JP2007070133A - Method for producing particulate silica slurry for cement composition, and particulate silica slurry for the cement composition - Google Patents
Method for producing particulate silica slurry for cement composition, and particulate silica slurry for the cement composition Download PDFInfo
- Publication number
- JP2007070133A JP2007070133A JP2005256196A JP2005256196A JP2007070133A JP 2007070133 A JP2007070133 A JP 2007070133A JP 2005256196 A JP2005256196 A JP 2005256196A JP 2005256196 A JP2005256196 A JP 2005256196A JP 2007070133 A JP2007070133 A JP 2007070133A
- Authority
- JP
- Japan
- Prior art keywords
- slurry
- silica
- cement composition
- silica slurry
- fine particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 239000004568 cement Substances 0.000 title claims abstract description 44
- 239000000203 mixture Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 41
- 238000003756 stirring Methods 0.000 claims abstract description 18
- 239000011164 primary particle Substances 0.000 claims abstract description 9
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 239000010419 fine particle Substances 0.000 claims description 49
- 229910021487 silica fume Inorganic materials 0.000 claims description 21
- 238000000227 grinding Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 238000001238 wet grinding Methods 0.000 claims description 2
- 239000002002 slurry Substances 0.000 abstract description 34
- 238000010298 pulverizing process Methods 0.000 abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 17
- 239000000843 powder Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 9
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 239000003517 fume Substances 0.000 abstract 3
- 238000005189 flocculation Methods 0.000 abstract 1
- 230000016615 flocculation Effects 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 14
- 239000004567 concrete Substances 0.000 description 8
- 239000002270 dispersing agent Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical compound C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Crushing And Grinding (AREA)
Abstract
Description
本発明は、例えば、セメント組成物や、セメントペースト、モルタル、及びコンクリートに用いられる混和剤、コンクリート構造物や岩盤のクラックへ充填する充填材、並びに、地盤改良に用いる注入材等に使用する、非晶質シリカを主成分とするシリカフューム含有のセメント組成物用微粒子シリカスラリーの製造方法及びそのセメント組成物用微粒子シリカスラリーに関する。 The present invention is used, for example, as a cement composition, an admixture used for cement paste, mortar and concrete, a filler for filling a crack in a concrete structure or rock, and an injection used for ground improvement. The present invention relates to a method for producing a silica fume-containing fine-particle silica slurry for cement composition containing amorphous silica as a main component and the fine-particle silica slurry for cement composition.
従来から、シリカフュームなどの非晶質シリカを主成分とする微粉末は、主に粉末状でセメント組成物の混和材として使用されているが、その粉末が超微粉末故にいくつかの課題がある。 Conventionally, fine powders mainly composed of amorphous silica such as silica fume have been used mainly as powders and as admixtures for cement compositions, but there are some problems because the powders are ultra fine powders. .
例えば、作業面では嵩比重が大きいために輸送や計量等の取り扱いにくい場合があり、使用面ではセメントなどの材料と混合する際、均一に混合するのが難しい場合があり、また、健康面からその取り扱いが難しい場合があった。 For example, it may be difficult to handle such as transportation and weighing due to its large bulk specific gravity on the work surface, and it may be difficult to mix uniformly when mixing with materials such as cement on the use surface. It was sometimes difficult to handle.
これらを解決する手段としては、事前に粉末を顆粒にする方法(特許文献1参照)や、分散剤を併用してスラリーにする方法や、あらかじめ粉体を水に分散させスラリーとして使用する方法が提案され(特許文献2、特許文献3、及び特許文献4参照)、さらにそのスラリーを低粘性化する方法も提案されている(特許文献5参照)。 As means for solving these problems, there are a method in which powder is granulated in advance (see Patent Document 1), a method in which a dispersant is used in combination with a slurry, and a method in which powder is dispersed in water in advance and used as a slurry. Proposed (see Patent Document 2, Patent Document 3 and Patent Document 4), and a method for reducing the viscosity of the slurry has also been proposed (see Patent Document 5).
一方、シリカフュームは、超微粉末であるが、実際には、顆粒化している製品はもちろん、粉末の製品でも生成時の一次粒子間の癒着による凝集やその後の静電気や湿分による一次粒子の凝集により、一部の粒子は、実際には、数μm〜数百μmの2次粒子となっている(非特許文献1、非特許文献2参照)。 Silica fume, on the other hand, is an ultra-fine powder, but in fact, it is agglomerated due to adhesion between primary particles during production as well as granulated products, and then agglomeration of primary particles due to static electricity and moisture. Accordingly, some of the particles are actually secondary particles of several μm to several hundred μm (see Non-Patent Document 1 and Non-Patent Document 2).
シリカフュームを、水又は分散剤を併用した水に混合しスラリーとした場合、一部は一次粒子の状態で分散するが、凝集が強固な粒子は一次粒子に分散することなく、二次粒子のままであり、また、濃度、pH、及び分散剤の種類などのスラリーの状態によっては、一度分散した一次粒子もスラリー中で二次粒子となる場合もある。 When silica fume is mixed with water or water combined with a dispersant to form a slurry, some of the particles are dispersed in the form of primary particles, but the particles with strong aggregation remain secondary particles without being dispersed into the primary particles. In addition, depending on the state of the slurry, such as the concentration, pH, and type of dispersant, primary particles once dispersed may become secondary particles in the slurry.
その解決策として、スラリーに剪断力を与えて分散する方法が提案されている(特許文献6参照)が、処理後のスラリーの粒度が具体的に書かれているものは無く、粉砕効果は不明瞭となっている。
また、このような粉砕機では数ミクロン程度の二次粒子までの分散は可能だが、ほぼ完全に2μm以下に処理することは難しいといわれている。
従ってこの様な方法によりシリカフュームスラリーを製造した場合、長期的にはスラリー内で粒子径の大きい二次粒子の沈降が起こり、スラリーの安定性はもとより、沈降した粒子により使用上トラブルを起こすことが懸念されている。
As a solution to this problem, a method of dispersing the slurry by applying a shearing force has been proposed (see Patent Document 6), but there is no specific description of the particle size of the slurry after treatment, and the pulverization effect is not satisfactory. It is clear.
Further, such a pulverizer can disperse to secondary particles of about several microns, but it is said that it is difficult to process the particles to 2 μm or less almost completely.
Therefore, when a silica fume slurry is produced by such a method, in the long term, secondary particles having a large particle size settle in the slurry, and the stability of the slurry as well as the use of the precipitated particles may cause trouble in use. There are concerns.
本発明は、例えば、セメント組成物や、セメントペースト、モルタル、及びコンクリートに用いられる混和剤、及びコンクリート構造物や岩盤のクラックへ充填する充填材、並びに、地盤改良に使用される注入材等に使用されるシリカフュームについて鋭意検討した結果、特定の湿式粉砕することにより、スラリー中で粒子の沈降や凝集のない性能の優れたセメント組成物用微粒子シリカスラリーが提供できることを知見し完成したものである。 The present invention is, for example, a cement composition, an admixture used for cement paste, mortar, and concrete, a filler for filling a crack in a concrete structure or rock, and an injection material used for ground improvement. As a result of intensive investigations on the silica fume used, it has been found out that a fine silica slurry for cement composition with excellent performance without sedimentation or aggregation of particles in the slurry can be provided by specific wet grinding. .
本発明は、シリカフュームを含有した原料シリカスラリーを、粉砕媒体を用いて湿式粉砕してなるセメント組成物用微粒子シリカスラリーの製造方法であり、それも、媒体攪拌式湿式粉砕機で湿式粉砕してなる該セメント組成物用微粒子シリカスラリーの製造方法であり、媒体攪拌式湿式粉砕機のローターの回転数が400RPM以上及び/又は媒体攪拌式湿式粉砕機の周速が3m/S以上である該セメント組成物用微粒子シリカスラリーの製造方法であり、粉砕媒体の平均粒径が2mm以下である該セメント組成物用微粒子シリカスラリーの製造方法であり、シリカフュームが、SiO2を80%以上含有してなる非晶質シリカである及び/又はその非一次粒子の最大粒径が1μm以下の非晶質シリカである該セメント組成物用微粒子シリカスラリーの製造方法であり、該セメント組成物用微粒子シリカスラリーの製造方法で製造されたセメント組成物用微粒子シリカスラリーであり、シリカフュームの80%以上が1.0μm以下であり、かつ、シリカフュームの最大粒子径が2.0μm以下である該セメント組成物用微粒子シリカスラリーであり、シリカフュームが20〜65%である該セメント組成物用微粒子シリカスラリーであり、pHが3〜9である該セメント組成物用微粒子シリカスラリーである。 The present invention is a method for producing a fine particle silica slurry for cement composition obtained by wet pulverizing a raw silica slurry containing silica fume using a pulverizing medium, which is also wet pulverized by a medium stirring wet pulverizer. A method for producing a fine particle silica slurry for a cement composition, wherein the rotational speed of a rotor of a medium stirring wet pulverizer is 400 RPM or higher and / or a peripheral speed of the medium stirring wet pulverizer is 3 m / S or higher. A method for producing a fine particle silica slurry for a composition, wherein the average particle size of a grinding medium is 2 mm or less, and a method for producing a fine particle silica slurry for a cement composition, wherein the silica fume contains 80% or more of SiO 2. In the method for producing a fine particle silica slurry for a cement composition, which is amorphous silica and / or amorphous silica whose non-primary particles have a maximum particle size of 1 μm or less. The fine particle silica slurry for cement composition produced by the method for producing fine particle silica slurry for cement composition, wherein 80% or more of silica fume is 1.0 μm or less, and the maximum particle size of silica fume is 2.0 μm or less. The fine particle silica slurry for cement composition, the fine particle silica slurry for cement composition having a silica fume of 20 to 65%, and the fine particle silica slurry for cement composition having a pH of 3 to 9.
本発明の製造方法によって、スラリー中で粒子の沈降や凝集もない性能の優れたセメント組成物用微粒子シリカスラリーが得られる。
得られたセメント組成物用微粒子シリカスラリーは、特定の粒径以下の微粒子シリカスラリーであり、セメントと併用した場合、シリカフュームを粉体で使用した場合や、単に水に分散した場合に比べ、流動性や強度発現性が向上する。
また、注入材として使用する場合には、優れた浸透性が得られる。
By the production method of the present invention, a fine particle silica slurry for a cement composition having excellent performance without sedimentation or aggregation of particles in the slurry can be obtained.
The obtained fine particle silica slurry for cement composition is a fine particle silica slurry having a specific particle size or less. When used in combination with cement, the silica fine particle is used in a flow as compared with the case where silica fume is used in powder form or simply dispersed in water. And strength development are improved.
Moreover, when using as an injection material, the outstanding permeability is obtained.
本発明における部や%は特に規定しない限り質量基準で示す。 Unless otherwise specified, parts and% in the present invention are shown on a mass basis.
本発明で使用するシリカフューム(以下、SFという)は、金属シリコンやフェロシリコン、又はジルコニアを製造する過程で電気炉から発生する副産物であり、非晶質のシリカ質を主成分とした超微粉末であれば特に限定されるものではない。
SFの組成としては、全成分中のSiO2成分が80%以上が好ましく、85%以上がより好ましい。SiO2成分が80%未満では凝集性が強くなり、スラリー化が困難になる場合がある。
さらに、SFの粒子径は、最大粒径が1.0μm以下が好ましく、0.8μm以下がより好ましい。1.0μmを超えると品質が安定しない場合があり、流動性や強度発現性の向上が得られない場合がある。
SFは、通常、顆粒化している製品はもちろん、粉末の製品でも凝集により一部の粒子は数μm〜数百μmの二次粒子となっているため、粉砕、特に、湿式粉砕することが好ましい。
Silica fume (hereinafter referred to as SF) used in the present invention is a by-product generated from an electric furnace in the process of producing metallic silicon, ferrosilicon, or zirconia, and is an ultrafine powder mainly composed of amorphous silica. If it is, it will not specifically limit.
The composition of SF is preferably 80% or more, more preferably 85% or more of the SiO 2 component in all components. If the SiO 2 component is less than 80%, the cohesiveness becomes strong and slurrying may be difficult.
Further, the maximum particle size of SF is preferably 1.0 μm or less, and more preferably 0.8 μm or less. If it exceeds 1.0 μm, the quality may not be stable, and improvement in fluidity and strength may not be obtained.
Since SF is usually a granulated product as well as a powdered product, some of the particles are secondary particles of several μm to several hundred μm due to agglomeration. .
本発明では、SFを溶媒で分散して原料シリカスラリーとし、粉砕媒体を用いて湿式粉砕して、SFを含有するセメント組成物用微粒子シリカスラリー(以下、微粒子スラリーという)を調製する。 In the present invention, SF is dispersed in a solvent to obtain a raw material silica slurry, and wet pulverized using a pulverizing medium to prepare a fine particle silica slurry for cement composition (hereinafter referred to as a fine particle slurry) containing SF.
SFを分散する溶媒は、通常、水であるが、エタノールなどのアルコールで数%程度まで置き換えることも可能である。
溶媒の使用量は、SF100部に対して、55〜400部程度が好ましい。
The solvent in which the SF is dispersed is usually water, but can be replaced with alcohol such as ethanol up to several percent.
The amount of the solvent used is preferably about 55 to 400 parts with respect to 100 parts of SF.
本発明の微粒子スラリーでは、水のみの粉砕でも微粒子化が可能であるが、濃度が高い場合には、原料シリカスラリーの圧送性を良くするため、また、粉砕後、微粒子スラリーの安定性を保つために、粘性を低下させるpH調整剤又は分散剤を併用することが好ましい。 In the fine particle slurry of the present invention, fine particles can be obtained by pulverization with water alone. However, when the concentration is high, in order to improve the pumpability of the raw silica slurry, the stability of the fine particle slurry is maintained after pulverization. Therefore, it is preferable to use a pH adjuster or dispersant that lowers the viscosity.
pH調整剤としては、硫酸、塩酸、硝酸、及びリン酸等の無機酸、クエン酸、リンゴ酸、酒石酸、及びグルコン酸又はこれらのナトリウム塩やカリウム塩等の有機酸類等が挙げられ、その中でも有機酸類が好ましい。
pH調整剤の使用量は、SF100部に対して、2.0部以下が好ましく、1.0部以下がより好ましい。
Examples of pH adjusters include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, citric acid, malic acid, tartaric acid, and organic acids such as gluconic acid or sodium salts and potassium salts thereof. Organic acids are preferred.
The amount of the pH adjuster used is preferably 2.0 parts or less and more preferably 1.0 part or less with respect to 100 parts of SF.
また、分散剤としては、リグニンスルホン酸塩、オキシカルボン酸塩、ナフタリンスルホン酸ホルマリン縮合物塩、ポリカルボン酸塩、芳香族アミノスルホン酸塩、及びセルロース誘導体等のいずれの分散剤も使用可能である。
分散剤の使用量は、SF100部に対して、0.3〜2.0部が好ましい。
As the dispersant, any dispersant such as lignin sulfonate, oxycarboxylate, naphthalene sulfonate formalin condensate, polycarboxylate, aromatic amino sulfonate, and cellulose derivative can be used. is there.
The amount of the dispersant used is preferably 0.3 to 2.0 parts with respect to 100 parts of SF.
本発明で使用する湿式粉砕する装置としては、媒体攪拌式粉砕機が好ましい。 As the wet pulverizing apparatus used in the present invention, a medium stirring pulverizer is preferable.
媒体攪拌式粉砕機とは、容器内にボールなどの粉砕媒体を入れ、容器内に設置されている攪拌機構(以下、ローターという)によって、粉砕媒体に力を伝達して粉砕を行なう粉砕機であって、攪拌槽型粉砕機、流通管型粉砕機、環状粉砕機、及び塔式粉砕機などに分類される。
攪拌粉砕機の中で、攪拌槽型粉砕機としては、三井鉱山社製商品名「アトライター」やアイメックス社製商品名「サンドグラインダー」などがあり、流通管型粉砕機としては、ウイリー・アー・バッコーフェンAG社製商品名「ダイノーミル」、アイメックス社製商品名「ウルトラビスコミル」、コトブキ技研工業社製商品名「スーパーアペックスミル」、ターボ工業社製商品名「OBミル」、三井鉱山社製商品名「SCミル」、及びアシザワ・ファインテック社製商品名「スターミル」などがあり、環状粉砕機としては、三菱重工業社製商品名「ダイヤモンドファインミル」やドライスヴェルケGmbH社製商品名「パールミル」などがある。
これらのうち、粉砕性能に優れている流通管型粉砕機が好ましい
The medium agitation type pulverizer is a pulverizer in which a pulverization medium such as a ball is placed in a container, and the pulverization is performed by transmitting force to the pulverization medium by an agitation mechanism (hereinafter referred to as a rotor) installed in the container. And classified into a stirring tank type pulverizer, a flow tube type pulverizer, an annular pulverizer, a tower type pulverizer, and the like.
Among the stirring pulverizers, there are a product name “Attritor” manufactured by Mitsui Mining Co., Ltd. and a product name “Sand Grinder” manufactured by Imex Co., Ltd.・ Product name “Dyno mill” manufactured by Bakkofen AG, product name “Ultra Visco Mill” manufactured by IMEX, product name “Super Apex Mill” manufactured by Kotobuki Giken Kogyo Co., Ltd., product name “OB Mill” manufactured by Turbo Kogyo Co., Ltd. There are the product name “SC Mill” and the product name “Star Mill” manufactured by Ashizawa Finetech Co., Ltd. As the circular crusher, the product name “Diamond Fine Mill” manufactured by Mitsubishi Heavy Industries, Ltd. Pearl mill "etc.
Of these, a circulation pipe type crusher having excellent crushing performance is preferable.
攪拌粉砕機において、使用する粉砕媒体は特に制限されるものではないが、その平均粒子径は、2mm以下が好ましく、0.01〜2.0mmがより好ましく、0.05〜1.0mmがもっとも好ましい。2.0mmを超えると微粉化が難しく粉砕効率が劣る場合がある。
また、粉砕媒体の容器内の充填量は特に制限されるものではないが、容器の容積の50〜95容積%が好ましく、70〜90容積%がより好ましい。この範囲外では粉砕効率が低下する場合がある。
粉砕媒体の材質は特に限定されるものではなく、通常、アルミナなどのアルミナセラミックス、ジルコニア、窒化珪素、及び炭化珪素が使用される。
In the stirring pulverizer, the pulverization medium to be used is not particularly limited, but the average particle size is preferably 2 mm or less, more preferably 0.01 to 2.0 mm, and most preferably 0.05 to 1.0 mm. If it exceeds 2.0 mm, pulverization may be difficult due to difficulty in pulverization.
The filling amount of the grinding medium in the container is not particularly limited, but is preferably 50 to 95% by volume, more preferably 70 to 90% by volume of the volume of the container. Outside this range, the pulverization efficiency may decrease.
The material of the grinding medium is not particularly limited, and alumina ceramics such as alumina, zirconia, silicon nitride, and silicon carbide are usually used.
使用する攪拌粉砕機の粉砕媒体を攪拌するローターの能力は、種類によって異なるが、回転数では400RPM以上が好ましく、400〜4,500RPMがより好ましく、1,500〜3,500RPMがもっとも好ましい。400RPM未満では粉砕効果が得られない場合がある。 The ability of the rotor for stirring the pulverization medium of the stirring pulverizer to be used varies depending on the type, but the rotational speed is preferably 400 RPM or more, more preferably 400 to 4,500 RPM, and most preferably 1,500 to 3,500 RPM. If it is less than 400 RPM, the crushing effect may not be obtained.
また、ローターの周速は、3〜35m/Sが好ましく、10〜30m/Sがより好ましい。3m/S未満では粉砕効果が低下し、2μm以上のSFの粒子が残ることがあり、35m/S超えると粉砕効率は変わらず経済的に好ましくない。 The circumferential speed of the rotor is preferably 3 to 35 m / S, more preferably 10 to 30 m / S. If it is less than 3 m / S, the pulverizing effect may be reduced, and SF particles of 2 μm or more may remain.
本発明では、微粒子スラリー中のSFの粒度は、その80%以上が1.0μm以下が好ましく、かつ、最大粒子径は2.0μm以下が好ましい。 In the present invention, 80% or more of the particle size of SF in the fine particle slurry is preferably 1.0 μm or less, and the maximum particle size is preferably 2.0 μm or less.
微粒子スラリー中のSFの粒度は、その80%以上が1.0μm以下であることが好ましい。1.0μmを超えた粒子が多くなると沈降が起こり、微粒子スラリーの安定化が難しい場合がある。 80% or more of the particle size of SF in the fine particle slurry is preferably 1.0 μm or less. When the number of particles exceeding 1.0 μm increases, sedimentation occurs, and it may be difficult to stabilize the fine particle slurry.
また、微粒子スラリー中のSFの最大粒子径は、2.0μm以下が好ましい。2.0μmを超えると微粒子スラリーの安定化が難しい場合がある。 Further, the maximum particle size of SF in the fine particle slurry is preferably 2.0 μm or less. If it exceeds 2.0 μm, it may be difficult to stabilize the fine particle slurry.
原料シリカスラリー中のSFの濃度は、20〜65%が好ましく、30〜50%がより好ましい。20%未満では、水量が多くなるため、生産効率が低下し、コストがかかり、輸送面からも経済的ではなく、また、65%を超えると、スラリーの粘性が大きくなり、粉砕時の微粒子化の効率が悪くなるだけではなく、原料シリカスラリーの圧送や粉砕時に閉塞のトラブルが起こる場合がある。 The concentration of SF in the raw material silica slurry is preferably 20 to 65%, more preferably 30 to 50%. If it is less than 20%, the amount of water increases, resulting in a decrease in production efficiency, cost, and economical in terms of transportation. If it exceeds 65%, the viscosity of the slurry increases and the particles become finer during grinding. In addition to the deterioration of the efficiency, clogging troubles may occur when the raw silica slurry is pumped or crushed.
微粒子スラリーのpHは、3〜9が好ましい。pHが3未満では酸性が強く使用する機器等を腐食する恐れがあり、pH9を超えると粒子が凝集しスラリーの粘度が大きくなったりゲル化する場合がある。 The pH of the fine particle slurry is preferably 3-9. If the pH is less than 3, there is a risk of corroding equipment that is strongly acidic, and if the pH exceeds 9, the particles may aggregate and the viscosity of the slurry may increase or gel.
以下、実施例、比較例をあげてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.
実験例1
SFと水を等量混合して、硫酸を併用してpH5〜6となるようにし、ハンドミキサーで5分間攪拌し、原料シリカスラリーを調製した。原料シリカスラリー中のSFの粒度分布を図1に示す。
調製した原料シリカスラリーを、ホースポンプを用い、媒体攪拌式湿式粉砕機、コトブキ工業社社製商品名「スーパーアッペクスミル」に輸送し、ジルコニア製で、平均粒径0.5mmの粉砕媒体を、媒体攪拌式湿式粉砕機の容器の80%充填し、表1に示すローターの回転数で湿式粉砕を行い、微粒子シリカスラリーを作製した。微粒子スラリー中のSFの濃度は50%であった。微粒子スラリー中のSFの粒度分布を図2に示す。
作製した直後の微粒子シリカスラリーの粘度、pH、並びに、粒度1μm以下と、粒度1μmを超える粒度1μm上の割合、及び最大粒径の粒度分布を測定した。結果を表1に併記する。
Experimental example 1
An equal amount of SF and water was mixed, and sulfuric acid was used in combination to adjust the pH to 5 to 6, followed by stirring with a hand mixer for 5 minutes to prepare a raw material silica slurry. The particle size distribution of SF in the raw silica slurry is shown in FIG.
Using the hose pump, the prepared raw material silica slurry is transported to a medium stirring wet pulverizer, a product name `` Super Apex Mill '' manufactured by Kotobuki Kogyo Co., Ltd. 80% of the container of the medium stirring type wet pulverizer was filled, and wet pulverization was performed at the number of rotations of the rotor shown in Table 1 to prepare a fine particle silica slurry. The concentration of SF in the fine particle slurry was 50%. The particle size distribution of SF in the fine particle slurry is shown in FIG.
The viscosity and pH of the fine particle silica slurry immediately after production, the particle size of 1 μm or less, the ratio of the particle size exceeding 1 μm on the particle size of 1 μm, and the particle size distribution of the maximum particle size were measured. The results are also shown in Table 1.
<使用材料>
SF :市販品、SiO293%、非一次粒子の最大径0.8μmの非晶質シリカ、密度2.29g/cm3、BET比表面積19m2/g、平均粒子径67.0μm
水 :水道水
<Materials used>
SF: Commercially available product, SiO 2 93%, non-primary particles of amorphous silica with a maximum diameter of 0.8 μm, density 2.29 g / cm 3 , BET specific surface area 19 m 2 / g, average particle size 67.0 μm
Water: Tap water
<測定方法>
粘度 :微粒子スラリーをB型回転粘度計を用いて、20℃、ローター回転数20RPMで測定
pH :微粒子スラリーをHORIBA社製pHメーターD−51を用い測定
粒度分布 :微粒子スラリーをHORIBA社製レーザー回折/散乱式粒度分布測定機商品名「LA−910W」を用い測定。測定の前処理として超音波による分散はせず。
<Measurement method>
Viscosity: Measure fine particle slurry with B-type rotational viscometer at 20 ° C. and
実験例2
表2に示すローターの周速で湿式粉砕を行ったこと以外は実験例1と同様に行った。結果を表2に併記する。
Experimental example 2
The test was performed in the same manner as in Experimental Example 1 except that wet pulverization was performed at the peripheral speed of the rotor shown in Table 2. The results are also shown in Table 2.
実験例3
ローターの回転数を2,000RPM、ローターの周速16.7m/Sとし、表3に示すジルコニア製の粉砕媒体を用いたこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
The test was carried out in the same manner as in Experimental Example 1 except that the rotation speed of the rotor was 2,000 RPM, the peripheral speed of the rotor was 16.7 m / S, and the zirconia grinding media shown in Table 3 were used. The results are also shown in Table 3.
実験例4
ローターの回転数を2,000RPM、ローターの周速16.7m/Sとし、表4に示すSF濃度の原料シリカスラリーを用いたこと以外は実験例1と同様に行った。結果を表4に併記する。
Experimental Example 4
The experiment was performed in the same manner as in Experimental Example 1 except that the rotor rotation speed was 2,000 RPM, the rotor peripheral speed was 16.7 m / S, and the raw material silica slurry having the SF concentration shown in Table 4 was used. The results are also shown in Table 4.
実験例5
ローターの回転数を2,000RPM、ローターの周速16.7m/Sとし、原料シリカスラリーのpHを表5のとおりとし、粘度とpHを測定したこと以外は実験例1と同様に行った。結果を表5に併記する。
Experimental Example 5
The test was performed in the same manner as in Experimental Example 1 except that the rotation speed of the rotor was 2,000 RPM, the peripheral speed of the rotor was 16.7 m / S, the pH of the raw silica slurry was as shown in Table 5, and the viscosity and pH were measured. The results are also shown in Table 5.
実験例6
ローターの回転数を2,000RPM、ローターの周速16.7m/Sとし、原料シリカスラリーのpHを8、原料シリカスラリー中のSFの濃度を50%としたこと以外は実験例1と同様に行い微粒子スラリーを調製した。微粒子スラリーのpHは であった。
調製したSFの濃度を50%の微粒子スラリー200kg、セメント1,000kg、細骨材1,250kg、高強度混和材20kg、高性能AE減水剤16.8kg、及び微粒子スラリー中の水と減水剤を含んだ全水量を230kgとし、水と、セメント、高強度混和材、及びSFからなる結合材の比である水結合材比を20.5%としてモルタルを作製し、そのフローと圧縮強度を測定した。結果を表6に併記する。
Experimental Example 6
Fine particles as in Experimental Example 1 except that the rotor speed was 2,000 RPM, the rotor peripheral speed was 16.7 m / S, the pH of the raw silica slurry was 8, and the SF concentration in the raw silica slurry was 50%. A slurry was prepared. The pH of the fine particle slurry was:
50% fine particle slurry 200 kg, cement 1,000 kg, fine aggregate 1,250 kg, high strength admixture 20 kg, high-performance AE water reducing agent 16.8 kg, and water and water reducing agent in the fine particle slurry A mortar was prepared with an amount of water of 230 kg, a water binder ratio of 20.5%, which is the ratio of water and cement, a high-strength admixture, and SF. The flow and compressive strength were measured. The results are also shown in Table 6.
<使用材料>
セメント :普通ポルトランドセメント
細骨材 :フェロニッケルスラグ細骨材
高強度混和材:無水セッコウ系市販品
高性能AE減水剤:ポリカルボン酸系、市販品
<Materials used>
Cement: Ordinary Portland cement fine aggregate: Ferronickel slag fine aggregate high-strength admixture: Anhydrous gypsum-based commercial product High-performance AE water reducing agent: Polycarboxylic acid-based, commercial product
<測定方法>
フロー :JIS R 5201に準拠
圧縮強度 :JIS R 5201に準拠、材齢28日で測定
<Measurement method>
Flow: Conforms to JIS R 5201 Compressive strength: Conforms to JIS R 5201, measured at 28 days of age
本発明により、微粒子シリカスラリーをセメントペースト、グラウト、モルタル及びコンクリートに用いられる混和剤、及びコンクリート構造物や岩盤のクラックへ充填する充填材又は地盤改良に使用される注入材など土木分野などで幅広く適用できる。 According to the present invention, it is widely used in civil engineering fields such as admixtures used for cement paste, grout, mortar and concrete, and fillers for filling concrete structures and rock cracks or injecting materials used for ground improvement. Applicable.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256196A JP5089873B2 (en) | 2005-09-05 | 2005-09-05 | Method for producing fine particle silica slurry for cement composition and fine particle silica slurry for cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005256196A JP5089873B2 (en) | 2005-09-05 | 2005-09-05 | Method for producing fine particle silica slurry for cement composition and fine particle silica slurry for cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007070133A true JP2007070133A (en) | 2007-03-22 |
JP5089873B2 JP5089873B2 (en) | 2012-12-05 |
Family
ID=37931913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005256196A Expired - Fee Related JP5089873B2 (en) | 2005-09-05 | 2005-09-05 | Method for producing fine particle silica slurry for cement composition and fine particle silica slurry for cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5089873B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008239439A (en) * | 2007-03-28 | 2008-10-09 | Taiheiyo Cement Corp | Cement admixture and method of manufacturing the same |
JP2009073700A (en) * | 2007-09-21 | 2009-04-09 | Ube Ind Ltd | High-strength concrete composition for centrifugal force molding and its manufacturing method |
JP2010180108A (en) * | 2009-02-06 | 2010-08-19 | Denki Kagaku Kogyo Kk | Spraying material and spraying method using the same |
WO2020179701A1 (en) * | 2019-03-01 | 2020-09-10 | 塩野義製薬株式会社 | Contaminant-depleted nanoparticle composition and method for producing same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01141006A (en) * | 1987-11-27 | 1989-06-02 | Toyo Denka Kogyo Kk | Preparation of aqueous dispersion containing silica fume |
JPH07257950A (en) * | 1994-03-15 | 1995-10-09 | N M B:Kk | Silica slurry for cement composition |
JPH09118552A (en) * | 1995-09-18 | 1997-05-06 | Wr Grace & Co Connecticut | Improved cement admixture |
JPH11207728A (en) * | 1998-01-26 | 1999-08-03 | Matsushita Electric Works Ltd | Production of inorganic building material |
JP2001262067A (en) * | 2000-03-23 | 2001-09-26 | Dokai Chemical Industries Co Ltd | Curable composition for heat insulating coating material containing scaly silica particle and heat insulating cured product |
JP2002136886A (en) * | 2000-08-22 | 2002-05-14 | Taiheiyo Cement Corp | Pulverization treatment process of cement formed product waste material and method for recycling the waste material |
JP2002273258A (en) * | 2001-03-21 | 2002-09-24 | Taiheiyo Cement Corp | Superfine pulverizing method for waste material |
JP2003306368A (en) * | 2002-04-16 | 2003-10-28 | Denki Kagaku Kogyo Kk | Grout and injection method using it |
-
2005
- 2005-09-05 JP JP2005256196A patent/JP5089873B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01141006A (en) * | 1987-11-27 | 1989-06-02 | Toyo Denka Kogyo Kk | Preparation of aqueous dispersion containing silica fume |
JPH07257950A (en) * | 1994-03-15 | 1995-10-09 | N M B:Kk | Silica slurry for cement composition |
JPH09118552A (en) * | 1995-09-18 | 1997-05-06 | Wr Grace & Co Connecticut | Improved cement admixture |
JPH11207728A (en) * | 1998-01-26 | 1999-08-03 | Matsushita Electric Works Ltd | Production of inorganic building material |
JP2001262067A (en) * | 2000-03-23 | 2001-09-26 | Dokai Chemical Industries Co Ltd | Curable composition for heat insulating coating material containing scaly silica particle and heat insulating cured product |
JP2002136886A (en) * | 2000-08-22 | 2002-05-14 | Taiheiyo Cement Corp | Pulverization treatment process of cement formed product waste material and method for recycling the waste material |
JP2002273258A (en) * | 2001-03-21 | 2002-09-24 | Taiheiyo Cement Corp | Superfine pulverizing method for waste material |
JP2003306368A (en) * | 2002-04-16 | 2003-10-28 | Denki Kagaku Kogyo Kk | Grout and injection method using it |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008239439A (en) * | 2007-03-28 | 2008-10-09 | Taiheiyo Cement Corp | Cement admixture and method of manufacturing the same |
JP2009073700A (en) * | 2007-09-21 | 2009-04-09 | Ube Ind Ltd | High-strength concrete composition for centrifugal force molding and its manufacturing method |
JP2010180108A (en) * | 2009-02-06 | 2010-08-19 | Denki Kagaku Kogyo Kk | Spraying material and spraying method using the same |
WO2020179701A1 (en) * | 2019-03-01 | 2020-09-10 | 塩野義製薬株式会社 | Contaminant-depleted nanoparticle composition and method for producing same |
CN113825568A (en) * | 2019-03-01 | 2021-12-21 | 盐野义制药株式会社 | Nanoparticle composition with reduced foreign matter and method for producing same |
CN113825568B (en) * | 2019-03-01 | 2023-09-26 | 盐野义制药株式会社 | Nanoparticle composition with reduced foreign matter and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
JP5089873B2 (en) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3230378B2 (en) | Cement composition | |
JP3230390B2 (en) | Method for producing cement composition | |
JP5089873B2 (en) | Method for producing fine particle silica slurry for cement composition and fine particle silica slurry for cement composition | |
JP6122647B2 (en) | Liquid quick setting agent, cement composition using the same, and spraying method | |
JP2010159347A (en) | Soil-solidifying material | |
JP5432431B2 (en) | High strength grout material | |
JP3116477B2 (en) | Manufacturing method of high strength cement | |
JP2015226985A (en) | Cement composition processing method | |
JP6414873B2 (en) | Method for producing cement composition | |
JP5277570B2 (en) | Slag injection material and its injection method | |
JP2018087108A (en) | Manufacturing method of premix cement composition | |
KR102202526B1 (en) | Method for manufacturing coal ash and composition of coal ash and cement | |
JPH1161125A (en) | Grouting material | |
JP6033664B2 (en) | Liquid quick setting agent and method for producing the same, cement composition using the same, and spraying method | |
JP2016206134A (en) | Determination method of cement composition and processing method of cement composition | |
JP5717945B2 (en) | Injection material, injection material and injection method | |
JP2016169996A (en) | Method for determining cement composition and method for processing cement composition | |
JP4994080B2 (en) | Cement composition and method for producing the same | |
JP7134668B2 (en) | Cement-based solidifying material composition | |
JP6955338B2 (en) | Manufacturing method of cement additive and manufacturing method of premix cement composition | |
Zaichenko et al. | Silica fume-based admxture in the form of aqueous slurry for self-compacting concrete | |
JP6932008B2 (en) | Manufacturing method of cement additive and manufacturing method of premix cement composition | |
JP5582901B2 (en) | Method for producing finely divided cement and method for producing cement composition | |
JP6617777B2 (en) | Cement composition | |
JP7399606B2 (en) | cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120705 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120912 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5089873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |