JP5900959B2 - Reverse osmosis membrane filter - Google Patents

Reverse osmosis membrane filter Download PDF

Info

Publication number
JP5900959B2
JP5900959B2 JP2012112239A JP2012112239A JP5900959B2 JP 5900959 B2 JP5900959 B2 JP 5900959B2 JP 2012112239 A JP2012112239 A JP 2012112239A JP 2012112239 A JP2012112239 A JP 2012112239A JP 5900959 B2 JP5900959 B2 JP 5900959B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
inorganic
aqueous solution
btese300
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012112239A
Other languages
Japanese (ja)
Other versions
JP2012254449A (en
Inventor
稔了 都留
稔了 都留
朋久 吉岡
朋久 吉岡
正言 金指
正言 金指
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2012112239A priority Critical patent/JP5900959B2/en
Publication of JP2012254449A publication Critical patent/JP2012254449A/en
Application granted granted Critical
Publication of JP5900959B2 publication Critical patent/JP5900959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、逆浸透膜フィルタに関する。   The present invention relates to a reverse osmosis membrane filter.

逆浸透膜とは、ろ過膜の一種であり、水を通しイオンや塩類など水以外の不純物を透過させない性質を持つ膜であり、例えば、海水から純水を得る際に用いられる。   A reverse osmosis membrane is a kind of filtration membrane and is a membrane having a property of not allowing impurities other than water such as ions and salts to pass through water, and is used, for example, when pure water is obtained from seawater.

逆浸透膜の実用化技術における最大の問題点は、海水等の膜を通過させる原水中に存在する蛋白質や糖蛋白等の有機物が膜に吸着し、孔を閉塞することによるファウリングである。膜が有機物で汚染されると膜面にバイオフィルムが形成され、塩阻止率及び透過水量の低下を招く。このため、逆浸透膜は連続的或いは間欠的に薬品洗浄されているのが現状であり、主に次亜塩素酸ナトリウムなどの塩素系薬品で処理されている。   The biggest problem in the practical application technology of reverse osmosis membranes is fouling caused by organic substances such as proteins and glycoproteins present in raw water passing through membranes such as seawater adsorb on the membranes and block the pores. When the membrane is contaminated with organic matter, a biofilm is formed on the membrane surface, leading to a decrease in salt rejection and permeated water. For this reason, the reverse osmosis membrane is currently washed with chemicals continuously or intermittently, and is mainly treated with a chlorine-based chemical such as sodium hypochlorite.

現在、海水淡水化や排水処理水の再生などに用いられている逆浸透膜のほとんどは、全芳香族ポリアミド膜である。しかし、全芳香族ポリアミドは、塩素によりアミド結合が切断・分解され、短時間で塩阻止率の低下及び透過水量の増加を招く。このため、逆浸透プロセスでは、まず原水に塩素注入して有機物を除去し、原水を逆浸透膜に供給する直前に還元剤を用いて遊離塩素を還元した後に、ポリアミド膜へ供給する操作が行われている。この洗浄システムが造水コスト増加の一因である。   At present, most of the reverse osmosis membranes used for seawater desalination and regeneration of treated wastewater are wholly aromatic polyamide membranes. However, in the wholly aromatic polyamide, the amide bond is cleaved and decomposed by chlorine, which causes a decrease in the salt rejection and an increase in the amount of permeated water in a short time. For this reason, in the reverse osmosis process, first, chlorine is injected into the raw water to remove organic substances, and after the raw water is supplied to the reverse osmosis membrane, free chlorine is reduced using a reducing agent and then supplied to the polyamide membrane. It has been broken. This cleaning system contributes to the increase in water production costs.

このような背景から、上記の洗浄システムが不要な耐薬品性、耐酸化性、耐熱性に優れた逆浸透膜が求められている。   Against this background, a reverse osmosis membrane excellent in chemical resistance, oxidation resistance, and heat resistance that does not require the above-described cleaning system is required.

無機材料は上記の特性を備える材料であるが、これまで無機材料を逆浸透膜として応用した例はない。無機膜は、その優れた耐熱性が着目されて研究が進められてきた経緯があり、例えば、ガス分離膜として応用されている(例えば、特許文献1)。また、非特許文献1では、n−ブタノールと水との分離への応用について報じられている。   An inorganic material is a material having the above-mentioned properties, but there has been no example of applying an inorganic material as a reverse osmosis membrane so far. Inorganic membranes have a history of research with attention being paid to their excellent heat resistance, and are applied, for example, as gas separation membranes (for example, Patent Document 1). Non-Patent Document 1 reports on application to separation of n-butanol and water.

特開2009−233540号公報JP 2009-233540 A

Hydrothermally stable molecular separation membranes from organically linked silica;Hessel L.Castricum,Ashima Sah,Robert Kreiter,Dave H.A.Blank,Jaap F.Vente and Johan E.ten Elshof;Jornal of Materials Chemistry,2008,18,2150−2158Hydrostable stable molecular separation membranes from organically linked silica; Castricum, Ashima Sah, Robert Kreiter, Dave H. et al. A. Blank, Jaap F.B. Vente and Johan E. ten Elsof; Journal of Materials Chemistry, 2008, 18, 2150-2158.

特許文献1のガス分離膜は、Si−O結合によるシロキサンネットワークから構成されている。Si−O結合は、水溶液中で加水分解する。したがって、このガス分離膜は耐水性が低く、そのまま逆浸透膜として利用することはできない。   The gas separation membrane of Patent Document 1 is composed of a siloxane network with Si—O bonds. The Si—O bond is hydrolyzed in an aqueous solution. Therefore, this gas separation membrane has low water resistance and cannot be used as it is as a reverse osmosis membrane.

また、非特許文献1では、パーベーパレーション法による分離で、1気圧程度の真空引きで水を透過させて分離しており、高い圧力が要求される逆分離膜にそのまま応用できるものではない。   In Non-Patent Document 1, separation is performed by pervaporation and water is permeated by evacuation of about 1 atm, so that it cannot be directly applied to a reverse separation membrane that requires high pressure.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、耐水性及び耐薬品性に優れた逆浸透膜フィルタを提供することにある。   The present invention has been made in view of the above matters, and an object thereof is to provide a reverse osmosis membrane filter having excellent water resistance and chemical resistance.

本発明に係る逆浸透膜フィルタは、
−Si− −Si−結合、又は、−Si−C −Si−結合を有する無機有機ハイブリッド逆浸透膜を備え
NaCl水溶液のNaCl阻止率が95%以上の特性を備える、
ことを特徴とする。
(上記NaCl阻止率は、(1−C /C )×100により求められる値であり、C は透過NaCl水溶液のNaCl濃度、C は供給NaCl水溶液のNaCl濃度を表す。)
The reverse osmosis membrane filter according to the present invention comprises:
An inorganic-organic hybrid reverse osmosis membrane having a —Si— C 2 H 4 —Si— bond or a —Si—C 2 H 2 —Si— bond ,
The NaCl blocking rate of the NaCl aqueous solution has a characteristic of 95% or more.
It is characterized by that.
(The NaCl rejection is a value determined by (1−C p / C f ) × 100, where C p represents the NaCl concentration of the permeable NaCl aqueous solution, and C f represents the NaCl concentration of the supplied NaCl aqueous solution .)

また、多孔質基材上に前記無機有機ハイブリッド逆浸透膜を備えていてもよい。   Moreover, you may provide the said inorganic organic hybrid reverse osmosis membrane on the porous base material.

また、前記多孔質基材が無機多孔質基材であってもよい。   Further, the porous substrate may be an inorganic porous substrate.

また、前記無機多孔質基材と前記無機有機ハイブリッド逆浸透膜との間に、前記無機多孔質基材の細孔より小さく前記無機有機ハイブリッド逆浸透膜の細孔よりも大きい細孔を有する中間層を備えていてもよい。   Further, an intermediate having a pore smaller than the pore of the inorganic porous substrate and larger than the pore of the inorganic organic hybrid reverse osmosis membrane between the inorganic porous substrate and the inorganic organic hybrid reverse osmosis membrane. A layer may be provided.

本発明に係る逆浸透膜フィルタは、−Si−X−Si−結合を有する無機有機ハイブリッド逆浸透膜を備えている。上記Xは飽和若しくは不飽和アルキル鎖であり、Si−C結合は水溶液中でも安定であり、加水分解しない。このため、逆浸透膜フィルタは、耐水性に優れる。また、無機有機ハイブリッド逆浸透膜は塩素負荷をかけても分解せず、耐薬品性にも優れる。このため、海水から純水を得る際の造水コストを低減できる。   The reverse osmosis membrane filter according to the present invention includes an inorganic-organic hybrid reverse osmosis membrane having —Si—X—Si— bonds. X is a saturated or unsaturated alkyl chain, and the Si—C bond is stable even in an aqueous solution and does not hydrolyze. For this reason, a reverse osmosis membrane filter is excellent in water resistance. In addition, the inorganic-organic hybrid reverse osmosis membrane does not decompose even when subjected to chlorine load, and has excellent chemical resistance. For this reason, the water production cost at the time of obtaining pure water from seawater can be reduced.

