JP5909393B2 - Photocatalyst dispersion and coating liquid - Google Patents

Photocatalyst dispersion and coating liquid Download PDF

Info

Publication number
JP5909393B2
JP5909393B2 JP2012064751A JP2012064751A JP5909393B2 JP 5909393 B2 JP5909393 B2 JP 5909393B2 JP 2012064751 A JP2012064751 A JP 2012064751A JP 2012064751 A JP2012064751 A JP 2012064751A JP 5909393 B2 JP5909393 B2 JP 5909393B2
Authority
JP
Japan
Prior art keywords
photocatalyst
dispersion
particles
amphoteric polymer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012064751A
Other languages
Japanese (ja)
Other versions
JP2013193054A (en
Inventor
伊藤 淳
淳 伊藤
井上 浩
浩 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Color Products Corp
Original Assignee
Sakura Color Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Color Products Corp filed Critical Sakura Color Products Corp
Priority to JP2012064751A priority Critical patent/JP5909393B2/en
Publication of JP2013193054A publication Critical patent/JP2013193054A/en
Application granted granted Critical
Publication of JP5909393B2 publication Critical patent/JP5909393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、光の照射によって光触媒活性を示す光触媒分散体に関する。   The present invention relates to a photocatalyst dispersion that exhibits photocatalytic activity when irradiated with light.

半導体に紫外線を照射すると強い還元作用を有する電子と強い酸化作用を有する正孔が生成し、半導体に接触した分子種を酸化還元作用により分解する。このような作用を光触媒作用と呼び、この光触媒作用を利用することによって、大気物中の有機化合物およびNOxを分解することができる。このような光触媒作用を奏する半導体は光触媒と呼ばれ、光触媒の特性を利用して、脱臭、ガス処理、水処理、抗菌および防汚を目的として、光触媒を種々の形態で使用することが提案されている。また、光触媒は、光の照射によって、親水化する特性を有し、親水化された光触媒は、例えば、油性の汚れをはじく性質を有する。この性質を利用して、光触媒を含む分散体を、基材または基材の上に形成された塗膜の上に塗布されるコート剤として用い、防滴性、防汚・防曇性、自己洗浄性、および易洗浄性を、基材または塗膜の表面に付与することが行われている。   When a semiconductor is irradiated with ultraviolet rays, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species in contact with the semiconductor are decomposed by the redox action. Such an action is called a photocatalytic action, and by utilizing this photocatalytic action, organic compounds and NOx in atmospheric substances can be decomposed. Such a photocatalytic semiconductor is called a photocatalyst, and it has been proposed to use the photocatalyst in various forms for the purpose of deodorization, gas treatment, water treatment, antibacterial action and antifouling, utilizing the characteristics of the photocatalyst. ing. In addition, the photocatalyst has a property of being hydrophilized by light irradiation, and the hydrophilized photocatalyst has a property of repelling oily dirt, for example. Utilizing this property, a dispersion containing a photocatalyst is used as a coating agent to be applied onto a substrate or a coating film formed on the substrate. It has been performed that the cleaning property and the easy cleaning property are imparted to the surface of the substrate or the coating film.

光触媒を含む分散体は、光触媒を微粒子として安定に分散媒中に分散させるための分散剤を一般に含む。光触媒が酸化チタンであり、分散媒が水性媒体(水または水と水溶性有機溶剤とからなる媒体)である場合、分散剤として、硝酸、塩酸、ならびにモノリン酸およびポリリン酸、ならびにこれらの塩等を用いることが知られている(特許文献1、段落0004)。   The dispersion containing a photocatalyst generally contains a dispersant for stably dispersing the photocatalyst as fine particles in a dispersion medium. When the photocatalyst is titanium oxide and the dispersion medium is an aqueous medium (medium consisting of water or water and a water-soluble organic solvent), nitric acid, hydrochloric acid, monophosphoric acid and polyphosphoric acid, and salts thereof are used as the dispersing agent. Is known to be used (Patent Document 1, paragraph 0004).

特開2008−93630号公報JP 2008-93630 A

光触媒が酸化チタンであるときに、分散剤として、硝酸等の無機酸または無機酸の塩を用いると、光触媒を含む分散体をコート剤として用いるときに、コート剤の膜の柔軟性が小さく、施工性が低下するという不都合がある。また、無機酸または無機酸の塩を分散剤は、光触媒作用により分解または劣化されにくい。このことは、分散体が基材または塗膜の表面にコート剤として塗布されたときに、光触媒がコート剤の膜に埋没して、その光触媒作用を十分に発揮できないという不都合を招くことがある。そこで、本発明者らは、そのような不都合を回避するために、ポリマーを分散剤として用いて、光触媒を安定的に分散させることの可能性について検討した。その結果、特定の樹脂を分散剤として用いると、光触媒の分散性が良好であり、かつ前述のような不都合が生じにくい水系分散体が得られることを見出し、本発明を案出するに至った。   When the photocatalyst is titanium oxide, when an inorganic acid such as nitric acid or a salt of an inorganic acid is used as the dispersant, when the dispersion containing the photocatalyst is used as the coating agent, the flexibility of the coating agent film is small, There is an inconvenience that workability is lowered. In addition, a dispersant containing an inorganic acid or a salt of an inorganic acid is hardly decomposed or deteriorated by photocatalysis. This may lead to inconvenience that the photocatalyst is buried in the film of the coating agent when the dispersion is applied as a coating agent on the surface of the substrate or the coating film, and the photocatalytic action cannot be sufficiently exhibited. . Therefore, the present inventors examined the possibility of stably dispersing the photocatalyst using a polymer as a dispersant in order to avoid such inconvenience. As a result, when a specific resin is used as a dispersant, the present inventors have found that an aqueous dispersion having good dispersibility of the photocatalyst and hardly causing the disadvantages described above can be obtained, and the present invention has been devised. .

本発明は、光触媒粒子、水性媒体および水溶性の両性ポリマーを含有し、光触媒粒子が水性媒体中に分散している、光触媒分散体を提供する。この光触媒分散体においては、両性ポリマーが光触媒粒子の分散剤として機能している。光触媒粒子は好ましくは酸化チタンである。   The present invention provides a photocatalyst dispersion containing photocatalyst particles, an aqueous medium and a water-soluble amphoteric polymer, wherein the photocatalyst particles are dispersed in the aqueous medium. In this photocatalyst dispersion, the amphoteric polymer functions as a dispersant for the photocatalyst particles. The photocatalyst particles are preferably titanium oxide.

本発明の光触媒分散体は、光触媒を水性媒体に分散させた水系分散体であり、分散剤として、両性ポリマーを用いている点に特徴を有する。両性ポリマーは、光触媒が比較的小さい粒子の形態で分散媒に分散することを可能にして光触媒の分散体における分散安定性を高めるとともに、それをコート剤のように塗布して使用するときに、塗膜を柔軟にする。また、両性ポリマーは、光触媒の光触媒作用によって適度に分解されるため、これを分散剤として含む本発明の光触媒分散体は、コート剤等として使用されて膜を形成したときに、使用中に光触媒を露出させて、一定期間にわたって持続的に光触媒作用および親水化作用が発揮されることを可能にする。   The photocatalyst dispersion of the present invention is an aqueous dispersion in which a photocatalyst is dispersed in an aqueous medium, and is characterized in that an amphoteric polymer is used as a dispersant. The amphoteric polymer allows the photocatalyst to be dispersed in the dispersion medium in the form of relatively small particles, thereby improving the dispersion stability in the dispersion of the photocatalyst, and when applied and used like a coating agent, Make the coating flexible. Further, since the amphoteric polymer is appropriately decomposed by the photocatalytic action of the photocatalyst, the photocatalyst dispersion of the present invention containing this as a dispersant is used as a coating agent or the like to form a photocatalyst during use. Is exposed, allowing the photocatalytic action and the hydrophilizing action to be exerted continuously over a certain period of time.

本発明の光触媒分散体は、光触媒粒子、水性媒体および両性ポリマーを含有し、光触媒粒子が水性媒体中に分散しているものである。以下、本発明の光触媒分散体に含まれる成分を説明する。   The photocatalyst dispersion of the present invention contains photocatalyst particles, an aqueous medium and an amphoteric polymer, and the photocatalyst particles are dispersed in the aqueous medium. Hereinafter, the components contained in the photocatalyst dispersion of the present invention will be described.

[光触媒粒子]
光触媒としては、紫外線ないし可視光線により光触媒作用を奏する化合物を使用することができる。例えば、光触媒として、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh,Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、La、Ceのような金属元素の1種又は2種以上の酸化物、窒化物、硫化物、酸窒化物、酸硫化物、窒弗化物、酸弗化物、酸窒弗化物などが例示される。この中でも、特に、酸化チタンが光触媒として好ましく用いられる。ここでいう酸化チタンには、少量(例えば、Tiに対し、1モル%以下)の金属イオンまたは窒素をドープしたもの、および少量(例えば、Tiに対し、1モル%以下)の他の金属酸化物を担持するものが含まれる。
[Photocatalyst particles]
As the photocatalyst, a compound that exhibits a photocatalytic action by ultraviolet rays or visible rays can be used. For example, as a photocatalyst, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag , One or more of metal elements such as Au, Zn, Cd, Ga, In, Tl, Ge, Sn, Pb, Bi, La, Ce, nitride, sulfide, oxynitride, Examples thereof include oxysulfides, nitrofluorides, oxyfluorides, oxynitrofluorides, and the like. Among these, titanium oxide is particularly preferably used as a photocatalyst. As used herein, titanium oxide includes a small amount (for example, 1 mol% or less with respect to Ti) of metal ions or nitrogen, and a small amount (for example, 1 mol% or less with respect to Ti) of other metal oxidation. The thing which carries a thing is included.

本発明の光触媒分散体において、光触媒は粒子の形態で存在する。分散体中に存在する光触媒粒子は、動的光散乱法で測定される、粒子径(メジアン径)が10nm以上500nm以下となるような寸法を有することが好ましい。粒子径が10nm未満である微粒子を分散体中に分散させることは難しく、粒子径が500nmを超えると、粒子が沈澱しやすくなり、分散体の経時安定性が低下する。このような平均粒子径を得るために、光触媒分散体は、一次粒子径(分散体を調製する前の粒径)が5nm以上500nm以下の範囲内にある粉体の光触媒を用いて調製することが好ましい。そのような光触媒は、例えば、石原産業株式会社から、商品名ST−01、ST−21、ST−31、ST−41、MPT−623で販売されており、堺化学工業株式会社から、商品名SSP−25、SSP−20、SSP−M、STA−100A、STR−100N、STR−100A、STR−100Wで販売されており、テイカ株式会社から、商品名AMT−100、AMT−600、TKP−101、TKP−102で販売されており、住友化学株式会社から、商品名PC−101、TP−S201で販売されている(いずれも酸化チタン)。   In the photocatalyst dispersion of the present invention, the photocatalyst is present in the form of particles. The photocatalyst particles present in the dispersion preferably have dimensions such that the particle diameter (median diameter) is 10 nm or more and 500 nm or less as measured by a dynamic light scattering method. It is difficult to disperse fine particles having a particle diameter of less than 10 nm in the dispersion. When the particle diameter exceeds 500 nm, the particles are likely to precipitate, and the stability of the dispersion over time decreases. In order to obtain such an average particle size, the photocatalyst dispersion is prepared using a powder photocatalyst having a primary particle size (particle size before preparing the dispersion) in the range of 5 nm to 500 nm. Is preferred. Such photocatalysts are sold, for example, under the trade names ST-01, ST-21, ST-31, ST-41, and MPT-623 from Ishihara Sangyo Co., Ltd. SSP-25, SSP-20, SSP-M, STA-100A, STR-100N, STR-100A, STR-100W are sold under the trade names AMT-100, AMT-600, TKP- 101, TKP-102, and sold by Sumitomo Chemical Co., Ltd. under the trade names PC-101 and TP-S201 (both are titanium oxide).

