖も抑制し、硫化水素のみならず、有機酸の生成も好適に抑制できることから、第2の閾値は、0mV以上であることが特に好ましい。   Although the second threshold is not particularly limited, the second threshold is preferably used in order to suitably suppress the sulfate-reducing bacteria from reducing sulfate ions and generating hydrogen sulfide that can cause a strange odor. The threshold is preferably −250 mV or more, more preferably −200 mV or more, and further preferably −100 mV or more. In particular, not only the growth of sulfate-reducing bacteria but also the growth of organic acid-producing microorganisms can be suppressed, and not only hydrogen sulfide but also the generation of organic acids can be suitably suppressed. Is particularly preferred.

第2の閾値の上限は特に限定されるものでないが、殺菌剤の過剰添加によって、殺菌剤のコスト及び環境負荷のリスクが増加することを抑えるため、第2の閾値は、500mV以下であることが好ましく、400mV以下であることがより好ましい。   The upper limit of the second threshold value is not particularly limited, but the second threshold value is 500 mV or less in order to suppress an increase in the cost of the germicide and the risk of environmental burden due to excessive addition of the germicide. Is preferable, and it is more preferable that it is 400 mV or less.

[異臭パラメータ測定部70]
異臭パラメータ測定部70は、殺菌剤供給部60から送られる水に対し、異臭パラメータに係る値を測定する機能を有する。異臭パラメータ測定部70での測定値は、殺菌剤制御部61における殺菌剤の供給条件の制御に供されてもよい。異臭パラメータ測定部70は、酸化還元電位測定部、溶存硫化物濃度測定部、空気中の硫化水素濃度測定部等から選択される1以上を含む。
[Odor-odor parameter measuring unit 70]
The off-flavor parameter measuring unit 70 has a function of measuring a value related to off-flavor parameters with respect to water sent from the bactericide supply unit 60. The measured value in the off-flavor parameter measuring unit 70 may be used for controlling the supply conditions of the bactericide in the bactericide control unit 61. The off-flavor parameter measurement unit 70 includes one or more selected from an oxidation-reduction potential measurement unit, a dissolved sulfide concentration measurement unit, a hydrogen sulfide concentration measurement unit in the air, and the like.

(酸化還元電位測定部)
酸化還元電位測定部は、紙製造部10,10’内の水の酸化還元電位を測定する機能を有する。酸化還元電位測定装置の設置箇所は、特に制限されるものではないが、微生物や菌の繁殖による水の変化に素早く対応できるようにするため、有機酸生成微生物や硫酸塩還元菌の繁殖が起こりやすい箇所にするのが好ましい。また、酸化還元電位測定部は、紙製造部10,10’の水を直接測定してもよいし、紙製造部10,10’から採取した水を測定してもよい。なお、紙製造部10,10’から水を採取する場合、ろ過等の処理を施してもよい。
(Redox potential measurement unit)
The oxidation-reduction potential measuring unit has a function of measuring the oxidation-reduction potential of water in the paper manufacturing units 10, 10 ′. The installation location of the oxidation-reduction potential measuring device is not particularly limited, but the organic acid-producing microorganisms and sulfate-reducing bacteria propagate in order to respond quickly to changes in water caused by the propagation of microorganisms and bacteria. It is preferable to make it an easy place. Further, the oxidation-reduction potential measuring unit may directly measure the water of the paper manufacturing unit 10, 10 ′, or may measure the water collected from the paper manufacturing unit 10, 10 ′. In addition, when collecting water from paper manufacturing departments 10 and 10 ', processing, such as filtration, may be performed.

(溶存硫化物濃度測定部)
溶存硫化物濃度測定部は、紙製造部10,10’内の水の溶存硫化物濃度を測定する機能を有する。溶存硫化物濃度測定装置の設置箇所は特に制限されるものではないが、微生物や菌の繁殖による水の変化に素早く対応できるようにするため、有機酸生成微生物や硫酸塩還元菌の繁殖が起こりやすい箇所にするのが好ましい。また、溶存硫化物濃度測定部は、紙製造部10,10’の水の溶存硫化物濃度を直接測定してもよいし、紙製造部10から採取した水の溶存硫化物濃度を測定してもよい。なお、紙製造部10,10’から水を採取する場合、ろ過等の処理を施してもよい。
(Dissolved sulfide concentration measurement unit)
The dissolved sulfide concentration measuring unit has a function of measuring the dissolved sulfide concentration of water in the paper manufacturing unit 10, 10 ′. The location of the device for measuring the concentration of dissolved sulfide is not particularly limited, but organic acid-producing microorganisms and sulfate-reducing bacteria are propagated in order to respond quickly to changes in water caused by the propagation of microorganisms and fungi. It is preferable to make it an easy place. The dissolved sulfide concentration measuring unit may directly measure the dissolved sulfide concentration of water in the paper manufacturing unit 10 or 10 ′, or measure the dissolved sulfide concentration of water collected from the paper manufacturing unit 10. Also good. In addition, when collecting water from paper manufacturing departments 10 and 10 ', processing, such as filtration, may be performed.

