JP6468931B2 - Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material - Google Patents

Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material Download PDF

Info

Publication number
JP6468931B2
JP6468931B2 JP2015084879A JP2015084879A JP6468931B2 JP 6468931 B2 JP6468931 B2 JP 6468931B2 JP 2015084879 A JP2015084879 A JP 2015084879A JP 2015084879 A JP2015084879 A JP 2015084879A JP 6468931 B2 JP6468931 B2 JP 6468931B2
Authority
JP
Japan
Prior art keywords
fuel
nuclear material
amount
fuel debris
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015084879A
Other languages
Japanese (ja)
Other versions
JP2016205883A (en
JP2016205883A5 (en
Inventor
紀子 矢澤
紀子 矢澤
深澤 哲生
哲生 深澤
友隆 中村
友隆 中村
賢一 伊東
賢一 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015084879A priority Critical patent/JP6468931B2/en
Publication of JP2016205883A publication Critical patent/JP2016205883A/en
Publication of JP2016205883A5 publication Critical patent/JP2016205883A5/ja
Application granted granted Critical
Publication of JP6468931B2 publication Critical patent/JP6468931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、破損・溶融燃料含有物質中の核物質量の計測装置及び計測方法に関する。   The present invention relates to a measuring device and a measuring method for the amount of nuclear material in a damaged / molten fuel-containing material.

原子力発電所から発生する使用済燃料中に含まれる核物質量等は、燃料集合体の単位で解析等により把握されている。また解析等の結果得られた、その核物質量を元に、発電所内一時保管、中間貯蔵、輸送、再処理施設で処理等の適切な管理が行われている。   The amount of nuclear material contained in spent fuel generated from a nuclear power plant is ascertained by analysis or the like in units of fuel assemblies. In addition, based on the amount of nuclear material obtained as a result of analysis, appropriate management such as temporary storage in the power plant, intermediate storage, transportation, and reprocessing facilities is performed.

これに対し、福島第一原子力発電所では、燃料集合体内の核物質が溶融状態となり、集合体形状の維持できていない状態と想定され、燃料集合体単位での取出しが不可能と考えられる。今後、破損・溶融燃料含有物質(以下、燃料デブリと称す)を炉内から取出し、適切に管理(長期保管方法の選定、貯蔵方式の選定、施設間輸送の安全解析、燃料デブリの安定化あるいは再処理方式の選定、直接処分等)するには、燃料デブリを収納した容器の単位で核物質量を正確に計測する必要があるが、多量に混在する炉心構造材等の不純物の影響で高精度の非破壊測定は困難な状況となっている。   On the other hand, at the Fukushima Daiichi Nuclear Power Station, it is assumed that the nuclear material in the fuel assembly is in a molten state and the shape of the assembly cannot be maintained, and it is considered impossible to take out fuel assemblies. In the future, materials containing damaged or molten fuel (hereinafter referred to as fuel debris) will be removed from the furnace and properly managed (selection of long-term storage method, selection of storage method, safety analysis of transportation between facilities, stabilization of fuel debris, or In order to select a reprocessing method, direct disposal, etc.), it is necessary to accurately measure the amount of nuclear material in units of containers containing fuel debris, but this is high due to the effects of impurities such as a large amount of core structure materials. Accurate non-destructive measurement is a difficult situation.

この点に関し、燃料デブリを対象として、燃料デブリ中の核物質量を計測する装置及び計測する方法についての具体的な提案はなされていないのが現状である。   In this regard, there is currently no specific proposal for an apparatus and method for measuring the amount of nuclear material in fuel debris for fuel debris.

なお燃料デブリということではなく一般的に、被検体の非破壊検査技術として高エネルギーX線CT装置を用いる手法が例えば特許文献1により知られている。特許文献1では、原子力発電所などから発生する放射性廃棄物を固形化材で固形化して得た放射性廃棄物固化体の内部空隙の有無をX線CT装置で検査するものである。   In general, a technique using a high-energy X-ray CT apparatus as a non-destructive inspection technique for an object is known, for example, from Patent Document 1 instead of fuel debris. In patent document 1, the presence or absence of the internal space | gap of the radioactive waste solidified body obtained by solidifying the radioactive waste generated from a nuclear power plant etc. with a solidification material is test | inspected with a X-ray CT apparatus.

特開平05−302997号公報Japanese Patent Laid-Open No. 05-302997

特許文献1によれば、原子力発電所からの放射性廃棄物の測定にX線CT装置を利用するという思想は存在するものの、燃料デブリを対象とすることまでは想定していない。また単に内部空隙を測定するものにすぎず、核物質量の測定という観点を有するものではない。   According to Patent Document 1, although there is a concept of using an X-ray CT apparatus for measurement of radioactive waste from a nuclear power plant, it does not assume that fuel debris is targeted. Moreover, it is only what measures an internal space | gap, and does not have a viewpoint of measurement of the amount of nuclear materials.

以上のことから本発明においては、燃料デブリを対象としたX線CT装置の利用により核物質量を計測することを可能とする破損・溶融燃料含有物質中の核物質量の計測装置及び計測方法を提供するものである。   In view of the above, in the present invention, an apparatus and a method for measuring the amount of nuclear material in a damaged / molten fuel-containing material that can measure the amount of nuclear material by using an X-ray CT apparatus for fuel debris Is to provide.

以上のことから本発明においては、燃料デブリを収納した燃料デブリ収納容器にX線を照射するX線発生装置と、燃料デブリ収納容器を透過したX線を検知する放射線検出器と、燃料デブリ収納容器3に対してX線発生装置と放射線検出器を回転走査する回転駆動機構と、放射線検出器に検知した検知信号を得る信号処理装置とを備え、信号処理装置は、検知信号から求めた燃料デブリの各点における密度と、燃料デブリを構成する核物質及び構造材についての既知の密度とを用いて、燃料デブリの核物質量を求めることを特徴とする。   From the above, in the present invention, an X-ray generator that irradiates a fuel debris storage container storing fuel debris with X-rays, a radiation detector that detects X-rays transmitted through the fuel debris storage container, and a fuel debris storage A rotation drive mechanism for rotating and scanning the X-ray generator and the radiation detector with respect to the container 3 and a signal processing device for obtaining a detection signal detected by the radiation detector are provided. Using the density at each point of the debris and the known density of the nuclear material and the structural material constituting the fuel debris, the amount of nuclear material of the fuel debris is obtained.

また本発明は、燃料デブリを収納した燃料デブリ収納容器に対してX線を回転走査しながら照射して燃料デブリ収納容器を透過したX線を検知し、検知信号から求めた燃料デブリの各点における密度と、燃料デブリを構成する核物質及び構造材についての既知の密度とを用いて、燃料デブリの核物質量を求めることを特徴とする。   Further, the present invention detects X-rays transmitted through the fuel debris storage container by irradiating the fuel debris storage container storing the fuel debris while rotating and scanning the X-rays, and each point of the fuel debris obtained from the detection signal. The amount of the nuclear material of the fuel debris is obtained using the density in the above and the known density of the nuclear material and the structural material constituting the fuel debris.

本発明によれば、燃料デブリ中の各部の組成が明確になるので、共晶体と、相分離状態の原材料と構造材を、その質量と共に識別することができ、燃料デブリ収納容器3単位で核物質量を把握することができる。この結果、核物質量によって、長期保管方法の選定、貯蔵方式の選定、施設間輸送の安全解析、デブリの安定化あるいは再処理方式の選定、直接処分等の適切な処理が可能となる。   According to the present invention, since the composition of each part in the fuel debris is clarified, the eutectic, the raw material and the structural material in the phase-separated state can be identified together with their masses, and the nuclear debris is stored in units of 3 fuel debris storage containers The amount of substance can be grasped. As a result, appropriate processing such as selection of long-term storage method, selection of storage method, safety analysis of transportation between facilities, stabilization of debris or reprocessing method, direct disposal, etc. can be made depending on the amount of nuclear material.

本発明による燃料デブリ中の核物質量の計測方法の概略を示すフロー図Flow diagram showing an outline of a method for measuring the amount of nuclear material in fuel debris according to the present invention. 核物質と構造材が混合し共晶体を形成した状態を示す図。The figure which shows the state which the nuclear material and the structural material mixed and formed the eutectic. 核物質と構造材が相分離状態を示す図。The figure which shows a nuclear substance and a structural material in a phase-separated state. 本発明で使用する高エネルギーX線CT装置の概略構成を示す図。The figure which shows schematic structure of the high energy X-ray CT apparatus used by this invention.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお以下に説明する本発明においては、検査の対象とする燃料デブリの密度の情報をX線CT装置の利用により得ることに着目したものである。またこの密度は、原材料である核物質の密度と、構造材の密度では相違し、かつ燃料デブリは原材料と構造材の混合による共晶体、あるいはこれらの相分離状態、いずれかの状態で存在しているであろうことに着目したものである。   In the present invention described below, attention is paid to obtaining information on the density of fuel debris to be inspected by using an X-ray CT apparatus. This density is different from the density of the nuclear material, which is the raw material, and the density of the structural material, and the fuel debris exists either in the eutectic by mixing the raw material and the structural material, or in the phase separation state thereof. It is a thing that paid attention to.

まずX線CT装置によれば、被検体内部の密度分布と体積を求めることができる。   First, according to the X-ray CT apparatus, the density distribution and volume inside the subject can be obtained.

他方、被検体である燃料デブリについてみると、米国のスリーマイル島原子力発電所から採取した燃料デブリの分析結果から、燃料デブリは原材料と構造材の混合による共晶体、あるいはこれらの相分離状態で存在していることが知られている。図2は核物質と構造材が混合し共晶体を形成した状態を示す図であり、図3は核物質と構造材が相分離状態を示す図である。なお図2、図3は燃料デブリFDを燃料デブリ収納容器3に収納した状態を表示している。   On the other hand, as for the fuel debris, which is the specimen, the fuel debris collected from the Three Mile Island nuclear power plant in the United States showed that the fuel debris was a eutectic or a phase-separated state of the raw material and structural material. It is known to exist. FIG. 2 is a diagram showing a state in which a nuclear material and a structural material are mixed to form a eutectic, and FIG. 3 is a diagram showing a phase separated state of the nuclear material and the structural material. 2 and 3 show a state in which the fuel debris FD is stored in the fuel debris storage container 3.

この場合に、原材料と構造材の密度が予め知られている。原材料である核物質の密度ρuは比較的高く、酸化ウランUOでは11g/cmである。構造材の密度ρzは核物質の密度ρuよりも低く、ジルコニウムZrでは6.5g/cm、酸化ジルコニウムZrOでは5.6g/cm、ステンレス鋼SUSでは7.9g/cmである。また図2の共晶体の部分について、ここの密度は原材料の密度と構造材の密度の中間的な密度の値を示すはずである。 In this case, the densities of the raw material and the structural material are known in advance. The density ρu of the nuclear material as a raw material is relatively high, and 11 g / cm 3 for uranium oxide UO 2 . Density ρz structural member is lower than the density of nuclear matter Rou, the zirconium Zr 6.5g / cm 3, zirconium oxide ZrO 2 in 5.6 g / cm 3, a 7.9 g / cm 3 in a stainless steel SUS. Also, for the eutectic portion of FIG. 2, the density here should show an intermediate density value between the density of the raw material and the density of the structural material.

本発明においては、この差を利用して、高エネルギーX線CT装置により非破壊で計測した密度分布とその体積から核物質量を求めるものである。   In the present invention, by utilizing this difference, the amount of nuclear material is obtained from the density distribution measured non-destructively with a high energy X-ray CT apparatus and its volume.

図4に本発明で使用する高エネルギーX線CT装置の概略構成を示している。図1の実施例におけるX線CT装置は、ファン状ビームでX線を発生するX線発生装置1、放射線検出器2(多数の放射線センサの並んだものからなる)、被検体である燃料デブリ収納容器3に対してX線発生装置1と放射線検出器2を回転走査するターンテーブル4とその回転駆動機構6、燃料デブリ収納容器3に対してX線発生装置1と放射線検出器2を並進走査する並進スキャナー5とその並進駆動機構7、回転駆動機構6と並進駆動機構7を制御するスキャナーコントローラ8、放射線検出器2からの信号を処理する信号処理装置9、信号処理回路9からのデータをもとに画像を作成する画像処理装置10、画像を表示するCRT11を備えている。そしてX線発生装置1より出たX線は、放射線検出器2に入射し、入射強度に比例した信号が信号処理装置9に送られ、収集したデータに基づいて画像を作成してCRT11に表示する。   FIG. 4 shows a schematic configuration of a high energy X-ray CT apparatus used in the present invention. The X-ray CT apparatus in the embodiment of FIG. 1 includes an X-ray generator 1 that generates X-rays with a fan-shaped beam, a radiation detector 2 (consisting of a number of radiation sensors arranged side by side), and a fuel debris that is a subject. A turntable 4 for rotating and scanning the X-ray generator 1 and the radiation detector 2 with respect to the storage container 3 and its rotational drive mechanism 6, and the X-ray generator 1 and the radiation detector 2 with respect to the fuel debris storage container 3 are translated. Data from scanning translation scanner 5 and its translation drive mechanism 7, scanner controller 8 for controlling rotation drive mechanism 6 and translation drive mechanism 7, signal processor 9 for processing signals from radiation detector 2, and signal processing circuit 9 The image processing apparatus 10 that creates an image based on the image and the CRT 11 that displays the image are provided. X-rays emitted from the X-ray generator 1 enter the radiation detector 2, and a signal proportional to the incident intensity is sent to the signal processor 9. An image is created based on the collected data and displayed on the CRT 11. To do.

X線発生装置1は、1MeV以上の高エネルギーX線を発生させるために、電子を例えば12MeVに加速する電子線加速器およびこの電子線が衝突する金属ターゲットから構成されている。金属ターゲットは、高密度な物であればなんでもよく、例えばタングステンが好ましい。金属ターゲットから放射された高エネルギーX線は、燃料デブリ収納容器3を透過した後、放射線検出器2に入射する。X線発生装置1と放射線検出器2を収納している並進スキャナ5はターンテーブル4上で並進用駆動機構7により並進運動可能であり、ターンテーブル4は燃料デブリ収納容器3に対してその周りに回転用駆動機構6により回転運動可能であり、これによって、X線発生装置1および放射線検出器2は燃料デブリ収納容器3に対して並進および回転せしめられ.X線発生装置1の金属ターゲットから放射された高エネルギーX線は、水平方向においてあらゆる角度で被検体である燃料デブリ収納容器3の内部を透過し、放射線検出器2からのそのデータが信号処理装置9に送られて画像処理装置10によってCRT11に表現される。   The X-ray generator 1 includes an electron beam accelerator for accelerating electrons to, for example, 12 MeV and a metal target with which the electron beam collides in order to generate high energy X-rays of 1 MeV or higher. The metal target may be anything as long as it has a high density. For example, tungsten is preferable. High energy X-rays radiated from the metal target pass through the fuel debris storage container 3 and then enter the radiation detector 2. The translation scanner 5 housing the X-ray generator 1 and the radiation detector 2 can be translated on the turntable 4 by a translation drive mechanism 7, and the turntable 4 is around the fuel debris storage container 3. The X-ray generator 1 and the radiation detector 2 are translated and rotated with respect to the fuel debris storage container 3. The high-energy X-rays radiated from the metal target of the X-ray generator 1 pass through the inside of the fuel debris storage container 3 as the subject at all angles in the horizontal direction, and the data from the radiation detector 2 is signal processed. The image is sent to the device 9 and is displayed on the CRT 11 by the image processing device 10.

上記装置によれば、燃料デブリ収納容器3内の燃料デブリについて、燃料デブリ各点における密度の情報(密度分布を含む)が得られている。またさらに燃料デブリの体積の情報が把握されている。先に示した図2、図3は、このようにして得られた燃料デブリ収納容器3内の燃料デブリFDの断面撮像画面ということができる。燃料デブリFDの断面撮像画面は、画像を表示するCRT11に表示されて、内部状態を把握することが可能である。   According to the above apparatus, density information (including density distribution) at each point of the fuel debris is obtained for the fuel debris in the fuel debris storage container 3. In addition, information on the volume of fuel debris is known. 2 and 3 described above can be referred to as a cross-sectional imaging screen of the fuel debris FD in the fuel debris storage container 3 obtained as described above. The cross-sectional imaging screen of the fuel debris FD is displayed on the CRT 11 that displays an image, and the internal state can be grasped.

CRT11に表示された燃料デブリFDの断面撮像画面は、燃料デブリFD内の各点の密度の観点から共晶体、あるいは相分離状態を識別して表示が可能である。具体的には、放射線検出器2からの信号を処理する信号処理装置9内では、当該点における密度ρの情報を評価する。
[数1]
ρ=yρu+(1−y)ρz (1)
この(1)式は、計測した密度ρと予め知られている核物質の密度ρu、構造材の密度ρzの関係を、核物質割合yを用いて示した式である。例えば核物質の密度ρuが酸化ウランUOの11g/cm、構造材の密度ρzがジルコニウムZrの6.5g/cmの例でいうと、当該点の計測値としての核物質の密度ρが11g/cmであったとするなら核物質割合yは1であり、この点が核物質であることが判明する。
The cross-sectional imaging screen of the fuel debris FD displayed on the CRT 11 can identify and display the eutectic or the phase separation state from the viewpoint of the density of each point in the fuel debris FD. Specifically, in the signal processing device 9 that processes a signal from the radiation detector 2, information on the density ρ at the point is evaluated.
[Equation 1]
ρ = yρu + (1−y) ρz (1)
This equation (1) is an equation showing the relationship between the measured density ρ, the known nuclear material density ρu, and the structural material density ρz, using the nuclear material ratio y. For example, when the density ρu of the nuclear material is 11 g / cm 3 of uranium oxide UO 2 and the density ρz of the structural material is 6.5 g / cm 3 of zirconium Zr, the density ρ of the nuclear material as a measured value of the point Is 11 g / cm 3 , the nuclear material ratio y is 1, and this point is found to be a nuclear material.

同様に、当該点の計測値としての核物質の密度ρが6.5g/cmであったとするなら核物質割合yは0であり、この点が構造材であることが判明する。またこの中間値である場合に、核物質割合yの数値で定まる共晶体を形成していると推定することができる。なお密度ρは、放射線検出器2に入射し、入射強度に比例した信号として求めた値である。 Similarly, if the density ρ of the nuclear material as a measured value at this point is 6.5 g / cm 3 , the nuclear material ratio y is 0, and this point is found to be a structural material. Moreover, when it is this intermediate value, it can be estimated that the eutectic body defined by the numerical value of the nuclear material ratio y is formed. The density ρ is a value obtained as a signal incident on the radiation detector 2 and proportional to the incident intensity.

このように、燃料デブリ中の核物質が構造材と共晶体を形成している場合は、共晶体の密度は密度の高いρuと密度(UO2:11g/cm3)の低いρz(Zr/ZrO2:6.5/5.6、SUS:7.9)の中間の密度として高エネルギーX線CT装置で計測することができる。その場合は、共晶体回りの燃料デブリの組成から共晶体の組成(Zr組成やZr(ZrO2)/SUS比)を予想し、計測した密度から核物質割合yを算出する。また算出した核物質割合yと共晶体の体積Vxから、(2)式により核物質量Mu1を求める。
[数2]
Mu1=yρu×Vx (2)
また燃料デブリ中の核物質が相分離している場合は、(3)式を用いて高密度(核物質の密度ρu)領域の体積Vuより核物質重量を求める。なお(3)式において、Mu2は相分離中の核物質量、ρuは高密度な核物質の密度、Vuは高密度領域の体積である。
[数3]
Mu2=ρu×Vu (3)
図1は、上記一連の処理の概略を示すフロー図である。この図によれば最初の処理ステップS1では、燃料デブリ収納容器3を図3のターンテーブル4上に載置する。処理ステップS2では、X線発生装置1からX線を照射して、透過したX線を放射線検出器2で検出する処理をターンテーブル4の回転と共に少なくとも1周以上実行する。処理ステップS3では信号処理装置9での処理により、燃料デブリFD内の各点の密度情報を得る。
Thus, when the nuclear material in the fuel debris forms a eutectic with the structural material, the density of the eutectic is ρu having a high density and ρz having a low density (UO2: 11 g / cm3) (Zr / ZrO2: 6.5 / 5.6, SUS: 7.9), and can be measured with a high energy X-ray CT apparatus. In that case, the composition of the eutectic (Zr composition or Zr (ZrO2) / SUS ratio) is predicted from the composition of fuel debris around the eutectic, and the nuclear material ratio y is calculated from the measured density. Further, from the calculated nuclear material ratio y and the volume of the eutectic Vx, the nuclear material amount Mu1 is obtained by the equation (2).
[Equation 2]
Mu1 = yρu × Vx (2)
When the nuclear material in the fuel debris is phase-separated, the nuclear material weight is obtained from the volume Vu of the high density (nuclear material density ρu) region using the equation (3). In Equation (3), Mu2 is the amount of nuclear material during phase separation, ρu is the density of high-density nuclear material, and Vu is the volume of the high-density region.
[Equation 3]
Mu2 = ρu × Vu (3)
FIG. 1 is a flowchart showing an outline of the series of processes. According to this figure, in the first processing step S1, the fuel debris storage container 3 is placed on the turntable 4 of FIG. In the process step S2, the process of irradiating the X-ray from the X-ray generator 1 and detecting the transmitted X-ray with the radiation detector 2 is executed at least one turn with the rotation of the turntable 4. In processing step S3, density information of each point in the fuel debris FD is obtained by processing in the signal processing device 9.

処理ステップS4では、各点の密度から、当該点が共晶体、あるいは相分離状態のいずれであるかを識別し、共晶体であるときに各物質割合yを(1)式により求めて、次いで(2)式により核物質量Mu1を算出する。これらの処理が処理ステップS5、S6に対応する。相分離状態であるとき、処理ステップS7において、相分離中の核物質量Mu2を、高密度な核物質の密度ρuと、高密度領域の体積Vuを用いて算出する。処理ステップS8では、共晶体中の核物質量Mu1と、相分離状態の核物質量Mu2を合算して、合計の核物質量Muを得る。   In the processing step S4, it is identified from the density of each point whether the point is a eutectic or a phase separation state, and when it is a eutectic, each substance ratio y is obtained by the equation (1), The nuclear material amount Mu1 is calculated from the equation (2). These processes correspond to process steps S5 and S6. When in the phase separation state, in processing step S7, the amount of nuclear material Mu2 during phase separation is calculated using the density ρu of the high-density nuclear material and the volume Vu of the high-density region. In the processing step S8, the nuclear material amount Mu1 in the eutectic and the nuclear material amount Mu2 in the phase separation state are added together to obtain a total nuclear material amount Mu.

なお上記の処理ステップS4からS8に至る一連の処理は、燃料デブリFD内の各点の密度情報をもとに、燃料デブリFD全体について実行されることにより、体積並びに合計の核物質量Muを得ることができる。またこれらの処理結果は、燃料デブリFDの断面撮像画面として構成され、CRT11に表示されて、内部状態の把握、外部提供に用いられる。   The series of processing from the above processing steps S4 to S8 is performed on the entire fuel debris FD based on the density information of each point in the fuel debris FD, so that the volume and the total nuclear material amount Mu are determined. Can be obtained. These processing results are configured as a cross-sectional imaging screen of the fuel debris FD, displayed on the CRT 11, and used for grasping the internal state and for external provision.

本発明によれば、燃料デブリ中の各部の組成が明確になるので、共晶体と、相分離状態の原材料と構造材を、その質量と共に識別することができ、燃料デブリ収納容器3単位で核物質量を把握することができる。この結果、核物質量によって、長期保管方法の選定、貯蔵方式の選定、施設間輸送の安全解析、デブリの安定化あるいは再処理方式の選定、直接処分等の適切な処理が可能となる。また、これに派生して、燃料デブリの臨界管理方法の選定が可能となる。しかも本発明の方法では、燃料デブリの核物質量の計測方法を容易に行うことができる。   According to the present invention, since the composition of each part in the fuel debris is clarified, the eutectic, the raw material and the structural material in the phase-separated state can be identified together with their masses, and the nuclear debris is stored in units of 3 fuel debris storage containers. The amount of substance can be grasped. As a result, appropriate processing such as selection of long-term storage method, selection of storage method, safety analysis of transportation between facilities, stabilization of debris or reprocessing method, direct disposal, etc. can be made depending on the amount of nuclear material. Also, derived from this, it is possible to select a fuel debris criticality management method. Moreover, in the method of the present invention, a method for measuring the amount of nuclear material in fuel debris can be easily performed.

1:X線発生装置
2:放射線検出器
3:燃料デブリ収納容器
4:ターンテーブル
5:並進スキャナ
6:回転駆動機構
7:並進駆動機構
8:スキャナ
9:信号処理装置
10:画像処理装置
11:CRTデスプレー
1: X-ray generator 2: Radiation detector 3: Fuel debris storage container 4: Turntable 5: Translation scanner 6: Rotation drive mechanism 7: Translation drive mechanism 8: Scanner 9: Signal processing device 10: Image processing device 11: CRT display

Claims (6)

燃料デブリを収納した燃料デブリ収納容器にX線を照射するX線発生装置と、前記燃料デブリ収納容器を透過したX線を検知する放射線検出器と、燃料デブリ収納容器に対してX線発生装置と放射線検出器を回転走査する回転駆動機構と、前記放射線検出器からの信号を処理する信号処理装置とを備え、
前記信号処理装置は、前記放射線検出器からの信号から求めた前記燃料デブリの各点における密度と、前記燃料デブリを構成する核物質及び構造材についての既知の密度とを用いて、前記燃料デブリの核物質量を求めるとともに、
前記信号処理装置は、前記放射線検出器からの信号から求めた前記燃料デブリの各点における密度と、前記燃料デブリを構成する核物質及び構造材についての既知の密度とを用いて、前記燃料デブリの各点における状態が、核物質、構造材、あるいはその共晶体であることを識別することを特徴とする破損・溶融燃料含有物質中の核物質量の計測装置。
An X-ray generator for irradiating a fuel debris storage container containing X-rays, a radiation detector for detecting X-rays transmitted through the fuel debris storage container, and an X-ray generator for the fuel debris storage container A rotational drive mechanism that rotationally scans the radiation detector, and a signal processing device that processes a signal from the radiation detector,
The signal processing device uses the density at each point of the fuel debris obtained from the signal from the radiation detector and the known density of the nuclear material and the structural material constituting the fuel debris. The amount of nuclear material in
The signal processing device uses the density at each point of the fuel debris obtained from the signal from the radiation detector and the known density of the nuclear material and the structural material constituting the fuel debris. A device for measuring the amount of nuclear material in a damaged / molten fuel-containing material, wherein the state at each point is identified as nuclear material, structural material, or eutectic thereof .
請求項1に記載の破損・溶融燃料含有物質中の核物質量の計測装置であって、
前記信号処理装置は、前記燃料デブリの各点における状態が、核物質と構造材が混合された共晶体であるとき、核物質と構造材の割合である各物質割合を求め、共晶体の平均密度と体積から前記燃料デブリの核物質量を求めることを特徴とする破損・溶融燃料含有物質中の核物質量の計測装置。
A device for measuring the amount of nuclear material in a damaged / molten fuel-containing material according to claim 1 ,
When the state of each point of the fuel debris is a eutectic that is a mixture of a nuclear material and a structural material, the signal processing device obtains each material ratio that is a ratio of the nuclear material and the structural material, An apparatus for measuring the amount of nuclear material in a damaged / molten fuel-containing material, wherein the amount of nuclear material in the fuel debris is determined from density and volume.
請求項1に記載の破損・溶融燃料含有物質中の核物質量の計測装置であって、
前記信号処理装置は、前記燃料デブリの各点における状態が、核物質と構造材による相分離状態であるとき、核物質の密度と体積から前記燃料デブリの核物質量を求めることを特徴とする破損・溶融燃料含有物質中の核物質量の計測装置。
A device for measuring the amount of nuclear material in a damaged / molten fuel-containing material according to claim 1 ,
The signal processing device obtains the nuclear material amount of the fuel debris from the density and volume of the nuclear material when the state at each point of the fuel debris is a phase separation state by the nuclear material and the structural material. A device for measuring the amount of nuclear material in damaged / molten fuel-containing materials.
燃料デブリを収納した燃料デブリ収納容器に対してX線を回転走査しながら照射して前記燃料デブリ収納容器を透過したX線を検知し、検知したX線から求めた前記燃料デブリの各点における密度と、前記燃料デブリを構成する核物質及び構造材についての既知の密度とを用いて、前記燃料デブリの核物質量を求めるとともに、
前記検知したX線から求めた前記燃料デブリの各点における密度と、前記燃料デブリを構成する核物質及び構造材についての既知の密度とを用いて、前記燃料デブリの各点における状態が、核物質、構造材、あるいはその共晶体であることを識別することを特徴とする破損・溶融燃料含有物質中の核物質量の計測方法。
At each point of the fuel debris obtained from the detected X-ray, the X-ray transmitted through the fuel debris storage container is detected by irradiating the fuel debris storage container storing the fuel debris while rotating and scanning with X-rays . Using the density and the known density of the nuclear material and structural material constituting the fuel debris, the amount of the nuclear material of the fuel debris is obtained ,
Using the density at each point of the fuel debris determined from the detected X-rays and the known density of the nuclear material and structural material constituting the fuel debris, the state at each point of the fuel debris is A method for measuring the amount of nuclear material in a damaged / molten fuel-containing material characterized by identifying the material, structural material, or eutectic thereof .
請求項4に記載の破損・溶融燃料含有物質中の核物質量の計測方法であって、
前記燃料デブリの各点における状態が、核物質と構造材が混合された共晶体であるとき、核物質と構造材の割合である各物質割合を求め、共晶体の平均密度と体積から前記燃料デブリの核物質量を求めることを特徴とする破損・溶融燃料含有物質中の核物質量の計測方法。
A method for measuring the amount of nuclear material in a damaged / molten fuel-containing material according to claim 4 ,
When the state at each point of the fuel debris is a eutectic in which a nuclear material and a structural material are mixed, a ratio of each material, which is a ratio of the nuclear material and the structural material, is obtained, and the fuel is obtained from the average density and volume of the eutectic. A method for measuring the amount of nuclear material in a damaged / molten fuel-containing material, characterized in that the amount of debris is determined.
請求項4に記載の破損・溶融燃料含有物質中の核物質量の計測方法であって、
前記燃料デブリの各点における状態が、核物質と構造材による相分離状態であるとき、核物質の密度と体積から前記燃料デブリの核物質量を求めることを特徴とする破損・溶融燃料含有物質中の核物質量の計測方法。
A method for measuring the amount of nuclear material in a damaged / molten fuel-containing material according to claim 4 ,
A damaged / molten fuel-containing material characterized in that when the state at each point of the fuel debris is a phase separation state by a nuclear material and a structural material, the nuclear material amount of the fuel debris is obtained from the density and volume of the nuclear material. Method for measuring the amount of nuclear material in the inside.
JP2015084879A 2015-04-17 2015-04-17 Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material Active JP6468931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084879A JP6468931B2 (en) 2015-04-17 2015-04-17 Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084879A JP6468931B2 (en) 2015-04-17 2015-04-17 Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material

Publications (3)

Publication Number Publication Date
JP2016205883A JP2016205883A (en) 2016-12-08
JP2016205883A5 JP2016205883A5 (en) 2018-04-05
JP6468931B2 true JP6468931B2 (en) 2019-02-13

Family

ID=57489549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084879A Active JP6468931B2 (en) 2015-04-17 2015-04-17 Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material

Country Status (1)

Country Link
JP (1) JP6468931B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302997A (en) * 1992-04-27 1993-11-16 Hitachi Ltd Inspection method for radioactive waste solid and formation method for it
US6553094B1 (en) * 2000-08-25 2003-04-22 Bio-Imaging Research, Inc. Method of determining a content of a nuclear waste container
JP4057963B2 (en) * 2003-07-04 2008-03-05 株式会社日立製作所 Composition analysis method using radiation CT apparatus
JP4649580B2 (en) * 2006-09-26 2011-03-09 独立行政法人 日本原子力研究開発機構 Complex waste confirmation system
US8946645B2 (en) * 2012-01-30 2015-02-03 Alexander De Volpi Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors
JP5761063B2 (en) * 2012-02-09 2015-08-12 東京電力株式会社 Debris location method
JP5907836B2 (en) * 2012-08-23 2016-04-26 一般財団法人電力中央研究所 Measurement management method
JP5844702B2 (en) * 2012-08-29 2016-01-20 日立Geニュークリア・エナジー株式会社 Fuel debris recovery method and apparatus

Also Published As

Publication number Publication date
JP2016205883A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
Craft et al. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory
US10614922B2 (en) Non-invasive in-situ imaging of interior of nuclear reactors
JP2009092658A (en) Method and device for inspecting liquid article
KR101378757B1 (en) Radiation imaging equipment and method available to obtain element date of material and select dimensions of image
KR102187231B1 (en) Inspection facility and inspection method
JP6633480B2 (en) Apparatus and method for measuring heavy element content
JP2018536176A (en) Nuclear waste inspection
Tremsin et al. On the possibility to investigate irradiated fuel pins non-destructively by digital neutron radiography with a neutron-sensitive microchannel plate detector with Timepix readout
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
Noirot et al. Heterogeneous UO2 fuel irradiated up to a high burn-up: Investigation of the HBS and of fission product releases
JP6468931B2 (en) Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material
Babai et al. Fast Neutron Tomography of low-Z object in high-Z material shielding
JP2015187554A (en) Radioactive matter analyzer and analytic method
JP2017161465A (en) Measurement device and measurement method for heavy element inclusion
Casalta et al. Digital image analysis of X-ray and neutron radiography for the inspection and the monitoring of nuclear materials
Kim et al. Nondestructive measurement of the coating thickness for simulated TRISO-coated fuel particles by using phase contrast X-ray radiography
WO2023031265A1 (en) Magnetic field structure imaging using muons
JP6137635B2 (en) Apparatus and method for measuring the amount of nuclear material in a damaged / molten fuel-containing material
EP3791215B1 (en) Method and device for detecting of illegal hiding places in iron ore load
JP5030056B2 (en) Nondestructive inspection method and apparatus
Palha et al. Quantification of Discontinuities in Welded Joints Using Gamma Tomography
Kim et al. Nondestructive measurement of the coating thickness in the simulated Triso-coated fuel particle for the HTGR
JP6698441B2 (en) Radiation imaging apparatus and radiation imaging method
Regentova et al. Advantages and challenges of radioscopic detection of nuclear materials in cargo containers with two megavoltage energy barriers
Sano et al. Imaging of Actinide Nuclides using Neutron Resonance Absorption

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190115

R150 Certificate of patent or registration of utility model

Ref document number: 6468931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150