無機有機ハイブリッド逆浸透膜の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of an inorganic organic hybrid reverse osmosis membrane. 実施例1において、各水溶液に対するBTESE300(M1)(ビストリエトキシシリルエタンを重合し300℃で焼成して得られた無機有機ハイブリッド逆浸透膜を備える逆浸透膜フィルタ)の水透過率及び阻止率を示すグラフである。In Example 1, the water permeability and blocking rate of BTESE300 (M1) (reverse osmosis membrane filter provided with an inorganic / organic hybrid reverse osmosis membrane obtained by polymerizing bistriethoxysilylethane and firing at 300 ° C.) for each aqueous solution. It is a graph to show. 実施例1において、溶質の分子量が異なる各水溶液に対するBTESE300(M1)及びBTESE100(ビストリエトキシシリルエタンを重合し100℃で焼成して得られた無機有機ハイブリッド逆浸透膜を備える逆浸透膜フィルタ)の阻止率のグラフである。In Example 1, BTESE300 (M1) and BTESE100 (reverse osmosis membrane filters having an inorganic-organic hybrid reverse osmosis membrane obtained by polymerizing bistriethoxysilylethane and firing at 100 ° C.) for aqueous solutions having different solute molecular weights. It is a graph of a rejection rate. 実施例1において、(A)はNaCl溶液に対するBTESE300(M1)の水透過率及び阻止率の経時変化を示すグラフ、(B)はNaCl溶液に対するBTESE100の水透過率及び阻止率の経時変化を示すグラフである。In Example 1, (A) is a graph showing the time-dependent changes in the water permeability and rejection rate of BTESE300 (M1) relative to the NaCl solution, and (B) is the time-dependent change in the water permeability and rejection rate of BTESE100 relative to the NaCl solution. It is a graph. 実施例1において、(A)はMgSO溶液に対するBTESE300(M1)の水透過率及び阻止率の経時変化を示すグラフ、(B)はMgSO溶液に対するBTESE100の水透過率及び阻止率の経時変化を示すグラフである。In Example 1, (A) is a graph showing changes over time in the water permeability and rejection of BTESE300 (M1) with respect to the MgSO 4 solution, and (B) shows changes over time in the water permeability and rejection of BTESE 100 with respect to the MgSO 4 solution. It is a graph which shows. 実施例1において、Glucose溶液に対するBTESE300(M1)の水透過率及び阻止率の経時変化を示すグラフである。In Example 1, it is a graph which shows the time-dependent change of the water permeability of BTESE300 (M1) with respect to a glucose solution, and the rejection. 実施例1において、IPA溶液に対するBTESE300(M1)の水透過率及び阻止率の経時変化を示すグラフである。In Example 1, it is a graph which shows the time-dependent change of the water permeability of BTESE300 (M1) with respect to an IPA solution, and a rejection. 実施例1において、NaCl溶液の温度変化に対するBTESE300(M1)の水透過率及び阻止率の変化を示すグラフである。In Example 1, it is a graph which shows the change of the water permeability of BTESE300 (M1) with respect to the temperature change of a NaCl solution, and the rejection. 実施例1において、(A)はNaCl溶液の供給圧力の変化に対するBTESE300(M1)の水透過率及び阻止率の変化を示すグラフ、(B)はNaCl溶液の供給圧力の変化に対するBTESE100の水透過率及び阻止率の変化を示すグラフである。In Example 1, (A) is a graph showing changes in the water permeability and blocking rate of BTESE300 (M1) with respect to changes in the supply pressure of the NaCl solution, and (B) is a water penetration of BTESE100 with respect to changes in the supply pressure of the NaCl solution. It is a graph which shows the change of a rate and a blocking rate. 実施例1において、BTESE300(M1)の塩素負荷と水透過率及び阻止率との関係を示すグラフである。In Example 1, it is a graph which shows the relationship between the chlorine load of BTESE300 (M1), a water permeability, and a rejection. 実用化されているポリアミド製逆浸透膜の塩素負荷と阻止率との関係を示すグラフである。It is a graph which shows the relationship between the chlorine load of a polyamide reverse osmosis membrane and the rejection rate which are put into practical use. 実施例2において、溶質の分子量が異なる各水溶液に対するBTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)の阻止率のグラフである。In Example 2, it is a graph of the blocking rate of BTESEthy (M1), BTESEthy (M2), and BTESE300 (M2) with respect to each aqueous solution from which the molecular weight of a solute differs. 実施例2において、NaCl溶液に対するBTESEthy(M1)の水透過率及び阻止率の経時変化を示すグラフである。In Example 2, it is a graph which shows the time-dependent change of the water permeability of BTESEthy (M1) with respect to NaCl solution, and the rejection.

本実施の形態に係る逆浸透膜フィルタは、図1の模式図に示すように、−Si−X−Si−結合(図1では、−Si−C−Si−結合)を有する無機有機ハイブリッド逆浸透膜を備えている。後述するように、無機有機ハイブリッド逆浸透膜は、ビストリエトキシシリルエタン(以下、BTESE)やビストリエトキシシリルエチレン(以下、BTESEthy)等の化合物が加水分解し、脱水縮合により重合して得られ、重合によって形成された細孔(図1に示すpore)を水分子が通過し、水に溶解しているナトリウムイオンや塩化物イオン等の通過を阻止する。 The reverse osmosis membrane filter according to the present embodiment is an inorganic material having —Si—X—Si— bonds (in FIG. 1, —Si—C 2 H 4 —Si— bonds), as shown in the schematic diagram of FIG. It has an organic hybrid reverse osmosis membrane. As will be described later, the inorganic-organic hybrid reverse osmosis membrane is obtained by hydrolyzing a compound such as bistriethoxysilylethane (hereinafter referred to as BTESE) or bistriethoxysilylethylene (hereinafter referred to as BTESEthy) and polymerizing by dehydration condensation. Water molecules pass through the pores (pore shown in FIG. 1) formed by, thereby preventing the passage of sodium ions, chloride ions, etc. dissolved in water.

無機有機ハイブリッド逆浸透膜は、無機成分である−Si−O−、及び有機成分である−X−(図1の例では−C−)を備えた膜であるため、後述するように、無機成分による耐熱性や耐薬品性、有機成分による柔軟性や膜成形性といった特性を併せ持つ。 The inorganic-organic hybrid reverse osmosis membrane is a membrane provided with -Si-O-, which is an inorganic component, and -X-, which is an organic component (-C 2 H 4-in the example of FIG. 1), and will be described later. In addition, it has characteristics such as heat resistance and chemical resistance due to inorganic components, flexibility and film formability due to organic components.

無機有機ハイブリッド逆浸透膜が備えるSi−C結合は、水溶液中で加水分解しないので、逆浸透膜フィルタは耐水性に優れる。   Since the Si—C bond provided in the inorganic / organic hybrid reverse osmosis membrane does not hydrolyze in an aqueous solution, the reverse osmosis membrane filter is excellent in water resistance.

また、無機有機ハイブリッド逆浸透膜は、熱安定性に優れる。高い温度の水溶液を通じても支障はない。更には、高い温度の水溶液を通じて分離すると、阻止率が低下することなく、水透過率が向上する。   In addition, the inorganic-organic hybrid reverse osmosis membrane is excellent in thermal stability. There is no problem even through high temperature aqueous solution. Furthermore, when the separation is performed through an aqueous solution at a high temperature, the water permeability is improved without decreasing the blocking rate.

また、無機有機ハイブリッド逆浸透膜は、耐薬品性も優れる。後述の実施例に記すように、逆浸透膜フィルタに35000ppmhの塩素負荷を与えても、水透過率及び溶質の阻止率が維持される。このため、塩水から純水を得る際に、膜上におけるバイオファウリング防止のために注入される塩素によっても分解されない。したがって、原水に塩素注入して有機物を除去した後に還元剤を用いて遊離塩素を還元する操作が不要となるので、増水コストを低減できる。   In addition, the inorganic-organic hybrid reverse osmosis membrane has excellent chemical resistance. As described in Examples below, even when a chlorine load of 35000 ppmh is applied to the reverse osmosis membrane filter, water permeability and solute rejection are maintained. For this reason, when obtaining pure water from salt water, it is not decomposed by chlorine injected to prevent biofouling on the membrane. Therefore, the operation of reducing the free chlorine using a reducing agent after removing the organic substances by injecting chlorine into the raw water becomes unnecessary, so that the water increase cost can be reduced.

また、無機有機ハイブリッド逆浸透膜は耐熱性が高いので、分離する液体の温度が高くても使用することができるとともに、高温膜洗浄することも可能である。更には、液体の温度が高いほど、水透過率及び阻止率も高い。   In addition, since the inorganic / organic hybrid reverse osmosis membrane has high heat resistance, it can be used even when the temperature of the liquid to be separated is high, and the membrane can be washed at a high temperature. Furthermore, the higher the temperature of the liquid, the higher the water permeability and rejection.

なお、−Si−X−Si−結合におけるXは、一つ以上の水素が置換されていてもよい飽和又は不飽和アルキル鎖である。また、Xは直鎖状飽和炭化水素残基、直鎖状オレフィン系炭化水素残基又は直鎖状アセチレン系炭化水素残基であることが好ましい。例えば、C2nで表される直鎖状飽和炭化水素残基や、C(2n−2)で表される直鎖状オレフィン系炭化水素残基、C(2n−4)で表される直鎖状アセチレン系炭化水素残基が挙げられる。この場合、直鎖状飽和炭化水素残基のn、即ち、炭素数は1以上6以下であることが好ましく、より好ましくは1以上4以下である。また、直鎖状オレフィン系炭化水素残基及び直鎖状アセチレン系炭化水素残基のnは2以上6以下であることが好ましく、より好ましくは、炭素数が2以上4以下である。アルキル鎖が長いと、折れ曲がった構造になり、形成される細孔径が不均一になりやすく、逆浸透膜として機能しなくなるおそれがあるためである。 Note that X in the —Si—X—Si— bond is a saturated or unsaturated alkyl chain in which one or more hydrogens may be substituted. X is preferably a linear saturated hydrocarbon residue, a linear olefinic hydrocarbon residue or a linear acetylene hydrocarbon residue. For example, a linear saturated hydrocarbon residue represented by C n H 2n , a linear olefinic hydrocarbon residue represented by C n H (2n-2) , C n H (2n-4) And a linear acetylene hydrocarbon residue represented by the formula: In this case, n of the linear saturated hydrocarbon residue, that is, the number of carbon atoms is preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less. Further, n of the linear olefinic hydrocarbon residue and the linear acetylene hydrocarbon residue is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less. This is because if the alkyl chain is long, it becomes a bent structure, the pore diameter formed tends to be non-uniform, and may not function as a reverse osmosis membrane.

逆浸透膜フィルタは、多孔質基材上に無機有機ハイブリッド逆浸透膜を備える形態であることが好ましい。無機有機ハイブリッド逆浸透膜は自己支持能がさほど高くなく自己支持能を持たせようとすれば膜厚が厚くなり、水透過率の低下を招いてしまうおそれがあるためである。   It is preferable that a reverse osmosis membrane filter is a form provided with an inorganic organic hybrid reverse osmosis membrane on a porous base material. This is because the inorganic-organic hybrid reverse osmosis membrane is not so high in self-supporting ability, and if it is intended to have self-supporting ability, the film thickness becomes thick and the water permeability may be lowered.

多孔質基材はセラミクス等の無機多孔質基材、耐熱性高分子膜等の有機多孔質基材等、工業的な使用に耐え得る機械的強度を有するものが用いられる。   As the porous substrate, an inorganic porous substrate such as ceramics, an organic porous substrate such as a heat-resistant polymer film, or the like having a mechanical strength that can withstand industrial use is used.

無機多孔質基材として、例えばアルミナ(α−Al(α−アルミナ)、γ−Al(γ−アルミナ))、ムライト、ジルコニア、チタニア、或いはこれらの複合物からなるセラミクスが挙げられる。なかでも安価で入手が容易であり、化学的耐性、耐熱性、強度に優れるα−アルミナを主成分とするセラミクスが好ましい。 Examples of the inorganic porous substrate include ceramics made of alumina (α-Al 2 O 3 (α-alumina), γ-Al 2 O 3 (γ-alumina)), mullite, zirconia, titania, or a composite thereof. Can be mentioned. Of these, ceramics based on α-alumina, which is inexpensive and easily available, and has excellent chemical resistance, heat resistance, and strength, are preferred.

無機多孔質基材である場合、無機多孔質基材と無機有機ハイブリッド逆浸透膜との間に中間層が設けられた3層構造であることが好ましい。中間層の細孔径は、無機多孔質基材の細孔径よりも小さく、無機有機ハイブリッド逆浸透膜の細孔径よりも大きいことが好ましい。中間層を構成する物質は限定されないが、一例としてシリカ−ジルコニアが挙げられる。このように無機有機ハイブリッド逆浸透膜が形成されることで、無機有機ハイブリッド逆浸透膜の膜厚が均一化され、良好な性能を示す逆浸透膜フィルタとなる。   In the case of an inorganic porous substrate, a three-layer structure in which an intermediate layer is provided between the inorganic porous substrate and the inorganic-organic hybrid reverse osmosis membrane is preferable. The pore diameter of the intermediate layer is preferably smaller than the pore diameter of the inorganic porous substrate and larger than the pore diameter of the inorganic-organic hybrid reverse osmosis membrane. Although the substance which comprises an intermediate | middle layer is not limited, A silica zirconia is mentioned as an example. By forming the inorganic-organic hybrid reverse osmosis membrane in this way, the film thickness of the inorganic-organic hybrid reverse osmosis membrane is made uniform, resulting in a reverse osmosis membrane filter exhibiting good performance.

また、多孔質基材が有機多孔質基材である場合、逆浸透膜フィルタは柔軟性に優れるとともに、無機多孔質基材に比べて安価であるため、逆浸透膜フィルタを安価に提供することができる。有機多孔質基材として、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリテトラフルオロエチレン等が挙げられる。後述の実施例で述べるが、無機有機ハイブリッド逆浸透膜を形成する際に、焼成を行うが、焼成温度に耐え得る程度の耐熱性を有する高分子膜であることが好ましい。   In addition, when the porous substrate is an organic porous substrate, the reverse osmosis membrane filter is excellent in flexibility and inexpensive compared to the inorganic porous substrate, so that the reverse osmosis membrane filter should be provided at a low cost. Can do. Examples of the organic porous substrate include polysulfone, polyethersulfone, polyimide, and polytetrafluoroethylene. As will be described later in the examples, firing is performed when forming the inorganic-organic hybrid reverse osmosis membrane, but a polymer membrane having heat resistance sufficient to withstand the firing temperature is preferable.

上述した逆浸透膜フィルタは、例えば、以下のようにして製造することができる。   The reverse osmosis membrane filter mentioned above can be manufactured as follows, for example.

(RO)SiXSi(OR)で表される化合物、例えば、(RO)SiC2nSi(OR)で表されるビスエトキシシリルエタン、ビスエトキシシリルブタン、ビスエトキシシリルオクタンや、(RO)SiC(2n−2)Si(OR)で表わされるビスエトキシシリルエチレン等の化合物、(RO)SiC(2n−4)Si(OR)で表わされるビスエトキシシリルアセチレン等の化合物を、水を含む溶媒に加えてゾル状にする。ここで、上記Rはアルキル基を表す。この化合物を水に加えるとアルコキシ基(OR)が加水分解し、隣接する化合物同士がSi−O−Si結合により重合する。より具体的には、上記化合物を、水を含む溶媒(エタノール等)に溶解し、触媒として酸(塩酸、硝酸等)又は塩基(アンモニア等)を添加して、加水分解と縮重合反応に十分な時間攪拌することで、ポリマーゾルが調製できる。 A compound represented by (RO) 3 SiXSi (OR) 3 , for example, bisethoxysilylethane, bisethoxysilylbutane, bisethoxysilyloctane represented by (RO) 3 SiC n H 2n Si (OR) 3 , (RO) 3 SiC n H ( 2n-2) Si (OR) compounds such as bis triethoxysilyl ethylene represented by 3, Bisuetokishi represented by (RO) 3 SiC n H ( 2n-4) Si (OR) 3 A compound such as silylacetylene is added to a solvent containing water to form a sol. Here, R represents an alkyl group. When this compound is added to water, the alkoxy group (OR) is hydrolyzed and adjacent compounds are polymerized by Si—O—Si bonds. More specifically, the above compound is dissolved in a water-containing solvent (such as ethanol), and an acid (hydrochloric acid, nitric acid, etc.) or a base (ammonia) is added as a catalyst, which is sufficient for hydrolysis and polycondensation reactions. The polymer sol can be prepared by stirring for a long time.

このゾルをガラス基板等に塗布して焼成することで膜状の無機有機ハイブリッド逆浸透膜を得ることができる。このガス分離膜をガラス基板等から剥離して逆浸透膜フィルタとして用いることができる。   A film-like inorganic-organic hybrid reverse osmosis membrane can be obtained by applying this sol to a glass substrate or the like and baking it. This gas separation membrane can be peeled off from a glass substrate or the like and used as a reverse osmosis membrane filter.

焼成温度は400℃より低い温度とする。400℃以上では、Si−C2n−Siのアルキル鎖が消失してしまうからである。好ましい焼成温度は100℃以上300℃以下である。この場合、上記温度範囲で高い焼成温度とすることが好ましい。脱水縮合がより進行し、ネットワークが緻密になるので、溶質の阻止率が向上する。 The firing temperature is lower than 400 ° C. This is because the alkyl chain of Si—C n H 2n —Si disappears at 400 ° C. or higher. A preferable firing temperature is 100 ° C. or higher and 300 ° C. or lower. In this case, it is preferable to set a high firing temperature in the above temperature range. Since dehydration condensation proceeds more and the network becomes denser, the solute rejection rate is improved.

また、上述の無機多孔質基材、中間層、無機有機ハイブリッド逆浸透膜を備える3層構造の逆浸透膜フィルタは、以下のようにして得ることができる。   Moreover, the reverse osmosis membrane filter of the 3 layer structure provided with the above-mentioned inorganic porous base material, an intermediate | middle layer, and an inorganic organic hybrid reverse osmosis membrane can be obtained as follows.

まず、無機多孔質基材上に中間層を形成する。無機多孔質基材の表面の均質化を行った上で、中間層を形成することが好ましい。均質化に用いる素材としては、無機多孔質基材と同素材の微粒子を用いるとよく、例えば、無機多孔質基材としてアルミナを用いる場合、これと同素材のアルミナ微粒子を無機多孔質基材表面に担持させて均質化するとよい。無機多孔質基材上へのアルミナ微粒子の担持は、バインダーとして中間層の形成に用いる素材と同素材のゾル(例えば、シリカージルコニアコロイドゾル)を用い、バインダーにアルミナ微粒子を分散させて無機多孔質基材表面に塗布し、乾燥、焼成することにより行えばよい。また、上記の工程を複数回行って無機多孔質基材の表面を均質化することが好ましく、この場合、バインダーに分散させるアルミナ微粒子の大きさを徐々に小さくして行うとよい。   First, an intermediate layer is formed on an inorganic porous substrate. It is preferable to form the intermediate layer after homogenizing the surface of the inorganic porous substrate. As a material used for homogenization, fine particles of the same material as the inorganic porous substrate may be used. For example, when alumina is used as the inorganic porous substrate, the alumina fine particles of the same material are used as the surface of the inorganic porous substrate. It is good to make it support and homogenize. The alumina fine particles are supported on the inorganic porous substrate by using a sol (for example, silica-zirconia colloidal sol) of the same material as that used for forming the intermediate layer as a binder, and dispersing the alumina fine particles in the binder to form an inorganic porous material. It may be performed by applying to the surface of the porous substrate, drying and firing. Moreover, it is preferable to perform the above-described process a plurality of times to homogenize the surface of the inorganic porous substrate. In this case, it is preferable to gradually reduce the size of the alumina fine particles dispersed in the binder.

続いて、均質化した無機多孔質基材上に、中間層を形成する。中間層の形成は、以下のようにホットコーティング法で形成するとよい。無機多孔質基材を予め170℃〜180℃程度に加熱しておき、シリカージルコニアコロイドゾルの希薄溶液を均質化した無機多孔質基材の表面に塗布し、焼成することにより中間層を形成できる。シリカージルコニアコロイドゾルの塗布は不織布等を用いて行うことができる。なお、所望の厚みの中間層を得るため、上記の工程を複数回繰り返し行ってもよい。   Subsequently, an intermediate layer is formed on the homogenized inorganic porous substrate. The intermediate layer may be formed by a hot coating method as follows. The inorganic porous substrate is heated to about 170 ° C to 180 ° C in advance, and a diluted solution of silica-zirconia colloidal sol is applied to the surface of the homogenized inorganic porous substrate, followed by baking to form an intermediate layer. it can. The silica-zirconia colloidal sol can be applied using a nonwoven fabric or the like. In order to obtain an intermediate layer having a desired thickness, the above process may be repeated a plurality of times.

そして、中間層の表面に、(RO)SiC2nSi(OR)で表される化合物を水に溶解したゾルを塗布する。ゾルの塗布は、スピンコート法のほか、溶液に浸した不織布を用いて塗布する等、種々の方法によって行うことができる。 Then, on the surface of the intermediate layer, a sol obtained by dissolving a compound represented by (RO) 3 SiC n H 2n Si (OR) 3 in water. The sol can be applied by various methods such as a spin coating method and a non-woven fabric dipped in a solution.

そして電気炉等で焼成することにより、無機有機ハイブリッド逆浸透膜が形成され、3層構造の逆浸透膜フィルタを得ることができる。   And by baking with an electric furnace etc., an inorganic-organic hybrid reverse osmosis membrane is formed and the reverse osmosis membrane filter of a 3 layer structure can be obtained.

(逆浸透膜の作製)
まず、無機多孔質基材として多孔性α−アルミナ管(長さ:100mm,外径:10mm,平均細孔径:1μm,空効率:50%)を準備し、以下に記すように、α−アルミナ管の外表面の均質化を行った後に、順次、中間層、無機有機ハイブリッド逆浸透膜を形成した。
(Preparation of reverse osmosis membrane)
First, a porous α-alumina tube (length: 100 mm, outer diameter: 10 mm, average pore diameter: 1 μm, empty efficiency: 50%) was prepared as an inorganic porous substrate, and α-alumina as described below. After homogenizing the outer surface of the tube, an intermediate layer and an inorganic-organic hybrid reverse osmosis membrane were sequentially formed.

(多孔質基材の均質化)
まず、α−アルミナ管の外表面にアルミナ微粒子を担持することで、α−アルミナ管の外表面を均質化した。アルミナ微粒子の担持は、以下のように、用いるアルミナ微粒子の平均粒径を異ならせ(1.9μm、0.2μm)、2段階の工程により行った。
(Homogenization of porous substrate)
First, the outer surface of the α-alumina tube was homogenized by supporting alumina fine particles on the outer surface of the α-alumina tube. The support of the alumina fine particles was carried out in two steps by varying the average particle size of the alumina fine particles used (1.9 μm, 0.2 μm) as follows.

シリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものに、平均粒径1.9μmのアルミナ微粒子(住友化学工業(株))を約10wt%程度となるように分散させた(以下、これをシリカ−ジルコニアコロイドゾルAと記す)。また、シリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものに、平均粒径0.2μmのアルミナ微粒子(住友化学工業(株))を約10wt%程度となるように分散させた(以下、これをシリカ−ジルコニアコロイドゾルBと記す)。   Silica-zirconia colloidal sol (average particle size: about 50 nm, concentration: 2.0 wt%) diluted to 4 times with distilled water, alumina fine particles (Sumitomo Chemical Co., Ltd.) with an average particle size of 1.9 μm were about 10 wt. % (Hereinafter referred to as silica-zirconia colloidal sol A). In addition, silica fine particles having an average particle size of 0.2 μm (Sumitomo Chemical Co., Ltd.) were added to silica-zirconia colloidal sol (average particle size of about 50 nm, concentration 2.0 wt%) diluted four times with distilled water. It was dispersed so as to be about 10 wt% (hereinafter referred to as silica-zirconia colloid sol B).

シリカ−ジルコニアコロイドゾルAを不織布(ベンコット(登録商標),旭化成(株))を用いてアルミナ管の外表面に塗布した。そして、20分間の室温乾燥、10分間180℃で乾燥した後、電気管状炉(EKR−29K,いすゞ製作所(株))で550℃,空気中で15分間焼成した。この操作を計2回行った。   Silica-zirconia colloidal sol A was applied to the outer surface of the alumina tube using a non-woven fabric (Bencot (registered trademark), Asahi Kasei Co., Ltd.). Then, after drying at room temperature for 20 minutes and 180 ° C. for 10 minutes, it was baked in an electric tubular furnace (EKR-29K, Isuzu Seisakusho Co., Ltd.) at 550 ° C. in air for 15 minutes. This operation was performed twice.

続いて、シリカ−ジルコニアコロイドゾルBを、不織布を用いてアルミナ管の外表面に塗布した。そして、20分間の室温乾燥、10分間180℃で乾燥した後、電気管状炉(EKR−29K,いすゞ製作所(株))で550℃,空気中で15分間焼成した。この操作を計3回行った。以上のようにして、α−アルミナ管の外表面を均質化した。   Subsequently, silica-zirconia colloid sol B was applied to the outer surface of the alumina tube using a nonwoven fabric. Then, after drying at room temperature for 20 minutes and 180 ° C. for 10 minutes, it was baked in an electric tubular furnace (EKR-29K, Isuzu Seisakusho Co., Ltd.) at 550 ° C. in air for 15 minutes. This operation was performed 3 times in total. As described above, the outer surface of the α-alumina tube was homogenized.

(中間層の形成)
次に、外表面を均質化したα−アルミナ管を予め高温(170〜180℃)に加熱し、不織布を用いて、α−アルミナ管の外表面にシリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものを塗布し(ホットコーティング法)、空気中で550℃の温度で15分間焼成した。この操作を数回繰り返し、分離膜支持体の外表面に細孔径が数nm程度の中間層(シリカ−ジルコニア)を形成した。
(Formation of intermediate layer)
Next, the α-alumina tube having a homogenized outer surface is heated to a high temperature (170 to 180 ° C.) in advance, and a silica-zirconia colloidal sol (average particle diameter of about 50 nm) is formed on the outer surface of the α-alumina tube using a nonwoven fabric. , A concentration of 2.0 wt%) diluted 4 times with distilled water was applied (hot coating method) and baked in air at a temperature of 550 ° C. for 15 minutes. This operation was repeated several times to form an intermediate layer (silica-zirconia) having a pore diameter of about several nm on the outer surface of the separation membrane support.

(逆浸透膜の形成)
次に、BTESEを水に加えてBTESEゾルを調製した。なお、BTESEゾルの分子量は、Zetasizer Nano(Malverm社製)により測定したところ、5000〜20000wt/mol程度であった。
(Formation of reverse osmosis membrane)
Next, BTESE sol was prepared by adding BTESE to water. The molecular weight of the BTESE sol was about 5000 to 20000 wt / mol as measured by Zetasizer Nano (manufactured by Malverm).

このBTESEゾルを中間層上に被覆した。そして、乾燥した後、窒素雰囲気下、300℃で30分間焼成し、無機有機ハイブリッド逆浸透膜を形成した。このようにして、逆浸透膜フィルタを作製した。以下、この逆浸透膜フィルタをBTESE300(M1)と記す。   This BTESE sol was coated on the intermediate layer. And after drying, it baked at 300 degreeC for 30 minute (s) in nitrogen atmosphere, and formed the inorganic-organic hybrid reverse osmosis membrane. In this way, a reverse osmosis membrane filter was produced. Hereinafter, this reverse osmosis membrane filter is referred to as BTESE300 (M1).

また、100℃で焼成した以外、上記と同様の条件で無機有機ハイブリッド逆浸透膜を形成し、逆浸透膜フィルタを作製した。以下、この逆浸透膜フィルタをBTESE100と記す。   In addition, an inorganic-organic hybrid reverse osmosis membrane was formed under the same conditions as described above except that firing was performed at 100 ° C., and a reverse osmosis membrane filter was produced. Hereinafter, this reverse osmosis membrane filter is referred to as BTESE100.

BTESE300(M1)及びBTESE100をSEM写真で観察したところ、ひび割れは確認できなかった。また、無機有機ハイブリッド逆浸透膜の厚みは100nm以下であった。   When BTESE300 (M1) and BTESE100 were observed with SEM photographs, no cracks could be confirmed. The thickness of the inorganic / organic hybrid reverse osmosis membrane was 100 nm or less.

以上のようにして作製したBTESE300(M1)及びBTESE100を用い、以下の実験を行った。   The following experiment was performed using BTESE300 (M1) and BTESE100 produced as described above.

(実験条件)
電解質水溶液として、NaCl水溶液(2000ppm)、及び、MgSO水溶液(2000ppm)、中性溶質水溶液として、メタノール水溶液(500ppm)、エタノール水溶液(500ppm)、IPA(イソプロピルアルコール)水溶液(500ppm)、n−ブタノール水溶液(500ppm)、及び、グルコース水溶液(500ppm)を用意した。
(Experimental conditions)
As an aqueous electrolyte solution, an aqueous NaCl solution (2000 ppm) and an aqueous MgSO 4 solution (2000 ppm), and as an aqueous neutral solute solution, an aqueous methanol solution (500 ppm), an aqueous ethanol solution (500 ppm), an aqueous IPA (isopropyl alcohol) solution (500 ppm), and n-butanol. An aqueous solution (500 ppm) and an aqueous glucose solution (500 ppm) were prepared.

各水溶液をBTESE300(M1)及びBTESE100に供給し、クロスフロー濾過を行った。各水溶液の供給圧力は1.15MPa、各水溶液の温度は25℃で行った。そして、BTESE300(M1)及びBTESE100の各水溶液に対する水透過率(Water permeability)及び各溶質の阻止率(Rejection)を求め、特性を評価した。   Each aqueous solution was supplied to BTESE300 (M1) and BTESE100, and crossflow filtration was performed. The supply pressure of each aqueous solution was 1.15 MPa, and the temperature of each aqueous solution was 25 ° C. And the water permeability (Water permeability) with respect to each aqueous solution of BTESE300 (M1) and BTESE100 and the rejection (Rejection) of each solute were calculated | required, and the characteristic was evaluated.

水透過率L(m/(m・s・Pa))は、下式(1)により求めた。
Lp=J/(ΔP−σΔπ) ・・・(1)
は、フィルタを通す水溶液の流量(L/(m・h))、ΔP−σΔπは、有効膜透過圧である。
また、Δπ(浸透圧差)は、ファントホフ式(下式(2))から求めた。
Δπ=2RT(C−C)・・・(2)
Rは気体定数、Tは絶対温度、Cは透過液体の濃度、Cは供給水溶液の濃度である。C及びCは、電気伝導率計(ES−51,HORIBA Ltd.)及び全有機炭素計(TOC−VE、島津製作所)にてそれぞれ測定した。
The water permeability L p (m 3 / (m 2 · s · Pa)) was determined by the following formula (1).
Lp = J v / (ΔP−σΔπ) (1)
J v is the aqueous solution through a filter flow rate (L / (m 2 · h )), ΔP-σΔπ is effective transmembrane pressure.
Further, Δπ (osmotic pressure difference) was obtained from the Phantohof equation (the following equation (2)).
Δπ = 2RT (C f −C p ) (2)
R is the gas constant, T is the absolute temperature, C p is the concentration of the permeate liquid, and C f is the concentration of the aqueous feed solution. C p and C f were respectively measured by the electric conductivity meter (ES-51, HORIBA Ltd.) and total organic carbon meter (TOC-VE, manufactured by Shimadzu).

阻止率R(%)は、下式(3)から求めた。
R(%)=(1−C/C)×100・・・(3)
The rejection rate R (%) was obtained from the following equation (3).
R (%) = (1−C p / C f ) × 100 (3)

(各種水溶液の水透過性及び阻止率の検証)
図2に、BTESE300(M1)の各水溶液に対する水透過率及び阻止率を示している。NaCl水溶液、MgSO水溶液、イソプロパノール水溶液、グルコース水溶液について、95%以上の阻止率を示した。一方、エタノール水溶液では、阻止率が76%以下であった。これは、エタノールのストークス径が0.4nmと、他の中性溶質(IPA:0.48nm、グルコース:0.73nm)よりも小さいためと考えられる。この結果から、BTESE300(M1)の分離プロセスでは、分子ふるい効果が主要な要因であると考えられる。
(Verification of water permeability and rejection of various aqueous solutions)
FIG. 2 shows the water permeability and blocking rate for each aqueous solution of BTESE300 (M1). The NaCl aqueous solution, MgSO 4 aqueous solution, isopropanol aqueous solution, and glucose aqueous solution showed a rejection of 95% or more. On the other hand, in the ethanol aqueous solution, the rejection was 76% or less. This is probably because the Stokes diameter of ethanol is 0.4 nm, which is smaller than other neutral solutes (IPA: 0.48 nm, glucose: 0.73 nm). From this result, it is considered that the molecular sieving effect is the main factor in the separation process of BTESE300 (M1).

(分画分子量の検証)
続いて、図3に、BTESE300(M1)及びBTESE100における各溶液の溶質の分子量と阻止率との関係を示す。なお、図3中、SW30HR及びES10は、実用化されているポリアミド製の逆浸透膜のデータであり、「E. S. Hatakeyama, C. J. Gabriel, B. R. Wiesenauer, J. L. Lohr, M. J. Zhou, R. D. Noble, D. L. Gin, J. Membr. Sci. 2011, 366, 62-72.」、「Y. Kiso, K. Muroshige, T. Oguchi, M. Hirose, T. Ohara, T. Shintani, J. Membr. Sci. 2011, 369, 290-298.」からそれぞれ引用している。
(Verification of molecular weight cutoff)
Subsequently, FIG. 3 shows the relationship between the molecular weight of each solution and the rejection rate in BTESE300 (M1) and BTESE100. In FIG. 3, SW30HR and ES10 are data of a polyamide reverse osmosis membrane that has been put into practical use. Membr. Sci. 2011, 366, 62-72. "," Y. Kiso, K. Muroshige, T. Oguchi, M. Hirose, T. Ohara, T. Shintani, J. Membr. Sci. 2011, 369, "290-298."

図3中、破線で示す90%の阻止率が所謂分画分子量(MWCO:molecular weight cut−off)であるが、BTESE100では約84g/molと、実用化されている浸透膜とほぼ同等であり、BTESE300(M1)では約55g/molであった。したがって、実用化されている浸透膜と同等、若しくはそれ以上の良好な分子ふるい特性を有することがわかる。   In FIG. 3, the 90% blocking rate indicated by the broken line is the so-called molecular weight cut-off (MWCO), but in BTESE100, it is about 84 g / mol, which is almost equivalent to a permeable membrane in practical use. , BTESE300 (M1) was about 55 g / mol. Therefore, it can be seen that it has good molecular sieving characteristics equivalent to or better than those of permeable membranes in practical use.

(経時的安定性の検証)
NaCl水溶液、MgSO水溶液、IPA水溶液、Glucose水溶液を継続して供給し、BTESE300(M1)及びBTESE100の経時的安定性を検証した。
(Verification of stability over time)
A NaCl aqueous solution, a MgSO 4 aqueous solution, an IPA aqueous solution, and a glucose aqueous solution were continuously supplied to verify the stability of BTESE300 (M1) and BTESE100 over time.

図4にNaCl水溶液を供給した際の水透過率及び阻止率の経時変化(図4(A)がBTESE300(M1)、図4(B)がBTESE100)を示す。また、図5にMgSO水溶液を供給した際の水透過率及び阻止率の経時変化(図5(A)がBTESE300(M1)、図5(B)がBTESE100)を示す。また、図6にIPA水溶液を供給した際の水透過率及び阻止率の経時変化(BTESE300(M1))を示す。また、図7にGlucose水溶液を供給した際の水透過率及び阻止率の経時変化(BTESE300(M1))を示す。 FIG. 4 shows changes with time in water permeability and rejection when an aqueous NaCl solution is supplied (FIG. 4A shows BTESE300 (M1) and FIG. 4B shows BTESE100). Further, FIG. 5 shows a change with time in water permeability and blocking rate when an aqueous MgSO 4 solution is supplied (FIG. 5A shows BTESE300 (M1), and FIG. 5B shows BTESE100). Further, FIG. 6 shows the temporal change (BTESE300 (M1)) of the water permeability and the rejection when the IPA aqueous solution is supplied. Further, FIG. 7 shows the temporal change (BTESE300 (M1)) of the water permeability and the blocking rate when the glucose aqueous solution was supplied.

いずれにおいても、時間経過に伴う水透過率及び阻止率の変化はほとんどないことがわかる。したがって、BTESE300(M1)及びBTESE100は、長時間の連続使用でもその分離性能が低下することなく用い得ることがわかる。   In any case, it can be seen that there is almost no change in water permeability and rejection with time. Therefore, it can be seen that BTESE300 (M1) and BTESE100 can be used without degradation of the separation performance even after continuous use for a long time.

(熱安定性の検証)
NaCl水溶液の供給圧力は一定(1.15Pa)のまま、NaCl水溶液の温度を25℃から90℃に昇温させた後、90℃から25℃へと降温させ、熱安定性を検証した。
(Verification of thermal stability)
While the supply pressure of the NaCl aqueous solution was kept constant (1.15 Pa), the temperature of the NaCl aqueous solution was raised from 25 ° C. to 90 ° C., and then the temperature was lowered from 90 ° C. to 25 ° C. to verify the thermal stability.

図8に、BTESE300(M1)における供給したNaCl水溶液の温度変化に対する水透過率及び阻止率の変化を示している。図8を見ると、NaCl水溶液の温度が高くなると水透過率も向上した。また、阻止率についても、25℃では97.3%であったが、90℃では98.2%とこちらも向上した。   FIG. 8 shows changes in water permeability and rejection with respect to changes in the temperature of the supplied NaCl aqueous solution in BTESE300 (M1). As shown in FIG. 8, the water permeability improved as the temperature of the NaCl aqueous solution increased. Further, the rejection rate was 97.3% at 25 ° C., but this was also improved to 98.2% at 90 ° C.

一般的なポリアミド製の浸透膜では、温度が高くなると阻止率が低下する傾向にある。その理由は以下のように考えられる。高温では、膜の細孔径が大きくなり大きな分子でも通りやすくなること、また、Naイオン及びClイオンがエネルギーを得て膜を通りやすくなることから、相対的に水の透過率が低下し、その結果阻止率が低下するものと考えられる。   In a general polyamide permeable membrane, the blocking rate tends to decrease as the temperature increases. The reason is considered as follows. At high temperatures, the pore size of the membrane increases and it becomes easy to pass even with large molecules, and Na ions and Cl ions gain energy and easily pass through the membrane, so the water permeability is relatively reduced. As a result, the rejection rate is considered to decrease.

しかしながら、BTESE300(M1)では、上述のように水透過率及び阻止率は温度が高いほど高い。BTESE300(M1)では、上記温度範囲では膜の細孔径が変化せず、水の粘度の低下により水がNaイオン及びClイオンよりも相対的に通過しやすくなったためと考えられる。このように、BTESE300(M1)は熱安定性が高いとともに、適応温度範囲が広いことがわかる。また、熱安定性が高いことから、高温膜洗浄も可能である。   However, in BTESE300 (M1), as described above, the water permeability and rejection are higher as the temperature is higher. In BTESE300 (M1), it is considered that the pore diameter of the membrane does not change in the above temperature range, and water is more likely to pass through than Na ions and Cl ions due to a decrease in water viscosity. Thus, it can be seen that BTESE300 (M1) has high thermal stability and a wide adaptive temperature range. In addition, since the thermal stability is high, high-temperature film cleaning is also possible.

(圧力依存性の検証)
NaCl水溶液を用い、供給圧力を0.7MPa〜1.5MPaの範囲で変化させ、BTESE300(M1)及びBTESE100の圧力依存性を検証した。
(Verification of pressure dependence)
Using NaCl aqueous solution, supply pressure was changed in the range of 0.7 MPa to 1.5 MPa, and the pressure dependency of BTESE300 (M1) and BTESE100 was verified.

図9にNaCl水溶液の供給圧力の変化に対する水透過率及び阻止率の変化(図9(A)がBTESE300(M1)、図9(B)がBTESE100)を示している。   FIG. 9 shows changes in water permeability and rejection with respect to changes in the supply pressure of the NaCl aqueous solution (FIG. 9A shows BTESE300 (M1), and FIG. 9B shows BTESE100).

供給圧力を上げると、阻止率はやや向上するものの、水透過率はほぼ一定の特性を維持している。   When the supply pressure is increased, the rejection rate is slightly improved, but the water permeability is maintained at a substantially constant characteristic.

(耐薬品性の検証)
市販の次亜塩素酸ナトリウム溶液(NaClO,活性塩素:10%)を用い、BTESE300(M1)の耐薬品安定性を検証した。
(Verification of chemical resistance)
A commercially available sodium hypochlorite solution (NaClO, active chlorine: 10%) was used to verify the chemical stability of BTESE300 (M1).

次亜塩素酸ナトリウム溶液は、塩素濃度100ppm,500ppm,1000ppmに調製して用いた。また、次亜塩素酸ナトリウム溶液のpHは、0.2M KHPO緩衝液を用いて7に調整した。 The sodium hypochlorite solution was used by adjusting the chlorine concentration to 100 ppm, 500 ppm, and 1000 ppm. Moreover, the pH of the sodium hypochlorite solution was adjusted to 7 using 0.2M KH 2 PO 4 buffer.

調整した次亜塩素酸ナトリウム溶液中にBTESE300(M1)を所定時間浸し種々の塩素負荷を与えた。その後、BTESE300(M1)を取り出して洗浄し、次亜塩素酸ナトリウム溶液を除去した後に、上記同様にNaCl溶液(2000ppm,1.15MPa)を供給して、水透過率及び阻止率を求めた。   BTESE300 (M1) was immersed in the adjusted sodium hypochlorite solution for a predetermined time to give various chlorine loads. Thereafter, BTESE300 (M1) was taken out and washed, and after removing the sodium hypochlorite solution, a NaCl solution (2000 ppm, 1.15 MPa) was supplied in the same manner as described above to obtain water permeability and blocking rate.

図10に、塩素負荷(Chlorine exposure)と水透過率及び阻止率との関係を示す。また、図11に、参考例として、実用化されているポリアミド製逆浸透膜(SW30HR,Dow FilmTec)の塩素負荷と阻止率との関係を示している。なお、図11に示すグラフは、「Ho Bum Park, Benny D. Freeman, Zhong-Bio Zhang, Mehmet Sankir, and James E. McGrath; Angew. Chem. 2008, 120, 6108-6113」から引用した。   FIG. 10 shows the relationship between chlorine load, water permeability, and rejection. FIG. 11 shows, as a reference example, the relationship between the chlorine load and the rejection rate of a polyamide reverse osmosis membrane (SW30HR, Dow FilmTec) that has been put into practical use. The graph shown in FIG. 11 is quoted from “Ho Bum Park, Benny D. Freeman, Zhong-Bio Zhang, Mehmet Sankir, and James E. McGrath; Angew. Chem. 2008, 120, 6108-6113”.

図11を見ると、ポリアミド製逆浸透膜では、5000ppmhを超えた後では、塩素負荷が大きくなるにつれて大幅に阻止率が低下している。塩素によってアミド結合が切断・分解されてしまい、耐薬品性がないことがわかる。   Referring to FIG. 11, in the reverse osmosis membrane made of polyamide, after exceeding 5000 ppmh, the rejection rate is significantly reduced as the chlorine load increases. It can be seen that the amide bond is cleaved and decomposed by chlorine, and there is no chemical resistance.

一方、図10を見ると、BTESE300(M1)では、塩素負荷35000ppmh(1ppmの塩素溶液に4年間さらされていた状態に相当)であっても、水透過率及び阻止率はほとんど変わらず、安定した性能を維持している。したがって、BTESE300(M1)は耐薬品性に優れ、ポリアミド製浸透膜では不可能な次亜塩素酸等の殺菌剤の使用が可能である。   On the other hand, FIG. 10 shows that in BTESE300 (M1), even when the chlorine load is 35000 ppmh (corresponding to the state of being exposed to a 1 ppm chlorine solution for 4 years), the water permeability and the rejection are almost unchanged and stable. Maintained performance. Therefore, BTESE300 (M1) has excellent chemical resistance, and it is possible to use a disinfectant such as hypochlorous acid, which is impossible with a polyamide permeable membrane.

BTESEtyを用いて無機有機ハイブリッド逆浸透膜を作製した。まず、実施例1と同様にして、α−アルミナ管の外表面を均質化した。   An inorganic-organic hybrid reverse osmosis membrane was prepared using BTESEty. First, in the same manner as in Example 1, the outer surface of the α-alumina tube was homogenized.

外表面を均質化したα−アルミナ管を予め高温(170〜180℃)に加熱し、不織布を用いて、α−アルミナ管の外表面にシリカ−ジルコニアコロイドゾル(平均粒径約50nm、濃度2.0wt%)を蒸留水で4倍に希釈したものを塗布し(ホットコーティング法)、空気中で550℃の温度で15分間焼成した。この操作を12回繰り返し、均質化したα−アルミナ管の外表面に中間層(シリカ−ジルコニア)を形成した。   An α-alumina tube having a homogenized outer surface is heated to a high temperature (170 to 180 ° C.) in advance, and a silica-zirconia colloidal sol (average particle diameter of about 50 nm, concentration 2 is used on the outer surface of the α-alumina tube using a nonwoven fabric. (0.0 wt%) diluted 4 times with distilled water (hot coating method) was applied and baked in air at a temperature of 550 ° C. for 15 minutes. This operation was repeated 12 times to form an intermediate layer (silica-zirconia) on the outer surface of the homogenized α-alumina tube.

(逆浸透膜の形成)
次に、BTESEthy、水、エタノール及び触媒として塩酸を混合し、40℃で1.5時間攪拌してBTESEthyゾルを調製した。なお、BTESEthy、水、エタノール、塩酸の混合比は、モル比で1:60:122:0.2とした。
(Formation of reverse osmosis membrane)
Next, BTESEthy, water, ethanol and hydrochloric acid as a catalyst were mixed and stirred at 40 ° C. for 1.5 hours to prepare a BTESEthy sol. The mixing ratio of BTESEthy, water, ethanol, and hydrochloric acid was 1: 60: 122: 0.2 in molar ratio.

このBTESEthyゾルを中間層上に被覆した。そして、乾燥した後、窒素雰囲気下、300℃で20分間焼成した。この操作を2回行い、無機有機ハイブリッド逆浸透膜を形成した。このようにして、逆浸透膜フィルタを作製した。以下、この逆浸透膜フィルタをBTESEthy(M1)と記す。   This BTESETY sol was coated on the intermediate layer. And after drying, it baked for 20 minutes at 300 degreeC by nitrogen atmosphere. This operation was performed twice to form an inorganic-organic hybrid reverse osmosis membrane. In this way, a reverse osmosis membrane filter was produced. Hereinafter, this reverse osmosis membrane filter is referred to as BTESEthy (M1).

また、再現性を確認するため、上記と全く同様にして逆浸透膜フィルタを作成した。以下、この逆浸透膜フィルタをBTESEthy(M2)と記す。   In order to confirm reproducibility, a reverse osmosis membrane filter was prepared in the same manner as described above. Hereinafter, this reverse osmosis membrane filter is referred to as BTESEthy (M2).

また、BTESEthyをBTESEに代える以外、上記と同様にして逆浸透膜フィルタを作成した。以下、この逆浸透膜フィルタをBTESE300(M2)と記す。   Further, a reverse osmosis membrane filter was prepared in the same manner as described above except that BTESEty was replaced with BTESE. Hereinafter, this reverse osmosis membrane filter is referred to as BTESE300 (M2).

以上のようにして作製したBTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)を用い、以下の実験を行った。   The following experiment was performed using BTESEthy (M1), BTESEthy (M2), and BTESE300 (M2) produced as described above.

(分画分子量の検証)
メタノール水溶液(500ppm)、エタノール水溶液(500ppm)、IPA(イソプロピルアルコール)水溶液(500ppm)、及び、グルコース水溶液(500ppm)を用意した。各水溶液をBTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)に供給し、クロスフロー濾過を行った。各水溶液の供給圧力は1.15MPa、各水溶液の温度は25℃で行った。そして、BTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)の各水溶液に対する各溶質の阻止率を求めた。阻止率は実施例1と同様の手法で求めた。
(Verification of molecular weight cutoff)
A methanol aqueous solution (500 ppm), an ethanol aqueous solution (500 ppm), an IPA (isopropyl alcohol) aqueous solution (500 ppm), and a glucose aqueous solution (500 ppm) were prepared. Each aqueous solution was supplied to BTESEthy (M1), BTESEthy (M2), and BTESE300 (M2), and crossflow filtration was performed. The supply pressure of each aqueous solution was 1.15 MPa, and the temperature of each aqueous solution was 25 ° C. And the rejection of each solute with respect to each aqueous solution of BTESEthy (M1), BTESEthy (M2), and BTESE300 (M2) was calculated | required. The blocking rate was obtained by the same method as in Example 1.

図12に、BTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)における各溶液の溶質の分子量と阻止率との関係を示す。なお、図12中、SW30HRは、実用化されているポリアミド製の逆浸透膜のデータであり、「E. S. Hatakeyama, C. J. Gabriel, B. R. Wiesenauer, J. L. Lohr, M. J. Zhou, R. D. Noble, D. L. Gin, J. Membr. Sci. 2011, 366, 62-72.」、「Y. Kiso, K. Muroshige, T. Oguchi, M. Hirose, T. Ohara, T. Shintani, J. Membr. Sci. 2011, 369, 290-298.」から引用している。   FIG. 12 shows the relationship between the molecular weight of each solution and the blocking rate in BTESEthy (M1), BTESEthy (M2), and BTESE300 (M2). In FIG. 12, SW30HR is data of a reverse osmosis membrane made of polyamide that has been put into practical use. “ES Hatakeyama, CJ Gabriel, BR Wiesenauer, JL Lohr, MJ Zhou, RD Noble, DL Gin, J. Membr Sci. 2011, 366, 62-72. "," Y. Kiso, K. Muroshige, T. Oguchi, M. Hirose, T. Ohara, T. Shintani, J. Membr. Sci. 2011, 369, 290- 298. "

BTESEthy(M1)、BTESEthy(M2)及びBTESE300(M2)の分画分子量(図12中、破線で示す阻止率90%の分子量)は、いずれも60g/mol程度であり、実用化されている浸透膜(SW30HR)よりも良好な分子ふるい特性を有することがわかる。   The fractional molecular weights of BTESETHY (M1), BTESETHY (M2), and BTESETHY (M2) (molecular weight with a blocking rate of 90% indicated by the broken line in FIG. 12) are all about 60 g / mol. It can be seen that it has better molecular sieving properties than the membrane (SW30HR).

(経時的安定性の検証)
BTESEthy(M1)にNaCl水溶液(2000ppm、25℃)を継続して供給し(供給圧力1.15MPa)、水透過率及び阻止率を経時的に測定し、BTESEthy(M1)の経時的安定性を検証した。なお、水透過率及び阻止率は、それぞれ実施例1と同様の手法で求めた。
(Verification of stability over time)
An aqueous NaCl solution (2000 ppm, 25 ° C.) was continuously supplied to BTESEthy (M1) (supply pressure 1.15 MPa), water permeability and rejection were measured over time, and the stability of BTESEthy (M1) over time was improved. Verified. In addition, the water permeability and the blocking rate were obtained by the same method as in Example 1, respectively.

その結果を図13に示す。時間経過に伴う水透過率及び阻止率はほぼ一定で変化がないことがわかる。したがって、BTESEthyの分離機能は損なわれることがないので、長時間の連続使用にも用い得ることがわかる。   The result is shown in FIG. It can be seen that the water permeability and rejection with time are almost constant and unchanged. Therefore, it can be seen that the separation function of BTESEthy is not impaired and can be used for continuous use for a long time.

逆浸透膜フィルタは、海水から純水を分離する等、様々な液体の分離に利用可能である。   The reverse osmosis membrane filter can be used for separation of various liquids such as separation of pure water from seawater.

Claims (4)

−Si− −Si−結合、又は、−Si−C −Si−結合を有する無機有機ハイブリッド逆浸透膜を備え
NaCl水溶液のNaCl阻止率が95%以上の特性を備える、
ことを特徴とする逆浸透膜フィルタ。
(上記NaCl阻止率は、(1−C /C )×100により求められる値であり、C は透過NaCl水溶液のNaCl濃度、C は供給NaCl水溶液のNaCl濃度を表す。)
An inorganic-organic hybrid reverse osmosis membrane having a —Si— C 2 H 4 —Si— bond or a —Si—C 2 H 2 —Si— bond ,
The NaCl blocking rate of the NaCl aqueous solution has a characteristic of 95% or more.
The reverse osmosis membrane filter characterized by the above-mentioned.
(The NaCl rejection is a value determined by (1−C p / C f ) × 100, where C p represents the NaCl concentration of the permeable NaCl aqueous solution, and C f represents the NaCl concentration of the supplied NaCl aqueous solution .)
多孔質基材上に前記無機有機ハイブリッド逆浸透膜を備える、
ことを特徴とする請求項1に記載の逆浸透膜フィルタ。
Comprising the inorganic-organic hybrid reverse osmosis membrane on a porous substrate;
The reverse osmosis membrane filter according to claim 1 .
前記多孔質基材が無機多孔質基材である、
ことを特徴とする請求項に記載の逆浸透膜フィルタ。
The porous substrate is an inorganic porous substrate;
The reverse osmosis membrane filter according to claim 2 .
前記無機多孔質基材と前記無機有機ハイブリッド逆浸透膜との間に、前記多孔質基材の細孔より小さく前記無機有機ハイブリッド逆浸透膜の細孔よりも大きい細孔を有する中間層を備える、
ことを特徴とする請求項に記載の逆浸透膜フィルタ。
An intermediate layer having pores smaller than the pores of the porous substrate and larger than the pores of the inorganic organic hybrid reverse osmosis membrane is provided between the inorganic porous substrate and the inorganic-organic hybrid reverse osmosis membrane. ,
The reverse osmosis membrane filter according to claim 3 .
JP2012112239A 2011-05-16 2012-05-16 Reverse osmosis membrane filter Active JP5900959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112239A JP5900959B2 (en) 2011-05-16 2012-05-16 Reverse osmosis membrane filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011109677 2011-05-16
JP2011109677 2011-05-16
JP2012112239A JP5900959B2 (en) 2011-05-16 2012-05-16 Reverse osmosis membrane filter

Publications (2)

Publication Number Publication Date
JP2012254449A JP2012254449A (en) 2012-12-27
JP5900959B2 true JP5900959B2 (en) 2016-04-06

Family

ID=47526535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112239A Active JP5900959B2 (en) 2011-05-16 2012-05-16 Reverse osmosis membrane filter

Country Status (1)

Country Link
JP (1) JP5900959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854580A (en) * 2017-05-11 2018-11-23 苏州赛比膜分离科技有限公司 A kind of preparation method of the inorganic microporous silicon composite membrane of sulfonated polyether sulfone/porous polysulfones organic film support

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474583B2 (en) * 2013-10-30 2019-02-27 国立大学法人広島大学 Method for manufacturing separation filter
JP7032052B2 (en) * 2016-05-11 2022-03-08 信越化学工業株式会社 Silicone resin film and its manufacturing method, and semiconductor device manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855004A (en) * 1981-09-28 1983-04-01 Mitsubishi Chem Ind Ltd Separating membrane for gas
JP2004275943A (en) * 2003-03-18 2004-10-07 Kyocera Corp Fluid separation filter and method for manufacturing the same
JP4250473B2 (en) * 2003-07-29 2009-04-08 京セラ株式会社 Method for manufacturing fluid separation filter
JP2005095851A (en) * 2003-08-26 2005-04-14 Kyocera Corp Fluid separation filter and its production method
JP2005111429A (en) * 2003-10-10 2005-04-28 Toray Ind Inc Composite semipermeable membrane and production method therefor
JP5009307B2 (en) * 2006-01-16 2012-08-22 スティヒティング エネルギーオンダーゾーク セントラム ネーデルランド Microporous molecular separation membrane with high hydrothermal stability
DE102009002130A1 (en) * 2009-04-02 2010-10-14 Wacker Chemie Ag Membranes based on polyvinyl alcohol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854580A (en) * 2017-05-11 2018-11-23 苏州赛比膜分离科技有限公司 A kind of preparation method of the inorganic microporous silicon composite membrane of sulfonated polyether sulfone/porous polysulfones organic film support

Also Published As

Publication number Publication date
JP2012254449A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
Ghanbari et al. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination
Cui et al. Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: synthesis, modifications, and post-treatment
JP6132276B2 (en) Method for producing reverse osmosis separation membrane excellent in salt removal rate and permeation flow rate characteristics
Choi et al. Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization
Younas et al. Super-hydrophilic and fouling resistant PVDF ultrafiltration membranes based on a facile prefabricated surface
Li et al. Recent developments in reverse osmosis desalination membranes
Rastgar et al. Novel dimensionally controlled nanopore forming template in forward osmosis membranes
KR101967262B1 (en) Composite semipermeable membrane
KR101114537B1 (en) Method of preparing a highly durable reverse osmosis membrane
JP2019500212A (en) Permselective graphene oxide membrane
Xu et al. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties
JP6474583B2 (en) Method for manufacturing separation filter
KR20160027196A (en) Multiple channel membranes
Chen et al. Organic–inorganic composite pervaporation membranes prepared by self-assembly of polyelectrolyte multilayers on macroporous ceramic supports
US11383206B2 (en) Water treatment membrane and method of making water treatment membranes
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
Teow et al. Mixed-matrix membrane for humic acid removal: influence of different types of TiO2 on membrane morphology and performance
Gong et al. Reverse osmosis performance of layered-hybrid membranes consisting of an organosilica separation layer on polymer supports
JP5900959B2 (en) Reverse osmosis membrane filter
Puthai et al. Development and permeation properties of SiO2-ZrO2 nanofiltration membranes with a MWCO of< 200
Salehi et al. Polyethersulfone–quaternary graphene oxide–sulfonated polyethersulfone as a high-performance forward osmosis membrane support layer
Kanagaraj et al. Noncovalently functionalized sulfated castor oil–graphene oxide-strengthened polyetherimide composite membranes for superior separation of organic pollutants and their fouling mitigation
Islam et al. High flux and antifouling thin-film nanocomposite forward osmosis membrane with ingrained silica nanoparticles
Arribas et al. Novel and emerging membranes for water treatment by hydrostatic pressure and vapor pressure gradient membrane processes
Yang et al. Polyamide membranes enabled by covalent organic framework nanofibers for efficient reverse osmosis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5900959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250