JP5910061B2 - Catalyst deterioration determination device for internal combustion engine - Google Patents

Catalyst deterioration determination device for internal combustion engine Download PDF

Info

Publication number
JP5910061B2
JP5910061B2 JP2011278155A JP2011278155A JP5910061B2 JP 5910061 B2 JP5910061 B2 JP 5910061B2 JP 2011278155 A JP2011278155 A JP 2011278155A JP 2011278155 A JP2011278155 A JP 2011278155A JP 5910061 B2 JP5910061 B2 JP 5910061B2
Authority
JP
Japan
Prior art keywords
catalyst
deterioration
downstream
inner peripheral
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011278155A
Other languages
Japanese (ja)
Other versions
JP2013130068A (en
JP2013130068A5 (en
Inventor
博昭 奥村
博昭 奥村
憲治 古久保
憲治 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2011278155A priority Critical patent/JP5910061B2/en
Publication of JP2013130068A publication Critical patent/JP2013130068A/en
Publication of JP2013130068A5 publication Critical patent/JP2013130068A5/ja
Application granted granted Critical
Publication of JP5910061B2 publication Critical patent/JP5910061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は内燃機関の触媒劣化判定装置に係り、特に、排気を浄化する触媒の劣化を早い時期に判定することができる内燃機関の触媒劣化判定装置に関する。   The present invention relates to a catalyst deterioration determination device for an internal combustion engine, and more particularly to a catalyst deterioration determination device for an internal combustion engine that can determine deterioration of a catalyst that purifies exhaust gas at an early stage.

内燃機関の排気を浄化する触媒の劣化判定は、触媒に含まれるOSC材(酸素吸蔵材;Oxygen Strage Component)のOSC能力を、触媒の上流側と下流側とに配置した排気検出器で検知することによって行っている。触媒の劣化と触媒のOSC能力の低下には相関関係があり、OSC能力の低下=触媒劣化として判断している。
従来、内燃機関の触媒劣化判定装置には、例えば特許文献1に示されるように、排気通路に設けられた触媒の上流側と下流側とに空燃比センサ(排気検出器)を配置し、触媒に流入する排気の空燃比相当量の検出信号と触媒から流出する排気の空燃比相当量の検出信号とを比較して、この比較結果に基づき触媒の劣化を判定する触媒劣化検出装置が知られている。
Degradation determination of the catalyst that purifies the exhaust gas of the internal combustion engine is performed by detecting the OSC capability of the OSC material (oxygen storage component) included in the catalyst with exhaust detectors arranged on the upstream side and the downstream side of the catalyst. By doing that. There is a correlation between the deterioration of the catalyst and the decrease in the OSC capacity of the catalyst, and it is determined that the OSC capacity is decreased = catalyst deterioration.
2. Description of the Related Art Conventionally, in a catalyst deterioration determination device for an internal combustion engine, for example, as disclosed in Patent Document 1, air-fuel ratio sensors (exhaust detectors) are arranged on the upstream side and the downstream side of a catalyst provided in an exhaust passage. There is known a catalyst deterioration detection device that compares a detection signal corresponding to an air-fuel ratio of exhaust flowing into a catalyst and a detection signal corresponding to an air-fuel ratio of exhaust flowing out of the catalyst, and determines catalyst deterioration based on the comparison result. ing.

特開平5−321642号JP-A-5-321642

ところで、内燃機関の排気装置に用いられる触媒は、図8に示すとおり、触媒の使用初期では緩やかに劣化(触媒劣化指標の減少に対するNOx排出量の増加が緩やか)し、その後一定量触媒を使用すると急激に劣化が進行(触媒劣化指標の減少に対するNOx排出量の増加が急激)する特性がある。なお、触媒劣化指標は、触媒の使用量(酸素通過量)であり、下流側の空燃比センサの電圧出力値を時間で積分して得られる。
しかし、EURO5+、EURO6などの強化された規制では、従来よりも判定レベルが下げられ、HC、NOxなどの排気成分規制値が低いレベル、触媒の劣化が従来より進行していないレベルで、触媒劣化を診断しなければならず、従来の触媒劣化判定方法では触媒の劣化を診断できないという問題がある。また、診断できたとしても、OSC判定レベルの正常・異常の差異が非常に小さいことから、誤判定となる危険性が極めて高くなる。(図8の判定ゾーン参照)
By the way, as shown in FIG. 8, the catalyst used for the exhaust system of the internal combustion engine is gradually deteriorated at the initial stage of use of the catalyst (the increase in NOx emission amount is moderated with respect to the decrease in the catalyst deterioration index), and then a certain amount of catalyst is used. Then, there is a characteristic that the deterioration rapidly progresses (NOx emission increases rapidly with respect to the decrease in the catalyst deterioration index). The catalyst deterioration index is the amount of catalyst used (oxygen passage amount), and is obtained by integrating the voltage output value of the downstream air-fuel ratio sensor with time.
However, in the enhanced regulations such as EURO5 + and EURO6, the judgment level is lowered than before, the exhaust component regulation value such as HC and NOx is low, and the catalyst is not deteriorated more than before, the catalyst is degraded. Therefore, there is a problem that the conventional catalyst deterioration judging method cannot diagnose the catalyst deterioration. Even if a diagnosis can be made, the difference between normal and abnormal OSC determination levels is very small, and the risk of erroneous determination becomes extremely high. (Refer to the judgment zone in FIG. 8)

この発明は、上記の問題に鑑みて成されたものであり、触媒の使用初期段階であっても確実に劣化の判定をすることができる内燃機関の触媒劣化判定装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a catalyst deterioration determination device for an internal combustion engine that can reliably determine deterioration even at the initial use stage of the catalyst. To do.

この発明は、内燃機関の排気通路に配置された触媒と、前記触媒の上流側と下流側とに配置された排気検出器と、前記排気検出器の出力値に基づいて前記触媒の劣化を判定する劣化判定手段とを備え、前記触媒は、早期に劣化が始まる早期劣化部と、前記早期劣化部よりも後から劣化が始まる非早期劣化部とに区分され、前記下流側の排気検出器の検出部は、前記早期劣化部から流出する排気ガスを検出するよう配置され、前記排気通路は、前記触媒を保持する触媒保持部と、排気の流れる方向において前記触媒保持部の上流側に接続された上流側排気通路部と、前記触媒保持部より小径であって前記触媒保持部の下流側に接続された下流側排気通路部と、前記触媒保持部と前記下流側排気通路部との間に排気の下流方向へ向けて徐々に縮径する縮径部とにより形成され、前記検出部は、前記触媒の非早期劣化部と早期劣化部との境界面を前記下流側排気通路部に接するまで延ばすことで描出される仮想境界面と、前記早期劣化部の下流側に位置する前記下流側排気通路部の内周面部分を前記早期劣化部の後端に接するまで延ばすことで描出される仮想内周面と、前記早期劣化部の下流側に位置する前記縮径部の前記仮想境界面及び前記仮想内周面と対向する縮径部内周面と、前記早期劣化部の下流側に位置する前記触媒保持部の前記仮想境界面及び前記仮想内周面と対向する保持部内周面と、前記早期劣化部の後端であって前記仮想境界面と前記仮想内周面と前記保持部内周面とにより区画される後端区画面と、で囲まれた検出空間に配置されたことを特徴とする。 The present invention determines the deterioration of the catalyst based on the catalyst disposed in the exhaust passage of the internal combustion engine, the exhaust detectors disposed on the upstream side and the downstream side of the catalyst, and the output value of the exhaust detector. The catalyst is divided into an early deterioration portion where deterioration starts early and a non-early deterioration portion where deterioration starts later than the early deterioration portion, and the downstream exhaust detector The detection unit is arranged to detect exhaust gas flowing out from the early deterioration unit , and the exhaust passage is connected to a catalyst holding unit that holds the catalyst and to an upstream side of the catalyst holding unit in a direction in which exhaust flows. Between the upstream exhaust passage portion, the downstream exhaust passage portion having a smaller diameter than the catalyst holding portion and connected to the downstream side of the catalyst holding portion, and the catalyst holding portion and the downstream exhaust passage portion. Gradually reduce diameter toward exhaust downstream A virtual boundary surface drawn by extending the boundary surface between the non-early deterioration portion and the early deterioration portion of the catalyst until it contacts the downstream exhaust passage portion, and A virtual inner peripheral surface depicted by extending an inner peripheral surface portion of the downstream exhaust passage portion located downstream of the early deterioration portion until it contacts the rear end of the early deterioration portion, and downstream of the early deterioration portion The virtual boundary surface of the reduced diameter portion located on the side and the inner peripheral surface of the reduced diameter portion facing the virtual inner peripheral surface, the virtual boundary surface of the catalyst holding portion located downstream of the early deterioration portion, and the A holding portion inner peripheral surface facing the virtual inner peripheral surface, a rear end section screen which is a rear end of the early deterioration portion and is partitioned by the virtual boundary surface, the virtual inner peripheral surface and the holding portion inner peripheral surface; It is arranged in a detection space surrounded by .

この発明は、触媒が早期劣化部と非早期劣化部とに区分されているので、熱耐久性が低く早期に劣化が始まる早期劣化部は、熱耐久性が高く早期劣化部よりも後から劣化が始まる非早期劣化部と比較して、高温状態に維持される時間が長くなるため、酸化速度が速くなり早期に劣化することとなる。従って、この発明は、非早期劣化部が有害物質を排出しない状態にあっても、早期劣化部は既に劣化時期を迎え有害物質を排出し始めるため、排気検出器がこの有害物質を確実に検出でき、触媒の使用開始から早い時期に確実に劣化を判定することができる。なお、主要な排気は、非早期劣化部を通過するため、大気中に排出される排気ガスの有害成分値が、基準値を越えることは無い。 The present invention, since the catalyst is divided into a premature aging section and the non-premature aging unit, early deterioration part early deterioration thermal durability rather low begins, after the early deterioration unit heat durability rather high Compared with the non-early deterioration part where deterioration starts from, the time during which the high temperature state is maintained becomes longer, so the oxidation rate becomes faster and the deterioration occurs earlier. Therefore, according to the present invention, even if the non-early deteriorated part does not emit harmful substances, the early deteriorated part already begins to discharge harmful substances at the time of deterioration, so the exhaust detector reliably detects this harmful substance. Therefore, it is possible to reliably determine deterioration at an early stage from the start of use of the catalyst. Since the main exhaust gas passes through the non-early deterioration part , the harmful component value of the exhaust gas discharged into the atmosphere does not exceed the reference value.

図1は内燃機関の触媒劣化判定装置のシステム図である。(実施例1)FIG. 1 is a system diagram of a catalyst deterioration determination device for an internal combustion engine. Example 1 図2はNOx排出量による触媒劣化指標の判定ゾーンを示す触媒劣化判定のグラフである。(実施例1)FIG. 2 is a graph of catalyst deterioration determination showing a determination zone of a catalyst deterioration index based on the NOx emission amount. Example 1 図3は前側検出空間に排気検出器を配置した触媒保持部の断面図である。(実施例1)FIG. 3 is a cross-sectional view of the catalyst holding unit in which the exhaust detector is disposed in the front detection space. Example 1 図4は高耐熱部と低耐熱部とを備える触媒を配置した触媒保持部の斜視図である。(実施例1)FIG. 4 is a perspective view of a catalyst holding unit in which a catalyst having a high heat resistant part and a low heat resistant part is arranged. Example 1 図5は後側検出空間に排気検出器を配置した触媒保持部の拡大断面図である。(実施例2)FIG. 5 is an enlarged cross-sectional view of the catalyst holding unit in which the exhaust detector is disposed in the rear detection space. (Example 2) 図6は後側検出空間に排気検出器を配置した触媒保持部の断面図である。(実施例2)FIG. 6 is a cross-sectional view of the catalyst holding unit in which the exhaust detector is disposed in the rear detection space. (Example 2) 図7は低耐熱部の上流側の部分に酸素吸蔵材を使用した触媒保持部の断面図である。(変形例)FIG. 7 is a cross-sectional view of a catalyst holding unit using an oxygen storage material in a portion upstream of the low heat resistant unit. (Modification) 図8はNOx排出量による触媒劣化指標の判定ゾーンを示す触媒劣化判定のグラフである。(従来例)FIG. 8 is a graph of catalyst deterioration determination showing a determination zone of a catalyst deterioration index based on the NOx emission amount. (Conventional example)

以下、図面に基づいて、この発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図4は、実施例1を示すものである。図1において、1は内燃機関、2は排気マニホルド、3は触媒コンバータ、4は排気管である。内燃機関1の排出する排気は、排気マニホルド2、触媒コンバータ3、排気管4により形成される排気通路5を流れる間に、触媒コンバータ3内に配置した触媒6により有害成分を除去され、排気管4により外部に導かれる。
前記触媒6の劣化を判定する触媒劣化判定装置7は、排気通路5に配置した触媒6の上流側と下流側とにそれぞれ排気検出器8・9を配置している。上流側の排気検出器8は、検出部10を備え、触媒6に流入する排気の空燃比相当量の検出信号を出力する。下流側の排気検出器9は、検出部11を備え、触媒6から流出する排気の空燃比相当量の検出信号を出力する。上流側の排気検出器8と下流側の排気検出器9とは、劣化判定手段12に接続されている。劣化判定手段12は、上流側の排気検出器8が出力する検出信号と下流側の排気検出器9が出力する検出信号とを比較して、この比較結果に基づき触媒6の劣化を判定する。
前記触媒6は、熱耐久性が高い高耐熱部13と、この高耐熱部13より熱耐久性が低い低耐熱部14とを備えている。高耐熱部13は、耐熱性の高いOSC材(酸素吸蔵材;0xygen Strage component)を含んでいる。低耐熱部14は、耐熱性の低いOSC材を含んでいる。高耐熱部13と低耐熱部14とは、排気の流れる方向に沿うように径方向において区画され、高耐熱部13の断面積を低耐熱部14に対して大きく設定している。高耐熱部13は、大部分の主要な排気を通過させて有害物質を除去する。低耐熱部14の下流側には、前記下流側の排気検出器9を配置している。
このように、内燃機関1の触媒劣化判定装置7は、触媒6が高耐熱部13と低耐熱部14とを備えているので、熱耐久性が低い低耐熱部14は、熱耐久性が高い高耐熱部13と比較して、高温状態に維持される時間が長くなるため、酸化速度が速くなり早期に劣化することとなる。
従って、触媒劣化判定装置7は、高耐熱部13が有害物質を排出しない状態にあっても、低耐熱部14は既に劣化時期を迎え有害物質を排出し始めることになるため、低耐熱部14の下流側に配置した排気検出器9がこの有害物質を確実に検出できる。このため、触媒劣化判定装置7は、触媒6の使用開始から早い時期に確実に触媒6の劣化を判定することができ、図2に示すように、判定ゾーンを触媒劣化指標の大きい側(100%側)に引き上げて、従来よりも下げられた規制強化後の判定レベルにおいて、触媒6の劣化を判定することができる。なお、主要な排気は、高耐熱部13を通過するため、大気中に排出される排気の有害成分値が、基準値を越えることは無い。
1 to 4 show the first embodiment. In FIG. 1, 1 is an internal combustion engine, 2 is an exhaust manifold, 3 is a catalytic converter, and 4 is an exhaust pipe. While exhaust gas discharged from the internal combustion engine 1 flows through the exhaust passage 5 formed by the exhaust manifold 2, the catalytic converter 3, and the exhaust pipe 4, harmful components are removed by the catalyst 6 disposed in the catalytic converter 3, and the exhaust pipe 4 to the outside.
In the catalyst deterioration determination device 7 for determining the deterioration of the catalyst 6, exhaust detectors 8 and 9 are disposed on the upstream side and the downstream side of the catalyst 6 disposed in the exhaust passage 5, respectively. The upstream exhaust detector 8 includes a detection unit 10 and outputs a detection signal corresponding to the air-fuel ratio of the exhaust flowing into the catalyst 6. The downstream exhaust detector 9 includes a detection unit 11 and outputs a detection signal corresponding to the air-fuel ratio of the exhaust gas flowing out from the catalyst 6. The upstream side exhaust detector 8 and the downstream side exhaust detector 9 are connected to the deterioration determining means 12. The deterioration determination means 12 compares the detection signal output from the upstream exhaust detector 8 with the detection signal output from the downstream exhaust detector 9, and determines the deterioration of the catalyst 6 based on the comparison result.
The catalyst 6 includes a high heat resistant portion 13 having high heat durability and a low heat resistant portion 14 having lower heat durability than the high heat resistant portion 13. The high heat resistance portion 13 includes an OSC material (oxygen storage material) having high heat resistance. The low heat resistance portion 14 includes an OSC material having low heat resistance. The high heat resistant part 13 and the low heat resistant part 14 are partitioned in the radial direction so as to follow the direction in which the exhaust flows, and the cross sectional area of the high heat resistant part 13 is set larger than that of the low heat resistant part 14. The high heat resistance part 13 passes most main exhaust gas and removes harmful substances. The downstream exhaust detector 9 is disposed downstream of the low heat resistant portion 14.
Thus, in the catalyst deterioration determination device 7 of the internal combustion engine 1, since the catalyst 6 includes the high heat resistant portion 13 and the low heat resistant portion 14, the low heat resistant portion 14 having low heat durability has high heat durability. Compared with the high heat resistant portion 13, the time for maintaining the high temperature state becomes longer, so that the oxidation rate becomes faster and deteriorates earlier.
Therefore, in the catalyst deterioration determination device 7, even if the high heat resistant portion 13 does not discharge harmful substances, the low heat resistant portion 14 has already started to discharge harmful substances at the time of deterioration, so the low heat resistant portion 14 The exhaust detector 9 arranged on the downstream side of this can reliably detect this harmful substance. For this reason, the catalyst deterioration determination device 7 can reliably determine the deterioration of the catalyst 6 at an early stage from the start of use of the catalyst 6, and as shown in FIG. %), The deterioration of the catalyst 6 can be determined at the determination level after the tightening of regulations, which is lower than before. Since the main exhaust gas passes through the high heat resistance part 13, the harmful component value of the exhaust gas discharged into the atmosphere does not exceed the reference value.

前記内燃機関1の排気通路5は、図3に示すように、触媒6を保持する触媒保持部15と、この触媒保持部15より小径であって排気の流れる方向において触媒保持部15の上流側に接続された上流側排気通路部16と、前記触媒保持部15と上流側排気通路16との間に排気の下流方向へ向けて徐々に拡径する拡径部17と、前記触媒保持部15より小径であって触媒保持部15の下流側に接続された下流側排気通路部18と、前記触媒保持部15と前記下流側排気通路18との間に排気の下流方向へ向けて徐々に縮径する縮径部19とにより形成されている。
前記下流側の排気検出器9の検出部11は、図4に示すように、検出空間20に配置している。検出空間20は、仮想境界面21と、仮想内周面22と、縮径部内周面23と、保持部内周面24と、後端区画面25とで囲まれている。
前記仮想境界面21は、触媒6の高耐熱部13と低耐熱部14との境界面26を、下流側排気通路部18に接するまで延ばすことで描出される。前記仮想内周面22は、この仮想境界面21により区画された低耐熱部14の下流側に位置する下流側排気通路部18の内周面部分27を、低耐熱部14の後端に接するまで延ばすことで描出される。
前記縮径部内周面23は、低耐熱部14の下流側に位置する縮径部17の、仮想境界面21及び仮想内周面22と対向する部分である。前記保持部内周面24は、低耐熱部14の下流側に位置する触媒保持部15の、仮想境界面21及び仮想内周面22と対向する部分である。前記後端区画面24は、低耐熱部14の後端であって仮想境界面21と仮想内周面22と保持部内周面24とにより区画される部分である。
この触媒劣化判定装置7は、触媒保持部15の後部であって、触媒6の低耐熱部14の後端より後方へ延長して略半円筒先窄まり形状の検出空間20を形成している。従って、この検出空間20は、触媒保持部15の内径と同じ直径に形成されるため、触媒6の高耐熱部13と低耐熱部14とから排出された排気は混ざり合う事無く後方へと流れる。
よって、触媒劣化判定装置7は、触媒6の低耐熱部14の後端より後方へ延長して形成した検出空間20に下流側の排気検出器9を配置することで、低耐熱部14から排出された排気の成分値のみを確実に検出できる。この結果、触媒劣化判定装置7は、確実に劣化の判定をすることができる。
As shown in FIG. 3, the exhaust passage 5 of the internal combustion engine 1 includes a catalyst holding unit 15 that holds the catalyst 6 and an upstream side of the catalyst holding unit 15 in a direction smaller than the catalyst holding unit 15 and flowing in the exhaust gas. An upstream exhaust passage portion 16 connected to the catalyst, a diameter-expanding portion 17 that gradually expands in the downstream direction of exhaust between the catalyst holding portion 15 and the upstream exhaust passage portion 16, and the catalyst holding portion. The downstream exhaust passage portion 18 having a diameter smaller than 15 and connected to the downstream side of the catalyst holding portion 15 and gradually between the catalyst holding portion 15 and the downstream exhaust passage portion 18 in the downstream direction of the exhaust gas. And a reduced diameter portion 19 that is reduced in diameter.
As shown in FIG. 4, the detection unit 11 of the downstream exhaust detector 9 is disposed in the detection space 20. The detection space 20 is surrounded by a virtual boundary surface 21, a virtual inner peripheral surface 22, a reduced diameter inner peripheral surface 23, a holding portion inner peripheral surface 24, and a rear end section screen 25.
The virtual boundary surface 21 is depicted by extending the boundary surface 26 between the high heat resistant portion 13 and the low heat resistant portion 14 of the catalyst 6 until it contacts the downstream exhaust passage portion 18. The virtual inner peripheral surface 22 is in contact with the rear end of the low heat resistant portion 14 at the inner peripheral surface portion 27 of the downstream exhaust passage portion 18 located downstream of the low heat resistant portion 14 defined by the virtual boundary surface 21. It is drawn by extending to.
The reduced diameter portion inner peripheral surface 23 is a portion of the reduced diameter portion 17 located on the downstream side of the low heat resistant portion 14 and facing the virtual boundary surface 21 and the virtual inner peripheral surface 22. The holding portion inner peripheral surface 24 is a portion facing the virtual boundary surface 21 and the virtual inner peripheral surface 22 of the catalyst holding portion 15 located on the downstream side of the low heat resistant portion 14. The rear end section screen 24 is a rear end of the low heat resistant portion 14 and is a portion defined by the virtual boundary surface 21, the virtual inner peripheral surface 22, and the holding portion inner peripheral surface 24.
This catalyst deterioration determination device 7 is a rear portion of the catalyst holding portion 15 and extends rearward from the rear end of the low heat resistant portion 14 of the catalyst 6 to form a detection space 20 having a substantially semi-cylindrical tapered shape. . Therefore, since the detection space 20 is formed to have the same diameter as the inner diameter of the catalyst holding unit 15, the exhaust discharged from the high heat-resistant part 13 and the low heat-resistant part 14 of the catalyst 6 flows backward without being mixed. .
Therefore, the catalyst deterioration determination device 7 discharges from the low heat resistance part 14 by disposing the downstream exhaust detector 9 in the detection space 20 formed to extend backward from the rear end of the low heat resistance part 14 of the catalyst 6. Only the component value of the exhausted gas can be reliably detected. As a result, the catalyst deterioration determination device 7 can reliably determine deterioration.

この触媒劣化判定装置7は、検出空間20を、低耐熱部14の後端と縮径部19の前端との間に設けられた前側検出空間28と、縮径部19の前端より後方に形成された後側検出空間29とで構成している。下流側の排気検出器9は、検出部11を前側検出空間28に配置している。
このように、触媒劣化判定装置7は、触媒保持部15の後部であって、触媒6の低耐熱部14の後端より後方へ延長して前側検出空間28を形成している。従って、この前側検出空間28は、縮径部19や径が細い下流側排気通路部18とは異なり、排気中に含まれる不純物(例えばススなど)が巻き上がりにくい構造である。
よって、この触媒劣化判定装置7の下流側の排気検出器9は、ススなどの不純物が付着しにくく、検出精度が低下することを防止できる。このため、触媒劣化判定装置7は、確実に触媒6の劣化の判定をすることができる。
In the catalyst deterioration determination device 7, the detection space 20 is formed behind the front detection space 28 provided between the rear end of the low heat resistant portion 14 and the front end of the reduced diameter portion 19 and the front end of the reduced diameter portion 19. The rear side detection space 29 is configured. In the downstream exhaust detector 9, the detection unit 11 is arranged in the front detection space 28.
Thus, the catalyst deterioration determination device 7 extends rearward from the rear end of the low heat resistant portion 14 of the catalyst 6 at the rear portion of the catalyst holding portion 15 to form the front detection space 28. Accordingly, the front detection space 28 has a structure in which impurities (for example, soot) contained in the exhaust gas are unlikely to be rolled up, unlike the reduced diameter portion 19 and the narrow downstream exhaust passage portion 18.
Therefore, the exhaust detector 9 on the downstream side of the catalyst deterioration determination device 7 is difficult to attach impurities such as soot and can prevent the detection accuracy from deteriorating. For this reason, the catalyst deterioration determination device 7 can reliably determine the deterioration of the catalyst 6.

図5、図6は、実施例2を示すものである。実施例2の触媒劣化判定装置7は、前述実施例1と同様に、前記触媒保持部15と上流側排気通路部16と拡径部17と下流側排気通路部18と縮径部19とにより排気通路5を形成し、排気通路5に配置した触媒6の上流側と下流側にそれぞれ排気検出器8・9を配置している。前記触媒6は、熱耐久性が高い高耐熱部13と、この高耐熱部13より熱耐久性が低い低耐熱部14とを備えている。
前記下流側の排気検出器9の検出部11は、仮想境界面21と、仮想内周面22と、縮径部内周面23と、保持部内周面24と、後端区画面25とで囲まれる検出空間20に配置している。検出空間20は、低耐熱部14の後端と縮径部19の前端との間に設けられた前側検出空間28と、縮径部19の前端より後方に形成された後側検出空間29とで構成される。
実施例2の触媒劣化判定装置7は、図5に示すように、前側検出空間28と後側検出空間29とで構成される検出空間20の後側検出空間29に、下流側の排気検出器9の検出部11を配置している。
この触媒劣化判定装置7は、図6に示すように、低耐熱部14から排出された排気A1が後側検出空間29へ流れ込むと、縮径部19の傾斜する縮径部内周面23と衝突し排気通路5の中央側(径方向内側)へ向きA2を変える。このとき、低耐熱部14から排出されて向きを変えた排気A2は、高耐熱部13から排出された排気B1を中央側へ押し戻すB2ため、後側検出空間29は低耐熱部14から排出された排気のみに保たれる。
従って、触媒劣化判定装置7の下流側の排気検出器9は、低耐熱部14から排出された排気のみを確実に検出できる。このため、触媒劣化判定装置7は、確実に触媒6の劣化の判定をすることができる。
5 and 6 show the second embodiment. As in the first embodiment, the catalyst deterioration determination device 7 according to the second embodiment includes the catalyst holding portion 15, the upstream exhaust passage portion 16, the enlarged diameter portion 17, the downstream exhaust passage portion 18, and the reduced diameter portion 19. An exhaust passage 5 is formed, and exhaust detectors 8 and 9 are disposed on the upstream side and the downstream side of the catalyst 6 disposed in the exhaust passage 5, respectively. The catalyst 6 includes a high heat resistant portion 13 having high heat durability and a low heat resistant portion 14 having lower heat durability than the high heat resistant portion 13.
The detection unit 11 of the exhaust detector 9 on the downstream side is surrounded by a virtual boundary surface 21, a virtual inner peripheral surface 22, a reduced diameter inner peripheral surface 23, a holding unit inner peripheral surface 24, and a rear end section screen 25. The detection space 20 is arranged. The detection space 20 includes a front detection space 28 provided between the rear end of the low heat resistant portion 14 and the front end of the reduced diameter portion 19, and a rear detection space 29 formed behind the front end of the reduced diameter portion 19. Consists of.
As shown in FIG. 5, the catalyst deterioration determination device 7 according to the second embodiment includes a downstream exhaust detector in a rear detection space 29 including a front detection space 28 and a rear detection space 29. Nine detection units 11 are arranged.
As shown in FIG. 6, when the exhaust A1 exhausted from the low heat resistant portion 14 flows into the rear detection space 29, the catalyst deterioration determining device 7 collides with the reduced diameter portion inner peripheral surface 23 of the reduced diameter portion 19. Then, the direction A2 is changed to the center side (radially inside) of the exhaust passage 5. At this time, the exhaust A2 discharged from the low heat resistant portion 14 and changed its direction pushes back the exhaust B1 discharged from the high heat resistant portion 13 to the center side B2, so that the rear detection space 29 is discharged from the low heat resistant portion 14. Only kept in the exhaust.
Therefore, the exhaust detector 9 on the downstream side of the catalyst deterioration determination device 7 can reliably detect only the exhaust discharged from the low heat resistant portion 14. For this reason, the catalyst deterioration determination device 7 can reliably determine the deterioration of the catalyst 6.

なお、上述実施例においては、触媒6を、耐熱性の高いOSC材を含む高耐熱部13と、耐熱性の低いOSC材を含む低耐熱部14とで構成したが、触媒6全体で同じOSC材を使用し、排気検出器9の上流側に相当する部分にのみOSC材の使用量を低減(例えば、70%減)することで、高耐熱部13と低耐熱部14とに構成することもできる。
また、触媒6の劣化は、主に触媒6の履歴する温度と相関性があることから、図7に示すように、下流側の排気検出器9の上流側に相当する触媒6の部分(低耐熱部14)であって、触媒6が高温になりやすい上流側の部分14−1(例えば、入口から30mm以降60mm以内)にOSC材を使用し、前記高温になりやすい上流側の部分14−1以外の下流側の部分14−2にOSC材を使用しないことで、触媒6の劣化をより感度良く検出することができる。なお、下流側の排気検出器9の上流側に相当する部分(低耐熱部14)以外の部分(高耐熱部13)については、通常の量のOSC材を使用することで、触媒6全体として高い排気浄化性能を維持させることができる。
In the above-described embodiment, the catalyst 6 is composed of the high heat resistant portion 13 including the OSC material having high heat resistance and the low heat resistant portion 14 including the OSC material having low heat resistance. By using the material and reducing the amount of use of the OSC material only in the part corresponding to the upstream side of the exhaust detector 9 (for example, 70% reduction), the high heat resistant part 13 and the low heat resistant part 14 are configured. You can also.
Further, since the deterioration of the catalyst 6 is mainly correlated with the temperature at which the catalyst 6 has a history, as shown in FIG. 7, the portion of the catalyst 6 corresponding to the upstream side of the downstream exhaust detector 9 (low The heat-resistant portion 14) is an upstream portion 14-1 that uses an OSC material in the upstream portion 14-1 where the catalyst 6 is likely to become high temperature (for example, within 30 mm and within 60 mm from the inlet). By using no OSC material for the downstream portion 14-2 other than 1, deterioration of the catalyst 6 can be detected with higher sensitivity. In addition, about the part (high heat resistant part 13) other than the part (low heat resistant part 14) corresponding to the upstream side of the downstream exhaust gas detector 9, by using a normal amount of OSC material, the catalyst 6 as a whole. High exhaust purification performance can be maintained.

この発明は、ガソリンを燃料とする内燃機関の三元触媒に対して適用する技術であるが、ディーゼル内燃機関用の酸化触媒(DOC)においても、OSC能力によって触媒劣化を検出する場合に転用することができる。   The present invention is a technique applied to a three-way catalyst of an internal combustion engine using gasoline as a fuel. However, even in an oxidation catalyst (DOC) for a diesel internal combustion engine, it is diverted when detecting catalyst deterioration by OSC capability. be able to.

1 内燃機関
5 排気通路
6 触媒
7 触媒劣化判定装置
8 上流側の排気検出器
9 下流側の排気検出器
12 劣化判定手段
13 高耐熱部
14 低耐熱部
15 触媒保持部
16 上流側排気通路部
17 拡径部
18 下流側排気通路部
19 縮径部
20 検出空間
21 仮想境界面
22 仮想内周面
23 縮径部内周面
24 保持部内周面
25 後端区画面
28 前側検出空間
29 後側検出空間
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 5 Exhaust passage 6 Catalyst 7 Catalyst deterioration determination apparatus 8 Upstream exhaust detector 9 Downstream exhaust detector 12 Degradation determination means 13 High heat resistant portion 14 Low heat resistant portion 15 Catalyst holding portion 16 Upstream exhaust passage portion 17 Expanded portion 18 Downstream exhaust passage portion 19 Reduced diameter portion 20 Detection space 21 Virtual boundary surface 22 Virtual inner peripheral surface 23 Reduced diameter portion inner peripheral surface 24 Holding portion inner peripheral surface 25 Rear end section screen 28 Front detection space 29 Rear detection space

Claims (3)

内燃機関の排気通路に配置された触媒と、前記触媒の上流側と下流側とに配置された排気検出器と、前記排気検出器の出力値に基づいて前記触媒の劣化を判定する劣化判定手段とを備え、前記触媒は、早期に劣化が始まる早期劣化部と、前記早期劣化部よりも後から劣化が始まる非早期劣化部とに区分され、前記下流側の排気検出器の検出部は、前記早期劣化部から流出する排気ガスを検出するよう配置され、前記排気通路は、前記触媒を保持する触媒保持部と、排気の流れる方向において前記触媒保持部の上流側に接続された上流側排気通路部と、前記触媒保持部より小径であって前記触媒保持部の下流側に接続された下流側排気通路部と、前記触媒保持部と前記下流側排気通路部との間に排気の下流方向へ向けて徐々に縮径する縮径部とにより形成され、前記検出部は、前記触媒の非早期劣化部と早期劣化部との境界面を前記下流側排気通路部に接するまで延ばすことで描出される仮想境界面と、前記早期劣化部の下流側に位置する前記下流側排気通路部の内周面部分を前記早期劣化部の後端に接するまで延ばすことで描出される仮想内周面と、前記早期劣化部の下流側に位置する前記縮径部の前記仮想境界面及び前記仮想内周面と対向する縮径部内周面と、前記早期劣化部の下流側に位置する前記触媒保持部の前記仮想境界面及び前記仮想内周面と対向する保持部内周面と、前記早期劣化部の後端であって前記仮想境界面と前記仮想内周面と前記保持部内周面とにより区画される後端区画面と、で囲まれた検出空間に配置されたことを特徴とする内燃機関の触媒劣化判定装置。 A catalyst disposed in the exhaust passage of the internal combustion engine, an exhaust detector disposed upstream and downstream of the catalyst, and a deterioration determining means for determining deterioration of the catalyst based on an output value of the exhaust detector The catalyst is divided into an early deterioration portion where deterioration starts early and a non-early deterioration portion where deterioration starts later than the early deterioration portion, and the detection unit of the downstream exhaust detector is, The exhaust passage is arranged to detect exhaust gas flowing out from the early deterioration portion , and the exhaust passage includes a catalyst holding portion for holding the catalyst, and an upstream exhaust gas connected to the upstream side of the catalyst holding portion in the exhaust flow direction. A downstream direction of exhaust gas between the passage portion, a downstream exhaust passage portion having a smaller diameter than the catalyst holding portion and connected to the downstream side of the catalyst holding portion, and the catalyst holding portion and the downstream exhaust passage portion A diameter-reducing portion that gradually decreases toward Formed by extending the boundary surface between the non-early deterioration portion and the early deterioration portion of the catalyst until it contacts the downstream exhaust passage portion, and the early deterioration portion. A virtual inner peripheral surface depicted by extending an inner peripheral surface portion of the downstream exhaust passage portion positioned on the downstream side until it contacts the rear end of the early deterioration portion, and the downstream surface of the early deterioration portion. The virtual boundary surface of the reduced diameter portion and the inner peripheral surface of the reduced diameter portion facing the virtual inner peripheral surface, and the virtual boundary surface and the virtual inner peripheral surface of the catalyst holding portion located on the downstream side of the early deterioration portion Detection surrounded by the opposing holding portion inner peripheral surface and the rear end section screen which is the rear end of the early deteriorated portion and is partitioned by the virtual boundary surface, the virtual inner peripheral surface, and the holding portion inner peripheral surface catalyst deterioration determination device for an internal combustion engine, characterized in that it is arranged in a space 内燃機関の排気通路に配置された触媒と、前記触媒の上流側と下流側とに配置された排気検出器と、前記排気検出器の出力値に基づいて前記触媒の劣化を判定する劣化判定手段とを備え、前記触媒は、早期に劣化が始まる早期劣化部と、前記早期劣化部よりも後から劣化が始まる非早期劣化部とに区分され、前記下流側の排気検出器の検出部は、前記早期劣化部から流出する排気ガスを検出するよう配置され、前記排気通路は、前記触媒を保持する触媒保持部と、排気の流れる方向において前記触媒保持部の上流側に接続された上流側排気通路部と、前記触媒保持部より小径であって前記触媒保持部の下流側に接続された下流側排気通路部と、前記触媒保持部と前記下流側排気通路部との間に排気の下流方向へ向けて徐々に縮径する縮径部とにより形成され、前記検出部は、前記触媒の非早期劣化部と早期劣化部との境界面を前記下流側排気通路部に接するまで延ばすことで描出される仮想境界面と、前記早期劣化部の下流側に位置する前記下流側排気通路部の内周面部分を前記早期劣化部の後端に接するまで延ばすことで描出される仮想内周面と、前記早期劣化部の下流側に位置する前記縮径部の前記仮想境界面及び前記仮想内周面と対向する縮径部内周面と、前記早期劣化部の下流側に位置する前記触媒保持部の前記仮想境界面及び前記仮想内周面と対向する保持部内周面と、前記早期劣化部の後端であって前記仮想境界面と前記仮想内周面と前記保持部内周面とにより区画される後端区画面と、で囲まれた検出空間に配置され、前記検出空間は、前記早期劣化部の後端と前記縮径部の前端との間に設けられた前側検出空間と、前記縮径部の前端より後方に形成された後側検出空間とで構成され、前記下流側の排気検出器の検出部は、前記前側検出空間に配置されたことを特徴とする内燃機関の触媒劣化判定装置。 A catalyst disposed in the exhaust passage of the internal combustion engine, an exhaust detector disposed upstream and downstream of the catalyst, and a deterioration determining means for determining deterioration of the catalyst based on an output value of the exhaust detector The catalyst is divided into an early deterioration portion where deterioration starts early and a non-early deterioration portion where deterioration starts later than the early deterioration portion, and the detection unit of the downstream exhaust detector is, The exhaust passage is arranged to detect exhaust gas flowing out from the early deterioration portion, and the exhaust passage includes a catalyst holding portion for holding the catalyst, and an upstream exhaust gas connected to the upstream side of the catalyst holding portion in the exhaust flow direction. A downstream direction of exhaust gas between the passage portion, a downstream exhaust passage portion having a smaller diameter than the catalyst holding portion and connected to the downstream side of the catalyst holding portion, and the catalyst holding portion and the downstream exhaust passage portion A diameter-reducing portion that gradually decreases toward Formed by extending the boundary surface between the non-early deterioration portion and the early deterioration portion of the catalyst until it contacts the downstream exhaust passage portion, and the early deterioration portion. A virtual inner peripheral surface depicted by extending an inner peripheral surface portion of the downstream exhaust passage portion positioned on the downstream side until it contacts the rear end of the early deterioration portion, and the downstream surface of the early deterioration portion. The virtual boundary surface of the reduced diameter portion and the inner peripheral surface of the reduced diameter portion facing the virtual inner peripheral surface, and the virtual boundary surface and the virtual inner peripheral surface of the catalyst holding portion located on the downstream side of the early deterioration portion Detection surrounded by the opposing holding portion inner peripheral surface and the rear end section screen which is the rear end of the early deteriorated portion and is partitioned by the virtual boundary surface, the virtual inner peripheral surface, and the holding portion inner peripheral surface It is arranged in a space, the detection space, the rear end of the early deterioration section A front detection space provided between the front end of diameter, the consists of a front end of the reduced diameter portion and the side detection space after being formed in the rear, the detection portion of the exhaust detector of the downstream, the A catalyst deterioration determination device for an internal combustion engine, which is disposed in a front detection space. 内燃機関の排気通路に配置された触媒と、前記触媒の上流側と下流側とに配置された排気検出器と、前記排気検出器の出力値に基づいて前記触媒の劣化を判定する劣化判定手段とを備え、前記触媒は、早期に劣化が始まる早期劣化部と、前記早期劣化部よりも後から劣化が始まる非早期劣化部とに区分され、前記下流側の排気検出器の検出部は、前記早期劣化部から流出する排気ガスを検出するよう配置され、前記排気通路は、前記触媒を保持する触媒保持部と、排気の流れる方向において前記触媒保持部の上流側に接続された上流側排気通路部と、前記触媒保持部より小径であって前記触媒保持部の下流側に接続された下流側排気通路部と、前記触媒保持部と前記下流側排気通路部との間に排気の下流方向へ向けて徐々に縮径する縮径部とにより形成され、前記検出部は、前記触媒の非早期劣化部と早期劣化部との境界面を前記下流側排気通路部に接するまで延ばすことで描出される仮想境界面と、前記早期劣化部の下流側に位置する前記下流側排気通路部の内周面部分を前記早期劣化部の後端に接するまで延ばすことで描出される仮想内周面と、前記早期劣化部の下流側に位置する前記縮径部の前記仮想境界面及び前記仮想内周面と対向する縮径部内周面と、前記早期劣化部の下流側に位置する前記触媒保持部の前記仮想境界面及び前記仮想内周面と対向する保持部内周面と、前記早期劣化部の後端であって前記仮想境界面と前記仮想内周面と前記保持部内周面とにより区画される後端区画面と、で囲まれた検出空間に配置され、前記検出空間は、前記早期劣化部の後端と前記縮径部の前端との間に設けられた前側検出空間と、前記縮径部の前端より後方に形成された後側検出空間とで構成され、前記下流側の排気検出器の検出部は、前記後側検出空間に配置されたことを特徴とする内燃機関の触媒劣化判定装置。 A catalyst disposed in the exhaust passage of the internal combustion engine, an exhaust detector disposed upstream and downstream of the catalyst, and a deterioration determining means for determining deterioration of the catalyst based on an output value of the exhaust detector The catalyst is divided into an early deterioration portion where deterioration starts early and a non-early deterioration portion where deterioration starts later than the early deterioration portion, and the detection unit of the downstream exhaust detector is, The exhaust passage is arranged to detect exhaust gas flowing out from the early deterioration portion, and the exhaust passage includes a catalyst holding portion for holding the catalyst, and an upstream exhaust gas connected to the upstream side of the catalyst holding portion in the exhaust flow direction. A downstream direction of exhaust gas between the passage portion, a downstream exhaust passage portion having a smaller diameter than the catalyst holding portion and connected to the downstream side of the catalyst holding portion, and the catalyst holding portion and the downstream exhaust passage portion A diameter-reducing portion that gradually decreases toward Formed by extending the boundary surface between the non-early deterioration portion and the early deterioration portion of the catalyst until it contacts the downstream exhaust passage portion, and the early deterioration portion. A virtual inner peripheral surface depicted by extending an inner peripheral surface portion of the downstream exhaust passage portion positioned on the downstream side until it contacts the rear end of the early deterioration portion, and the downstream surface of the early deterioration portion. The virtual boundary surface of the reduced diameter portion and the inner peripheral surface of the reduced diameter portion facing the virtual inner peripheral surface, and the virtual boundary surface and the virtual inner peripheral surface of the catalyst holding portion located on the downstream side of the early deterioration portion Detection surrounded by the opposing holding portion inner peripheral surface and the rear end section screen which is the rear end of the early deteriorated portion and is partitioned by the virtual boundary surface, the virtual inner peripheral surface, and the holding portion inner peripheral surface It is arranged in a space, the detection space, the rear end of the early deterioration section A front detection space provided between the front end of diameter, the consists of a front end of the reduced diameter portion and the side detection space after being formed in the rear, the detection portion of the exhaust detector of the downstream, the A catalyst deterioration determination device for an internal combustion engine, which is disposed in a rear detection space.
JP2011278155A 2011-12-20 2011-12-20 Catalyst deterioration determination device for internal combustion engine Active JP5910061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278155A JP5910061B2 (en) 2011-12-20 2011-12-20 Catalyst deterioration determination device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278155A JP5910061B2 (en) 2011-12-20 2011-12-20 Catalyst deterioration determination device for internal combustion engine

Publications (3)

Publication Number Publication Date
JP2013130068A JP2013130068A (en) 2013-07-04
JP2013130068A5 JP2013130068A5 (en) 2014-12-18
JP5910061B2 true JP5910061B2 (en) 2016-04-27

Family

ID=48907828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278155A Active JP5910061B2 (en) 2011-12-20 2011-12-20 Catalyst deterioration determination device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5910061B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075666A (en) * 2005-09-09 2007-03-29 Mazda Motor Corp Manifold catalyst converter, and exhaust system
JP4453836B2 (en) * 2005-11-02 2010-04-21 日立オートモティブシステムズ株式会社 Engine catalyst deterioration diagnosis device and method, and exhaust gas purification catalyst device

Also Published As

Publication number Publication date
JP2013130068A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US8261540B2 (en) Particulate matter sensor and exhaust gas purification apparatus
JP4363211B2 (en) Abnormality detection device for exhaust gas purification device of internal combustion engine
JP4737010B2 (en) Catalyst deterioration diagnosis device
JP3744483B2 (en) Exhaust gas purification device for internal combustion engine
JP4530081B2 (en) Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
JP4915256B2 (en) Catalyst degradation diagnosis apparatus and degradation diagnosis method
JP5273297B2 (en) Catalyst abnormality diagnosis device
US20120023911A1 (en) Detection of exhaust particulate filter substrate failure
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
JP4631942B2 (en) Particulate filter regeneration device
JP2009191694A (en) Exhaust emission control device of internal combustion engine
JP2007247550A (en) Exhaust emission control device for internal combustion engine
JP5229628B2 (en) Catalyst deterioration diagnosis device
JP2017120041A (en) Exhaust aftertreatment system
JP4761223B2 (en) Catalyst deterioration detection device for internal combustion engine
JP5494571B2 (en) Fuel property determination device and catalyst abnormality diagnosis device provided with the same
JP5910061B2 (en) Catalyst deterioration determination device for internal combustion engine
JP2009036172A (en) Catalyst-degradation diagnostic system for internal combustion engine
JP4275154B2 (en) Exhaust temperature sensor inspection device
JP2009228494A (en) Exhaust air purifying device of internal combustion
JP2010255490A (en) Catalyst abnormality diagnostic device
JP2011185095A (en) Exhaust emission control system for internal combustion engine
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP4779563B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2006316722A (en) Device for inspecting exhaust gas temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R151 Written notification of patent or utility model registration

Ref document number: 5910061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151