(硫化水素濃度測定部)
硫化水素濃度測定部は、紙製造部10,10’内の付近の空気中の硫化水素濃度を測定する機能を有する。硫化水素濃度測定装置の設置箇所は特に制限されるものではないが、硫酸塩還元菌の繁殖による硫化水素の発生に素早く対応できるようにするため、硫酸塩還元菌の繁殖が起こりやすい箇所付近にするのが好ましい。
(Hydrogen sulfide concentration measurement unit)
The hydrogen sulfide concentration measuring unit has a function of measuring the hydrogen sulfide concentration in the air in the vicinity of the paper manufacturing unit 10, 10 ′. The installation location of the hydrogen sulfide concentration measuring device is not particularly limited, but in order to be able to respond quickly to the generation of hydrogen sulfide due to the propagation of sulfate-reducing bacteria, it is located near the place where sulfate-reducing bacteria are likely to propagate. It is preferable to do this.

<排水処理方法>
次に、本実施形態に係る排水処理方法について説明する。本実施形態に係る排水処理方法は、原料から紙を製造する紙製造部10からの排水を処理することによって生じる処理水、スカム及び汚泥からなる群より選択される少なくとも一以上に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤で処理するとともに、一以上の紙製造部10,10’等のうち、弱酸化剤で処理された弱酸化剤処理水が供給される紙製造部10,10’等の少なくとも一つに対して殺菌剤を供給する工程を含む。
<Wastewater treatment method>
Next, the waste water treatment method according to this embodiment will be described. The waste water treatment method according to the present embodiment is an aqueous solution for at least one selected from the group consisting of treated water, scum, and sludge generated by treating waste water from the paper manufacturing unit 10 that produces paper from raw materials. A weak oxidant treated with a weak oxidant in one or more of the paper manufacturing units 10, 10 ′, etc. while being treated with a weak oxidant whose redox potential is lower than the redox potential of an aqueous solution of sodium hypochlorite. Including a step of supplying a disinfectant to at least one of the paper manufacturing units 10 and 10 ′ to which treated water is supplied.

排水は、原料から紙を製造する装置から排水された水であれば特に限定されるものでなく、この装置が図1の紙製造部10,10’と同じ構成を有するか否かに限定されるものではない。また、排水は、汚泥及びスカムのように固形成分の含有量が多いものでもよいし、処理回収水のように固形成分の含有量が少ないものでもよい。また、排出後、薬剤処理等、さらなる処理を施されていてもよい。   The drainage is not particularly limited as long as it is water drained from an apparatus for producing paper from raw materials, and is limited to whether or not this apparatus has the same configuration as the paper production units 10 and 10 'of FIG. It is not something. In addition, the waste water may have a large solid component content such as sludge and scum, or may have a small solid component content such as treated recovered water. Moreover, after discharge | emission, further processes, such as a chemical | medical agent process, may be performed.

弱酸化剤の供給方法は、特に限定されるものではなく、間欠的に行っても、連続的に行ってもよい。また、供給条件は、弱酸化剤供給装置50に、弱酸化剤の供給条件を制御する弱酸化剤制御部51を設けることに加え、排水処理部30に第1異臭パラメータ測定部31を設け、第1異臭パラメータ測定部31における酸化還元電位、溶存硫化物濃度、硫化水素濃度測定部等の測定結果に基づいて弱酸化剤制御部51を制御するようにしてもよい。   The method for supplying the weak oxidant is not particularly limited, and may be performed intermittently or continuously. In addition to providing the weak oxidant supply device 50 with the weak oxidant control unit 51 for controlling the supply condition of the weak oxidant, the supply condition is provided with the first off-flavor parameter measuring unit 31 in the waste water treatment unit 30. The weak oxidant control unit 51 may be controlled based on the measurement results of the redox potential, dissolved sulfide concentration, hydrogen sulfide concentration measurement unit and the like in the first off-flavor parameter measurement unit 31.

弱酸化剤の供給条件の決定手法は、特に制限されるものではないが、例えば、第1異臭パラメータ測定部31として酸化還元電位測定部を用いる場合、その測定結果が特定の閾値以上になるように弱酸化剤の供給条件を制御することが好ましい。より具体的には、酸化還元電位が第1の閾値を下回ると供給を開始することが好ましく、また、酸化還元電位が第1の閾値を上回るよう供給することが好ましい。酸化還元電位が低下し有機酸生成微生物や硫酸塩還元菌が繁殖することを未然に防ぐことができるからである。また、弱酸化剤の添加は、手動又は自動いずれによって行ってもよい。   The method for determining the supply condition of the weak oxidant is not particularly limited. For example, when the oxidation-reduction potential measurement unit is used as the first odor parameter measurement unit 31, the measurement result is equal to or greater than a specific threshold value. It is preferable to control the supply conditions of the weak oxidant. More specifically, the supply is preferably started when the oxidation-reduction potential is lower than the first threshold, and the supply is preferably performed so that the oxidation-reduction potential exceeds the first threshold. This is because it is possible to prevent the oxidation-reduction potential from decreasing and the organic acid-producing microorganisms and sulfate-reducing bacteria to proliferate. Further, the weak oxidizing agent may be added manually or automatically.

硫酸塩還元菌が、硫酸イオンを還元し、異臭の原因となり得る硫化水素を発生することを好適に抑制できるようにするため、第1の閾値は、−250mV以上であることが好ましく、−200mV以上であることがより好ましく、−100mV以上であることがさらに好ましい。とりわけ、硫酸塩還元菌の繁殖のみならず、有機酸生成微生物の繁殖も抑制し、硫化水素のみならず、有機酸の生成も好適に抑制できることから、第1の閾値は、0mV以上であることが特に好ましい。   The first threshold value is preferably −250 mV or more, and −200 mV so that the sulfate-reducing bacteria can suitably suppress the generation of hydrogen sulfide that can reduce sulfate ions and cause off-flavors. More preferably, it is -100 mV or more. In particular, not only the growth of sulfate-reducing bacteria but also the growth of organic acid-producing microorganisms can be suppressed, and not only hydrogen sulfide but also the production of organic acids can be suitably suppressed. Therefore, the first threshold value is 0 mV or more. Is particularly preferred.

第1の閾値の上限は特に限定されるものでないが、弱酸化剤の過剰添加によって、殺菌剤のコスト及び環境負荷のリスクが増加することを抑えるため、第1の閾値は、300mV以下であることが好ましく、200mV以下であることがより好ましい。   The upper limit of the first threshold is not particularly limited, but the first threshold is 300 mV or less in order to suppress an increase in the cost of the bactericide and the risk of environmental burden due to excessive addition of a weak oxidizing agent. It is preferable that it is 200 mV or less.

閾値を上述の下限以上、かつ、上述の上限以下の値に定めることで、弱酸化剤の種類にかかわらず、その弱酸化剤に応じた最小の供給量で硫酸塩還元菌及び有機酸生成微生物の繁殖を好適に抑制できるため、コストや環境負荷の観点からも好ましい。   Regardless of the type of weak oxidant, by setting the threshold to a value not less than the above lower limit and not more than the above upper limit, sulfate-reducing bacteria and organic acid-producing microorganisms with the minimum supply amount according to the weak oxidant Is preferable from the viewpoint of cost and environmental load.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

<試験1>酸化剤によるスカムの防臭効果の検討 <Test 1> Examination of deodorizing effect of scum by oxidizing agent

Figure 0005910720
Figure 0005910720

〔試料の調製〕
図1に記載の紙製造装置1における排水部20に含まれる排水を、加圧浮上式分離装置スーパーセル(クロフタ社製)によって固液分離した後、排水ピットに1時間貯留し、スカムを得た。なお、スカムに含まれる硫化水素濃度を測定したところ、約10ppmであった。
(Sample preparation)
After the wastewater contained in the drainage section 20 in the paper manufacturing apparatus 1 shown in FIG. 1 is solid-liquid separated by a pressurized floating separator Supercell (manufactured by Klofter), the wastewater is stored in a drainage pit for 1 hour to obtain a scum. It was. The concentration of hydrogen sulfide contained in the scum was measured and found to be about 10 ppm.

続いて、スカム200mlを容量500mlの容器に収容し、表2に記載の酸化剤を表1に記載の濃度になるように添加し、撹拌することで、実施例及び比較例に係る試料を得た。   Subsequently, 200 ml of scum was placed in a container having a capacity of 500 ml, the oxidizing agent shown in Table 2 was added so as to have the concentration shown in Table 1, and stirring was performed, thereby obtaining samples according to Examples and Comparative Examples. It was.

〔評価〕
酸化還元電位電極(製品名:TPX999Si,東興化学社製)を用い、実施例及び比較例に係る試料の酸化還元電位を、酸化剤添加後5分後、酸化剤添加後30分後、酸化剤添加後90分後のそれぞれについて測定した。結果を表3に示す。
[Evaluation]
Using an oxidation-reduction potential electrode (product name: TPX999Si, manufactured by Toko Chemical Co., Ltd.), the oxidation-reduction potential of the samples according to Examples and Comparative Examples was 5 minutes after the addition of the oxidant and 30 minutes after the addition of the oxidant. It measured about each 90 minutes after addition. The results are shown in Table 3.

Figure 0005910720
Figure 0005910720

スカム試料に対して2−ブロモ−2−ニトロプロパン−1,3−ジオール、過酸化水素又は亜塩素酸ナトリウムを加えると、次亜塩素酸ナトリウムを加える場合に比べ、高い酸化還元電位で推移することが確認された(実施例1〜3)。また、実施例1〜3において、弱酸化剤の種類ごとにそれぞれ比較すると、いずれの時間においても、弱酸化剤濃度が高い試料ほど高い酸化還元電位を有することが確認された。弱酸化剤の酸化力や添加する水の環境等により、弱酸化剤の最適添加量は異なるが、排水処理部に含まれる水の酸化還元電位の閾値を予め定め、この閾値に近い値で酸化還元電位が推移するように弱酸化剤の添加量を制御することで、弱酸化剤の種類に関わらず、弱酸化剤の使用量をできるだけ少なく抑えることができる。これにより、紙製造装置の腐食、コストの低減及び環境負荷を抑えることが可能である。   When 2-bromo-2-nitropropane-1,3-diol, hydrogen peroxide, or sodium chlorite is added to the scum sample, it changes at a higher redox potential than when sodium hypochlorite is added. It was confirmed (Examples 1-3). Further, in Examples 1 to 3, it was confirmed that samples having a higher weak oxidant concentration had a higher redox potential at any time when compared with each type of weak oxidant. Although the optimum amount of weak oxidizer varies depending on the oxidizing power of the weak oxidizer and the environment of the water to be added, etc., the threshold value of the oxidation-reduction potential of the water contained in the wastewater treatment unit is set in advance, and the oxidation is close to this threshold By controlling the amount of weak oxidant added so that the reduction potential changes, the amount of weak oxidant used can be kept as small as possible regardless of the type of weak oxidant. Thereby, it is possible to reduce the corrosion of the paper manufacturing apparatus, cost reduction and environmental load.

弱酸化剤の中でも、2−ブロモ−2−ニトロプロパン−1,3−ジオール及び過酸化水素は、弱酸化剤をスカム試料に加えてからスカム試料の酸化還元電位が上昇するまでにやや時間を要するが、高い酸化還元電位をより長時間維持できる。一方、亜塩素酸ナトリウムは、弱酸化剤をスカム試料に加えた後、比較的短時間でスカム試料の酸化還元電位を上昇させることができるが、弱酸化剤が2−ブロモ−2−ニトロプロパン−1,3−ジオール又は過酸化水素である場合に比べ、スカム試料の酸化還元電位の低下が短時間で始まる。弱酸化剤の種類によるスカム試料の酸化還元電位の経時変化の相違は、弱酸化剤の酸化力の相違によるものと推察される。   Among the weak oxidizers, 2-bromo-2-nitropropane-1,3-diol and hydrogen peroxide take some time from the addition of the weak oxidizer to the scum sample until the redox potential of the scum sample increases. In short, a high redox potential can be maintained for a longer time. On the other hand, sodium chlorite can increase the redox potential of a scum sample in a relatively short time after adding a weak oxidant to the scum sample, but the weak oxidant is 2-bromo-2-nitropropane. Compared with the case of -1,3-diol or hydrogen peroxide, the reduction of the redox potential of the scum sample starts in a short time. The difference in the redox potential of the scum sample over time due to the type of weak oxidant is presumed to be due to the difference in the oxidizing power of the weak oxidant.

<試験2>酸化剤及び殺菌剤の二段階添加によるスカムの防臭効果の検討 <Test 2> Examination of deodorizing effect of scum by two-step addition of oxidizing agent and disinfectant

Figure 0005910720
Figure 0005910720

〔試料の調製〕
まず、実施例4〜6及び比較例3に係る試料の調製方法について説明する。まず、実施例1〜3及び比較例1と同様の操作を行った。実施例1〜3及び比較例1と同様の操作によって得られるサンプルを酸化剤添加後サンプルという。続いて、この酸化剤添加後サンプルを40℃で2時間静置し、図1に記載の紙製造装置1を用いて製造される段ボール原紙の3%パルプスラリーに対し、静置後の酸化剤添加後サンプルを20%(w/w)の割合で混合、撹拌した。そして、撹拌後の酸化剤添加後サンプルに対し、臭化アンモニウムと次亜塩素酸ナトリウムとをモル比1:1で混合反応した結合塩素型殺菌剤(純水で2%(w/w)に調整した臭化アンモニウム水溶液と、純水でCl基準の有効塩素濃度を5000mg/Lに調整した次亜塩素酸ナトリウム水溶液とを、重量比1:1で撹拌しながら混合することによって得られる結合塩素型殺菌剤)を添加し、40℃で1日静置した。このようにすることで、実施例4〜6及び比較例3に係る酸化剤・殺菌剤添加後試料を得た。
(Sample preparation)
First, sample preparation methods according to Examples 4 to 6 and Comparative Example 3 will be described. First, the same operations as in Examples 1 to 3 and Comparative Example 1 were performed. Samples obtained by the same operations as in Examples 1 to 3 and Comparative Example 1 are referred to as samples after addition of an oxidizing agent. Subsequently, the sample after the addition of the oxidant is allowed to stand at 40 ° C. for 2 hours, and the oxidant after the standing is applied to the 3% pulp slurry of the corrugated cardboard produced using the paper manufacturing apparatus 1 illustrated in FIG. After the addition, the sample was mixed and stirred at a rate of 20% (w / w). Then, a combined chlorine-type disinfectant (2% (w / w) with pure water) obtained by mixing and reacting ammonium bromide and sodium hypochlorite in a molar ratio of 1: 1 to the sample after addition of the oxidizing agent after stirring. Bond obtained by mixing an adjusted aqueous solution of ammonium bromide with an aqueous sodium hypochlorite solution prepared by adjusting the effective chlorine concentration based on Cl 2 to 5000 mg / L with pure water while stirring at a weight ratio of 1: 1. (Chlorine-type disinfectant) was added and allowed to stand at 40 ° C. for 1 day. By doing in this way, the sample after the oxidizing agent and disinfectant addition which concern on Examples 4-6 and the comparative example 3 was obtained.

続いて、比較例4に係る試料の調製方法について説明する。まず、比較例2と同様の操作を行った。比較例2と同様の操作によって得られるサンプルを前処理サンプルという。続いて、この前処理サンプルを40℃で2時間静置し、図1に記載の紙製造装置1を用いて製造される段ボール原紙の3%パルプスラリーに対し、静置後の前処理サンプルを20%(w/w)の割合で混合、撹拌した。そして、撹拌後の前処理サンプルを40℃で1日静置した。このようにすることで、比較例4に係る試料を得た。   Next, a sample preparation method according to Comparative Example 4 will be described. First, the same operation as in Comparative Example 2 was performed. A sample obtained by the same operation as in Comparative Example 2 is referred to as a pretreatment sample. Subsequently, the pretreated sample is allowed to stand at 40 ° C. for 2 hours, and the pretreated sample after standing is applied to the 3% pulp slurry of the corrugated cardboard produced using the paper manufacturing apparatus 1 illustrated in FIG. The mixture was mixed and stirred at a rate of 20% (w / w). And the pre-processing sample after stirring was left still at 40 degreeC for 1 day. By doing in this way, the sample concerning the comparative example 4 was obtained.

〔評価〕
実施例4〜6及び比較例3〜4に係る試料の酸化還元電位を、試験1と同様の手法にて測定した。また、検知管(製品名:No.4LL,ガステック社製)を用い、実施例4〜6及び比較例3〜4に係る試料の硫化水素濃度を測定した。結果を表5に示す。
[Evaluation]
The oxidation-reduction potentials of the samples according to Examples 4 to 6 and Comparative Examples 3 to 4 were measured by the same method as in Test 1. Moreover, the hydrogen sulfide density | concentration of the sample which concerns on Examples 4-6 and Comparative Examples 3-4 was measured using the detection tube (Product name: No.4LL, the product made from GASTEC). The results are shown in Table 5.

Figure 0005910720
Figure 0005910720

酸化剤が2−ブロモ−2−ニトロプロパン−1,3−ジオール、過酸化水素又は亜塩素酸ナトリウム等の弱酸化剤である場合、試料の酸化還元電位が正の値であり、硫化水素の発生を好適に防止できることが確認された(実施例4〜6)。特に、弱酸化剤が2−ブロモ−2−ニトロプロパン−1,3−ジオール又は過酸化水素である場合、弱酸化剤の添加量が少なくても酸化還元電位が十分に高く、硫化水素の発生をより防止できることが確認された(実施例4、5)。   When the oxidizing agent is a weak oxidizing agent such as 2-bromo-2-nitropropane-1,3-diol, hydrogen peroxide or sodium chlorite, the redox potential of the sample is a positive value, It was confirmed that generation | occurrence | production can be prevented suitably (Examples 4-6). In particular, when the weak oxidant is 2-bromo-2-nitropropane-1,3-diol or hydrogen peroxide, the oxidation-reduction potential is sufficiently high even if the addition amount of the weak oxidant is small, and hydrogen sulfide is generated. (Examples 4 and 5) were confirmed.

一方、酸化剤が次亜塩素酸ナトリウムである場合、試料の酸化還元電位が−250mVを下回り、実施例1〜3ほど好適な硫化水素発生防止効果が認められなかった(比較例3)。特に、次亜塩素酸ナトリウムの添加量が少ないと、酸化還元電位の値は、酸化剤無添加である場合(比較例4)と略同等に低い(比較例3−1、3−2)。   On the other hand, when the oxidizing agent was sodium hypochlorite, the redox potential of the sample was less than −250 mV, and no suitable hydrogen sulfide generation preventing effect was observed as in Examples 1 to 3 (Comparative Example 3). In particular, when the amount of sodium hypochlorite added is small, the value of the oxidation-reduction potential is almost as low as that in the case where no oxidizing agent was added (Comparative Example 4) (Comparative Examples 3-1, 3-2).

以上の結果より、スカム等有機物を多量に含む試料に弱酸化剤を添加することによって、その後添加する殺菌剤の効果を十分に発揮できることが確認された。   From the above results, it was confirmed that by adding a weak oxidizing agent to a sample containing a large amount of organic matter such as scum, the effect of the bactericide added thereafter can be sufficiently exhibited.

加えて、実施例4〜6において、弱酸化剤の種類ごとにそれぞれ比較すると、弱酸化剤濃度及び殺菌剤濃度が高い試料ほど高い酸化還元電位を有することが確認された。弱酸化剤及び殺菌剤の酸化力や、弱酸化剤及び殺菌剤を添加する水の環境等により、弱酸化剤及び殺菌剤の最適添加量は異なるが、上述した第1の閾値及び第2の閾値を予め定め、これら第1の閾値及び第2の閾値に近い値で循環水の酸化還元電位が推移するように弱酸化剤及び殺菌剤の添加量を制御することで、弱酸化剤及び殺菌剤の種類に関わらず、弱酸化剤及び殺菌剤の使用量をできるだけ少なく抑えることができる。これにより、紙製造装置の腐食、コストの低減及び環境負荷を抑えることが可能である。   In addition, in Examples 4 to 6, it was confirmed that samples having higher weak oxidant concentration and bactericide concentration had higher redox potential when compared with each type of weak oxidant. Although the optimum addition amounts of the weak oxidizer and the bactericidal agent vary depending on the oxidizing power of the weak oxidizer and the bactericidal agent, the environment of water to which the weak oxidizer and the bactericidal agent are added, the first threshold value and the second threshold value described above. A threshold value is determined in advance, and the weak oxidizer and the sterilizer are controlled by controlling the addition amount of the weak oxidizer and the sterilizer so that the redox potential of the circulating water changes at values close to the first threshold value and the second threshold value. Regardless of the type of agent, the amount of weak oxidizing agent and fungicide used can be minimized. Thereby, it is possible to reduce the corrosion of the paper manufacturing apparatus, cost reduction and environmental load.

1 紙製造装置
10 紙製造部
20 排水部
30 排水処理部
40 処理水等供給部
50 弱酸化剤供給部
60 殺菌剤供給部
DESCRIPTION OF SYMBOLS 1 Paper manufacturing apparatus 10 Paper manufacturing part 20 Drainage part 30 Wastewater treatment part 40 Supply part etc. of treated water 50 Weak oxidizing agent supply part 60 Bactericidal agent supply part

Claims (6)

原料から紙を製造する紙製造部から排水された水を処理する排水処理部と、
前記排水処理部で処理が施された処理水、前記排水処理部に存在するスカム及び前記排水処理部に存在する汚泥からなる群より選択される少なくとも一以上を、前記紙製造部と同一の又は他の紙製造部に供給する処理水等供給部と、
前記排水処理部又は前記処理水等供給部における前記処理水、前記スカム及び前記汚泥からなる群より選択される少なくとも一以上に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤を供給する弱酸化剤供給部と、
一以上の紙製造部のうち、前記処理水等供給部によって前記処理水、前記スカム及び前記汚泥からなる群より選択される少なくとも一以上が供給される紙製造部の少なくとも一つに殺菌剤を供給する殺菌剤供給部とを備え
前記殺菌剤が、次亜塩素酸塩と、アンモニウム塩、アミン、アミド及びイミドからなる群から選択される1以上の化合物との反応生成物である結合型塩素化合物を含む、紙製造装置。
A wastewater treatment unit for treating water drained from a paper production unit for producing paper from raw materials;
At least one or more selected from the group consisting of treated water treated in the wastewater treatment unit, scum present in the wastewater treatment unit, and sludge present in the wastewater treatment unit is the same as the paper manufacturing unit or A treated water supply section for supplying to other paper manufacturing departments;
For at least one selected from the group consisting of the treated water, the scum and the sludge in the wastewater treatment section or the treated water supply section, the redox potential of the aqueous solution of sodium hypochlorite is the redox potential of the aqueous solution. A weak oxidant supply unit for supplying a weak oxidant smaller than the electric potential;
Among the one or more paper manufacturing units, a disinfectant is applied to at least one of the paper manufacturing units to which at least one selected from the group consisting of the treated water, the scum and the sludge is supplied by the treated water supply unit. A disinfectant supply unit for supplying ,
The paper manufacturing apparatus , wherein the disinfectant includes a combined chlorine compound that is a reaction product of hypochlorite and one or more compounds selected from the group consisting of ammonium salts, amines, amides, and imides .
前記排水処理部に含まれる水に対し、第1の酸化還元電位を測定する第1酸化還元電位測定部と、
前記第1酸化還元電位測定部での測定結果が第1の閾値以上になるように前記弱酸化剤の供給条件を制御する弱酸化剤制御部とをさらに備える、請求項1に記載の紙製造装置。
A first oxidation-reduction potential measuring unit that measures a first oxidation-reduction potential for water contained in the wastewater treatment unit;
The paper manufacture according to claim 1, further comprising: a weak oxidant control unit that controls a supply condition of the weak oxidant so that a measurement result in the first redox potential measurement unit is equal to or higher than a first threshold value. apparatus.
前記第1の閾値が−250mV以上の所定の値である、請求項2に記載の紙製造装置。   The paper manufacturing apparatus according to claim 2, wherein the first threshold value is a predetermined value of -250 mV or more. 前記処理水等供給部によって前記処理水、前記スカム及び前記汚泥からなる群より選択される少なくとも一以上が供給される紙製造部に含まれる水に対し、第2の酸化還元電位を測定する第2酸化還元電位測定部と、
前記第2酸化還元電位測定部での測定結果が第2の閾値以上になるように前記殺菌剤の供給条件を制御する殺菌剤制御部とをさらに備える、請求項1からのいずれかに記載の紙製造装置。
A second oxidation-reduction potential is measured for water contained in a paper manufacturing unit to which at least one selected from the group consisting of the treated water, the scum and the sludge is supplied by the treated water supply unit. A redox potential measurement unit;
The sterilizing agent control part which controls the supply conditions of the said sterilizing agent so that the measurement result in the said 2nd oxidation-reduction potential measurement part may become more than a 2nd threshold value is provided in any one of Claim 1 to 3 Paper manufacturing equipment.
前記第2の閾値が−250mV以上の所定の値である、請求項に記載の紙製造装置。 The paper manufacturing apparatus according to claim 4 , wherein the second threshold is a predetermined value of -250 mV or more. 原料から紙を製造する紙製造部からの排水を処理することによって生じる処理水、スカム及び汚泥からなる群より選択される少なくとも一以上に対し、水溶液の酸化還元電位が次亜塩素酸ナトリウムの水溶液の酸化還元電位よりも小さい弱酸化剤で処理するとともに、一以上の紙製造部のうち、前記弱酸化剤で処理された弱酸化剤処理水が供給される紙製造部の少なくとも一つに対して殺菌剤を供給することを含み、
前記殺菌剤が、次亜塩素酸塩と、アンモニウム塩、アミン、アミド及びイミドからなる群から選択される1以上の化合物との反応生成物である結合型塩素化合物を含む、排水処理方法。
An aqueous solution in which the redox potential of the aqueous solution is sodium hypochlorite with respect to at least one selected from the group consisting of treated water, scum and sludge generated by treating waste water from the paper production department that produces paper from raw materials And at least one of the paper manufacturing units to which the weak oxidizing agent treated water treated with the weak oxidizing agent is supplied among the one or more paper manufacturing units. Supplying a bactericidal agent ,
A wastewater treatment method , wherein the disinfectant contains a combined chlorine compound that is a reaction product of hypochlorite and one or more compounds selected from the group consisting of ammonium salts, amines, amides, and imides .
JP2014262399A 2014-12-25 2014-12-25 Paper manufacturing apparatus and waste water treatment method Active JP5910720B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014262399A JP5910720B1 (en) 2014-12-25 2014-12-25 Paper manufacturing apparatus and waste water treatment method
KR1020150159535A KR102451248B1 (en) 2014-12-25 2015-11-13 Paper manufacturing apparatus and wastewater treatment method
CN201510980217.8A CN105735045B (en) 2014-12-25 2015-12-23 Paper manufacturing device and drainage processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262399A JP5910720B1 (en) 2014-12-25 2014-12-25 Paper manufacturing apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP5910720B1 true JP5910720B1 (en) 2016-04-27
JP2016121422A JP2016121422A (en) 2016-07-07

Family

ID=55808227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262399A Active JP5910720B1 (en) 2014-12-25 2014-12-25 Paper manufacturing apparatus and waste water treatment method

Country Status (3)

Country Link
JP (1) JP5910720B1 (en)
KR (1) KR102451248B1 (en)
CN (1) CN105735045B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906004A (en) * 2016-05-24 2016-08-31 遵义亚新亚纸业有限责任公司 Wastewater treatment method in papermaking process
CN115259562A (en) * 2022-08-04 2022-11-01 恩格拜(武汉)生态科技有限公司 Air flotation scum sludge conditioning method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189974A (en) * 2018-04-26 2019-10-31 アクアス株式会社 Addition method of germicide in paper making facility
JP7262765B2 (en) * 2019-07-05 2023-04-24 日本ソリッド株式会社 Clarification treatment method for papermaking wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764237A (en) * 1993-08-31 1995-03-10 Mitsubishi Paper Mills Ltd Photographic paper and its production
JPH07189192A (en) * 1993-12-27 1995-07-25 Chuetsu Pulp Kogyo Kk Method for suppressing slime in papermaking white water system
JPH10131073A (en) * 1996-10-22 1998-05-19 Kurita Water Ind Ltd Apparatus for recovering white water
JP2005290617A (en) * 2004-03-31 2005-10-20 Hakuto Co Ltd Method for controlling slime
JP2011226043A (en) * 2010-03-31 2011-11-10 Kurita Water Ind Ltd Method for suppressing generation of slime

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336636A (en) 2004-05-25 2005-12-08 Hsp Hanbai Kk Method for sterilizing and deodorizing water for papermaking, and slime-controlling agent usable therefor
JP4914146B2 (en) * 2006-08-11 2012-04-11 株式会社片山化学工業研究所 Papermaking process water sterilization method
JP5655796B2 (en) * 2010-11-25 2015-01-21 栗田工業株式会社 How to make paper
JP5985511B2 (en) * 2011-01-24 2016-09-06 ロンザ インコーポレイテッド Use of oxidants to control microorganisms under reducing conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764237A (en) * 1993-08-31 1995-03-10 Mitsubishi Paper Mills Ltd Photographic paper and its production
JPH07189192A (en) * 1993-12-27 1995-07-25 Chuetsu Pulp Kogyo Kk Method for suppressing slime in papermaking white water system
JPH10131073A (en) * 1996-10-22 1998-05-19 Kurita Water Ind Ltd Apparatus for recovering white water
JP2005290617A (en) * 2004-03-31 2005-10-20 Hakuto Co Ltd Method for controlling slime
JP2011226043A (en) * 2010-03-31 2011-11-10 Kurita Water Ind Ltd Method for suppressing generation of slime

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906004A (en) * 2016-05-24 2016-08-31 遵义亚新亚纸业有限责任公司 Wastewater treatment method in papermaking process
CN115259562A (en) * 2022-08-04 2022-11-01 恩格拜(武汉)生态科技有限公司 Air flotation scum sludge conditioning method
CN115259562B (en) * 2022-08-04 2024-01-23 恩格拜(武汉)生态科技有限公司 Air floatation scum sludge conditioning method

Also Published As

Publication number Publication date
JP2016121422A (en) 2016-07-07
CN105735045B (en) 2018-09-25
KR20160078870A (en) 2016-07-05
KR102451248B1 (en) 2022-10-05
CN105735045A (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP6498148B2 (en) How to make paper
JP5910720B1 (en) Paper manufacturing apparatus and waste water treatment method
JP5256033B2 (en) Synergistic composition and method for inhibiting microbial growth
JP5556838B2 (en) Slime control method in pulp and paper manufacturing process
JP2011226043A (en) Method for suppressing generation of slime
KR102198264B1 (en) Method for controlling microorganisms in aqueous system
JP2007002348A (en) Controlling system of papermaking wet end environment
JP4238842B2 (en) Method for judging slime control effect and method for slime control
JP5213299B2 (en) Method and apparatus for adding slime control agent
JP2008012424A (en) Method of adding slime control agent
JP5729399B2 (en) Slime control method in pulp and paper water system
JP2014073451A (en) Industrial antibacterial method
JP2009249296A (en) Extermination agent for harmful microorganism and method for extermination of harmful microorganism using the same
JP2015150490A (en) Method of adding slime control agent
JP6548870B2 (en) Method for controlling slime in papermaking process water
JP7072436B2 (en) Environmental odor control method for paper manufacturing equipment and environmental odor control method for paper mills
JP2019189974A (en) Addition method of germicide in paper making facility
JP6249122B2 (en) Water-based microorganism control method
JP3887085B2 (en) Slime control agent and method
JP6156445B2 (en) Water-based microorganism control method
JP4636333B2 (en) How to kill microorganisms

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250