光触媒粒子は、分散体全部の重量を100重量%としたときに、1〜60重量%の量で含まれることが好ましい。光触媒粒子の割合が少ないと、光触媒作用が得られにくく、光触媒粒子の割合が多いと、分散体の粘度が高くなって、取扱いが難しくなり、また、経時安定性が低下し、光触媒粒子が凝集しやすくなる。   The photocatalyst particles are preferably contained in an amount of 1 to 60% by weight when the total weight of the dispersion is 100% by weight. If the ratio of the photocatalyst particles is small, it is difficult to obtain photocatalytic action. If the ratio of the photocatalyst particles is large, the viscosity of the dispersion becomes high and handling becomes difficult, and the stability over time decreases and the photocatalyst particles aggregate. It becomes easy to do.

[水性媒体]
水性媒体は、水、又は水を主成分として含み、水溶性有機溶媒を含む溶媒である。水として、一般に、イオン交換水が用いられる。水溶性有機溶媒として、例えば、メチルアルコール、エチルアルコール、イソプロパノール、ブタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、メチルソロセルブ、エチルソロセルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、メチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセトン、および2−ブタノンが挙げられる。水性媒体が、水溶性有機溶媒を有する場合、水溶性有機溶媒は、水100重量部に対して、0〜100重量部の割合で使用することが好ましい。
[Aqueous medium]
The aqueous medium is water or a solvent containing water as a main component and a water-soluble organic solvent. In general, ion-exchanged water is used as water. Examples of the water-soluble organic solvent include methyl alcohol, ethyl alcohol, isopropanol, butanol, ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl soloselve, ethyl soloselve, butyl cellosolve, ethyl carbitol, butyl carbitol, methyl carbitol, Examples include propylene glycol monomethyl ether, propylene glycol monoethyl ether, acetone, and 2-butanone. When an aqueous medium has a water-soluble organic solvent, it is preferable to use a water-soluble organic solvent in the ratio of 0-100 weight part with respect to 100 weight part of water.

水性媒体は、分散体全部の重量を100重量%としたときに、50〜99重量%の量で含まれることが好ましい。水性媒体の割合が少ないと、分散体の粘度が高くなって、取扱いが難しくなることがあり、水性媒体の割合が多いと、光触媒粒子濃度が低くなるため、光触媒作用が得られにくい。   The aqueous medium is preferably contained in an amount of 50 to 99% by weight when the total weight of the dispersion is 100% by weight. If the ratio of the aqueous medium is small, the dispersion may have a high viscosity and may be difficult to handle. If the ratio of the aqueous medium is large, the concentration of the photocatalyst particles will be low, so that the photocatalytic action is difficult to obtain.

[水溶性の両性ポリマー]
両性ポリマーとは、カチオン基及びアニオン基の双方を有するポリマーを指す。両性ポリマーは、場合により非イオン性基を有する単位を含んでよい。両性イオンポリマーは、例えば、カチオン基としてアミノ基(環式アミノ基を含む)を有するモノマーと、アニオン基としてカルボン酸基またはスルホン酸基を有するモノマーとが重合されてなるポリマーである。両性イオンポリマーは、カチオン基を有するモノマーとアニオン基を有するモノマーに加えて、ノニオン性モノマーが重合されてなるものであってよい。
[Water-soluble amphoteric polymer]
An amphoteric polymer refers to a polymer having both cationic and anionic groups. The amphoteric polymer may optionally contain units having nonionic groups. The zwitterionic polymer is, for example, a polymer obtained by polymerizing a monomer having an amino group (including a cyclic amino group) as a cationic group and a monomer having a carboxylic acid group or a sulfonic acid group as an anionic group. The zwitterionic polymer may be obtained by polymerizing a nonionic monomer in addition to a monomer having a cationic group and a monomer having an anionic group.

カチオン基を有するモノマーは、例えば、モノアリルアミン、N−メチルアリルアミン、N,N−ジメチルアリルアミン、N−シクロヘキシルアリルアミン、N,N−(メチル)シクロヘキシルアリルアミン、N,N−ジシクロヘキシルアリルアミン、ジアリルアミン、N−メチルジアリルアミン、N−ベンジルジアリルアミン、塩化ジアリルジメチルアンモニウム、臭化ジアリルジメチルアンモニウム、ヨウ化ジアリルジメチルアンモニウム、メチル硫酸ジアリルジメチルアンモニウム、塩化ジアリルメチルベンジルアンモニウム、臭化ジアリルメチルベンジルアンモニウム、ヨウ化ジアリルメチルベンジルアンモニウム、メチル硫酸ジアリルメチルベンジルアンモニウム、塩化ジアリルジベンジルアンモニウム、臭化ジアリルジベンジルアンモニウム、ヨウ化ジアリルジベンジルアンモニウム、メチル硫酸ジアリルジベンジルアンモニウム等である。これらのカチオン基を有するモノマーは、一部又は全部が付加塩を形成してもよく、例えば、塩酸塩、硫酸塩、アミド硫酸塩等の形態で使用することができる。アニオン基を有するモノマーは、例えば、マレイン酸、シトラコン酸若しくはイタコン酸又はそれらのナトリウム塩、カリウム塩若しくはアンモニウム塩等である。両性ポリマーに含まれるノニオン性モノマーとして、二酸化硫黄が挙げられる。   Monomers having a cationic group include, for example, monoallylamine, N-methylallylamine, N, N-dimethylallylamine, N-cyclohexylallylamine, N, N- (methyl) cyclohexylallylamine, N, N-dicyclohexylallylamine, diallylamine, N- Methyl diallylamine, N-benzyl diallylamine, diallyl dimethyl ammonium chloride, diallyl dimethyl ammonium bromide, diallyl dimethyl ammonium iodide, diallyl dimethyl ammonium methyl sulfate, diallyl methyl benzyl ammonium chloride, diallyl methyl benzyl ammonium bromide, diallyl methyl benzyl ammonium iodide , Diallylmethylbenzylammonium methyl sulfate, diallyldibenzylammonium chloride, diallyldibenzyl bromide Ammonium iodide diallyl dibenzyl ammonium, methyl sulfate diallyl dibenzyl ammonium and the like. Some or all of these cationic group-containing monomers may form an addition salt, and can be used in the form of, for example, hydrochloride, sulfate, amide sulfate, or the like. The monomer having an anionic group is, for example, maleic acid, citraconic acid or itaconic acid, or a sodium salt, potassium salt or ammonium salt thereof. Sulfur dioxide is mentioned as a nonionic monomer contained in an amphoteric polymer.

あるいは、両性ポリマーは、一分子中に、カチオン基とアニオン基とを有するモノマーと、ノニオン性のモノマーとが重合されてなるものであってよい。一分子中にカチオン基とアニオン基とを有するモノマーは、例えば、カルボキシベタインであり、これと重合するノニオン性のモノマーは、例えば、メタクリル酸アルキルである。   Alternatively, the amphoteric polymer may be obtained by polymerizing a monomer having a cation group and an anion group in a molecule and a nonionic monomer. A monomer having a cation group and an anion group in one molecule is, for example, carboxybetaine, and a nonionic monomer that is polymerized therewith is, for example, alkyl methacrylate.

両性ポリマーは、水に溶解したときに、酸性水溶液を与えるものであることが好ましい。酸性水溶液は、光触媒粒子を安定して分散させることによる。両性ポリマーが酸性水溶液を与えない場合には、pH調整剤を用いて、分散体を酸性、具体的にはpH1〜5にすることが好ましい。   The amphoteric polymer is preferably one that gives an acidic aqueous solution when dissolved in water. The acidic aqueous solution is obtained by stably dispersing the photocatalyst particles. When the amphoteric polymer does not give an acidic aqueous solution, it is preferable to use a pH adjuster to make the dispersion acidic, specifically, pH 1 to 5.

両性ポリマーとして、具体的には、スチレン−アクリル酸−アクリル酸ジアルキルアミノエステル重合体、アリルアミン−マレイン酸共重合体、N,N−ジアリルアミン−マレイン酸共重合体、ビニルピリジン−アクリル酸共重合体、アミノエチルメタクリレート−メタクリル酸共重合体、2−ビニルピリジン−マレイン酸共重合体、4−ビニルピリジン−マレイン酸共重合体、2−ビニルピリジン−イタコン酸共重合体、n−メチルアミノエチルメタクリレート−アクリル酸共重合体、4−ビニルピリジン−イタコン酸共重合体、n−メチルアリルアミン−イタコン酸共重合体及び4−ビニルピリジン−フマール酸共重合体、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン・メタクリル酸アルキルエステル共重合体(アルキル鎖がC1-18)、およびメタクリロイルオキシエチルジメチルベタイン・塩化メタクリロイルエチルトリメチルアンモニウムベタイン・メタクリル酸−2−ヒドロキシエチル共重合体などが挙げられる。特に、アリルアミン−マレイン酸共重合体およびN,N−ジアリルアミン−マレイン酸共重合体、ならびにN−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン・メタクリル酸アルキルエステル共重合体(アルキル鎖がC1-18)が好ましく用いられる。本発明においては、また、N,N−ジアリルアミン−マレイン酸共重合体に、ノニオン性モノマーとして二硫化硫黄を導入したものも好ましく用いられる。 Specific examples of amphoteric polymers include styrene-acrylic acid-acrylic acid dialkylamino ester polymers, allylamine-maleic acid copolymers, N, N-diallylamine-maleic acid copolymers, and vinylpyridine-acrylic acid copolymers. , Aminoethyl methacrylate-methacrylic acid copolymer, 2-vinylpyridine-maleic acid copolymer, 4-vinylpyridine-maleic acid copolymer, 2-vinylpyridine-itaconic acid copolymer, n-methylaminoethyl methacrylate -Acrylic acid copolymer, 4-vinylpyridine-itaconic acid copolymer, n-methylallylamine-itaconic acid copolymer and 4-vinylpyridine-fumaric acid copolymer, N-methacryloyloxyethyl-N, N- Dimethylammonium-α-N-methylcarboxybetaine metac Le acid alkyl ester copolymer (alkyl chain C 1-18), and methacryloyloxyethyl dimethyl betaine chloride methacryloyloxyethyl trimethylammonium betaine 2-hydroxyethyl methacrylate copolymer, and the like. In particular, allylamine-maleic acid copolymer and N, N-diallylamine-maleic acid copolymer, and N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine / methacrylic acid alkyl ester copolymer A compound (the alkyl chain is C 1-18 ) is preferably used. In the present invention, an N, N-diallylamine-maleic acid copolymer obtained by introducing sulfur disulfide as a nonionic monomer is also preferably used.

本発明において好適に用いられる両性ポリマーは、例えば、日東紡績株式会社(日東紡)から、商品名PAS410C(ジアリルアミン酸塩−マレイン酸共重合体)およびPA−84(マレイン酸−ジアリルジメチルアンモニウムクロリド−二酸化硫黄共重合体)で販売され、また、三菱化学株式会社から、商品名ユカフォーマー(例えば、ユカフォーマー510、ユカフォーマー204WL)で販売されている   Amphoteric polymers preferably used in the present invention include, for example, trade names PAS410C (diallylaminate-maleic acid copolymer) and PA-84 (maleic acid-diallyldimethylammonium chloride) from Nitto Boseki Co., Ltd. (Nittobo). Sulfur dioxide copolymer) and also sold by Mitsubishi Chemical Corporation under the trade name Yuka Former (eg Yuka Former 510, Yuka Former 204WL).

両性ポリマーを分散剤として用いるときに、光触媒粒子の良好な分散性が得られる理由は定かではない。本発明者らは、その理由として、例えば、光触媒が表面処理されていない酸化チタンであって、両性ポリマー水溶液のpHが光触媒の等電点以下である場合、酸化チタンは水溶液中で正電荷を帯電しており、両性ポリマーのアニオン基がこの正電荷に吸着して、酸化チタンに吸着するとともに、カチオン基が酸性水溶液中でイオン解離することにより、水中への溶解性を確保していることが挙げられるのではないかと考えている。また、酸化チタンの等電点は一般に5〜6であるため、両性ポリマーの水溶液が酸性水溶液を与えるときに、このようなメカニズムにより、酸化チタンの溶解性が良好に確保されると考えられる。尤も、この理由は、推測される理由にすぎず、本発明を制限するものではない。   The reason why good dispersibility of the photocatalyst particles can be obtained when the amphoteric polymer is used as a dispersant is not clear. The reason for this is that, for example, when the photocatalyst is titanium oxide that has not been surface-treated and the pH of the amphoteric polymer aqueous solution is equal to or lower than the isoelectric point of the photocatalyst, the titanium oxide has a positive charge in the aqueous solution. Being charged, the anionic group of the amphoteric polymer is adsorbed to this positive charge and adsorbed to titanium oxide, and the cationic group is ion-dissociated in an acidic aqueous solution to ensure solubility in water. I think that may be mentioned. Further, since the isoelectric point of titanium oxide is generally 5 to 6, it is considered that the solubility of titanium oxide is ensured by such a mechanism when the aqueous solution of the amphoteric polymer gives an acidic aqueous solution. However, this reason is only a presumed reason and does not limit the present invention.

両性ポリマーは、分散体全部の重量を100重量%としたときに、1〜40重量%の量で含まれることが好ましい。両性ポリマーの量が少なすぎると、光触媒粒子を十分に分散させることができず、光触媒粒子の分散性が低下することがある。両性ポリマーの量が多すぎると、分散体の粘度が高くなって、取扱い性が悪くなり、また、コストが高くなる。   The amphoteric polymer is preferably contained in an amount of 1 to 40% by weight when the total weight of the dispersion is 100% by weight. When the amount of the amphoteric polymer is too small, the photocatalyst particles cannot be sufficiently dispersed, and the dispersibility of the photocatalyst particles may be lowered. When the amount of the amphoteric polymer is too large, the viscosity of the dispersion is increased, the handling property is deteriorated, and the cost is increased.

[他の成分]
本発明の光触媒分散体は、必要に応じて、上記以外の他の成分をさらに含んでよい。他の成分は、例えば、pH調整剤、防腐防カビ剤、界面活性剤、キレート剤、レベリング剤、バインダー樹脂(溶液またはエマルションの形態であってよい)、結着剤、消泡剤および増粘剤から選択される1または複数の添加剤である。他の成分は、所望の性質を分散体に付与できる量で添加される。他の成分が分散体に占める割合は特に制限されず、分散体の用途に応じて適宜選択される。例えば、分散体をコート剤として用いる場合、他の成分は、分散体全部の重量を100重量%としたときに、50重量%以下の割合で含まれることが好ましい。他の成分の占める割合が大きいと、上記の成分のいずれか一つまたは複数の量が分散体に占める割合が減り、分散体をコートして得られる膜において、所定の光触媒作用が発揮されない、または分散体の粘度が高くなって、塗装を実施することが困難となることがある。
[Other ingredients]
The photocatalyst dispersion of the present invention may further contain other components other than the above, if necessary. Other components include, for example, pH adjusters, antiseptic and fungicides, surfactants, chelating agents, leveling agents, binder resins (which may be in the form of solutions or emulsions), binders, antifoaming agents and thickening agents. One or more additives selected from agents. Other ingredients are added in amounts that can impart the desired properties to the dispersion. The proportion of other components in the dispersion is not particularly limited, and is appropriately selected depending on the use of the dispersion. For example, when the dispersion is used as a coating agent, the other components are preferably contained in a proportion of 50% by weight or less when the total weight of the dispersion is 100% by weight. When the proportion of other components is large, the proportion of any one or more of the above components in the dispersion decreases, and the film obtained by coating the dispersion does not exhibit a predetermined photocatalytic action. Or the viscosity of a dispersion may become high and it may become difficult to implement coating.

[製造方法]
本発明の光触媒分散体の製造方法を次に説明する。本発明の光触媒分散体は、水性媒体に、光触媒および両性ポリマー、ならびに必要に応じて添加される他の成分を投入し、公知の分散装置、具体的には、媒体撹拌式分散機、転動ボールミル、振動ボールミル、またはジェットミルのような装置を用いて、光触媒を分散させる方法により製造することができる。分散機として、媒体撹拌式分散機を用いる場合には、媒体(メディア)として、一般的には材質がジルコニア、アルミナ又はガラスであり、直径が2.0mm以下のビーズが用いられる。分散は、光触媒が、その平均粒子径が前述の範囲となるまで、実施される。
[Production method]
Next, a method for producing the photocatalyst dispersion of the present invention will be described. In the photocatalyst dispersion of the present invention, a photocatalyst, an amphoteric polymer, and other components added as necessary are added to an aqueous medium, and a known dispersion apparatus, specifically, a medium agitating disperser, rolling It can be produced by a method of dispersing the photocatalyst using an apparatus such as a ball mill, a vibrating ball mill, or a jet mill. In the case of using a medium agitating type disperser as the disperser, a bead having a diameter of 2.0 mm or less is generally used as the medium (media), which is generally made of zirconia, alumina, or glass. Dispersion is carried out until the photocatalyst has an average particle size in the aforementioned range.

[用途]
本発明の光触媒分散体は、ガラス、プラスチック、金属、陶磁器およびコンククリートのような基材、ならびに当該基材の表面に形成された塗膜の表面に、光触媒作用を示す膜または親水性を有する膜を形成するために用いることができる。そのような膜を形成するための光触媒分散体は、コート剤とも称することができる。そのような膜は、スピンコーティング、エアナイフコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、またははけ塗り等の公知の方法で形成することができる。本発明の光触媒分散体を、塗料の膜(塗膜)の表面に塗布する場合、コート剤と塗膜との接着性を向上させるために、アンダーコート剤を塗布してから、コート剤を塗布してよい。
[Usage]
The photocatalyst dispersion of the present invention has a photocatalytic film or hydrophilicity on the surface of a substrate such as glass, plastic, metal, ceramics and concrete and a coating film formed on the surface of the substrate. It can be used to form a film. The photocatalyst dispersion for forming such a film can also be referred to as a coating agent. Such a film can be formed by a known method such as spin coating, air knife coating, reverse roll coating, die coating, spray coating, or brushing. When applying the photocatalyst dispersion of the present invention to the surface of a coating film (coating film), in order to improve the adhesion between the coating agent and the coating film, the undercoating agent is applied and then the coating agent is applied. You can do it.

本発明の光触媒分散体をコート剤として、基材表面、または基材表面に形成された塗膜表面に塗布してコート層を形成すると、基材表面が光の照射により親水性となるため、油性の汚れをはじきやすくなる。したがって、本発明の光触媒分散体は、基材表面に、良好な防滴性、防汚・防曇性、自己洗浄性、および易洗浄性を付与することができる。   When the photocatalyst dispersion of the present invention is applied as a coating agent to the substrate surface or the coating film surface formed on the substrate surface to form a coating layer, the substrate surface becomes hydrophilic by light irradiation. Easy to repel oily dirt. Therefore, the photocatalyst dispersion of the present invention can impart good drip-proofing properties, antifouling / antifogging properties, self-cleaning properties, and easy cleaning properties to the substrate surface.

あるいは、本発明の光触媒分散体は、色素増感太陽電池に使用することができる。具体的には、本発明の光触媒分散体は、色素増感太陽電池の透明電極(負極)に塗布するために用いてよい。この場合、本発明の光触媒分散体は、コート剤として用いる場合よりもその粘度を高くして用いることが好ましい。粘度は増粘剤を添加することによって高くしてよい。また、光触媒分散体には、色素を予め混合してよい。   Alternatively, the photocatalyst dispersion of the present invention can be used for a dye-sensitized solar cell. Specifically, the photocatalyst dispersion of the present invention may be used for coating on a transparent electrode (negative electrode) of a dye-sensitized solar cell. In this case, the photocatalyst dispersion of the present invention is preferably used with a higher viscosity than when used as a coating agent. The viscosity may be increased by adding a thickener. The photocatalyst dispersion may be premixed with a dye.

(光触媒)
光触媒として、酸化チタン光触媒を用意した(石原産業株式会社製、商品名ST−01)。
(分散剤)
分散剤として、下記の6種類の樹脂を用意した。
<両性ポリマー>
ジアリルアミン酸塩−マレイン酸共重合体(日東紡績株式会社製、商品名PAS−410C、濃度40%)
マレイン酸−ジアリルジメチルアンモニウムクロリド−二酸化硫黄共重合体(日東紡績株式会社製、商品名PAS−84、濃度30%)
N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン・メタクリル酸アルキルエステル共重合体(三菱化学株式会社製、商品名ユカフォーマー510、濃度18%)
<カチオン性ポリマー>
ジアリルジメチルアンモニウムクロリド重合体(日東紡績株式会社、商品名PAS−H−10L、濃度28%)
ポリエチレンイミン(日本触媒株式会社製、商品名エポミンSP−012)
<アニオン性ポリマー>
エチレン−無水マレイン酸共重合体(Vertellus Specialties Inc.製、商品名ZEMAC E−400)
(photocatalyst)
A titanium oxide photocatalyst was prepared as a photocatalyst (product name ST-01, manufactured by Ishihara Sangyo Co., Ltd.).
(Dispersant)
The following six types of resins were prepared as dispersants.
<Amphoteric polymer>
Diallylaminate-maleic acid copolymer (manufactured by Nitto Boseki Co., Ltd., trade name PAS-410C, concentration 40%)
Maleic acid-diallyldimethylammonium chloride-sulfur dioxide copolymer (manufactured by Nitto Boseki Co., Ltd., trade name PAS-84, concentration 30%)
N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine / methacrylic acid alkyl ester copolymer (manufactured by Mitsubishi Chemical Corporation, trade name Yukaformer 510, concentration 18%)
<Cationic polymer>
Diallyldimethylammonium chloride polymer (Nitto Boseki Co., Ltd., trade name PAS-H-10L, concentration 28%)
Polyethyleneimine (Nippon Shokubai Co., Ltd., trade name Epomin SP-012)
<Anionic polymer>
Ethylene-maleic anhydride copolymer (Vertellus Specialties Inc., trade name ZEMAC E-400)

実施例4において、分散体のpHを酸性に調整するために、12Nの塩酸(塩酸含有量37重量%)(特級試薬:和光純薬工業株式会社製)を用意した。また、比較例3において、アニオン性ポリマーを水に溶解させるために、水酸化ナトリム含有量97重量%の水酸化ナトリウム(特級試薬:和光純薬工業株式会社製)を用意した。   In Example 4, in order to adjust the pH of the dispersion to acidic, 12N hydrochloric acid (hydrochloric acid content: 37% by weight) (special grade reagent: manufactured by Wako Pure Chemical Industries, Ltd.) was prepared. In Comparative Example 3, sodium hydroxide having a sodium hydroxide content of 97% by weight (special grade reagent: manufactured by Wako Pure Chemical Industries, Ltd.) was prepared in order to dissolve the anionic polymer in water.

(実施例1〜2、比較例1〜3)
光触媒と、分散剤と、水性媒体である水(イオン交換水)とを、表1に示す割合で混合撹拌した後、直径0.5mmのジルコニアからなるビーズミルを媒体として、媒体撹拌式分散機により、光触媒を分散させて、光触媒分散体を得た。得られた分散体各々のpH、分散体における光触媒粒子の粒径、および分散体の経時安定性を下記の手順で評価した。
(Examples 1-2, Comparative Examples 1-3)
A photocatalyst, a dispersant, and water (ion exchange water) as an aqueous medium are mixed and stirred at a ratio shown in Table 1, and then a bead mill made of zirconia having a diameter of 0.5 mm is used as a medium by a medium stirring type disperser. The photocatalyst was dispersed to obtain a photocatalyst dispersion. The pH of each of the obtained dispersions, the particle diameter of the photocatalyst particles in the dispersion, and the temporal stability of the dispersion were evaluated by the following procedure.

(pH)
pHメータを用いて測定した。
(光触媒粒子の粒子径)
光触媒分散体における、光触媒粒子の粒子径(メジアン径)は、動的光散乱法により測定した。測定には、株式会社堀場製作所製のLB550を用いた。
(経時安定性)
分散体をガラス瓶にいれ、常温で6ヶ月静置した後、状態を目視観察し、下記の基準に従って評価した。
○:沈澱がない。または、光触媒粒子が沈澱しているが、振とうすると簡単に再分散する。
×:光触媒粒子が沈澱しており、振とうしても再分散しない。
(PH)
Measurement was performed using a pH meter.
(Photocatalyst particle diameter)
The particle diameter (median diameter) of the photocatalyst particles in the photocatalyst dispersion was measured by a dynamic light scattering method. For the measurement, LB550 manufactured by Horiba Ltd. was used.
(Stability over time)
The dispersion was placed in a glass bottle and allowed to stand at room temperature for 6 months, and then the state was visually observed and evaluated according to the following criteria.
○: There is no precipitation. Alternatively, the photocatalyst particles are precipitated but easily redispersed when shaken.
X: The photocatalyst particle | grains have settled and it does not re-disperse even if it shakes.

評価結果を表1に示す。   The evaluation results are shown in Table 1.

Figure 0005909393
Figure 0005909393

表1に示すとおり、両性ポリマーを分散剤として使用した実施例1〜4はいずれも、光触媒の粒子径が小さく、良好な分散性および経時安定性を示した。カチオン性基のみ、またはアニオン性基のみを有するポリマーを分散剤として使用した比較例1〜3はいずれも、光触媒の粒子径が大きくて分散性が悪く、したがって、経時安定性においても劣っていた。   As shown in Table 1, all of Examples 1 to 4 in which the amphoteric polymer was used as a dispersant had a small photocatalyst particle size, and exhibited good dispersibility and stability over time. In Comparative Examples 1 to 3 in which a polymer having only a cationic group or only an anionic group was used as a dispersant, the photocatalyst had a large particle size and poor dispersibility, and therefore was inferior in stability over time. .

本発明の光触媒分散体は、分散剤として両性ポリマーを用いることにより、良好な分散性を確保したものであり、コート剤として有用であり、また、色素増感太陽電池において色素を吸着させるための酸化チタン層として使用できる。   The photocatalyst dispersion of the present invention ensures good dispersibility by using an amphoteric polymer as a dispersant, is useful as a coating agent, and is used for adsorbing a dye in a dye-sensitized solar cell. It can be used as a titanium oxide layer.

Claims (4)

光触媒粒子、水性媒体および水溶性の両性ポリマーを含有し、光触媒粒子が水性媒体中に分散している、光触媒分散体であって、
両性ポリマーが、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン・メタクリル酸アルキルエステル共重合体(アルキル鎖は1〜18の炭素数を有する)、またはN,N−ジアリルアミン−マレイン酸共重合体もしくはこれに二酸化硫黄がさらに重合している共重合体である、
光触媒分散体
A photocatalyst dispersion comprising photocatalyst particles, an aqueous medium and a water-soluble amphoteric polymer, wherein the photocatalyst particles are dispersed in the aqueous medium ,
The amphoteric polymer is N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine / methacrylic acid alkyl ester copolymer (the alkyl chain has 1 to 18 carbon atoms), or N, N A diallylamine-maleic acid copolymer or a copolymer in which sulfur dioxide is further polymerized;
Photocatalyst dispersion .
pHが酸性である、請求項1に記載の光触媒分散体。 The photocatalyst dispersion according to claim 1, wherein the pH is acidic. 光触媒粒子が、酸化チタン光触媒粒子である、請求項1または2に記載の光触媒分散体。 The photocatalyst dispersion according to claim 1 or 2 , wherein the photocatalyst particles are titanium oxide photocatalyst particles. 請求項1〜のいずれか1項に記載の光触媒分散体を含んでいる、コーティング液。 The coating liquid containing the photocatalyst dispersion of any one of Claims 1-3 .
JP2012064751A 2012-03-22 2012-03-22 Photocatalyst dispersion and coating liquid Expired - Fee Related JP5909393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064751A JP5909393B2 (en) 2012-03-22 2012-03-22 Photocatalyst dispersion and coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064751A JP5909393B2 (en) 2012-03-22 2012-03-22 Photocatalyst dispersion and coating liquid

Publications (2)

Publication Number Publication Date
JP2013193054A JP2013193054A (en) 2013-09-30
JP5909393B2 true JP5909393B2 (en) 2016-04-26

Family

ID=49392648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064751A Expired - Fee Related JP5909393B2 (en) 2012-03-22 2012-03-22 Photocatalyst dispersion and coating liquid

Country Status (1)

Country Link
JP (1) JP5909393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108504150A (en) * 2018-03-22 2018-09-07 天津大学 A kind of anti-fog coating and preparation method thereof based on amphoteric ion polyelectrolyte copolymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238877B2 (en) * 2020-11-10 2023-03-14 Dic株式会社 Aqueous composition of titanium oxide supporting metal compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212509A (en) * 1999-01-20 2000-08-02 Jsr Corp Method for forming coating film and cured material produced from the film
JP2003213564A (en) * 2002-01-10 2003-07-30 Teijin Ltd Deodorant fibrous structure deodorant fibrous structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108504150A (en) * 2018-03-22 2018-09-07 天津大学 A kind of anti-fog coating and preparation method thereof based on amphoteric ion polyelectrolyte copolymer
CN108504150B (en) * 2018-03-22 2020-03-17 天津大学 Antifogging coating based on zwitterionic polyelectrolyte copolymer and preparation method thereof

Also Published As

Publication number Publication date
JP2013193054A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP3080162B2 (en) Titanium oxide sol and method for producing the same
CN100480205C (en) Surfactant mediated porous metal oxide film
EP1512728B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating compositions, and self-cleaning member
CA2312788C (en) Photocatalytic oxide composition, thin film, and composite
JP5415945B2 (en) Aqueous dispersions of composite coacervates that impart unique properties on solid surfaces and contain inorganic solid particles and copolymers
JP5441264B2 (en) Ammonium niobate sol, process for producing the same, coating liquid for thin film formation, and thin film supporting substrate
TW200829345A (en) Method for protecting substrate
JP4619601B2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
JP2007063477A (en) Inorganic coating composition, hydrophilic coating film, and agricultural film
JP5909393B2 (en) Photocatalyst dispersion and coating liquid
JPH10237353A (en) Hydrophilic coating agent and surface hydrophilic substrate
TW575523B (en) Inorganic film-forming coating composition and inorganic film-forming method by use of the same
KR101028797B1 (en) The functional coating agent and manufacturing mtehod the same
JP2009227500A (en) Transparent titanium oxide organosol, coating composition with the same blended, optical base material
JP2008284242A (en) Deodorizing and antibacterial composition and its manufacturing method
JP2000191943A (en) Film-forming composition and its production
JPH10251565A (en) Water-based polish for countermeasure against indoor pollution, water-based clear coating material and reduction in indoor pollution using the same
JP2012233051A (en) Coating composition
JP2003112923A (en) Reformed titanium oxide particle
JP2003327920A (en) Electroconductive coating material, method for producing electroconductive coat using the same, electroconductive coating film and element having electroconductive coating film
WO2014017575A1 (en) Photocatalyst coating liquid, method for producing same, and photocatalyst
JP3385243B2 (en) Method for producing titanium oxide sol
JP2016193801A (en) Method for producing titanium oxide sol doped with niobium and/or tantalum
CN111875995A (en) Novel rare earth nano composite cleaning antibacterial antifogging agent and preparation method and application thereof
JP2004083469A (en) Dispersion of silver-containing inorganic antibacterial agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5909393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees