JP5909178B2 - Injection material for repairing cracks in concrete, method for manufacturing the same, and injection method using the same - Google Patents

Injection material for repairing cracks in concrete, method for manufacturing the same, and injection method using the same Download PDF

Info

Publication number
JP5909178B2
JP5909178B2 JP2012505761A JP2012505761A JP5909178B2 JP 5909178 B2 JP5909178 B2 JP 5909178B2 JP 2012505761 A JP2012505761 A JP 2012505761A JP 2012505761 A JP2012505761 A JP 2012505761A JP 5909178 B2 JP5909178 B2 JP 5909178B2
Authority
JP
Japan
Prior art keywords
parts
concrete
silica
injection
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012505761A
Other languages
Japanese (ja)
Other versions
JPWO2011115245A1 (en
Inventor
秀朗 石田
秀朗 石田
八木 徹
徹 八木
正範 室川
正範 室川
崇志 小澤
崇志 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2011115245A1 publication Critical patent/JPWO2011115245A1/en
Application granted granted Critical
Publication of JP5909178B2 publication Critical patent/JP5909178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0203Arrangements for filling cracks or cavities in building constructions
    • E04G23/0211Arrangements for filling cracks or cavities in building constructions using injection
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Sealing Material Composition (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は、コンクリートのひび割れ補修用注入材、その製造方法、及びそれを用いた注入工法、特に、100μm以下の微細なコンクリートのひび割れに対しても優れた浸透性を有し、高い止水効果や耐久性能が得られるコンクリートのひび割れ補修用注入材、その製造方法、及びそれを用いた注入工法に関する。   The present invention is an injection material for repairing concrete cracks, a method for producing the same, and an injection method using the same, and in particular, has excellent permeability even for fine concrete cracks of 100 μm or less, and has a high water-stopping effect. Further, the present invention relates to an injection material for repairing cracks in concrete that can obtain durability and durability, a manufacturing method thereof, and an injection method using the same.

コンクリートは、硬化時の温度収縮、硬化後の温度変化、及び乾燥等により、ひび割れが発生する場合が多い。そして、外観上問題にはならない100μm以下の微細なひび割れであっても、そのコンクリートのひび割れから水が侵入したり、封じ込めたガスが漏れたりするため、100μm以下の微細なコンクリートのひび割れを補修する注入材が求められている。   Concrete often cracks due to temperature shrinkage during curing, temperature change after curing, and drying. And even if it is a fine crack of 100 μm or less, which does not cause a problem in appearance, water penetrates from the crack of the concrete or leaks the contained gas, so repair the fine crack of concrete of 100 μm or less. There is a need for an injection material.

従来、コンクリートのひび割れへの高浸透性の注入材として、水ガラスを原料とした溶液型シリカ注入材が知られている。例えば、水ガラス系アルカリ性注入材、酸性シリカゾルを主成分とした注入材、水ガラスを陽イオン交換樹脂又はイオン交換膜で処理して得られる活性シリカを主成分とした注入材、及び活性シリカを濃縮増粒してpHが9〜10の弱アルカリ性で安定化したシリカコロイド注入材等が用いられてきた(特許文献1、特許文献2)。   2. Description of the Related Art Conventionally, a solution-type silica injection material using water glass as a raw material is known as a highly permeable injection material for cracks in concrete. For example, a water glass alkaline injection material, an injection material mainly composed of acidic silica sol, an injection material mainly composed of active silica obtained by treating water glass with a cation exchange resin or an ion exchange membrane, and active silica Silica colloidal injection materials and the like that have been concentrated and granulated and have a pH of 9 to 10 and have been stabilized with weak alkali have been used (Patent Documents 1 and 2).

しかしながら、高水圧下では、上述の溶液型シリカ注入材は、注入材自体の強度(ホモゲル強度)が0.01N/mm以下と小さいため、コンクリートのひび割れに注入した溶液型シリカ注入材が水圧で押し出されてしまい、止水性や長期耐久性が低減する課題があった。However, under high water pressure, the above-described solution-type silica injecting material has a strength (homogen strength) of the injecting material as small as 0.01 N / mm 2 or less. There was a problem that water stoppage and long-term durability were reduced.

溶液型シリカ注入材に代えて、超微粒子セメントが用いられる場合があるが、微粒子セメントの平均粒子径は5μm程度と大きいため、100μm以下のコンクリートのひび割れに対しては浸透性が悪く、より優れた浸透性、止水効果、及び耐久性を持つ注入材が求められている(特許文献3)。   Ultrafine cement may be used in place of the solution type silica injection material, but the average particle size of the fine particle cement is as large as about 5 μm. Therefore, the permeability to concrete cracks of 100 μm or less is poor and better. Therefore, there is a demand for an injection material having high permeability, water stop effect, and durability (Patent Document 3).

また、微粒子シリカを主体とする注入材が提案された(特許文献4)。
特許文献4には、A材である微粒子シリカを主体とする注入材を地盤に注入することが記載されている。
しかしながら、微粒子シリカは、コンクリートのひび割れに注入する場合、コンクリート中のアルカリと瞬時に反応する場合があり、コンクリートのひび割れへの浸透性を確保できない場合がある。そして、特許文献4には、コンクリートのひび割れに注入する場合、コンクリート中のアルカリと瞬時に反応することなく、コンクリートのひび割れへの浸透性を確保できることについての記載はない。
In addition, an injection material mainly composed of fine-particle silica has been proposed (Patent Document 4).
Patent Document 4 describes that an injection material mainly composed of fine particle silica, which is a material A, is injected into the ground.
However, when the fine particle silica is injected into the cracks in the concrete, it may react instantaneously with the alkali in the concrete, and the permeability to the cracks in the concrete may not be ensured. And in patent document 4, when it inject | pours into the crack of concrete, there is no description about the permeability to the crack of concrete being ensured, without reacting with the alkali in concrete instantly.

そこで、微粒子シリカ、アルカリ性の硬化材、水、及びカルボン酸又はその塩からなる地盤注入材が提案された(特許文献5)。
特許文献5の実施例に記載のとおり、上記地盤注入材は、硬化時間が極めて長く、材齢3日においても流動性が無くなる程度であり、圧縮強度を測定することができないくらい小さい。そして、特許文献5には、本願発明のように、コンクリートのひび割れに注入しても、注入材が水圧で押し出されることなく、コンクリートのひび割れへの浸透性や止水性が低減しないことについての記載はない。
Then, the ground injection material which consists of fine particle silica, an alkaline hardening material, water, and carboxylic acid or its salt was proposed (patent document 5).
As described in the Examples of Patent Document 5, the above ground injection material has a very long curing time, has no fluidity even at a material age of 3 days, and is so small that the compressive strength cannot be measured. And in patent document 5, even if it inject | pours into the crack of concrete like this invention, it is the description about the permeability to a crack of concrete, and water stoppage not reducing without the injection material being extruded by water pressure. There is no.

また、ポゾラン物質と水を含有するA材と、カルシウム含有物質と水を含有するB材を別々に注入する注入材の施工方法が提案されている(特許文献6)。
特許文献6には、「予めポゾラン物質と水を含有するA材と、予めカルシウム含有物質と水を含有するB材を、別々に注入する注入材の施工方法。」(請求項1)と、「A材が予め分散剤を含有する請求項1記載の注入材の施工方法。」(請求項2)の発明が記載され、「又、分散性を高めるためB材に分散剤を併用することも可能である。」(段落[0014])と記載されているが、カルシウム含有物質と水を含有するB材に分散剤を併用することについては具体的な記載がなく、A材とB材を同時注入した場合は、注入材が直ちに硬化してしまい、注入ができない(段落[0022])という課題があった。また、ポゾラン物質として、「平均粒径1μm以下に粉砕した原料珪石を高温の火炎中で溶融し、球状にした球状シリカ」を使用することが示されているが、A材中に分散した球状シリカの平均粒径が1μm以下であることは示されていない。カルシウム含有物質を1μm以下に粉砕し、分散させることも示されていない。即ち、特許文献6の実施例2では、分散剤をA材に併用しているが、B材には併用していない。このまま、A材とB材を混合すると瞬結するため、A材とB材は別々に注入する必要があり、注入材の均一性を保つことができなかった。また、特許文献6には、カルシウム含有物質を1μm以下に粉砕し、分散させることも示されていない。
Moreover, the construction method of the injection material which inject | pours separately the A material containing a pozzolanic substance and water, and the B material containing a calcium containing substance and water is proposed (patent document 6).
Patent Document 6 includes "a method for applying an injection material in which a material A previously containing a pozzolanic substance and water and a material B previously containing a calcium-containing material and water are separately injected" (Claim 1); The invention according to claim 1, wherein the A material contains a dispersant in advance. (Claim 2) is described, and "in addition, a dispersant is used in combination with the B material in order to improve dispersibility." (Paragraph [0014]), but there is no specific description about using a dispersant in combination with a calcium-containing substance and water-containing B material, and the A material and the B material. In the case of simultaneous injection, the injection material hardened immediately, and there was a problem that injection could not be performed (paragraph [0022]). In addition, as a pozzolanic substance, it has been shown that “spherical silica obtained by melting a raw material silica stone having an average particle size of 1 μm or less into a spherical shape by melting it in a high-temperature flame” is used. It is not shown that the average particle size of silica is 1 μm or less. Neither is it shown that the calcium-containing material is ground and dispersed to 1 μm or less. That is, in Example 2 of Patent Document 6, the dispersant is used in combination with the A material, but not in the B material. If the A material and the B material are mixed as they are, the A material and the B material need to be injected separately, and the uniformity of the injected material could not be maintained. Further, Patent Document 6 does not show that the calcium-containing substance is pulverized to 1 μm or less and dispersed.

また、特許文献7には、シリカ、ライム、及び分散剤の記載はあるが、シリカを含有する懸濁液、ライムを含有する懸濁液のそれぞれに分散剤を含有することの記載は無い。   Moreover, although patent document 7 has description of a silica, lime, and a dispersing agent, there is no description of containing a dispersing agent in each of the suspension containing silica and the suspension containing lime.

特許文献8には、「粉体の超微粒子材料に水と分散剤とを添加し、超微粒子材料を解砕し攪拌し、さらに分散剤を添加し、超微粒子材料を解砕し攪拌した第1の高分散化低粘性超微粒子スラリーと、第1の高分散化低粘性超微粒子スラリーの微粒子材料と異なる粉体の超微粒子材料に水と分散剤とを添加し、超微粒子材料を解砕し攪拌し、さらに分散剤を添加し、超微粒子材料を解砕し攪拌した第2の高分散化低粘性超微粒子スラリーとを混合し、超微粒子材料を解砕し攪拌し、さらに分散剤を添加し、超微粒子材料を解砕し攪拌することを特徴とする高分散化低粘性超微粒子スラリーの製造方法。」(請求項3)の発明が記載され、「超微粒子材料が、シリカフュームおよび/または消石灰であること」(請求項6、段落[0034]、[0068])が記載され、レーザー回折/散乱式粒度分析装置で測定したシリカライム(消石灰/シリカフューム=1)の一次粒子平均粒径が0.10μmであること(段落[0068]、[0072]表1)、浸透率は平均凝集粒子径が1μm程度以下で100%になること([0070])も記載されている。
しかしながら、特許文献8に記載の発明は、平均粒径を1μm以下とするために、上記のように、超微粒子材料(シリカフュームおよび消石灰)の解砕、攪拌、分散剤の添加を繰り返し行うという複雑な工程を経なければならないという問題があり、また、一次粒子に近い高分散化低粘性超微粒子グラウトを作製するためには、解砕方式として、ボール(ビーズ)を媒体にしてスラリーをミキサーで撹拌するという方式を適用する必要があった(段落[0021])。そして、レーザー回折/散乱式粒度分析装置を用いて測定する場合には、通常前処理として超音波分散処理を行うものであるから、超音波分散処理を行うことなくレーザー回折/散乱式粒度分析装置を用いて測定した場合の平均粒径は明らかではない。また、超微粒子材料として、シリカフューム以外の微細シリカ粉末についての記載はなく、高分散化低粘性超微粒子スラリーを注入材とした場合の耐久性についても記載されていない。
Patent Document 8 states that “the addition of water and a dispersant to a powdered ultrafine particle material, pulverizing and stirring the ultrafine particle material, adding a dispersant, pulverizing and stirring the ultrafine particle material. Add water and a dispersant to the ultra-fine particle material of powder different from the high-dispersion low-viscosity ultra fine particle slurry of No. 1 and the first highly dispersed low-viscosity ultra fine particle slurry, and disintegrate the ultra-fine particle material Then, a dispersant is added, and the ultrafine particle material is crushed and mixed with the second highly dispersed low viscosity ultrafine particle slurry, and the ultrafine particle material is crushed and stirred. And a method of producing a highly dispersed low-viscosity ultrafine particle slurry characterized by adding, crushing and stirring the ultrafine particle material. (Claim 3), wherein the ultrafine particle material is silica fume and / or Or slaked lime ”(claim 6, paragraph [0034], [ 068]), and the primary particle average particle size of silica lime (slaked lime / silica fume = 1) measured by a laser diffraction / scattering particle size analyzer is 0.10 μm (paragraphs [0068] and [0072] Tables) 1) It is also described that the permeability is 100% when the average aggregated particle size is about 1 μm or less ([0070]).
However, in the invention described in Patent Document 8, in order to set the average particle size to 1 μm or less, as described above, the crushing of ultrafine particle materials (silica fume and slaked lime), stirring, and addition of a dispersant are repeatedly performed. In order to produce a highly dispersed low-viscosity ultrafine particle grout that is close to primary particles, as a crushing method, slurry is mixed with a ball (bead) as a medium. It was necessary to apply the method of stirring (paragraph [0021]). And when measuring using a laser diffraction / scattering type particle size analyzer, an ultrasonic dispersion process is usually performed as a pre-processing, and therefore, a laser diffraction / scattering type particle size analyzer without performing the ultrasonic dispersion process. The average particle size when measured using is not clear. In addition, there is no description of fine silica powders other than silica fume as the ultrafine particle material, and there is no description about durability when a highly dispersed low viscosity ultrafine particle slurry is used as an injection material.

また、特許文献9や10には、金属シリコン粉末を水に分散させた金属シリコン粉末濃度が20〜70%、又は5〜60%であるスラリーを火炎中に少なくとも10m/秒以上、または少なくとも20m/秒以上の突出速度で噴射し燃焼、酸化させる方法で製造した微細シリカ粉末(微細球状シリカ)が示されているが、これらの微細球状シリカを注入材として使用することは示されていない。   In Patent Documents 9 and 10, a slurry in which a metal silicon powder concentration in which metal silicon powder is dispersed in water is 20 to 70%, or 5 to 60% is at least 10 m / second or more, or at least 20 m in a flame. Although a fine silica powder (fine spherical silica) produced by a method of injecting, burning, and oxidizing at a protruding speed of at least / sec is shown, it is not shown that these fine spherical silicas are used as an injection material.

非特許文献1には、超微粒子球状シリカおよび水を含有するA剤と、超微粒子水酸化カルシウム、分散剤および水を含有するB剤とを混合したものからなるグラウト材料(注入材)が記載されているが、A剤に分散剤を含有させることについては記載がなく、超微粒子水酸化カルシウムの添加量を多くすると流動性が低下するため、A剤とB剤の配合割合が限定されるという問題があった。また、超微粒子球状シリカと超微粒子水酸化カルシウムの粒度はそれぞれ概ね1μm以下であることが示されているが、粒度分布を測定する場合、通常前処理として超音波分散処理を行うものであるから、超音波分散処理を行うことなく粒度分布を測定した場合の平均粒径は明らかではない。   Non-Patent Document 1 describes a grout material (injection material) comprising a mixture of agent A containing ultrafine spherical silica and water, and agent B containing ultrafine calcium hydroxide, a dispersant and water. However, there is no description about adding a dispersing agent to the agent A, and if the amount of ultrafine calcium hydroxide added is increased, the fluidity decreases, so the mixing ratio of agent A and agent B is limited. There was a problem. In addition, the particle sizes of ultrafine spherical silica and ultrafine calcium hydroxide are each shown to be approximately 1 μm or less. However, when measuring the particle size distribution, ultrasonic dispersion treatment is usually performed as a pretreatment. The average particle size when the particle size distribution is measured without performing ultrasonic dispersion treatment is not clear.

特許第3205900号公報Japanese Patent No. 3205900 特開2004−035584号公報JP 2004-035584 A 特開2006−226014号公報JP 2006-226014 A 特開2007−217453号公報JP 2007-217453 A 特開2008−120892号公報JP 2008-120892 A 特開2009−299291号公報JP 2009-299291 A 国際公開第2005/123623号International Publication No. 2005/123623 特開平08−041455号公報Japanese Patent Laid-Open No. 08-041455 特開2001−354409号公報JP 2001-354409 A 特開2002−020113号公報JP 2002-020113 A

土木学会第64回年次学術講演会講演概要集(CD−ROM)平成21年8月3日、第145頁〜第146頁Outline of the 64th Annual Conference of the Japan Society of Civil Engineers (CD-ROM) August 3, 2009, pages 145-146

本発明の目的は、100μm以下のコンクリートのひび割れに対しても、高い浸透性が得られ、優れた止水効果や耐久性を示すコンクリートのひび割れ補修用注入材、その製造方法、及びそれを用いた注入工法を提供することにある。   An object of the present invention is to provide a concrete crack repairing injection material that exhibits high water permeability and exhibits excellent water-stopping effect and durability even for cracks in concrete of 100 μm or less, a method for producing the same, and a method for using the same. It is to provide an injection method.

本発明は、上記課題を解決するために、以下の手段を採用する。
(1)平均粒径が1.0μm以下である微粒子シリカ、分散剤、ポリマーディスパージョン、及び水を含有する、湿式分散処理したA材と、平均粒径1.0μm以下のカルシウム化合物、分散剤、及び水を含有する、湿式粉砕分散処理したB材とを混合してなるコンクリートのひび割れ補修用注入材であって、前記微粒子シリカの濃度が40〜70%、前記ポリマーディスパージョンが、エチレン−酢酸ビニル共重合体又はスチレンブタジエン共重合体からなり、前記微粒子シリカ100質量部に対して、固形分換算で0.1〜10質量部、前記カルシウム化合物が、濃度30〜60%で、前記微粒子シリカ100質量部に対して、50〜100質量部であることを特徴とするコンクリートのひび割れ補修用注入材である。
)前記微粒子シリカおよび前記カルシウム化合物の平均粒径が、超音波分散処理を行うことなくレーザー回折式粒度分布計を用いて測定した平均粒径であることを特徴とする前記(1)のコンクリートのひび割れ補修用注入材である。
)前記微粒子シリカが、球形度の平均値が95%以上の微粒子球状シリカであることを特徴とする前記(1)又は(2)のコンクリートのひび割れ補修用注入材である。
)前記カルシウム化合物が、水酸化カルシウムであることを特徴とする前記(1)〜()のうちのいずれか1項のコンクリートのひび割れ補修用注入材である。
)前記A材中の分散剤の使用量が、微粒子シリカ100質量部に対して、固形分換算で0.1〜30質量部であることを特徴とする前記(1)〜()のうちのいずれか1項のコンクリートのひび割れ補修用注入材である。
)前記B材中の分散剤の使用量が、カルシウム化合物100質量部に対して、固形分換算で1〜30質量部であることを特徴とする前記(1)〜()のうちのいずれか1項のコンクリートのひび割れ補修用注入材である。
)さらに、硬化時間調整剤を、前記カルシウム化合物100質量部に対して、0.1〜10質量部含有してなることを特徴とする前記(1)〜()のうちのいずれか1項のコンクリートのひび割れ補修用注入材である。
)平均粒径が1.0μm以下で、濃度が40〜70%の微粒子シリカ、前記微粒子シリカ100質量部に対して、固形分換算で0.1〜10質量部の、エチレン−酢酸ビニル共重合体又はスチレンブタジエン共重合体からなるポリマーディスパージョン、及び水を含有する懸濁液を調製し、この懸濁液に、分散剤、さらに、必要に応じて水を混合して湿式分散処理したA材を製造し、一方、平均粒径が1.0μm以下で、濃度が30〜60%で、前記微粒子シリカ100質量部に対して、50〜100質量部のカルシウム化合物、分散剤、及び水を含有する懸濁液を調製し、この懸濁液に、さらに、必要に応じて水を混合して湿式粉砕分散処理したB材を製造し、前記A材と前記B材とを混合することを特徴とするコンクリートのひび割れ補修用注入材の製造方法である。
)前記微粒子シリカが、金属シリコン粉末を水に分散させたスラリーを火炎中に噴射し燃焼、酸化させる方法で製造したものであることを特徴とする前記()のコンクリートのひび割れ補修用注入材の製造方法である。
10)前記微粒子シリカおよび前記カルシウム化合物の平均粒径が、超音波分散処理を行うことなくレーザー回折式粒度分布計を用いて測定した平均粒径であることを特徴とする前記()又は()のコンクリートのひび割れ補修用注入材の製造方法である。
11)前記微粒子シリカが、球形度の平均値が95%以上の微粒子球状シリカであることを特徴とする前記()〜(10)のうちのいずれか1項のコンクリートのひび割れ補修用注入材の製造方法である。
12)前記カルシウム化合物が、水酸化カルシウムであることを特徴とする前記()〜(11)のうちのいずれか1項のコンクリートのひび割れ補修用注入材の製造方法である。
13)前記A材及び/又はB材を、高圧水を使用した粉砕機を用いて湿式分散処理及び/又は湿式粉砕分散処理したことを特徴とする前記()〜(12)のうちのいずれか1項のコンクリートのひび割れ補修用注入材の製造方法である。
14)前記A材中の分散剤の使用量が、微粒子シリカ100質量部に対して、固形分換算で0.1〜30質量部であることを特徴とする前記()〜(13)のうちのいずれか1項のコンクリートのひび割れ補修用注入材の製造方法である。
15)前記B材中の分散剤の使用量が、カルシウム化合物100質量部に対して、固形分換算で1〜30質量部であることを特徴とする前記()〜(14)のうちのいずれか1項のコンクリートのひび割れ補修用注入材の製造方法である。
16)さらに、硬化時間調整剤を、前記カルシウム化合物100質量部に対して、0.1〜10質量部含有してなることを特徴とする前記()〜(15)のうちのいずれか1項のコンクリートのひび割れ補修用注入材の製造方法である。
17)前記(1)〜()のうちのいずれか1項のコンクリートのひび割れ補修用注入材を注入してなることを特徴とする注入工法である。
18)前記A材と前記B材とを、1ショット方式、1.5ショット方式、及び2ショット方式のいずれかの方式により混合し、コンクリートのひび割れに注入することを特徴とする前記(17)の注入工法である。
The present invention employs the following means in order to solve the above problems.
(1) A wet-dispersed A material containing fine particle silica having an average particle size of 1.0 μm or less, a dispersant, a polymer dispersion, and water, and a calcium compound and dispersant having an average particle size of 1.0 μm or less And a wet cracking and dispersing B material containing water, and a concrete crack repairing injection material, wherein the fine particle silica concentration is 40 to 70%, and the polymer dispersion is ethylene- It consists of a vinyl acetate copolymer or a styrene butadiene copolymer, 0.1 to 10 parts by mass in terms of solid content, and the calcium compound has a concentration of 30 to 60% with respect to 100 parts by mass of the fine particle silica. It is an injection material for repairing cracks in concrete, which is 50 to 100 parts by mass with respect to 100 parts by mass of silica.
( 2 ) The average particle size of the fine particle silica and the calcium compound is an average particle size measured using a laser diffraction particle size distribution meter without performing ultrasonic dispersion treatment . It is an injection material for repairing cracks in concrete.
( 3 ) The concrete crack repairing injection material according to (1) or (2) , wherein the fine particle silica is fine particle spherical silica having an average sphericity of 95% or more.
( 4 ) The concrete crack repairing injection material according to any one of (1) to ( 3 ), wherein the calcium compound is calcium hydroxide.
( 5 ) Said (1)-( 4 ) characterized by the usage-amount of the dispersing agent in said A material being 0.1-30 mass parts in conversion of solid content with respect to 100 mass parts of fine particle silica. It is an injection material for the crack repair of concrete of any one of these.
( 6 ) Of the above (1) to ( 5 ), the amount of the dispersant used in the B material is 1 to 30 parts by mass in terms of solid content with respect to 100 parts by mass of the calcium compound. 4. An injection material for repairing cracks in concrete according to any one of the above.
( 7 ) Furthermore, 0.1-10 mass parts of hardening time regulators are contained with respect to 100 mass parts of said calcium compounds, Any one of said (1)-( 6 ) characterized by the above-mentioned. It is an injection material for repairing cracks in concrete according to item 1.
( 8 ) An ethylene-vinyl acetate having an average particle size of 1.0 μm or less and 0.1 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of fine particle silica having a concentration of 40 to 70% and the fine particle silica. A suspension containing a polymer dispersion comprising a copolymer or a styrene-butadiene copolymer and water is prepared, and a dispersing agent is added to this suspension, and water is mixed if necessary, and wet dispersion treatment is performed. On the other hand, the average particle diameter is 1.0 μm or less, the concentration is 30 to 60%, and 50 to 100 parts by mass of the calcium compound, the dispersant, and 100 parts by mass of the fine-particle silica. A suspension containing water is prepared, and further, water is mixed with this suspension as necessary to produce a B material that has been wet pulverized and dispersed, and the A material and the B material are mixed. Concrete crack characterized by that It is a manufacturing method of repair grout.
( 9 ) The concrete crack repairing of ( 8 ) above, wherein the fine particle silica is produced by a method in which a slurry in which metal silicon powder is dispersed in water is injected into a flame and burned and oxidized. It is a manufacturing method of an injection material.
( 10 ) The average particle diameter of the fine particle silica and the calcium compound is an average particle diameter measured using a laser diffraction particle size distribution meter without performing ultrasonic dispersion treatment, ( 8 ) or It is a manufacturing method of the injection material for crack crack repair of concrete of ( 9 ).
( 11 ) The concrete crack repair injection according to any one of ( 8 ) to ( 10 ), wherein the fine particle silica is fine particle spherical silica having an average value of sphericity of 95% or more. It is a manufacturing method of material.
( 12 ) The method for producing an injection material for repairing a crack in concrete according to any one of ( 8 ) to ( 11 ), wherein the calcium compound is calcium hydroxide.
( 13 ) Of the above ( 8 ) to ( 12 ), the A material and / or the B material are wet-dispersed and / or wet-pulverized / dispersed using a pulverizer using high-pressure water. It is a manufacturing method of the injection material for the crack repair of concrete of any one term.
( 14 ) The use amount of the dispersant in the A material is 0.1 to 30 parts by mass in terms of solid content with respect to 100 parts by mass of fine-particle silica, ( 8 ) to ( 13 ) It is a manufacturing method of the injection material for crack crack repair of any one of these.
( 15 ) Of the above ( 8 ) to ( 14 ), the amount of the dispersant used in the B material is 1 to 30 parts by mass in terms of solid content with respect to 100 parts by mass of the calcium compound. The method for producing an injection material for repairing a crack in concrete according to any one of the above.
( 16 ) Furthermore, 0.1-10 mass parts of hardening time regulators are contained with respect to 100 mass parts of said calcium compounds, Any one of said ( 8 )-( 15 ) characterized by the above-mentioned. It is a manufacturing method of the injection material for crack crack repair of concrete of 1 term.
( 17 ) An injection method characterized by injecting the concrete crack repairing material according to any one of (1) to ( 7 ).
(18) wherein the A member and the B member, one shot method, mixed by any of the methods 1.5 shot method, and two-shot method, above, wherein the injection into cracks in concrete (17 ) Injection method.

本発明により、100μm以下の微細なひび割れを有するコンクリートにおいて、コンクリートのひび割れへの高い浸透性が得られ、優れた止水効果や優れた耐久性を有するコンクリートのひび割れ補修用注入材、その製造方法、及びそれを用いた注入工法を提供することが可能である。   INDUSTRIAL APPLICABILITY According to the present invention, in concrete having fine cracks of 100 μm or less, high permeability to concrete cracks is obtained, and an injection material for repairing concrete cracks having an excellent water-stopping effect and excellent durability, and a method for producing the same And an injection method using the same can be provided.

以下、本発明の実施の形態につき具体的に説明する。
本発明に記載する部や%は、記載が無い限りは、質量部、質量%を意味する。
Hereinafter, embodiments of the present invention will be specifically described.
Unless otherwise indicated, parts and% described in the present invention mean parts by mass and% by mass.

本発明においては、微粒子シリカとして、金属シリコン粉末を水に分散させたスラリーを火炎中に噴射し燃焼、酸化させる方法で製造した微粒子球状シリカ粉末を使用する。この微粒子球状シリカは、凝集(ストラクチャー)が少なく、コンクリートのひび割れへの浸透性が大きい点で好ましい。   In the present invention, fine particle spherical silica powder produced by a method in which a slurry in which metal silicon powder is dispersed in water is injected into a flame and burned and oxidized is used as fine particle silica. This fine-particle spherical silica is preferable in that it has less agglomeration (structure) and has high permeability to concrete cracks.

本発明において、微粒子シリカの粒度は、所望の効果が得られれば特に限定されるものではないが、コンクリートのひび割れへの浸透性や圧縮強度向上の点で、平均粒径1.0μm以下とするが、0.05〜0.8μmが好ましい。例えば、可燃ガスと助燃ガスとによって形成される高温火炎中に、金属シリコン粉末を水に分散させた金属シリコン粉末濃度が5〜70%であるスラリーを、少なくとも10m/秒以上の突出速度で噴射して溶融球状化することにより、球状シリカ粉末を製造する。さらに、分級処理によって、流動性の助長効果に優れた平均粒子径を有する微粒子球状シリカ粉末を捕集することができる。例えば、特許文献9〜10の方法によって製造することができる。   In the present invention, the particle size of the fine particle silica is not particularly limited as long as a desired effect is obtained, but the average particle size is 1.0 μm or less from the viewpoint of improving the permeability to concrete cracks and the compressive strength. However, 0.05 to 0.8 μm is preferable. For example, in a high-temperature flame formed by combustible gas and auxiliary combustion gas, a slurry in which metal silicon powder is dispersed in water and having a metal silicon powder concentration of 5 to 70% is injected at a protruding speed of at least 10 m / sec. Then, spherical silica powder is produced by melt spheronization. Furthermore, fine particle spherical silica powder having an average particle diameter excellent in fluidity promoting effect can be collected by classification treatment. For example, it can manufacture by the method of patent documents 9-10.

また、かかる微粒子シリカは、浸透性、圧縮強度向上の点で、球形度の平均値は90%以上が好ましく、95%以上がより好ましく、97%以上が特に好ましい。   In addition, the fine particle silica has an average value of sphericity of preferably 90% or more, more preferably 95% or more, and particularly preferably 97% or more from the viewpoint of improving permeability and compressive strength.

球形度は、走査型電子顕微鏡(日本電子社製「JSM−T200型」)と画像解析装置(日本アビオニクス社製)を用いて測定することができる。例えば、先ず、粉末のSEM写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/B×100(%)として表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B×100(%)=A×4π/(PM)×100(%)として算出することができるので、任意の粒子200個の平均値を粉末の球形度として求めることができる。The sphericity can be measured using a scanning electron microscope (“JSM-T200 type” manufactured by JEOL Ltd.) and an image analyzer (manufactured by Nippon Avionics Co., Ltd.). For example, first, the projected area (A) and the perimeter (PM) of particles are measured from an SEM photograph of powder. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle can be displayed as A / B × 100 (%). Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B × 100 (%) = A × 4π / (PM) 2 × 100 (%), so the average value of 200 arbitrary particles is the sphere of the powder. It can be calculated as a degree.

かかる微粒子シリカとしては、例えば、電気化学工業社製商品名「SFP−20M」、「SFP−30M」や、アドマッテック社製商品名「アドマファイン」などが挙げられる。   Examples of the fine particle silica include trade names “SFP-20M” and “SFP-30M” manufactured by Denki Kagaku Kogyo Co., Ltd., and trade names “Admafine” manufactured by Admatech.

本発明のカルシウム化合物としては、水酸化カルシウム、塩化カルシウム、及び石膏等の無機物質、ギ酸カルシウムなどの有機酸のカルシウム塩等が挙げられる。これらの中では、圧縮強度向上の点で水酸化カルシウムが好ましい。
カルシウム化合物が水酸化カルシウムの場合は、塩化カルシウムなどの可溶性カルシウム塩と、水酸化ナトリウム、水酸化カリウムなどの可溶性アルカリ塩とを、それぞれ溶解し混合する、いわゆるビルドアップ法によって製造される微細な水酸化カルシウムも使用することができる。
Examples of the calcium compound of the present invention include calcium hydroxide, calcium chloride, inorganic substances such as gypsum, and calcium salts of organic acids such as calcium formate. Among these, calcium hydroxide is preferable in terms of improving compressive strength.
When the calcium compound is calcium hydroxide, it is a fine product manufactured by a so-called build-up method in which a soluble calcium salt such as calcium chloride and a soluble alkali salt such as sodium hydroxide and potassium hydroxide are dissolved and mixed. Calcium hydroxide can also be used.

本発明において、カルシウム化合物は、コンクリートのひび割れへの浸透性の点や圧縮強度向上の点で、平均粒径1.0μm以下に粉砕するが、平均粒径0.05〜0.8μmに粉砕することが好ましい。   In the present invention, the calcium compound is pulverized to an average particle size of 1.0 μm or less from the viewpoint of permeability to concrete cracks and improved compressive strength, but is pulverized to an average particle size of 0.05 to 0.8 μm. It is preferable.

本発明では、微粒子シリカおよびカルシウム化合物をそれぞれ水に分散し、それぞれA材およびB材を製造する。   In the present invention, the fine particle silica and the calcium compound are dispersed in water, respectively, to produce the A material and the B material, respectively.

本発明のA材中の微粒子シリカの濃度は40〜70%であり、20〜60%が好ましい。微粒子シリカの濃度が80%を超えると高粘度となり、コンクリートのひび割れへの浸透性が低下する場合がある。また、本発明では、あらかじめ高濃度の微粒子シリカスラリーを製造し、施工時に水により希釈して使用することも可能である。また、高濃度で浸透しない場合は、10%以下の低濃度で長時間注入継続することで小さなコンクリートのひび割れに確実に注入することができ、高い改良効果を得ることができる。 The concentration of particulate silica in the material A of the present invention is 40% to 70%, is good preferable 20% to 60%. When the concentration of the fine particle silica exceeds 80%, the viscosity becomes high and the permeability to concrete cracks may be lowered. Moreover, in this invention, it is also possible to manufacture a high concentration fine particle silica slurry beforehand, and to dilute and use with water at the time of construction. Moreover, when it does not permeate at a high concentration, it can be surely injected into small concrete cracks by continuing to inject for a long time at a low concentration of 10% or less, and a high improvement effect can be obtained.

本発明のB材中のカルシウム化合物の濃度は30〜50%であり、10〜40%が好ましい。カルシウム化合物の濃度が60%を超えると高粘度となりコンクリートのひび割れへの浸透性が低下する場合がある。また、本発明では、あらかじめ高濃度のカルシウム化合物スラリーを製造し、施工時に水により希釈して使用することも可能である。 The concentration of calcium compound B material of the present invention is 30-50%, is good preferable 10-40%. If the concentration of the calcium compound exceeds 60%, the viscosity becomes high and the permeability to cracks in the concrete may decrease. Moreover, in this invention, it is also possible to manufacture a high concentration calcium compound slurry beforehand and to dilute with water at the time of construction.

本発明のB材中のカルシウム化合物の使用量は、微粒子シリカ100部に対して、50〜100部である。カルシウム化合物の量が20部未満では圧縮強度が低下する場合があり、200部を超えるとコンクリートのひび割れへの浸透性が低下する場合がある。また、本発明では、あらかじめ高濃度のカルシウム化合物スラリーを製造し、施工時に水により希釈して使用することも可能である。 The amount of calcium compound B material of the present invention, 100 parts finely divided silica, a 5 0-100 parts. If the amount of the calcium compound is less than 20 parts, the compressive strength may be reduced, and if it exceeds 200 parts, the permeability to concrete cracks may be reduced. Moreover, in this invention, it is also possible to manufacture a high concentration calcium compound slurry beforehand and to dilute with water at the time of construction.

本発明では、A材、B材それぞれに、分散剤を併用することが必要である。A材のみ、あるいは、B材のみに、分散剤を添加すると他方の液と混合した瞬間に反応固化してしまい、好ましくない。ただし、注入状況によっては分散剤の使用量を低下させることでゲルタイムを短くし、又は瞬結とし、リーク防止や限定注入として活用することができる。
分散剤をA材とB材の両方に使用すると良好な浸透性が得られる理由は不明だが、分散剤が微粒子シリカやカルシウム化合物の表面で反応し、微粒子シリカとカルシウム化合物が接触しても直ちに水和反応しないよう、硬化遅延しているためと考えられる。
In the present invention, it is necessary to use a dispersant in each of the A material and the B material. If a dispersant is added only to the A material or only to the B material, it is unfavorable because it reacts and solidifies at the moment of mixing with the other liquid. However, depending on the state of injection, the gel time can be shortened or reduced by reducing the amount of dispersant used, which can be used for leak prevention or limited injection.
The reason why good permeability can be obtained when the dispersant is used for both the A material and the B material is unknown, but immediately after the dispersant reacts on the surface of the fine particle silica or calcium compound and the fine particle silica and the calcium compound come into contact with each other. This is thought to be because the cure is delayed so as not to cause a hydration reaction.

本発明で使用する分散剤としては、ナフタレンスルホン酸系分散剤、リグニンスルホン酸系分散剤、メラミンスルホン酸系分散剤、ポリカルボン酸系分散剤、及びポリエーテル系分散剤が使用可能であるが、これらのうち、ナフタレンスルホン酸系分散剤又はメラミンスルホン酸系分散剤がコンクリートのひび割れへの浸透性、圧縮強度向上の点で好ましい。   As the dispersant used in the present invention, naphthalene sulfonic acid-based dispersant, lignin sulfonic acid-based dispersant, melamine sulfonic acid-based dispersant, polycarboxylic acid-based dispersant, and polyether-based dispersant can be used. Of these, naphthalene sulfonic acid-based dispersants or melamine sulfonic acid-based dispersants are preferred from the viewpoints of permeability to concrete cracks and improvement in compressive strength.

A材の分散剤の使用量は、A材の微粒子シリカ100部に対して、固形分換算で0.1〜30部が好ましく、1〜10部がより好ましい。0.1部未満だと他方の液と混合した瞬間に反応固化してしまい、コンクリートのひび割れへの浸透性が悪い場合があり、30部を超えると圧縮強度が低い場合がある。
金属シリコン粉末を水に分散させたスラリーを火炎中に噴射し、燃焼、酸化させる方法で製造した微粒子シリカは分散性が良く、最初に分散剤を添加しなくても水に分散させることができるから、後から分散剤を添加しても良い。この水への分散性は、シラノール基濃度が関係していると推定される。
The amount of the dispersant for the A material used is preferably 0.1 to 30 parts, and more preferably 1 to 10 parts in terms of solid content with respect to 100 parts of the fine particle silica of the A material. If it is less than 0.1 part, it reacts and solidifies at the moment when it is mixed with the other liquid, and the permeability to cracks in concrete may be poor, and if it exceeds 30 parts, the compressive strength may be low.
Fine particle silica produced by injecting a slurry of metal silicon powder in water into a flame, burning and oxidizing it has good dispersibility and can be dispersed in water without first adding a dispersant. Therefore, a dispersant may be added later. This water dispersibility is presumed to be related to the silanol group concentration.

B材の分散剤の使用量は、カルシウム化合物100部に対して、固形分換算で1〜30部が好ましく、5〜20部がより好ましい。1部未満だと、他方の液と混合した瞬間に反応固化してしまい、コンクリートのひび割れへの浸透性が悪い場合があり、30部を超えると圧縮強度が低い場合がある。   The amount of the dispersant for the B material used is preferably 1 to 30 parts, more preferably 5 to 20 parts in terms of solid content with respect to 100 parts of the calcium compound. If it is less than 1 part, it reacts and solidifies at the moment of mixing with the other liquid, and the permeability to cracks in the concrete may be poor, and if it exceeds 30 parts, the compressive strength may be low.

コンクリートのひび割れへの浸透性を向上させるために、微粒子シリカおよびカルシウム化合物は、各種湿式粉砕機で分散処理又は粉砕分散処理することが好ましい。なお、ここで言う平均粒径とは、レーザー回折式粒度分布計(例えば、堀場製作所社製「LA−920型」)を用い、湿式分散処理又は湿式粉砕分散処理した懸濁液を、通常、前処理として行う超音波分散処理を行わずに、水媒中で測定した値である。超音波分散処理を行わずに測定した微粒子シリカおよびカルシウム化合物の平均粒径が1.0μm以下である場合、微粒子シリカは凝集しにくい。そのため、本発明の注入材は、コンクリートのひび割れへの浸透性が向上する。湿式分散処理又は湿式粉砕分散処理した懸濁液とは、例えば、微粒子シリカを湿式分散処理したA材、水酸化カルシウムを湿式粉砕分散処理したB材をいう。   In order to improve the permeability to concrete cracks, the fine-particle silica and the calcium compound are preferably dispersed or pulverized and dispersed by various wet pulverizers. The average particle size referred to here is usually a suspension obtained by wet dispersion treatment or wet pulverization dispersion treatment using a laser diffraction particle size distribution analyzer (for example, “LA-920 type” manufactured by HORIBA, Ltd.) It is the value measured in the aqueous medium without performing the ultrasonic dispersion treatment performed as the pretreatment. When the average particle size of the fine particle silica and calcium compound measured without performing ultrasonic dispersion treatment is 1.0 μm or less, the fine particle silica hardly aggregates. Therefore, the injection material of this invention improves the permeability to the crack of concrete. The suspension subjected to wet dispersion treatment or wet pulverization dispersion treatment refers to, for example, A material obtained by wet dispersion treatment of fine particle silica and B material obtained by wet pulverization dispersion treatment of calcium hydroxide.

A材を湿式分散処理およびB材を湿式粉砕分散処理する場合に使用する湿式粉砕機は、高速攪拌機、媒体攪拌式ミル、及び高圧水を使用した粉砕機等のいずれでも良く、単独又は併用して選択するものであり、これらの湿式粉砕機のうち、特に、微粒子シリカの分散性がよくなり、また、カルシウム化合物の粉砕後の形状が立方体形状になりコンクリートのひび割れへの浸透性が優れる点で、高圧水を使用した粉砕機が好ましい。   The wet pulverizer used when the A material is wet-dispersed and the B material is wet-pulverized and dispersed may be any of a high-speed stirrer, a medium agitating mill, and a pulverizer using high-pressure water. Among these wet pulverizers, in particular, the dispersibility of fine-particle silica is improved, and the shape after pulverization of the calcium compound becomes a cubic shape, and the permeability to concrete cracks is excellent. A pulverizer using high-pressure water is preferable.

高速攪拌機としては、単純に攪拌子が高速で回転するだけではなく、いわゆる、乱流状態となり、粒子に剪断力が働くような構造が好ましい。例えば、太平洋機工社製商品名「シャープフローミル」、特殊機化工業社製商品名「ホモミクサー」、「ホモミックラインミル」、及び「ホモディスパー」などがそれに類する。また、媒体攪拌式ミルは、1mm以下のビーズを用いて粉砕するものが好ましい。1mm以下のビーズを用いて粉砕する媒体攪拌式ミルとしては、アシザワファインテック社製商品名「スターミル」、三井鉱山社製商品名「SC−ミル」、及び寿工業社製商品名「デュアルアペックスミル」などが挙げられる。また、高圧水を使用した粉砕機は、スラリーに50〜400MPaの高圧を加え、このスラリーを二つの流路に分岐させ、再度合流する部分で対向衝突させて粉砕するものである。このような粉砕機としては、スギノマシン社製商品名「スターバースト」や「アルティマイザー」、ナノマイザー社製商品名「ナノマイザー」、及びマイクロフルイディスク社製商品名「マイクロフルイタイザー」などが挙げられる。これらの中では、特に、微粒子シリカの分散性がよくなり、また、カルシウム化合物の粉砕後の形状が立方体形状になりコンクリートのひび割れへの浸透性が優れる点で「スターバースト」が好ましい。   The high-speed stirrer preferably has a structure that not only simply rotates the stirrer at a high speed but also a so-called turbulent state and a shear force acts on the particles. For example, trade names “Sharp Flow Mill” manufactured by Taiheiyo Kiko Co., Ltd., trade names “Homomixer”, “Homomic Line Mill”, and “Homo Dispers” manufactured by Tokushu Kika Kogyo Co., Ltd. are similar. Further, the medium agitating mill is preferably pulverized using beads of 1 mm or less. As the media agitation mill for grinding using beads of 1 mm or less, the product name “Star Mill” manufactured by Ashizawa Finetech Co., Ltd., the product name “SC-Mill” manufactured by Mitsui Mining Co., Ltd., and the product name “Dual Apex Mill” manufactured by Kotobuki Industries Co., Ltd. Or the like. In addition, a pulverizer using high-pressure water applies a high pressure of 50 to 400 MPa to the slurry, branches the slurry into two flow paths, and pulverizes them by colliding against each other at a portion where they rejoin. Examples of such a crusher include Sugino Machine's product names “Starburst” and “Ultimizer”, Nanomizer's product name “Nanomizer”, and Microfluidic Corporation's product name “Microfluidizer”. . Among these, “starburst” is particularly preferable in that the dispersibility of the fine particle silica is improved, and the shape of the calcium compound after pulverization becomes a cubic shape and the permeability to cracks in the concrete is excellent.

さらに、適度な可塑性を保持し注入材の逸流を防止することや、硬化後の注入材の圧縮強度低下を防止する点から、ポリマーディスパージョンを使用する。ポリマーディスパージョンとしては、エチレン−酢酸ビニル共重合体スチレンブタジエン共重合体を使用する。これらのうち、少量で効果のある点から、エチレン−酢酸ビニル共重合体がより好ましい。
ポリマーディスパージョンは、通常、A材に配合するが、B材に併用することにより、カルシウム化合物と直ちに反応して増粘するため、所定の粘性を必要とする場合は、B材に配合することも可能である。
Furthermore, a polymer dispersion is used from the viewpoints of maintaining appropriate plasticity and preventing the flow of the injection material, and preventing the compression strength of the injection material after curing from being lowered. The polymer dispersion, et styrene - using vinyl acetate copolymer or a styrene-butadiene copolymer. Among these, an ethylene-vinyl acetate copolymer is more preferable because it is effective in a small amount.
The polymer dispersion is usually blended with the A material, but when used in combination with the B material, it reacts immediately with the calcium compound and thickens. Therefore, if a predetermined viscosity is required, blend with the B material. Is also possible.

ポリマーディスパージョンの使用量は、A材の微粒子シリカ100部に対して、固形分換算で0.1〜10部であり、0.5〜3部が好ましい。添加量が10部を超えると粘性が高くなり、コンクリートのひび割れへの浸透性が悪い場合がある。 The amount of the polymer dispersion, relative to 100 parts fine particle silica material A is 0.1-10 parts in terms of solid content, 0.5 to 3 parts virtuous preferable. When the added amount exceeds 10 parts, the viscosity becomes high and the permeability to concrete cracks may be poor.

本発明の注入材は、硬化時間を調整するために、硬化時間調整剤を含有することができる。
硬化時間調整剤としては特に限定されるものではないが、例えば、公知のアルカリ金属硫酸塩、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、及びアルカリ金属燐酸塩等の無機塩や、グルコン酸、酒石酸、クエン酸、リンゴ酸、及び乳酸等の有機酸又はその塩から選ばれる一種又は二種以上が挙げられる。これらの中では、圧縮強度向上の点から、アルカリ金属硫酸塩及び/又はアルカリ金属炭酸塩が好ましく、アルカリ金属硫酸塩がより好ましい。アルカリ金属硫酸塩としては、硫酸ナトリウムや硫酸カリウムなどが挙げられる。
The injection material of the present invention can contain a curing time adjusting agent in order to adjust the curing time.
Although it does not specifically limit as a curing time regulator, For example, inorganic salts, such as well-known alkali metal sulfate, alkali metal carbonate, alkali metal bicarbonate, and alkali metal phosphate, gluconic acid, tartaric acid , Citric acid, malic acid, and one or more selected from organic acids such as lactic acid or salts thereof. Among these, alkali metal sulfates and / or alkali metal carbonates are preferable from the viewpoint of improving compressive strength, and alkali metal sulfates are more preferable. Examples of the alkali metal sulfate include sodium sulfate and potassium sulfate.

硬化時間調整剤の使用量は、B材のカルシウム化合物100部に対して、30部以下が好ましく、0.1〜30部がより好ましく、1〜10部が最も好ましい。硬化時間調整剤が30部を超えるとコンクリートのひび割れへの浸透性が悪い場合がある。   The amount of the curing time adjuster used is preferably 30 parts or less, more preferably 0.1 to 30 parts, and most preferably 1 to 10 parts with respect to 100 parts of the calcium compound of the B material. If the curing time adjusting agent exceeds 30 parts, the permeability of concrete to cracks may be poor.

A材とB材の混合比率は、5:1〜1:5が好ましく、2:1〜1:2がより好ましい。   The mixing ratio of the A material and the B material is preferably 5: 1 to 1: 5, and more preferably 2: 1 to 1: 2.

本発明の注入材をコンクリートのひび割れに注入するにあたっては、A材とB材とを混合する方法として、二重管を用いて先端部でA材とB材を合流混合して注入する、いわゆる2ショット方式、A材とB材の両液を注入ポンプから注入管に至る途中で合流混合して注入する、いわゆる1.5ショット方式、さらに、ミキサーなどの調合槽でA材又はB材を調合した後、他液を加えて混合し、1液としてから注入する、いわゆる1ショット方式のいずれの方式でも行うことができる。   In injecting the injection material of the present invention into concrete cracks, as a method of mixing the A material and the B material, a so-called double tube is used to join the A material and the B material at the tip portion and inject them. 2 shot system, both A material and B material are mixed and injected on the way from the injection pump to the injection tube, so-called 1.5 shot system, and A material or B material is mixed in a mixing tank such as a mixer. After blending, it can be performed by any method of so-called one-shot method, in which other liquids are added and mixed, and then injected as one liquid.

本発明の注入工法は、上記注入材をコンクリートのひび割れに注入することを特徴とするものである。本発明の注入工法は、例えば、100μm以下の微細なコンクリートのひび割れへの浸透性に優れ、かつ、高浸透水圧が作用しても注入材が押し出されることなく長期止水性を維持することができる注入工法にかかわるものであって、上記効果を得られるものである。   The pouring method of the present invention is characterized by pouring the above-mentioned pouring material into concrete cracks. The injection method of the present invention has excellent permeability to cracks of fine concrete of, for example, 100 μm or less, and can maintain a long-term water stoppage without extruding the injection material even when a high osmotic water pressure acts. The method is related to an injection method, and the above effect can be obtained.

以下、本発明を実験例によって説明するが、本発明はこれらの実験例に限定されるものではない。実験例は特記しない限り、20℃で行った。   Hereinafter, the present invention will be described with reference to experimental examples, but the present invention is not limited to these experimental examples. Unless otherwise specified, the experimental examples were conducted at 20 ° C.

実験例1
粒径、種類の異なる微粒子シリカ100部、分散剤αを固形分換算で5部、及び水100部を混合し、スギノマシン社製商品名「スターバースト」で湿式分散処理し、さらにポリマーディスパージョンを加え、A材(A材中の微粒子シリカS1〜S7)を作製した。一方、市販の水酸化カルシウム(平均粒径9.5μm)を100部、分散剤αを固形分換算で10部、及び水150部を混合し、同様にスギノマシン社製商品名「スターバースト」で粉砕時間を変えて湿式粉砕分散処理し、さらに、硬化時間調整剤を、B材のカルシウム化合物100部に対して5部加えて、B材(B材中のカルシウム化合物C1〜C6)を作製した。スターバーストのスラリーに加えた圧力は全て245MPaとした。カルシウム化合物の使用量が、微粒子シリカ100部に対して、75部になるように、A材とB材を混合し、注入材を作製した。注入材の硬化時間、注入材の圧縮強度、及びコンクリートのひび割れへの浸透性を確認するための浸透幅を測定した。配合および結果を表1に示す。
微粒子シリカは、金属シリコン粉末を水に分散させたスラリーを火炎中に2〜150m/秒の突出速度で噴射し燃焼、酸化させて熔融球状化する方法により製造した。
Experimental example 1
100 parts of fine particle silica with different particle sizes and types, 5 parts of dispersant α in terms of solid content, and 100 parts of water are mixed and subjected to a wet dispersion treatment with the product name “Starburst” manufactured by Sugino Machine, and polymer dispersion. And A material (particulate silica S1-S7 in A material) was produced. On the other hand, 100 parts of commercially available calcium hydroxide (average particle size 9.5 μm), 10 parts of dispersant α in terms of solid content, and 150 parts of water are mixed, and the product name “Starburst” manufactured by Sugino Machine Co., Ltd. is also used. The pulverization time is changed and wet pulverization and dispersion treatment is performed. Further, 5 parts of a curing time adjusting agent is added to 100 parts of the calcium compound of the B material to produce the B material (calcium compounds C1 to C6 in the B material). did. The pressure applied to the starburst slurry was all 245 MPa. The A material and the B material were mixed so that the amount of the calcium compound used was 75 parts with respect to 100 parts of the fine particle silica to prepare an injection material. The hardening time of the injection material, the compressive strength of the injection material, and the penetration width for confirming the permeability to cracks in the concrete were measured. The formulation and results are shown in Table 1.
The fine-particle silica was produced by a method in which a slurry in which metal silicon powder was dispersed in water was injected into a flame at a protrusion speed of 2 to 150 m / sec, burned, oxidized, and melted into a spherical shape.

<使用材料>
微粒子シリカS1:湿式分散処理後の平均粒径0.05μm、球形度97%、非晶化率100%、金属シリコン粉末を水に分散させた金属シリコン粉末濃度が30%であるスラリーを火炎中に150m/秒以上の突出速度で噴射し燃焼、酸化させる方法で製造した微粒子球状シリカ
微粒子シリカS2:湿式分散処理後の平均粒径0.1μm、球形度97%、非晶化率100%、金属シリコン粉末を水に分散させた金属シリコン粉末濃度が30%であるスラリーを火炎中に120m/秒以上の突出速度で噴射し燃焼、酸化させる方法で製造した微粒子球状シリカ
微粒子シリカS3:湿式分散処理後の平均粒径0.8μm、球形度97%、非晶化率100%、金属シリコン粉末を水に分散させた金属シリコン粉末濃度が30%であるスラリーを火炎中に100m/秒以上の突出速度で噴射し燃焼、酸化させる方法で製造した微粒子球状シリカ
微粒子シリカS4:湿式分散処理後の平均粒径1.0μm、球形度96%、非晶化率100%、金属シリコン粉末を水に分散させた金属シリコン粉末濃度が30%であるスラリーを火炎中に50m/秒以上の突出速度で噴射し燃焼、酸化させる方法で製造した微粒子球状シリカ
微粒子シリカS5:湿式分散処理後の平均粒径3.5μm、球形度95%、非晶化率100%、金属シリコン粉末を水に分散させた金属シリコン粉末濃度が30%であるスラリーを火炎中に2m/秒以上の突出速度で噴射し燃焼、酸化させる方法で製造した微粒子球状シリカ
微粒子シリカS6:フェロシリコン副生シリカフューム、湿式分散処理後の平均粒径20μm、参考値、超音波分散処理した場合の平均粒径5.5μm、球形度86%
微粒子シリカS7:シリカゾル、湿式分散処理後の平均粒径10.1μm、参考値、超音波分散処理した場合の平均粒径は9.8μm、球形度75%
カルシウム化合物C1:湿式粉砕分散処理後の平均粒径0.05μm、水酸化カルシウム
カルシウム化合物C2:湿式粉砕分散処理後の平均粒径0.1μm、水酸化カルシウム
カルシウム化合物C3:湿式粉砕分散処理後の平均粒径0.8μm、水酸化カルシウム
カルシウム化合物C4:湿式粉砕分散処理後の平均粒径1.0μm、水酸化カルシウム
カルシウム化合物C5:湿式粉砕分散処理後の平均粒径3.5μm、参考値、超音波処理した場合の平均粒径は0.5μm、水酸化カルシウム
分散剤α :ナフタレンスルホン酸系分散剤、市販品、液状、固形分濃度40%
ポリマーディスパージョンP1:エチレン−酢酸ビニル共重合体からなるポリマーディスパージョン、市販品、固形分濃度46%
ポリマーディスパージョンP2:スチレンブタジエン共重合体からなるポリマーディスパージョン、市販品、固形分濃度45%
硬化時間調整剤:硫酸ナトリウム、市販品
水 :水道水
<Materials used>
Fine particle silica S1: slurry having an average particle diameter of 0.05 μm after wet dispersion treatment, a sphericity of 97%, an amorphization rate of 100%, and a concentration of metal silicon powder in which metal silicon powder is dispersed in water is 30% Fine particle spherical silica fine particle silica S2 produced by a method of injecting, burning and oxidizing at a protruding speed of 150 m / second or more: average particle size 0.1 μm after wet dispersion treatment, sphericity 97%, amorphous ratio 100%, Spherical silica fine particle silica S3 manufactured by a method in which a metal silicon powder dispersed in water and having a metal silicon powder concentration of 30% is injected into a flame at a protruding speed of 120 m / sec or more and burned and oxidized, wet dispersion A slurry having an average particle diameter of 0.8 μm after treatment, a sphericity of 97%, an amorphization rate of 100%, a metal silicon powder dispersed in water and a metal silicon powder concentration of 30% is flamed. Fine particle spherical silica fine particle silica S4 manufactured by a method of injecting, burning, and oxidizing at a protrusion speed of 100 m / second or more: average particle size 1.0 μm after wet dispersion treatment, sphericity 96%, amorphous ratio 100%, Spherical silica fine particle silica S5 produced by a method in which a metal silicon powder dispersed in water and having a metal silicon powder concentration of 30% is injected into a flame at a protruding speed of 50 m / sec or more and burned and oxidized, wet dispersion An average particle size of 3.5 μm after treatment, a sphericity of 95%, an amorphous ratio of 100%, a metal silicon powder dispersed in water with a metal silicon powder concentration of 30% in a flame is a slurry of 2 m / second or more. Fine spherical silica fine particle silica S6 produced by a method of jetting, burning and oxidizing at a protruding speed: Ferrosilicon by-product silica fume, average particle size 20 μm after wet dispersion treatment, reference , Average particle size 5.5μm in the case of ultrasonic dispersion treatment, sphericity 86%
Fine particle silica S7: Silica sol, average particle size after wet dispersion treatment of 10.1 μm, reference value, average particle size after ultrasonic dispersion treatment of 9.8 μm, sphericity of 75%
Calcium compound C1: Average particle size after wet pulverization and dispersion treatment 0.05 μm, Calcium hydroxide calcium compound C2: Average particle size after wet pulverization and dispersion treatment 0.1 μm, Calcium hydroxide calcium compound C3: After wet pulverization and dispersion treatment Average particle size 0.8 μm, calcium hydroxide calcium compound C4: average particle size 1.0 μm after wet pulverization dispersion treatment, calcium hydroxide calcium compound C5: average particle size 3.5 μm after wet pulverization dispersion treatment, reference value The average particle size when sonicated is 0.5 μm, calcium hydroxide dispersant α: naphthalene sulfonic acid dispersant, commercially available product, liquid, solid content concentration 40%
Polymer dispersion P1: Polymer dispersion made of ethylene-vinyl acetate copolymer, commercial product, solid content concentration 46%
Polymer dispersion P2: Polymer dispersion made of styrene-butadiene copolymer, commercial product, solid content concentration 45%
Curing time adjuster: Sodium sulfate, commercial water: tap water

<評価方法>
平均粒径 :レーザー回折式粒度分布計、堀場製作所社製商品名「LA−920型」を用いた。A材およびB材を、超音波分散処理を行わずに、水媒中で測定した。
硬化時間 :注入材をプラスチック容器に入れてから、傾倒しても流動性がなくなるまでの時間を硬化時間とした。hrは(時間)、minは(分)。
圧縮強度 :4×4×16cmの供試体を作製し、28日間20℃水中養生後、3日間20℃−相対湿度80%下で乾燥させ、注入材の圧縮強度を測定した。
浸透幅 :浸透性試験、直径11mmの鉄筋を中心に配置した10×10×40cmのコンクリート供試体に曲げ荷重を加えて100μm以下のひび割れを作製し、注入材を注入した。注入材が硬化後にコンクリートを切断し、実体顕微鏡にてコンクリートのひび割れへの浸透状況を確認した。注入が確認できるひびわれ幅の最小幅を浸透幅とした。小さい数値ほどコンクリートのひび割れへの浸透性が良好である。
<Evaluation method>
Average particle diameter: Laser diffraction particle size distribution meter, trade name “LA-920 type” manufactured by Horiba, Ltd. was used. The A material and the B material were measured in an aqueous medium without performing ultrasonic dispersion treatment.
Curing time: The time from when the pouring material was put into the plastic container until the fluidity disappeared even when tilted was defined as the curing time. hr is (hours), min is (minutes).
Compressive strength: A specimen of 4 × 4 × 16 cm was prepared, cured for 20 days at 20 ° C. in water, dried for 3 days at 20 ° C. and 80% relative humidity, and the compressive strength of the injected material was measured.
Penetration width: Penetration test, a 10 × 10 × 40 cm concrete specimen centered on a reinforcing bar having a diameter of 11 mm was subjected to bending load to produce a crack of 100 μm or less, and an injection material was injected. The concrete was cut after the injection material was hardened, and the penetration of the concrete into cracks was confirmed with a stereomicroscope. The minimum crack width that can be checked for injection was defined as the penetration width. The smaller the value, the better the permeability to concrete cracks.

Figure 0005909178
Figure 0005909178

特定の微粒子シリカ、特定のカルシウム化合物を用いることにより、微細なコンクリートのひび割れへの浸透性と圧縮強度発現性に優れることがわかる。
さらに、ポリマーディスパージョンの併用により、乾燥を受けても注入材の圧縮強度が高いことがわかる。
It turns out that it is excellent in the permeability to the crack of fine concrete, and compressive strength expression by using a specific fine particle silica and a specific calcium compound.
Furthermore, it can be seen that the compressive strength of the injection material is high even when it is dried by the combined use of the polymer dispersion.

実験例2
微粒子シリカS3 100部、分散剤αを固形分換算で5部、及び水100部を混合し、スギノマシン社製商品名「スターバースト」で湿式分散処理し、さらに、微粒子シリカS3 100部に対して3部のポリマーディスパージョンP1を加え、A材を作製した。一方、カルシウム化合物C3 100部、分散剤αを固形分換算で10部、及び水150部を混合し、同様にスギノマシン社製商品名「スターバースト」で湿式粉砕分散処理し、さらに、B材のカルシウム化合物C3 100部に対して、表2に示す硬化時間調整剤を加えて、B材を作製したこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
100 parts of fine particle silica S3, 5 parts of the dispersant α in terms of solid content, and 100 parts of water are mixed and subjected to a wet dispersion treatment with a product name “Starburst” manufactured by Sugino Machine Co. 3 parts of polymer dispersion P1 was added to prepare A material. On the other hand, 100 parts of calcium compound C3, 10 parts of dispersant α in terms of solid content, and 150 parts of water are mixed, and similarly, wet pulverized and dispersed with the trade name “Starburst” manufactured by Sugino Machine Co., The same procedure as in Experimental Example 1 was conducted except that the curing time adjusting agent shown in Table 2 was added to 100 parts of the calcium compound C3 to prepare a B material. The results are also shown in Table 2.

Figure 0005909178
Figure 0005909178

硬化時間調整剤を併用することにより、硬化時間が調整できることがわかる。   It turns out that hardening time can be adjusted by using together a hardening time regulator.

実験例3
微粒子シリカS3 100部、固形分換算で表3に示す分散剤、水100部を混合し、スギノマシン社製商品名「スターバースト」で湿式分散処理し、さらに、微粒子シリカS3 100部に対して3部のポリマーディスパージョンP1を加え、A材を作製した。一方、カルシウム化合物C3 100部、固形分換算で表3に示す分散剤、及び水150部を混合し、同様にスギノマシン社製商品名「スターバースト」で湿式粉砕分散処理し、さらに、B材のカルシウム化合物C3 100部に対して、硬化時間調整剤5部を加えて、B材を作製したこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
100 parts of fine particle silica S3, a dispersant shown in Table 3 in terms of solid content, and 100 parts of water are mixed, and wet dispersion treatment is performed with a product name “Starburst” manufactured by Sugino Machine Co. 3 parts of polymer dispersion P1 was added to prepare A material. On the other hand, 100 parts of calcium compound C3, the dispersant shown in Table 3 in terms of solid content, and 150 parts of water were mixed, and similarly wet-pulverized and dispersed with the trade name “Starburst” manufactured by Sugino Machine Co. The same procedure as in Experimental Example 1 was conducted except that 5 parts of a curing time adjusting agent was added to 100 parts of the calcium compound C3 to prepare a B material. The results are also shown in Table 3.

<使用材料>
分散剤β :メラミンスルホン酸系分散剤、市販品、液状、固形分濃度40%
<Materials used>
Dispersant β: Melamine sulfonic acid dispersant, commercially available product, liquid, solid concentration 40%

Figure 0005909178
Figure 0005909178

A材、B材に分散剤を併用することにより、浸透性が向上することがわかり、分散剤量に最適値があることがわかる。   It can be seen that by using a dispersant in combination with the A material and the B material, the permeability is improved and the amount of the dispersant has an optimum value.

実験例4
微粒子シリカS3 100部、分散剤αを固形分換算で5部、及び水100部を混合し、スギノマシン社製商品名「スターバースト」で湿式分散処理し、さらに、微粒子シリカS3 100部に対して3部のポリマーディスパージョンP1を加え、実験例1と同様にA材を作製した。一方、カルシウム化合物C3 100部、固形分換算で10部の分散剤α、及び水150部を混合し、スギノマシン社製商品名「スターバースト」で湿式粉砕分散処理し、さらに、B材のカルシウム化合物C3 100部に対して、硬化時間調整剤5部を加え、実験例1と同様にB材を作製した。作製したA材とB材を、微粒子シリカS3 100部に対して、カルシウム化合物の使用量が、表4に示すように、混合し、注入材を作製したこと以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
100 parts of fine particle silica S3, 5 parts of the dispersant α in terms of solid content, and 100 parts of water are mixed and subjected to a wet dispersion treatment with a product name “Starburst” manufactured by Sugino Machine Co. 3 parts of polymer dispersion P1 was added, and A material was produced in the same manner as in Experimental Example 1. On the other hand, 100 parts of calcium compound C3, 10 parts of dispersant α in terms of solid content, and 150 parts of water are mixed and subjected to wet pulverization and dispersion treatment under the trade name “Starburst” manufactured by Sugino Machine Co. A material B was prepared in the same manner as in Experimental Example 1 by adding 5 parts of a curing time adjusting agent to 100 parts of the compound C3. The manufactured A material and B material were mixed in the same manner as in Experimental Example 1 except that the amount of calcium compound used was mixed as shown in Table 4 with respect to 100 parts of fine particle silica S3 to prepare an injection material. It was. The results are also shown in Table 4.

Figure 0005909178
Figure 0005909178

圧縮強度において、微粒子シリカに対するカルシウム化合物に最適値があることがわかる。   It can be seen that the compressive strength has an optimum value for the calcium compound relative to the fine-particle silica.

実験例5
微粒子シリカS3 100部、分散剤αを固形分換算で5部、及び表5に示す水を混合し、スギノマシン社製商品名「スターバースト」で湿式分散処理し、さらに、微粒子シリカS3 100部に対して3部のポリマーディスパージョンP1を加え、実験例1と同様にA材を作製した。一方、市販の水酸化カルシウム(平均粒径9.5μm)を100部、分散剤αを固形分換算で10部、及び表5に示す水を混合し、スギノマシン社製商品名「スターバースト」で湿式粉砕分散処理し、さらに、B材のカルシウム化合物C3 100部に対して、硬化時間調整剤5部を加え、実験例1と同様にB材を作製した。作製したA材とB材を、微粒子シリカS3 100部に対して、カルシウム化合物の使用量が、75部になるように混合し、注入材を作製したこと以外は実験例1と同様に行った。結果を表5に併記する。
Experimental Example 5
100 parts of fine particle silica S3, 5 parts of the dispersant α in terms of solid content, and water shown in Table 5 are mixed, wet dispersed with a trade name “Starburst” manufactured by Sugino Machine Co., and 100 parts of fine particle silica S3 3 parts of the polymer dispersion P1 was added to the A material in the same manner as in Experimental Example 1. On the other hand, 100 parts of commercially available calcium hydroxide (average particle size 9.5 μm), 10 parts of dispersant α in terms of solid content, and water shown in Table 5 were mixed, and the product name “Starburst” manufactured by Sugino Machine Co., Ltd. Then, 5 parts of a curing time adjusting agent was added to 100 parts of the calcium compound C3 of the B material, and a B material was produced in the same manner as in Experimental Example 1. The manufactured A material and B material were mixed with 100 parts of fine particle silica S3 so that the amount of calcium compound used was 75 parts, and the same procedure as in Experimental Example 1 was performed, except that an injection material was prepared. . The results are also shown in Table 5.

Figure 0005909178
Figure 0005909178

A材、B材の濃度を変えることにより、硬化時間、圧縮強度、及び浸透幅が調整できる。   By changing the concentrations of the A and B materials, the curing time, compressive strength, and penetration width can be adjusted.

本発明のコンクリートのひび割れ補修用注入材は、例えば、下記用途に使用される。   The concrete crack repairing injection material of the present invention is used, for example, in the following applications.

100μm以下の微細なコンクリートのひび割れに対しても優れた浸透性を有し、高い止水効果や耐久性能が得られるコンクリートのひび割れ補修用注入材であって、あらゆるコンクリート構造物に適用可能である。
さらに、本発明の注入工法は、コンクリートのみならず、モルタルや岩盤等の微細なひび割れなどにも適用できる。
This is an injection material for repairing cracks in concrete that has excellent permeability even for cracks in fine concrete of 100 μm or less, and that provides a high water-stopping effect and durability, and can be applied to any concrete structure. .
Furthermore, the injection method of the present invention can be applied not only to concrete but also to fine cracks such as mortar and bedrock.

Claims (18)

平均粒径が1.0μm以下である微粒子シリカ、分散剤、ポリマーディスパージョン、及び水を含有する、湿式分散処理したA材と、平均粒径1.0μm以下のカルシウム化合物、分散剤、及び水を含有する、湿式粉砕分散処理したB材とを混合してなるコンクリートのひび割れ補修用注入材であって、前記微粒子シリカの濃度が40〜70%、前記ポリマーディスパージョンが、エチレン−酢酸ビニル共重合体又はスチレンブタジエン共重合体からなり、前記微粒子シリカ100質量部に対して、固形分換算で0.1〜10質量部、前記カルシウム化合物が、濃度30〜60%で、前記微粒子シリカ100質量部に対して、50〜100質量部であることを特徴とするコンクリートのひび割れ補修用注入材。   A wet-dispersed material A containing fine particle silica having an average particle size of 1.0 μm or less, a dispersant, a polymer dispersion, and water, and a calcium compound, a dispersant, and water having an average particle size of 1.0 μm or less An injecting material for repairing cracks in concrete mixed with a B material that has been subjected to wet pulverization and dispersion treatment, wherein the concentration of the fine particle silica is 40 to 70%, and the polymer dispersion is an ethylene-vinyl acetate co-polymer. It consists of a polymer or a styrene butadiene copolymer, 0.1 to 10 parts by mass in terms of solid content, and the calcium compound has a concentration of 30 to 60% and 100 parts by mass of the fine particle silica with respect to 100 parts by mass of the fine particle silica. An injecting material for repairing cracks in concrete, characterized in that it is 50 to 100 parts by mass relative to the part. 前記微粒子シリカおよび前記カルシウム化合物の平均粒径が、超音波分散処理を行うことなくレーザー回折式粒度分布計を用いて測定した平均粒径であることを特徴とする請求項1に記載のコンクリートのひび割れ補修用注入材。 The average particle size of the fine particles of silica and the calcium compound, the concrete according to claim 1, characterized in that the average particle diameter measured using a no laser diffraction particle size distribution meter to perform ultrasonic dispersion treatment Injection material for crack repair. 前記微粒子シリカが、球形度の平均値が95%以上の微粒子球状シリカであることを特徴とする請求項1又は2に記載のコンクリートのひび割れ補修用注入材。 3. The concrete crack repairing injection material according to claim 1, wherein the fine particle silica is fine particle spherical silica having an average value of sphericity of 95% or more. 前記カルシウム化合物が、水酸化カルシウムであることを特徴とする請求項1〜のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材。 The said calcium compound is calcium hydroxide, The injection material for the crack repair of concrete of any one of Claims 1-3 characterized by the above-mentioned. 前記A材中の分散剤の使用量が、微粒子シリカ100質量部に対して、固形分換算で0.1〜30質量部であることを特徴とする請求項1〜のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材。 The amount of dispersant in the A material, relative to particles of silica 100 parts by weight, either of claims 1-4, characterized in that from 0.1 to 30 parts by weight in terms of solid content 1 The injection material for crack repair of concrete as described in the item. 前記B材中の分散剤の使用量が、カルシウム化合物100質量部に対して、固形分換算で1〜30質量部であることを特徴とする請求項1〜のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材。 The usage-amount of the dispersing agent in the said B material is 1-30 mass parts in conversion of solid content with respect to 100 mass parts of calcium compounds, The any one of Claims 1-5 characterized by the above-mentioned. Filling material for repairing cracks in concrete. さらに、硬化時間調整剤を、前記カルシウム化合物100質量部に対して、0.1〜10質量部含有してなることを特徴とする請求項1〜のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材。 Furthermore, 0.1-10 mass parts of hardening time regulators are contained with respect to 100 mass parts of said calcium compounds, The concrete of any one of Claims 1-6 characterized by the above-mentioned. Injection material for crack repair. 平均粒径が1.0μm以下で、濃度が40〜70%の微粒子シリカ、前記微粒子シリカ100質量部に対して、固形分換算で0.1〜10質量部の、エチレン−酢酸ビニル共重合体又はスチレンブタジエン共重合体からなるポリマーディスパージョン、及び水を含有する懸濁液を調製し、この懸濁液に、分散剤、さらに、必要に応じて水を混合して湿式分散処理したA材を製造し、一方、平均粒径が1.0μm以下で、濃度が30〜60%で、前記微粒子シリカ100質量部に対して、50〜100質量部のカルシウム化合物、分散剤、及び水を含有する懸濁液を調製し、この懸濁液に、さらに、必要に応じて水を混合して湿式粉砕分散処理したB材を製造し、前記A材と前記B材とを混合することを特徴とするコンクリートのひび割れ補修用注入材の製造方法。   An ethylene-vinyl acetate copolymer having an average particle size of 1.0 μm or less and a concentration of 40 to 70% of fine particle silica and 0.1 to 10 parts by mass in terms of solid content with respect to 100 parts by mass of the fine particle silica. Alternatively, a material dispersion prepared by preparing a suspension containing a polymer dispersion made of a styrene-butadiene copolymer and water, and a wet dispersion treatment by mixing this suspension with a dispersant and, if necessary, water. On the other hand, the average particle size is 1.0 μm or less, the concentration is 30 to 60%, and contains 50 to 100 parts by mass of a calcium compound, a dispersant, and water with respect to 100 parts by mass of the fine-particle silica. A suspension B is prepared, and, if necessary, water B is mixed with the suspension as necessary to produce a B material that has been wet pulverized and dispersed, and the A material and the B material are mixed. For repairing cracks in concrete A method for producing an injection material. 前記微粒子シリカが、金属シリコン粉末を水に分散させたスラリーを火炎中に噴射し燃焼、酸化させる方法で製造したものであることを特徴とする請求項に記載のコンクリートのひび割れ補修用注入材の製造方法。 9. The injection material for repairing cracks in concrete according to claim 8 , wherein the fine particle silica is manufactured by a method in which a slurry in which metal silicon powder is dispersed in water is injected into a flame and burned and oxidized. Manufacturing method. 前記微粒子シリカおよび前記カルシウム化合物の平均粒径が、超音波分散処理を行うことなくレーザー回折式粒度分布計を用いて測定した平均粒径であることを特徴とする請求項又はに記載のコンクリートのひび割れ補修用注入材の製造方法。 The average particle size of the fine particles of silica and the calcium compound, according to claim 8 or 9, characterized in that an average particle diameter measured using a no laser diffraction particle size distribution meter to perform ultrasonic dispersion treatment A method for producing an injection material for repairing cracks in concrete. 前記微粒子シリカが、球形度の平均値が95%以上の微粒子球状シリカであることを特徴とする請求項10のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材の製造方法。 The method for producing a concrete crack repairing injection material according to any one of claims 8 to 10 , wherein the fine particle silica is fine particle spherical silica having an average value of sphericity of 95% or more. . 前記カルシウム化合物が、水酸化カルシウムであることを特徴とする請求項11のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材の製造方法。 The method for producing an injection material for repairing cracks in concrete according to any one of claims 8 to 11 , wherein the calcium compound is calcium hydroxide. 前記A材及び/又はB材を、高圧水を使用した粉砕機を用いて湿式分散処理及び/又は湿式粉砕分散処理したことを特徴とする請求項12のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材の製造方法。 Wherein the material A and / or B material, to any one of claims 8-12, characterized in that the wet dispersion process and / or wet grinding dispersion treatment using a pulverizer using a high pressure water Method of injection material for repairing cracks in concrete. 前記A材中の分散剤の使用量が、微粒子シリカ100質量部に対して、固形分換算で0.1〜30質量部であることを特徴とする請求項13のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材の製造方法。 The amount of dispersant in the A material, relative to particles of silica 100 parts by weight, any of the claims 8 to 13, characterized in that from 0.1 to 30 parts by weight in terms of solid content 1 The manufacturing method of the injection material for crack crack repair of concrete as described in a term. 前記B材中の分散剤の使用量が、カルシウム化合物100質量部に対して、固形分換算で1〜30質量部であることを特徴とする請求項14のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材の製造方法。 The amount of dispersant in the B material, to calcium compound 100 parts by weight, to any one of claims 8 to 14, characterized in that 1 to 30 parts by weight in terms of solid content The manufacturing method of the injection material for crack crack repair of the described concrete. さらに、硬化時間調整剤を、前記カルシウム化合物100質量部に対して、0.1〜10質量部含有してなることを特徴とする請求項15のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材の製造方法。 Moreover, concrete according to setting time regulating agent, to any one of claims 8 to 15, to the calcium compound 100 parts by weight, and characterized by containing 0.1 to 10 parts by weight Method of injection material for repairing cracks in steel. 請求項1〜のうちのいずれか1項に記載のコンクリートのひび割れ補修用注入材を注入してなることを特徴とする注入工法。 An injection method characterized by injecting the concrete crack repairing injection material according to any one of claims 1 to 7 . 前記A材と前記B材とを、1ショット方式、1.5ショット方式、及び2ショット方式のいずれかの方式により混合し、コンクリートのひび割れに注入することを特徴とする請求項17に記載の注入工法。 The said material A and the material B, one shot method, 1.5 shot method, and mixed by any of the methods of the two-shot method, as claimed in claim 17, characterized in that injected into cracks in concrete Injection method.
JP2012505761A 2010-03-19 2011-03-18 Injection material for repairing cracks in concrete, method for manufacturing the same, and injection method using the same Active JP5909178B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010063431 2010-03-19
JP2010063431 2010-03-19
PCT/JP2011/056528 WO2011115245A1 (en) 2010-03-19 2011-03-18 Injection material for repairing cracks in concrete, method for manufacturing same, and injection method using same

Publications (2)

Publication Number Publication Date
JPWO2011115245A1 JPWO2011115245A1 (en) 2013-07-04
JP5909178B2 true JP5909178B2 (en) 2016-04-26

Family

ID=44649324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012505761A Active JP5909178B2 (en) 2010-03-19 2011-03-18 Injection material for repairing cracks in concrete, method for manufacturing the same, and injection method using the same

Country Status (2)

Country Link
JP (1) JP5909178B2 (en)
WO (1) WO2011115245A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026572A (en) * 2009-07-01 2011-02-10 Denki Kagaku Kogyo Kk Grouting material and grouting workpiece
JP2014241517A (en) * 2013-06-11 2014-12-25 キヤノン株式会社 Device that generates terahertz wave and device that detects terahertz wave
JP6159195B2 (en) * 2013-08-23 2017-07-05 デンカ株式会社 Injection method
JP6058505B2 (en) * 2013-08-23 2017-01-11 デンカ株式会社 Injection method
JP6469509B2 (en) * 2015-04-20 2019-02-13 鹿島建設株式会社 Curable composition for underwater structure repair and method for repairing underwater structure using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841455A (en) * 1994-07-29 1996-02-13 Japan Found Eng Co Ltd Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JP2006241316A (en) * 2005-03-03 2006-09-14 Taiheiyo Material Kk Grouting material
JP2007131484A (en) * 2005-11-10 2007-05-31 Denki Kagaku Kogyo Kk Expanding material, cement composition, and cement concrete using it
JP2007217453A (en) * 2006-02-14 2007-08-30 Denki Kagaku Kogyo Kk Grout, its manufacturing process, grouting work using it
JP2007269536A (en) * 2006-03-31 2007-10-18 Sumitomo Osaka Cement Co Ltd Inorganic and elastic crack injection material
JP2009062444A (en) * 2007-09-05 2009-03-26 Denki Kagaku Kogyo Kk Grouting material and grouting method
JP2009299291A (en) * 2008-06-10 2009-12-24 Denki Kagaku Kogyo Kk Construction method of grout

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841455A (en) * 1994-07-29 1996-02-13 Japan Found Eng Co Ltd Production of ultrafine slurry having highly dispersed and low viscous state and method for solidifying ground by pouring the ultrafine slurry
JP2006241316A (en) * 2005-03-03 2006-09-14 Taiheiyo Material Kk Grouting material
JP2007131484A (en) * 2005-11-10 2007-05-31 Denki Kagaku Kogyo Kk Expanding material, cement composition, and cement concrete using it
JP2007217453A (en) * 2006-02-14 2007-08-30 Denki Kagaku Kogyo Kk Grout, its manufacturing process, grouting work using it
JP2007269536A (en) * 2006-03-31 2007-10-18 Sumitomo Osaka Cement Co Ltd Inorganic and elastic crack injection material
JP2009062444A (en) * 2007-09-05 2009-03-26 Denki Kagaku Kogyo Kk Grouting material and grouting method
JP2009299291A (en) * 2008-06-10 2009-12-24 Denki Kagaku Kogyo Kk Construction method of grout

Also Published As

Publication number Publication date
JPWO2011115245A1 (en) 2013-07-04
WO2011115245A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5909178B2 (en) Injection material for repairing cracks in concrete, method for manufacturing the same, and injection method using the same
JP5770180B2 (en) Injection material, injection material manufacturing method and injection method
US10759716B2 (en) Accelerator for mineral binders
US20220234955A1 (en) Preparation of Hydrous Graphene Oxide for Use as a Concrete Admixture
CN103958432A (en) Accelerator
JP5956931B2 (en) Injection material, injection material manufacturing method, and injection method
JP5165201B2 (en) Injection material, manufacturing method thereof, and injection method using the same
JP6159963B1 (en) Ground injection material and ground improvement method
JP5936558B2 (en) Injection method for injection material for repairing concrete cracks
JP6159195B2 (en) Injection method
JP7244971B1 (en) Ground consolidation material and ground grouting method using it
JPH1161125A (en) Grouting material
JP2007070133A (en) Method for producing particulate silica slurry for cement composition, and particulate silica slurry for the cement composition
JPH1161126A (en) Grouting material
JP5717441B2 (en) Injection material
JP6058505B2 (en) Injection method
JP5717945B2 (en) Injection material, injection material and injection method
JP4627153B2 (en) Suspension type ground improvement material and manufacturing method thereof
JP5051825B2 (en) Water stop material
JP5683302B2 (en) Adhesive and bonding method
JP2022131571A (en) Grouting material
JP4193913B1 (en) Spherical fine particles of mineral and its production method and use
JPH0480290A (en) Grout
JP2000109835A (en) Chemical liquid to be injected in soil
JP5734642B2 (en) Method for producing inorganic coating composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160325

R150 Certificate of patent or registration of utility model

Ref document number: 5909178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250