JP5907836B2 - Measurement management method - Google Patents

Measurement management method Download PDF

Info

Publication number
JP5907836B2
JP5907836B2 JP2012183997A JP2012183997A JP5907836B2 JP 5907836 B2 JP5907836 B2 JP 5907836B2 JP 2012183997 A JP2012183997 A JP 2012183997A JP 2012183997 A JP2012183997 A JP 2012183997A JP 5907836 B2 JP5907836 B2 JP 5907836B2
Authority
JP
Japan
Prior art keywords
nuclide
nuclear fuel
management
measurement
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012183997A
Other languages
Japanese (ja)
Other versions
JP2014041079A (en
Inventor
泰志 名内
泰志 名内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2012183997A priority Critical patent/JP5907836B2/en
Publication of JP2014041079A publication Critical patent/JP2014041079A/en
Application granted granted Critical
Publication of JP5907836B2 publication Critical patent/JP5907836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、核燃料物質と非核燃料物質の混合物の計量管理方法に関する。さらに詳しくは、本発明は、不明量の核燃料物質と不明量の物質が混合されている例えば燃料デブリ等の物質の計量管理等に適した核燃料物質と非核燃料物質の混合物(以下管理対象物)の管理方法に関するものである。   The present invention relates to a method for measuring and controlling a mixture of nuclear fuel material and non-nuclear fuel material. More specifically, the present invention relates to a mixture of nuclear fuel material and non-nuclear fuel material (hereinafter referred to as a management target) suitable for metering management of a material such as fuel debris in which an unknown amount of nuclear fuel material and an unknown amount of material are mixed. Is related to the management method.

我が国において、原子力発電所で使用される核燃料物質は、安全保障上の観点から、そのウラン重量や所在を正確に把握する、即ち計量管理することが求められている。原子力発電所の通常の運転では、核燃料は全て燃料集合体に含まれているので、計量管理は、燃料集合体を単位とし、燃料集合体内のウランを起源とする物質が全て燃料集合体にとどまるものとして行われている。一方、米国スリーマイル島原子力発電所(以下、TMIという)事故時は、燃料棒と制御棒、炉心下部構造物の一部が熔融した燃料デブリが形成された。この燃料デブリは裁断され、それらはキャニスタと呼ばれる容器に回収され、保管されている。こうした燃料デブリの計量管理は、キャニスタを単位として行われる必要があるが、米国は計量管理が義務化されていないため、キャニスタ毎に封入されたウラン重量等を把握する技術は開発されていない。一方、福島第一発電所事故では、TMI同様に燃料デブリが発生したと考えられており、これらをキャニスタに回収することが予想されているが、これらをキャニスタ毎に計量管理する必要がある。   In Japan, nuclear fuel materials used in nuclear power plants are required to accurately grasp the weight and location of uranium, that is, to control the weight, from the viewpoint of security. In normal operation of a nuclear power plant, all nuclear fuel is contained in the fuel assembly. Therefore, the measurement control is performed in units of the fuel assembly, and all substances originating from uranium in the fuel assembly remain in the fuel assembly. It is done as a thing. On the other hand, at the time of the three-mile island nuclear power plant (hereinafter referred to as TMI) accident in the United States, fuel debris was formed by melting part of the fuel rods, control rods, and core substructure. The fuel debris is cut and collected and stored in a container called a canister. Such fuel debris measurement management needs to be performed in units of canisters. However, since measurement control is not obligatory in the United States, no technology has been developed to grasp the weight of uranium enclosed in each canister. On the other hand, in the Fukushima Daiichi power plant accident, it is thought that fuel debris was generated as in the case of TMI, and it is expected that these will be collected in canisters.

なお、燃料デブリのように成分の割合が不明なものについてではないが、成分割合が既知あるいは追跡可能な使用済み核燃料の計量管理に関する技術として、例えば特許文献1がある。   In addition, although it is not about the thing whose component ratio is unknown like fuel debris, there exists patent document 1 as a technique regarding the measurement management of the used nuclear fuel whose component ratio is known or can be traced.

特開2000−162371号公報JP 2000-162371 A

ところで、燃料デブリについては核燃料以外の物質の混合量が不明であり、燃料デブリに含まれる核燃料の重量を精確に測定することができないのが現状である。   By the way, as for fuel debris, the mixing amount of substances other than nuclear fuel is unknown, and the weight of nuclear fuel contained in fuel debris cannot be measured accurately.

本発明は、含まれている非核燃料物質の混合量が不明な場合にも計量管理を行うことが可能な管理対象物の計量管理方法を提供することを目的とする。   An object of the present invention is to provide a measurement management method for an object to be managed that can perform measurement management even when the amount of the non-nuclear fuel material contained therein is unknown.

かかる目的を達成するために請求項1記載の管理対象物の計量管理方法は、核燃料核種および中性子捕獲反応を生じる計測対象核種を含む管理対象物から放出された計測対象核種の中性子捕獲反応で生じたγ線および核燃料核種の核分裂反応で生じたγ線を計測し、中性子捕獲反応で生じたγ線の計測値に基づいて計測対象核種の中性子捕獲反応率を算出すると共に、核分裂反応で生じたγ線の計測値に基づいて核燃料核種の核分裂率を算出し、計測対象核種の中性子捕獲反応率と核燃料核種の核分裂率との比をミクロ中性子捕獲断面積とミクロ核分裂断面積との比で除して計測対象核種の数密度N と核燃料核種の数密度N との比N /N を求めた上で、当該比N /N ,計測対象核種の原子量ρ 及び核燃料核種の原子量ρ ,並びに管理対象物の重量Wを用いて Wu = W/(1+(ρ /ρ )) により、管理対象物が核燃料核種と計測対象核種とで構成されていると仮定した場合における管理対象物中の核燃料核種の重量Wuを求めて計量管理を行うものである。したがって、計測対象核種の混合量が不明であっても核燃料核種の重量を求めることができ、核燃料物質の計量管理を適切に行うことが可能になる In order to achieve this object, the method for measuring and managing a management object according to claim 1 is caused by a neutron capture reaction of a measurement target nuclide released from a control object including a nuclear fuel nuclide and a measurement target nuclide that causes a neutron capture reaction. Γ-rays and γ-rays generated by nuclear fuel nuclide fission reactions were measured, and the neutron capture reaction rate of the target nuclide was calculated based on the measured values of γ-rays generated by the neutron capture reaction, and produced by the fission reaction. The fission rate of the nuclear fuel nuclide is calculated based on the measured value of the gamma ray, and the ratio between the neutron capture reaction rate of the target nuclide and the fission rate of the nuclear fuel nuclide is divided by the ratio of the microneutron capture cross section and the micro fission cross section. to after having determined the ratio N i / N u the number density N i and number density N u nuclear fuel nuclide to be measured nuclides, the ratio N i / N u, of the measurement target nuclide atomic weight [rho i and nuclear fuel nuclide atomic weight ρ u of As well as the managed object of weight W using Wu = W / (1+ (ρ i N i / ρ u N u)), if the managed object is assumed to be composed of a nuclear fuel nuclide a measurement target nuclide and performs metering management seeking weight Wu of the nuclear fuel nuclides managed object in the. Therefore, even if the mixing amount of the measurement target nuclide is unknown, the weight of the nuclear fuel nuclide can be obtained, and the measurement management of the nuclear fuel material can be appropriately performed .

また、請求項2記載の管理対象物の計量管理方法は、管理対象物に外部から中性子を照射してγ線計測を行うものである。したがって、内部中性子に起因した核反応のγ線に加えて外部中性子に起因した核反応のγ線をも生じさせることができ、計測対象核種の中性子捕獲反応で生じたγ線および核燃料物質の核分裂反応で生じたγ線を大幅に増加させることにより、この計測対象核種の中性子捕獲反応で生じたγ線および核燃料物質の核分裂反応で生じたγ線の計測が容易となる。   According to a second aspect of the present invention, there is provided a method for measuring and managing gamma rays by irradiating a management object with neutrons from the outside. Therefore, in addition to γ-rays of nuclear reactions caused by internal neutrons, γ-rays of nuclear reactions caused by external neutrons can be generated. By significantly increasing the γ-ray generated by the reaction, it becomes easy to measure the γ-ray generated by the neutron capture reaction of the measurement target nuclide and the fission reaction of the nuclear fuel material.

また、請求項3記載の管理対象物の計量管理方法は、管理対象物が核燃料物質及び構造材料等が破損や熔融して混合した燃料デブリである。したがって、燃料デブリの計量管理を行うことができる。   According to a third aspect of the present invention, there is provided a method for measuring and managing a management object, wherein the management object is fuel debris in which nuclear fuel materials and structural materials are broken or melted and mixed. Therefore, the fuel debris can be measured and managed.

請求項1記載の管理対象物の計量管理方法によれば、核燃料核種の混合割合の不明な管理対象物について計量管理が可能になり、求めた核燃料核種の割合と管理対象物の重量に基づいて管理対象物中の核燃料核種の重量を求めて管理対象物の計量管理を行うので、核燃料物質と非核燃料物質の混在した物質の計量管理を適切に行うことが可能になる。   According to the method for measuring and managing a management object according to claim 1, it becomes possible to perform measurement management for a management object whose mixing ratio of nuclear fuel nuclides is unknown, and based on the obtained ratio of nuclear fuel nuclides and the weight of the management object. Since the weight of the nuclear fuel nuclide in the controlled object is obtained and the controlled object is measured and managed, it is possible to appropriately perform the controlled measurement of the material containing both the nuclear fuel material and the non-nuclear fuel material.

また、請求項2記載の管理対象物の計量管理方法によれば、内部中性子に起因した核反応のγ線に加えて外部中性子に起因した核反応のγ線をも計測することができるので、γ線計測が容易になり、管理対象物をより精確に計量管理することができる。   In addition, according to the measurement management method of the management object according to claim 2, in addition to gamma rays of nuclear reaction caused by internal neutrons, gamma rays of nuclear reaction caused by external neutrons can be measured. γ-ray measurement is facilitated, and the management object can be measured and managed more accurately.

また、請求項3記載の管理対象物の計量管理方法によれば、燃料デブリを管理対象物としているので、燃料デブリの計量管理を行うことができる。   In addition, according to the measurement management method of the management object according to the third aspect, since the fuel debris is the management object, the fuel debris measurement management can be performed.

本発明の管理対象物の計量管理方法の実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the measurement management method of the management target object of this invention. 管理対象物に中性子を照射してγ線を計測する様子を示す概念図である。It is a conceptual diagram which shows a mode that a control target object is irradiated with neutron and a gamma ray is measured. 実験の様子を示す概略構成図である。It is a schematic block diagram which shows the mode of experiment. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下、本発明の構成を図面に示す形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the form shown in the drawings.

図1及び図2に本発明の管理対象物の管理方法の実施形態の一例を示す。   1 and 2 show an example of an embodiment of the management object management method of the present invention.

未臨界状態の管理対象物を中性子照射すると、核分裂と捕獲反応で、γ線を生じる。これらのγ線は核種に固有のエネルギースペクトルをもつ。これをγ線スペクトル測定すると、各種のγ線スペクトルの混在した測定波高スペクトルが得られる。測定波高スペクトルにアンフォールディングという数学的操作を行うと、各種のγ線の発生強度比を求めることが出来る。強度比から、特定の中性子捕獲反応率と核分裂の比を推定できる。この比を<σc,iφ>/<σfUφ>と記す。ここでiは上記特定の中性子捕獲反応を起こす核種を、uは上記核分裂を起こす核種をそれぞれ示す。σは中性子捕獲反応の微視的断面積、σfuは核分裂の微視的断面積、Nは数密度、φは中性子束、<>は中性子を照射された空間領域での積分を意味する。そして、比<σc,iφ>/<σfUφ>から、分子分母の中性子束φが同じと仮定し、また微視的断面積のデータを用いることで<N>/<N>を得る。ここから管理対象物が核燃料核種と計測対象核種とで構成されていると仮定した場合における管理対象物に含まれる核燃料核種の割合を求めることができ、さらに、管理対象物の重量を参照することで管理対象物中の核燃料核種の重量を求めることができる。 When a controlled object in a subcritical state is irradiated with neutrons, gamma rays are generated by fission and capture reactions. These gamma rays have an energy spectrum that is unique to nuclides. When a γ-ray spectrum is measured, a measurement wave height spectrum in which various γ-ray spectra are mixed is obtained. When a mathematical operation called unfolding is performed on the measured wave height spectrum, it is possible to obtain the intensity ratio of various γ rays. From the intensity ratio, a specific neutron capture reaction rate and fission ratio can be estimated. This ratio is expressed as <σ c, i N i φ> / <σ fU N U φ>. Here, i is a nuclide that causes the specific neutron capture reaction, and u is a nuclide that causes the fission. σ c is the microscopic cross section of the neutron capture reaction, σ fu is the microscopic cross section of fission, N is the number density, φ is the neutron flux, and <> is the integration in the spatial region irradiated with neutrons . Then, from the ratio <σ c, i N i φ> / <σ fU N U φ>, it is assumed that the neutron flux φ of the numerator is the same, and using the data of the microscopic cross section, <N i > / <N U > is obtained. From this, it is possible to determine the ratio of nuclear fuel nuclides contained in the controlled object when it is assumed that the controlled object consists of nuclear fuel nuclides and measurement target nuclides, and refer to the weight of the controlled object. The weight of the nuclear fuel nuclide in the control object can be obtained.

捕獲反応の測定対象(計測対象核種)としては、ステンレス鋼に含まれる56Fe等が挙げられる。 Examples of the measurement target (measurement target nuclide) of the capture reaction include 56 Fe contained in stainless steel.

即ち、本実施形態の管理対象物の計量管理方法は、核燃料核種および中性子捕獲反応を生じる計測対象核種を含む管理対象物1から放出された計測対象核種の中性子捕獲反応で生じたγ線および核燃料核種の核分裂反応で生じたγ線を計測し、中性子捕獲反応で生じたγ線の計測値に基づいて計測対象核種の中性子捕獲反応率を算出すると共に、核分裂反応で生じたγ線の計測値に基づいて核燃料核種の核分裂率を算出し、計測対象核種の中性子捕獲反応と核燃料核種の核分裂の微視的断面積を使用して管理対象物1に含まれる核燃料核種の割合を求め、核燃料核種の割合と管理対象物1の重量に基づいて管理対象物1中の核燃料核種の重量を求めて計量管理を行うものである。   That is, the method of measuring and managing the management target object according to the present embodiment includes the nuclear fuel nuclide and the γ-ray and nuclear fuel generated by the neutron capture reaction of the measurement target nuclide released from the control target object 1 including the measurement target nuclide that causes the neutron capture reaction. Measures γ-rays generated in the fission reaction of the nuclide, calculates the neutron capture reaction rate of the target nuclide based on the measured value of the γ-ray generated in the neutron capture reaction, and measures the value of γ-ray generated in the fission reaction The nuclear fission rate of the nuclear fuel nuclide is calculated, and the ratio of the nuclear fuel nuclide contained in the control target 1 is obtained by using the neutron capture reaction of the measurement target nuclide and the microscopic cross section of the nuclear fuel nuclide fission. The weight of the nuclear fuel nuclide in the management object 1 is obtained based on the ratio of the above and the weight of the management object 1 to perform measurement management.

本実施形態では、管理対象物1として、沸騰水型原子炉(BWR)で発生した燃料デブリを想定し、この燃料デブリを処理する際の計量管理を例に説明する。BWRで発生した燃料デブリには核燃料の235Uと238Uが多く含まれていることから、本実施形態では計測対象の核分裂反応γ線の起因となる核燃料核種として235Uと238Uを選択する。 In the present embodiment, fuel debris generated in a boiling water reactor (BWR) is assumed as the management object 1, and measurement management at the time of processing this fuel debris will be described as an example. Since the fuel debris generated in the BWR contains a large amount of nuclear fuel 235 U and 238 U, in this embodiment, 235 U and 238 U are selected as nuclear fuel nuclides that cause the fission reaction γ-rays to be measured. .

計測対象核種は中性子捕獲反応を生じる核種である。本実施形態では、管理対象物1が核燃料核種と計測対象核種とで構成されていると仮定した場合における管理対象物1に含まれる核燃料核種の割合を算出するので、計測対象核種は管理対象物1に多く含まれていることが好ましい。BWRでは圧力容器の下に56Feを多く含むステンレス鋼製の構造物が設けられているので、BWRで発生した燃料デブリには56Feが多く含まれる。本実施形態では、この56Feを中性子捕獲反応によるγ線の計測対象の計測対象核種とする。 The target nuclide is a nuclide that causes a neutron capture reaction. In this embodiment, since the ratio of the nuclear fuel nuclide contained in the management target object 1 is calculated when it is assumed that the management target object 1 is composed of the nuclear fuel nuclide and the measurement target nuclide, the measurement target nuclide is the management target object. 1 is preferably contained in a large amount. In the BWR, a structure made of stainless steel containing a large amount of 56 Fe is provided under the pressure vessel. Therefore, the fuel debris generated in the BWR contains a large amount of 56 Fe. In the present embodiment, this 56 Fe is used as a measurement target nuclide that is a measurement target of γ rays by a neutron capture reaction.

管理対象物1に中性子を照射する中性子線源2としては、例えば252Cf、Am-Be中性子源、Sb-Be中性子源、加速器中性子源等の使用が可能であるが、これらには限られない。 For example, 252 Cf, Am-Be neutron source, Sb-Be neutron source, accelerator neutron source and the like can be used as the neutron beam source 2 for irradiating the management object 1 with neutrons, but is not limited thereto. .

γ線を計測するγ線計測器3としては、計測対象核種の中性子捕獲反応で発生するγ線および核燃料核種の核分裂反応で発生するγ線を計測できるものであれば使用可能である。例えば、Nal、BGO、HP−Ge、LaBr3や、分解能は悪いものの信号対雑音比の良いチェレンコフカウンタ等の使用が可能である。   As the γ-ray measuring device 3 for measuring γ-rays, any gamma ray can be used as long as it can measure γ-rays generated by the neutron capture reaction of the target nuclide and γ-rays generated by the fission reaction of the nuclear fuel nuclide. For example, Nal, BGO, HP-Ge, LaBr3, a Cherenkov counter with a low signal resolution but a good signal-to-noise ratio, and the like can be used.

また、遮蔽体や散乱体を適宜組み合わせて配置し、γ線計測値3でのγ線計数率が適切な領域で、かつ測定の信号対雑音比の良い条件でγ線計測を行う。   Further, a shield and a scatterer are appropriately combined and arranged, and γ-ray measurement is performed in a region where the γ-ray count rate at the γ-ray measurement value 3 is appropriate and under a condition with a good signal-to-noise ratio.

管理対象物1は例えば容器に収容される。この管理対象物1に対して外部の中性子線源2から中性子を照射し、γ線計測器3でγ線を計測する(図1のステップS11、図2)。管理対象物1からは様々なエネルギーのγ線が放射されており、各種のγ線スペクトルの混在した測定波高スペクトルが得られる。   The management object 1 is accommodated in a container, for example. The management object 1 is irradiated with neutrons from an external neutron beam source 2 and γ rays are measured by the γ ray measuring instrument 3 (step S11 in FIG. 1, FIG. 2). Gamma rays of various energies are radiated from the management object 1, and a measured wave height spectrum in which various gamma ray spectra are mixed is obtained.

次に、計測対象核種の中性子捕獲反応率<σc,iφ>と核燃料核種の核分裂率<σfUφ>との比(<σc,iφ>/<σfUφ>)を算出する(ステップS12)。そのため、先ず、計測対象核種の中性子捕獲反応で発生するγ線と核燃料核種の核分裂反応で発生するγ線の基礎データに基づきγ線輸送とγ線計測器3へのエネルギー付与のシミュレーションを行い、<σc,iφ>と<σfUφ>の導出に用いる応答関数を算出する。ここで、基礎データとしては、中性子捕獲反応及び核分裂あたりのγ線発生数データ、γ線発生スペクトルデータと、燃料デブリに対するγ線の反応断面積データを用いる。また、シミュレーションは、例えばMCNPコード、EGS−5コード等を使用する。ただし、これらには限られない。 Next, the ratio (<σ c, i N i φ> / <σ fU) of the neutron capture reaction rate <σ c, i N i φ> of the measurement target nuclide and the fission rate <σ fU N U φ> of the nuclear fuel nuclide. N U φ>) is calculated (step S12). Therefore, first, based on the basic data of γ-rays generated by the neutron capture reaction of the target nuclides and the fission reaction of the nuclear fuel nuclides, simulation of γ-ray transport and energy application to the γ-ray measuring instrument 3 is performed. A response function used to derive <σ c, i N i φ> and <σ fU N U φ> is calculated. Here, as basic data, neutron capture reaction and γ-ray generation number data per fission, γ-ray generation spectrum data, and reaction cross-sectional data of γ-rays for fuel debris are used. In the simulation, for example, MCNP code, EGS-5 code or the like is used. However, it is not limited to these.

そして、測定した測定波高スペクトルに応答関数を使用してアンフォールディングという数学的操作を行うと、計測対象核種の中性子捕獲反応で生じるγ線の強度の評価を通じて測対象核種の中性子捕獲反応率<σc,iφ>が、また核燃料核種の核分裂反応で発生するγ線の強度を通じて核燃料核種の核分裂率<σfUφ>の相対値が求まり、それにより両者の比(<σc,iφ>/<σfUφ>)を求めることができる。 Then, when a mathematical operation called unfolding is performed using the response function on the measured wave height spectrum, the neutron capture reaction rate of the measurement nuclide <σ through the evaluation of the intensity of the γ-ray generated by the neutron capture reaction of the measurement nuclide c, i N i φ>, and the relative value of the fission rate <σ fU N U φ> of the nuclear fuel nuclide is obtained through the intensity of the γ-ray generated by the nuclear fission reaction of the nuclear fuel nuclide, so that the ratio between the two (<σ c , I N i φ> / <σ fU N U φ>).

比(<σc,iφ>/<σfUφ>)を求めた後、管理対象物1が核燃料核種と計測対象核種とで構成されていると仮定した場合における管理対象物1に含まれる核燃料核種の割合を求める。本実施形態では、比(<σc,iφ>/<σfUφ>)をミクロ中性子捕獲断面積σc,iとミクロ核分裂断面積σfUの比σc,i/σfUで除して計測対象核種の数密度Nと核燃料物質の数密度Nの比(N/N)を求める(ステップS13)。なお、ミクロ核分裂断面積σfU、ミクロ中性子捕獲断面積σc,iとしては既知のものを使用する。そして、それぞれの原子量ρ、ρを用い比(N/N)に基づいて、(ρ/ρ)を求める(ステップS14)。(ρ/ρ)により管理対象物1が核燃料核種と計測対象核種とで構成されていると仮定した場合における管理対象物1に含まれる核燃料核種の重量割合を求める。 After obtaining the ratio (<σ c, i N i φ> / <σ fU N U φ>), the management target 1 is assumed to be composed of the nuclear fuel nuclide and the measurement target nuclide. The ratio of nuclear fuel nuclides contained in 1 is obtained. In the present embodiment, the ratio (<σ c, i N i φ> / <σ fU N U φ>) is the ratio of the micro neutron capture cross section σ c, i and the micro fission cross section σ fU σ c, i / σ A ratio (N i / N u ) between the number density N i of the measurement target nuclide and the number density N u of the nuclear fuel material is obtained by dividing by fU (step S13). As the micro fission cross section σ fU and the micro neutron capture cross section σ c, i , known ones are used. Then, (ρ i N i / ρ u N u ) is obtained based on the ratio (N i / N u ) using the respective atomic weights ρ i and ρ u (step S14). The weight ratio of the nuclear fuel nuclide contained in the management object 1 when the management object 1 is assumed to be composed of the nuclear fuel nuclide and the measurement object nuclide is obtained by (ρ i N i / ρ u N u ).

その後、求めた管理対象物1に含まれる核燃料核種の重量割合を使用して管理対象物1の計量管理を行う。本実施形態では、燃料デブリ(管理対象物1)の計量管理を行うため、燃料デブリ中の核燃料核種の重量Wuを求める。そのため、先ず管理対象物1の重量Wを計測し、得られた重量情報(重量W)から(ρ/ρ)を用い、数式1によって、燃料デブリが核燃料核種と計測対象核種とで構成されていると仮定した場合における燃料デブリ中の核燃料核種の重量Wuを求める(ステップS15)。求めた重量Wuを使用して計量管理が行われる(ステップS16)。 Thereafter, the management object 1 is subjected to measurement management using the obtained weight ratio of the nuclear fuel nuclide contained in the management object 1. In the present embodiment, the weight Wu of the nuclear fuel nuclide in the fuel debris is obtained in order to perform the measurement management of the fuel debris (management object 1). Therefore, first, the weight W of the management object 1 is measured, and from the obtained weight information (weight W), (ρ i N i / ρ u N u ) is used to calculate the fuel debris and the nuclear fuel nuclide and the measurement target The weight Wu of the nuclear fuel nuclide in the fuel debris when it is assumed that it is composed of the nuclide is obtained (step S15). Measurement management is performed using the obtained weight Wu (step S16).

[数1]
Wu=W/(1+(ρ/ρ))
[Equation 1]
Wu = W / (1+ (ρ i N i / ρ u N u ))

本発明では、管理対象物1に含まれる中性子吸収体(計測対象核種)を考慮して管理対象物1に含まれる核燃料核種の割合を算出することができるので、この割合に基づいて管理対象物1中の核燃料核種の重量を求めることが可能になる。即ち、燃料デブリのように核燃料核種とそれ以外の物質との割合が不明な場合であっても、管理対象物1中の核燃料核種の重量を算出することができ、管理対象物1の計量管理を行うことが可能になる。   In the present invention, since the ratio of nuclear fuel nuclides contained in the management target 1 can be calculated in consideration of the neutron absorber (measurement target nuclide) contained in the management target 1, the management target is based on this ratio. The weight of the nuclear fuel nuclide in 1 can be determined. That is, even when the ratio between the nuclear fuel nuclide and other materials is unknown, such as fuel debris, the weight of the nuclear fuel nuclide in the management target 1 can be calculated, and the measurement management of the management target 1 It becomes possible to do.

また、核燃料核種の割合と管理対象物1の重量に基づいて管理対象物1中の核燃料核種の重量を求めて管理対象物1の計量管理を行うので、計量管理を適切に行うことが可能になる。   Moreover, since the weight of the nuclear fuel nuclide in the management target 1 is obtained based on the ratio of the nuclear fuel nuclide and the weight of the management target 1, the management of the management target 1 is performed, so that the measurement management can be performed appropriately. Become.

また、管理対象物1に外部から中性子を照射してγ線計測を行っているので、計測対象核種の中性子捕獲反応で生じたγ線および核燃料物質の核分裂反応で生じたγ線を大幅に増加させることにより、この計測対象核種の中性子捕獲反応で生じたγ線および核燃料物質の核分裂反応で生じたγ線の計測が容易になり、管理対象物1に含まれる核燃料核種の割合をより精確に求めることができる。   In addition, since γ-rays are measured by irradiating the controlled object 1 with neutrons from the outside, the γ-rays generated by the neutron capture reaction of the measurement target nuclide and the fission reaction of the nuclear fuel material are greatly increased. By doing so, it becomes easy to measure the γ-rays generated by the neutron capture reaction of the measurement target nuclide and the fission reaction of the nuclear fuel material, and the ratio of the nuclear fuel nuclide contained in the control target 1 is more accurately determined. Can be sought.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の説明では、管理対象物1としてBWRで発生した燃料デブリを想定していたが、これに限られない。PWRで発生した燃料デブリ、使用済み核燃料、未使用の核燃料、使用済み燃料を再処理のため溶解する溶解槽、ウラン鉱山等でも良く、核燃料核種と中性子捕獲反応を生じる核種とを含むものであれば良い。  For example, in the above description, the fuel debris generated in the BWR is assumed as the management target 1, but the present invention is not limited to this. Fuel debris generated in PWR, spent nuclear fuel, unused nuclear fuel, dissolution tank for dissolving spent fuel for reprocessing, uranium mine, etc., including nuclear fuel nuclides and nuclides that cause neutron capture reaction It ’s fine.

また、上述の説明では、56Feを計測対象核種としていたが、これに限られない。例えば、58Ni、窒素、制御棒に使われる材料(ホウ素等)等でも良い。また、燃料デブリにはコンクリートが含まれる可能性があるので、コンクリートに含まれるアルミナのAlを計測対象核種としても良い。その他、中性子捕獲反応によりγ線を生じさせるものであれば計測対象核種として使用可能である。また、計測対象核種は1種類でも良いし、複数でも良い。 In the above description, 56 Fe is the measurement target nuclide, but the present invention is not limited to this. For example, 58 Ni, nitrogen, materials used for control rods (boron, etc.), etc. may be used. Moreover, since fuel debris may contain concrete, Al of alumina contained in the concrete may be used as the measurement target nuclide. In addition, any nuclide that can generate γ-rays by neutron capture reaction can be used. Further, the measurement target nuclide may be one type or plural.

また、上述の説明では、管理対象物1に対して外部から中性子を照射しながらγ線の計測を行っていたが、外部からの中性子照射を行わなくても良い。即ち、γ線の計測に外部中性子を利用した方がより好ましいが、外部中性子を利用しなくてもγ線の計測は可能である。この測定ではウランと鉄等の材料の精度のよい定量評価は難しいが、複数の種類の捕獲γ線の測定により、複数の構造材料の混合状況をより詳細に評価することに役立つ。   In the above description, γ rays are measured while irradiating the management target 1 with neutrons from the outside. However, it is not necessary to perform neutron irradiation from the outside. In other words, it is more preferable to use external neutrons for gamma ray measurement, but gamma rays can be measured without using external neutrons. Although accurate quantitative evaluation of materials such as uranium and iron is difficult by this measurement, it is useful for more detailed evaluation of the mixing state of a plurality of structural materials by measuring a plurality of types of captured γ rays.

さらに、上述の説明では、管理対象物1を容器に収容した状態でγ線計測を行っていたが、管理対象物1を容器に収容せずにγ線計測を行っても良い。例えば、管理対象物1を水中で工具等で吊り上げてγ線計測を行っても良い。   Furthermore, in the above description, the γ-ray measurement is performed in a state where the management object 1 is accommodated in the container, but the γ-ray measurement may be performed without accommodating the management object 1 in the container. For example, the management object 1 may be lifted with a tool or the like in water to perform γ-ray measurement.

また、上述の説明では、計測対象核種の中性子捕獲反応率と核燃料核種の核分裂率の比(<σc,iφ>/<σfUφ>)をミクロ中性子捕獲断面積σc,iとミクロ核分裂断面積σfUの比σc,i/σfUで除して計測対象核種の数密度Nと核燃料物質の数密度Nの比(N/N)を求めるようにしていたが、必ずしもこれに限られない。例えば、以下のようにしてN、Nを求めて比(N/N)を求めることも可能である。即ち、管理対象物1のサイズが比較的小さい場合等には、既知重量の参照サンプルを用いて既知強度、既知エネルギースペクトルの中性子を照射し、鉄なら鉄、ウランならウランのγ線発生率を測定しておき、それと管理対象物1からのγ線発生率を測定して比較する。この場合<σc,iφ>や<σfUφ>が参照サンプルと管理対象物1間で同一と仮定することでNやNを求めることができる。 In the above description, the ratio (<σ c, i N i φ> / <σ fU N U φ>) of the neutron capture reaction rate of the target nuclide and the nuclear fuel nuclide is expressed as the microneutron capture cross section σ c. , I and the ratio of the nuclear fission cross section σ fU divided by the ratio σ c, i / σ fU to obtain the ratio (N i / N u ) of the number density N i of the measurement target nuclide and the number density N u of the nuclear fuel material However, it is not necessarily limited to this. For example, it is also possible to obtain N i and N u and obtain the ratio (N i / N u ) as follows. That is, when the size of the management object 1 is relatively small, a reference sample with a known weight is used to irradiate neutrons with a known intensity and a known energy spectrum. Measure and compare the γ-ray generation rate from the management target 1 by measuring it. In this case it is possible to obtain the <σ c, i φ> and N by <σ fU φ> is assumed to same in the managed object 1 and the reference sample i and N U.

京都大学臨界集合体実験装置で主に235U、Al、水、SUS床板からなる未臨界炉心に252Cf(中性子とγ線を放出する)を装荷し、外周部にBGO検出器をおいて、γ線のスペクトル測定を実施した(図3)。図4の測定値に対し、235U核分裂、AlとSUSの中性子捕獲反応で生じるγ線の基礎データを用い、γ線輸送のシミュレーションスペクトルを用い、アンフォールディングで235U核分裂、AlとSUSのγ線発生率を求めた。これは、別途実施した中性子輸送計算によるγ線発生率計算発生率と概略一致した。これは(<σc,iφ>/<σfUφ>)が計測出来ることを意味しており、本発明の有効性が確認された。 At the Kyoto University critical assembly test equipment, 252 Cf (which emits neutrons and γ-rays) is loaded on a subcritical core consisting mainly of 235 U, Al, water, and SUS floor plate, and a BGO detector is placed on the outer periphery. A spectrum measurement of γ-rays was performed (FIG. 3). For the measured values in FIG. 4, 235 U fission, γ-ray generated by neutron capture reaction of Al and SUS, and γ-ray transport simulation spectrum, 235 U fission, γ of Al and SUS The line generation rate was determined. This roughly coincided with the calculated γ-ray generation rate calculated by neutron transport calculation. This means that (<σ c, i N i φ> / <σ fU N U φ>) can be measured, confirming the effectiveness of the present invention.

1 管理対象物
2 中性子線源
3 γ線計測器
1 Controlled object 2 Neutron source 3 Gamma ray measuring instrument

Claims (3)

核燃料核種および中性子捕獲反応を生じる計測対象核種を含む管理対象物から放出された前記計測対象核種の中性子捕獲反応で生じたγ線および前記核燃料核種の核分裂反応で生じたγ線を計測し、前記中性子捕獲反応で生じたγ線の計測値に基づいて前記計測対象核種の中性子捕獲反応率を算出すると共に、前記核分裂反応で生じたγ線の計測値に基づいて前記核燃料核種の核分裂率を算出し、前記計測対象核種の中性子捕獲反応率と前記核燃料核種の核分裂率との比をミクロ中性子捕獲断面積とミクロ核分裂断面積との比で除して前記計測対象核種の数密度N と前記核燃料核種の数密度N との比N /N を求めた上で、当該比N /N ,前記計測対象核種の原子量ρ 及び前記核燃料核種の原子量ρ ,並びに前記管理対象物の重量Wを用いて以下の数式1
(数式1) Wu = W/(1+(ρ /ρ ))
により、前記管理対象物が前記核燃料核種と前記計測対象核種とで構成されていると仮定した場合における前記管理対象物中の前記核燃料核種の重量Wuを求めて計量管理を行うことを特徴とする管理対象物の計量管理方法。
Measure the γ-rays generated in the neutron capture reaction of the measurement target nuclide released from the controlled object including the nuclear fuel nuclide and the measurement target nuclide causing the neutron capture reaction and the γ-ray generated in the fission reaction of the nuclear fuel nuclide, Calculate the neutron capture reaction rate of the target nuclide based on the measured value of γ-rays generated in the neutron capture reaction, and calculate the fission rate of the nuclear fuel nuclide based on the measured values of γ-rays generated in the fission reaction and, wherein a number density N i of the measurement target nuclide the ratio of the neutron capture reaction rate and fission rate of the nuclear fuel nuclide of the measurement target species divided by the ratio of the microscopic neutron capture cross-section and microscopic fission cross-sectional area after having determined the ratio N i / N u the number density N u the nuclear fuel nuclides, the ratio N i / N u, the measured atomic weight of the target nuclide [rho i and the nuclear fuel nuclide atomic weight [rho u, and the management target Equation 1 using the weight W follows
(Formula 1) Wu = W / (1+ (ρ i N i / ρ u N u ))
The control object is subjected to measurement management by obtaining the weight Wu of the nuclear fuel nuclide in the control object when it is assumed that the control object is composed of the nuclear fuel nuclide and the measurement target nuclide. A method of measuring and managing the management object
前記管理対象物に外部から中性子を照射して前記γ線計測を行うことを特徴とする請求項1記載の管理対象物の計量管理方法。   The method for measuring and managing a management object according to claim 1, wherein the gamma ray measurement is performed by irradiating the management object with neutrons from the outside. 前記管理対象物は核燃料物質及び構造材料等が破損や熔融して混合した燃料デブリであることを特徴とする請求項1又は2に記載の管理対象物の計量管理方法。   The method for measuring and managing a management target according to claim 1 or 2, wherein the management target is fuel debris in which nuclear fuel materials and structural materials are broken or melted and mixed.
JP2012183997A 2012-08-23 2012-08-23 Measurement management method Expired - Fee Related JP5907836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183997A JP5907836B2 (en) 2012-08-23 2012-08-23 Measurement management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183997A JP5907836B2 (en) 2012-08-23 2012-08-23 Measurement management method

Publications (2)

Publication Number Publication Date
JP2014041079A JP2014041079A (en) 2014-03-06
JP5907836B2 true JP5907836B2 (en) 2016-04-26

Family

ID=50393441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183997A Expired - Fee Related JP5907836B2 (en) 2012-08-23 2012-08-23 Measurement management method

Country Status (1)

Country Link
JP (1) JP5907836B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468931B2 (en) * 2015-04-17 2019-02-13 日立Geニュークリア・エナジー株式会社 Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material
JP6137635B2 (en) * 2015-04-27 2017-05-31 日立Geニュークリア・エナジー株式会社 Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material
JP7163170B2 (en) * 2018-12-25 2022-10-31 一般財団法人電力中央研究所 METHOD, MEASUREMENT DEVICE, AND MEASUREMENT PROGRAM FOR WEIGHT RATIO OF FISSIBLE NUCLOVERS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620100A (en) * 1983-08-26 1986-10-28 General Electric Company Automated monitoring of fissile and fertile materials in large waste containers
JP2003075540A (en) * 2001-08-31 2003-03-12 Hitachi Ltd Radioactivity measuring method and measuring device for radioactive waste
JP2006010356A (en) * 2004-06-22 2006-01-12 Japan Nuclear Cycle Development Inst States Of Projects Non-destructive analyzing method using pulse neutron transmitting method and its non-destructive analyzer

Also Published As

Publication number Publication date
JP2014041079A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5546174B2 (en) Radioactivity concentration evaluation method and evaluation program for radioactive waste, and radioactivity concentration evaluation apparatus
JP5907836B2 (en) Measurement management method
Rearden et al. Overview of SCALE 6.2
Ashenfelter et al. PROSPECT-A precision reactor oscillation and spectrum experiment at short baselines
Gauld et al. Investigation of passive gamma spectroscopy to verify spent nuclear fuel content
Akyurek et al. Spent fuel interrogation using delayed fast neutron spectrum at Missouri University of Science and Technology Reactor
JP2012163379A (en) Fuel assembly gamma ray measuring apparatus
JP2006010356A (en) Non-destructive analyzing method using pulse neutron transmitting method and its non-destructive analyzer
RU2200988C2 (en) Method for metering neutron flux in power reactor
JP7163170B2 (en) METHOD, MEASUREMENT DEVICE, AND MEASUREMENT PROGRAM FOR WEIGHT RATIO OF FISSIBLE NUCLOVERS
RU2527489C2 (en) Neutron-activation method of monitoring burning of spent fuel assemblies of thermal neutron reactors and apparatus therefor
Eigenbrodt Spent fuel measurements: passive neutron albedo reactivity (PNAR) and photon signatures
Gagliardi et al. Seeing radioactivity: Gamma-ray imaging technique applied to TRIGA RC-1 Research Reactor in ENEA Casaccia
JP6257129B2 (en) Criticality management method for controlled objects
Kulesza Academic Theses and Dissertations that Depend on the MCNP Code
Lundkvist Investigation of possible non-destructive assay (NDA) techniques for at the future Swedish encapsulation facility
Ackermann Methods for the radiological characterisation of the FiR 1 TRIGA research reactor decommissioning waste
Vichi Monte Carlo modelling and experimental measurement methodologies to support decommissioning plans of biomedical cyclotrons
Nguyen et al. Determination of nuclear material content of items originating from damaged spent fuel assemblies by using collimated gamma-spectrometric scanning
Tsuchiya et al. Application of LaBr3 detector for neutron resonance densitometry
Bender Study of Compton suppression for use in spent nuclear fuel assay
Chichester et al. Capabilities of the INL ZPPR to support active interrogation research with SNM
Simon et al. Fissile mass quantification in radioactive waste packages using photofission delayed gamma rays
JP2023037880A (en) Radioactivity assessment method and decay heat assessment method
Okumuraa et al. A method for the prediction of the dose rate distribution in a primary containment vessel of the Fukushima Daiichi Nuclear Power Station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160322

R150 Certificate of patent or registration of utility model

Ref document number: 5907836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees