JP6474583B2 - Method for manufacturing separation filter - Google Patents

Method for manufacturing separation filter Download PDF

Info

Publication number
JP6474583B2
JP6474583B2 JP2014220030A JP2014220030A JP6474583B2 JP 6474583 B2 JP6474583 B2 JP 6474583B2 JP 2014220030 A JP2014220030 A JP 2014220030A JP 2014220030 A JP2014220030 A JP 2014220030A JP 6474583 B2 JP6474583 B2 JP 6474583B2
Authority
JP
Japan
Prior art keywords
separation filter
separation
manufacturing
ntr7450
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014220030A
Other languages
Japanese (ja)
Other versions
JP2015110218A (en
Inventor
稔了 都留
稔了 都留
金輝 王
金輝 王
ゲンハオ ゴン
ゲンハオ ゴン
正言 金指
正言 金指
朋久 吉岡
朋久 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2014220030A priority Critical patent/JP6474583B2/en
Publication of JP2015110218A publication Critical patent/JP2015110218A/en
Application granted granted Critical
Publication of JP6474583B2 publication Critical patent/JP6474583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、分離フィルタの製造方法に関する。   The present invention relates to a method for manufacturing a separation filter.

液体又は気体からの目的物の捕集、分離する際や海水から純水を得る際に、透過選択性を有する分離膜が広く利用されている。シリカなどのセラミック材料を含む無機膜は優れた気体的強度、耐熱性、耐溶剤性を有することから、多孔質膜材料として研究、開発がなされ、近年では、高分子膜をしのぐ高い分離性、透過性を示すことが明らかになってきている。一方で、無機膜は、モジュールあたりの重量が重いこと、硬さ、脆さなどの欠点がある。   Separation membranes having permselectivity are widely used when collecting and separating a target substance from liquid or gas or when obtaining pure water from seawater. Since inorganic membranes containing ceramic materials such as silica have excellent gas strength, heat resistance, and solvent resistance, they have been researched and developed as porous membrane materials. In recent years, high separation properties that surpass polymer membranes, It has become clear to show permeability. On the other hand, inorganic membranes have drawbacks such as heavy weight per module, hardness, and brittleness.

このため、有機基材と無機或いは無機有機ハイブリッド材料による分離層とを組み合わせ、軽さ、柔軟性を備えた分離膜の開発が試みられている。例えば、非特許文献1では、有機基材上にハイブリッドシリカ膜を形成する試みが行われている。この分離膜は、プラズマCVD(Chemical Vapor Deposition)法を利用し、ポリアミドイミド上にハイブリッドシリカ膜(製膜原料:ビストリエトキシシリルエタン(BTESE))を形成している。   For this reason, an attempt has been made to develop a separation membrane having lightness and flexibility by combining an organic base material and a separation layer made of an inorganic or inorganic-organic hybrid material. For example, in Non-Patent Document 1, an attempt is made to form a hybrid silica film on an organic substrate. This separation membrane uses a plasma CVD (Chemical Vapor Deposition) method to form a hybrid silica membrane (film forming raw material: bistriethoxysilylethane (BTESE)) on polyamideimide.

特開2012−254449号公報JP 2012-254449 A

Patrick H. T. Ngamou, et al.; Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges; Journal of Materials Chemistry A, 05 March 2013, 5567-5576Patrick H. T. Ngamou, et al .; Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges; Journal of Materials Chemistry A, 05 March 2013, 5567-5576

非特許文献1のプラズマCVD法による製膜では、製膜原料であるBTESEにおけるSi−C−C−Si結合が消失してしまい、30%程度しか残っていない。即ち、Si−C−C−Si結合が酸素原子を介する結合で形成される細孔の形成が不十分であるという問題がある。また、プラズマCVD法では、高価な装置を必要とするので、分離膜の製造コストが高いという問題もある。   In film formation by the plasma CVD method of Non-Patent Document 1, the Si—C—C—Si bond in BTESE, which is a film forming raw material, disappears, and only about 30% remains. That is, there is a problem that formation of pores in which Si—C—C—Si bonds are formed by bonds through oxygen atoms is insufficient. In addition, since the plasma CVD method requires an expensive apparatus, there is a problem that the manufacturing cost of the separation membrane is high.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、製膜原料のSi−X−Si結合(Xは直鎖状飽和アルキル鎖或いは直鎖状不飽和アルキル鎖)が維持され、また、製造コストの安い分離フィルタの製造方法を提供することにある。   The present invention has been made in view of the above matters, and the object of the present invention is that the Si—X—Si bond (X is a linear saturated alkyl chain or a linear unsaturated alkyl chain) of the film forming raw material. An object of the present invention is to provide a method of manufacturing a separation filter that is maintained and low in manufacturing cost.

本発明に係る分離フィルタの製造方法は、
(RO)Si−X−Si(OR)で表される化合物と水を含む溶媒とを混合してポリマーゾルを調製するポリマーゾル調製工程と、
前記ポリマーゾルを膜状又は中空状の多孔質から構成され細孔径が1〜3nmの耐熱性高分子支持体上に塗布する塗布工程と、
焼成して前記耐熱性高分子支持体上に−Si−X−Si−結合を有する無機有機ハイブリッド膜を形成する焼成工程と、を含む、
ことを特徴とする。
(上記Xは、1つ以上の水素が置換されていてもよい直鎖状飽和炭化水素鎖又は直鎖状不飽和炭化水素鎖を表し、Rはアルキル基を表す。)
A method for producing a separation filter according to the present invention includes:
A polymer sol preparation step of preparing a polymer sol by mixing a compound represented by (RO) 3 Si—X—Si (OR) 3 and a solvent containing water;
An application step of applying the polymer sol on a heat-resistant polymer support composed of a film-like or hollow porous material having a pore diameter of 1 to 3 nm ;
Firing to form an inorganic-organic hybrid film having —Si—X—Si— bonds on the heat-resistant polymer support.
It is characterized by that.
(The above X represents a linear saturated hydrocarbon chain or a linear unsaturated hydrocarbon chain in which one or more hydrogens may be substituted, and R represents an alkyl group.)

前記耐熱性高分子支持体がポリスルホン、ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、ポリイミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン及びこれらの誘導体からなる群から選択される高分子化合物から形成されていることが好ましい。   The heat-resistant polymer support is formed from a polymer compound selected from the group consisting of polysulfone, polyethersulfone, sulfonated polysulfone, sulfonated polyethersulfone, polyimide, polytetrafluoroethylene, polyvinylidene fluoride, and derivatives thereof. It is preferable that

また、100℃より高く400℃より低い温度で焼成することが好ましい。   Moreover, it is preferable to bake at a temperature higher than 100 ° C. and lower than 400 ° C.

また、100℃以上200℃以下で焼成することが好ましい。   Moreover, it is preferable to bake at 100 degreeC or more and 200 degrees C or less.

本発明に係る分離フィルタの製造方法では、製膜原料のSi−X−Si結合が維持され、Si−X−Si結合が酸素原子を介する結合で形成される細孔が十分に形成される。また、高価な装置を用いずに分離フィルタを製造できることから、製造コストが安いという利点がある。   In the method for manufacturing a separation filter according to the present invention, the Si—X—Si bond of the film forming raw material is maintained, and the pores in which the Si—X—Si bond is formed by a bond through an oxygen atom are sufficiently formed. Moreover, since the separation filter can be manufactured without using an expensive device, there is an advantage that the manufacturing cost is low.

分離フィルタの製造方法の工程図である。It is process drawing of the manufacturing method of a separation filter. 無機有機ハイブリッド膜の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of an inorganic organic hybrid film | membrane. 図3(A)はSPES多孔膜の表面、図3(B)はNTR7450−BTESE150の表面を示すSEM写真である。3A is a SEM photograph showing the surface of the SPES porous film, and FIG. 3B is a SEM photograph showing the surface of NTR7450-BTESE150. 図4(A)はSPES多孔膜の断面、図4(B)はNTR7450−BTESE150の断面を示すSEM写真である。4A is a cross-sectional view of the SPES porous membrane, and FIG. 4B is a SEM photograph showing a cross-section of NTR7450-BTESE150. 実験に用いた装置の概略構成図である。It is a schematic block diagram of the apparatus used for experiment. 分離係数と焼成温度との関係を示すグラフである。It is a graph which shows the relationship between a separation factor and a calcination temperature. NTR7450−150の水及びIPAの流量の経時変化を示すグラフ(図7(A))、分離係数の経時変化を示すグラフ(図7(B))である。It is the graph (FIG. 7 (A)) which shows the time-dependent change of the flow rate of water and IPA of NTR7450-150, and the graph (FIG. 7 (B)) which shows the time-dependent change of the separation coefficient. NTR7450−BTESE150の水及びIPAの流量の経時変化を示すグラフ(図8(A))、分離係数の経時変化を示すグラフ(図8(B))である。It is a graph (FIG. 8 (A)) which shows the time-dependent change of the flow rate of water and IPA of NTR7450-BTESE150, and a graph (FIG. 8 (B)) which shows the time-dependent change of the separation coefficient. NTR7450−200の水及びIPAの流量の経時変化を示すグラフ(図9(A))、分離係数の経時変化を示すグラフ(図9(B))である。FIG. 9 is a graph showing changes over time in the flow rates of water and IPA of NTR7450-200 (FIG. 9A), and a graph showing changes over time in the separation coefficient (FIG. 9B). NTR7450−BTESE200の水及びIPAの流量の経時変化を示すグラフ(図10(A))、分離係数の経時変化を示すグラフ(図10(B))である。It is a graph (FIG. 10 (A)) which shows the time-dependent change of the flow rate of water and IPA of NTR7450-BTESE200, and a graph (FIG. 10 (B)) which shows the time-dependent change of the separation coefficient. 図11(A)はPSf多孔膜の表面、図11(B)はPSf−BTESE150の表面を示すSEM写真である。11A is a SEM photograph showing the surface of the PSf porous film, and FIG. 11B is a SEM photograph showing the surface of PSf-BTESE150. 図12(A)はPSf多孔膜の断面、図12(B)はPSf−BTESE150の断面を示すSEM写真である。12A is a SEM photograph showing a cross section of the PSf porous film, and FIG. 12B is a SEM photograph showing a cross section of PSf-BTESE150. PSf−BTESE150の水及びIPAの流量の経時変化を示すグラフ(図13(A))、分離係数の経時変化を示すグラフ(図13(B))である。It is a graph (FIG. 13 (A)) which shows the time-dependent change of the flow volume of water and IPA of PSf-BTESE150, and a graph (FIG. 13 (B)) which shows the time-dependent change of the separation coefficient. NTR7410−150−2の水透過係数及びNaClの阻止率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the water permeability coefficient of NTR7410-150-2, and the rejection rate of NaCl. NTR7410−BTESE150−2の水透過係数及びNaClの阻止率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the water permeation coefficient of NTR7410-BTESE150-2, and the rejection of NaCl.

本発明の実施の形態に係る分離フィルタの製造方法は、基材である高分子支持体上に分離層として機能する無機有機ハイブリッド膜を形成する方法であり、図1の工程図に示すように、ポリマーゾル調製工程と、塗布工程と、焼成工程と、から構成される。   A method for producing a separation filter according to an embodiment of the present invention is a method of forming an inorganic-organic hybrid membrane that functions as a separation layer on a polymer support that is a base material. As shown in the process diagram of FIG. And a polymer sol preparation step, a coating step, and a baking step.

(ポリマーゾル調製工程)
(RO)SiXSi(OR)で表される化合物と水を含む溶媒とを混合してポリマーゾルを調製する。上式中、Rはアルキル基を表し、例えば、メチル基、エチル基、プロピル基等が挙げられる。
(Polymer sol preparation process)
A polymer sol is prepared by mixing a compound represented by (RO) 3 SiXSi (OR) 3 and a solvent containing water. In the above formula, R represents an alkyl group, and examples thereof include a methyl group, an ethyl group, and a propyl group.

また、上式中、Xは、1つ以上の水素が置換されていてもよい直鎖状飽和炭化水素鎖又は直鎖状不飽和炭化水素鎖を表し、Xは直鎖状飽和炭化水素残基、直鎖状オレフィン系炭化水素残基又は直鎖状アセチレン系炭化水素残基であることが好ましい。例えば、−C2n−で表される直鎖状飽和炭化水素残基や、−C(2n−2)−で表される直鎖状オレフィン系炭化水素残基、−C(2n−4)−で表される直鎖状アセチレン系炭化水素残基が挙げられる。この場合、直鎖状飽和炭化水素残基のn、即ち、炭素数は1以上6以下であることが好ましく、より好ましくは1以上4以下である。また、直鎖状オレフィン系炭化水素残基及び直鎖状アセチレン系炭化水素残基のnは2以上6以下であることが好ましく、より好ましくは、炭素数が2以上4以下である。炭化水素鎖が長いと折れ曲がった構造になり、形成される無機有機ハイブリッド膜の細孔径が不均一になりやすく、分離フィルタとして機能しなくなるおそれがあるためである。 In the above formula, X represents a linear saturated hydrocarbon chain or a linear unsaturated hydrocarbon chain in which one or more hydrogen atoms may be substituted, and X represents a linear saturated hydrocarbon residue. A linear olefinic hydrocarbon residue or a linear acetylene hydrocarbon residue is preferable. For example, -C n H 2n - in or linear saturated hydrocarbon residues represented, -C n H (2n-2 ) - a linear olefinic hydrocarbon residue represented, -C n H And a linear acetylene hydrocarbon residue represented by (2n-4) -. In this case, n of the linear saturated hydrocarbon residue, that is, the number of carbon atoms is preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less. Further, n of the linear olefinic hydrocarbon residue and the linear acetylene hydrocarbon residue is preferably 2 or more and 6 or less, more preferably 2 or more and 4 or less. This is because if the hydrocarbon chain is long, the structure becomes bent, the pore diameter of the formed inorganic-organic hybrid membrane tends to be non-uniform, and it may not function as a separation filter.

(RO)SiXSi(OR)で表される化合物の具体例としては、例えば、ビストリエトキシシリルエタン、ビストリエトキシシリルブタン、ビストリエトキシシリルオクタン、ビストリエトキシシリルエチレン、ビストリエトキシシリルアセチレン等が挙げられる。 Specific examples of the compound represented by (RO) 3 SiXSi (OR) 3 include, for example, bistriethoxysilylethane, bistriethoxysilylbutane, bistriethoxysilyloctane, bistriethoxysilylethylene, bistriethoxysilylacetylene, and the like. .

(RO)SiXSi(OR)で表されると水を含む溶媒とを混合することで、アルコキシ基(OR)が加水分解され、脱水縮合により、隣接する化合物同士がSi−O−Si結合で重合する。より具体的には、上記化合物を、水を含む溶媒(エタノール、プロピルアルコール等)に溶解し、触媒として酸(塩酸、硝酸等)又は塩基(アンモニア等)を添加して、加水分解と縮重合反応に十分な時間攪拌することで、ポリマーゾルが調製できる。 When represented by (RO) 3 SiXSi (OR) 3 , an alkoxy group (OR) is hydrolyzed by mixing with a solvent containing water, and adjacent compounds are bonded to each other by Si—O—Si bond by dehydration condensation. To polymerize. More specifically, the above compound is dissolved in a solvent containing water (ethanol, propyl alcohol, etc.), and an acid (hydrochloric acid, nitric acid, etc.) or a base (ammonia, etc.) is added as a catalyst, followed by hydrolysis and polycondensation. A polymer sol can be prepared by stirring for a time sufficient for the reaction.

(塗布工程)
上述のように調製されたポリマーゾルを耐熱性高分子支持体上に塗布する。ポリマーゾルの塗布は、スピンコーティング法、ディップコーティング法のほか、不織布をポリマーゾルに浸して耐熱性高分子支持体上に塗布するなど、種々の方法により行い得る。
(Coating process)
The polymer sol prepared as described above is coated on a heat resistant polymer support. The polymer sol can be applied by various methods such as spin coating and dip coating, as well as immersing a non-woven fabric in the polymer sol and applying it onto a heat resistant polymer support.

耐熱性高分子支持体は、複数の微細孔を有する多孔質から構成され、後の焼成工程にて焼成温度に耐え得る耐熱性を有するものが用いられる。耐熱性高分子支持体は、膜状や中空糸膜等の中空状のものが用いられる。耐熱性高分子支持体は、100℃以上の耐熱性を有する膜であることが好ましく、200℃以上の耐熱性を有することがより好ましい。耐熱性高分子支持体として、ポリスルホン、ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、ポリイミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、これらの誘導体が挙げられる。耐熱性高分子支持体は、市販されているもの(例えば、膜状の耐熱性高分子支持体としてNTR−7450(製品番号):日東電工株式会社)をそのまま用いてもよい。   The heat-resistant polymer support is composed of a porous material having a plurality of fine pores, and has a heat resistance that can withstand the firing temperature in the subsequent firing step. As the heat-resistant polymer support, a hollow material such as a membrane or a hollow fiber membrane is used. The heat resistant polymer support is preferably a film having a heat resistance of 100 ° C. or higher, and more preferably a heat resistance of 200 ° C. or higher. Examples of the heat resistant polymer support include polysulfone, polyethersulfone, sulfonated polysulfone, sulfonated polyethersulfone, polyimide, polytetrafluoroethylene, polyvinylidene fluoride, and derivatives thereof. As the heat-resistant polymer support, a commercially available one (for example, NTR-7450 (product number): Nitto Denko Corporation as a film-shaped heat-resistant polymer support) may be used as it is.

(焼成工程)
塗布したポリマーゾルを乾燥した後、焼成を行う。焼成を行うことにより、脱水縮合がより進行し、ネットワークが緻密になる。焼成温度は、後述の実施例から、100℃より高い温度とすることが好ましい。また、400℃以上で焼成すると、Si−X−Siのアルキル鎖が分解されてしまい、細孔が形成されなくなってしまうため、400℃より低い温度で焼成することが好ましい。更に、100℃以上200℃以下であることが好ましい。
(Baking process)
The applied polymer sol is dried and then baked. By performing the firing, the dehydration condensation further proceeds and the network becomes dense. The firing temperature is preferably set to a temperature higher than 100 ° C. from the examples described later. In addition, when firing at 400 ° C. or higher, the Si—X—Si alkyl chain is decomposed and pores are not formed. Therefore, firing at a temperature lower than 400 ° C. is preferable. Furthermore, it is preferable that it is 100 degreeC or more and 200 degrees C or less.

以上のようにして、耐熱性高分子支持体上に、−Si−X−Si−結合を有する無機有機ハイブリッド膜が形成された分離フィルタが得られる。図2に、無機有機ハイブリッド膜の模式図(図では、Si−X−Si結合がSi−C−Si結合)を示しているが、脱水縮合により形成された細孔(図2に示すpore)が、混合物の一方の物質を透過させる一方で他方の物質の透過を阻止する機能を果たす。 As described above, a separation filter in which an inorganic-organic hybrid film having a —Si—X—Si— bond is formed on a heat resistant polymer support is obtained. FIG. 2 shows a schematic diagram of an inorganic-organic hybrid film (in the figure, Si—X—Si bonds are Si—C 2 H 4 —Si bonds), but pores formed by dehydration condensation (see FIG. 2). The pore shown) serves to permeate one substance of the mixture while blocking the other substance.

上述した分離フィルタの製造方法では、プラズマCVD法のように高価な製膜装置が不要である。このため、分離フィルタの製造コストが安いという利点がある。   The separation filter manufacturing method described above does not require an expensive film forming apparatus unlike the plasma CVD method. For this reason, there exists an advantage that the manufacturing cost of a separation filter is cheap.

焼成温度をSi−X−Si結合が消失しない程度の低温で行うことにより、形成される無機有機ハイブリッド膜では、−Si−X−Si−O−結合による細孔が十分に形成される。   By performing the firing temperature at such a low temperature that Si—X—Si bonds do not disappear, in the formed inorganic-organic hybrid film, pores due to —Si—X—Si—O— bonds are sufficiently formed.

得られた分離フィルタでは、基材である耐熱性高分子支持体と無機有機ハイブリッド膜の積層構造である。耐熱性高分子支持体は高分子であるゆえ、柔軟性を備える。無機有機ハイブリッド膜も有機成分を備えることから、柔軟性に優れる。いずれも柔軟性を備えているので、分離フィルタも柔軟性に優れている。また、分離フィルタは、無機系分離膜に比べて軽量である。このため、膜状の耐熱性高分子支持体を用いて形成された平板状の分離フィルタの場合、これを巻き回して、スパイラル型モジュール等に利用することが可能である。   The obtained separation filter has a laminated structure of a heat-resistant polymer support as a base material and an inorganic-organic hybrid membrane. Since the heat-resistant polymer support is a polymer, it has flexibility. Since the inorganic-organic hybrid film also includes an organic component, it is excellent in flexibility. Since both have flexibility, the separation filter is also excellent in flexibility. Moreover, the separation filter is lighter than the inorganic separation membrane. For this reason, in the case of a flat plate-like separation filter formed using a film-like heat-resistant polymer support, it can be wound and used for a spiral type module or the like.

(分離フィルタの作製) (Preparation of separation filter)

BTESE(ビストリエトキシシリルエタン)を水に加えて撹拌し、ポリマーゾル(BTESEゾル)を調製した。なお、BTESEの重量%濃度は、5wt%であり、BTESEゾルの分子量は、Zetasizer Nano(Malverm社製)により測定したところ、5000〜20000wt/molであった。   BTESE (bistriethoxysilylethane) was added to water and stirred to prepare a polymer sol (BTESE sol). The weight% concentration of BTESE was 5 wt%, and the molecular weight of the BTESE sol was 5000 to 20000 wt / mol as measured by Zetasizer Nano (manufactured by Malverm).

SPES(sulfonated polyethersulfone)多孔膜(NaCl阻止率50%,推定細孔径1nm、NTR−7450HG(製品番号)、日東電工株式会社)をメタノール、塩酸で30分間洗浄し、イオン交換水で洗浄して乾燥した。BTESEゾルをSPES多孔膜にスピンコーティング法で塗布した。そして、窒素雰囲気下、100℃で30分間焼成した。塗布及び焼成は2回行った。このようにしてSPES多孔膜の表面に無機有機ハイブリッド膜を形成し、分離フィルタを作製した。この分離フィルタをNTR7450−BTESE100と記す。   SPES (sulfonated polyethersulfone) porous membrane (NaCl blocking rate 50%, estimated pore diameter 1 nm, NTR-7450HG (product number), Nitto Denko Corporation) was washed with methanol and hydrochloric acid for 30 minutes, washed with ion-exchanged water and dried did. BTESE sol was applied to the SPES porous film by spin coating. And it baked for 30 minutes at 100 degreeC in nitrogen atmosphere. Application and baking were performed twice. In this way, an inorganic-organic hybrid membrane was formed on the surface of the SPES porous membrane, and a separation filter was produced. This separation filter is referred to as NTR7450-BTESE100.

また、150℃で焼成する以外、上記と同様の手法で分離フィルタを作製した。この分離フィルタをNTR7450−BTESE150と記す。   Moreover, the separation filter was produced by the same method as described above except that the baking was performed at 150 ° C. This separation filter is referred to as NTR7450-BTESE150.

また、200℃で焼成する以外、上記と同様の手法で分離フィルタを作製した。この分離フィルタをNTR7450−BTESE200と記す。   Moreover, the separation filter was produced by the same method as described above except that baking was performed at 200 ° C. This separation filter is referred to as NTR7450-BTESE200.

また、参照例として、5%BTESEゾルの塗布を行わずに、SPEF多孔膜を上記と同様に100℃、150℃、200℃でそれぞれ焼成を行ったものを準備した。これらをそれぞれNTR7450−100、NTR7450−150、NTR7450−200と記す。   In addition, as a reference example, a SPEF porous membrane was fired at 100 ° C., 150 ° C., and 200 ° C. in the same manner as described above without applying 5% BTESE sol. These are referred to as NTR7450-100, NTR7450-150, and NTR7450-200, respectively.

SPES多孔膜の表面のSEM写真、作製したNTR7450−BTESE150の表面のSEM写真をそれぞれ図3(A)、(B)に示す。また、SPES多孔膜の断面のSEM写真、NTR7450−BTESE150の断面のSEM写真を図4(A)、(B)にそれぞれ示す。BTESEゾルのコーティング及び焼成により、SPES多孔膜の表面上に無機有機ハイブリッド膜が形成されていることがわかる。   An SEM photograph of the surface of the SPES porous film and an SEM photograph of the surface of the produced NTR7450-BTES150 are shown in FIGS. 3 (A) and 3 (B), respectively. Moreover, the SEM photograph of the cross section of SPES porous film and the SEM photograph of the cross section of NTR7450-BTESE150 are shown to FIG. 4 (A) and (B), respectively. It can be seen that an inorganic-organic hybrid film is formed on the surface of the SPES porous film by the coating and baking of the BTESE sol.

続いて、図5に示す装置を用い、作製した分離フィルタの分離能について検証した。   Subsequently, the separation ability of the produced separation filter was verified using the apparatus shown in FIG.

真空ポンプの吸引圧を−95kPaとし、フィードタンクに充填した90wt%イソプロピルアルコール水溶液(以下、IPA水溶液)を吸引して、分離フィルタにIPA水溶液を透過させた。そして、液体窒素を用いたコールドトラップで分離フィルタを透過したIPA及び水を捕集した。なお、オーブン温度105℃で加温し、分離フィルタの温度が103℃の状態で行った。   The suction pressure of the vacuum pump was -95 kPa, 90 wt% isopropyl alcohol aqueous solution (hereinafter, IPA aqueous solution) filled in the feed tank was sucked, and the IPA aqueous solution was permeated through the separation filter. And IPA and water which permeate | transmitted the separation filter with the cold trap using liquid nitrogen were collected. The heating was performed at an oven temperature of 105 ° C., and the separation filter was at a temperature of 103 ° C.

そして、分離フィルタを透過したIPA及び水の流量及びモル濃度を測定するとともに、分離係数(セパレーションファクター)を算出した。分離係数は数値が高いほど分離する目的物質の選択性が高いことを示す。なお、分離係数は、以下の式により決定した。
分離係数=(Y/Y)/(X/X
上式中、Y、Yは、それぞれ分離フィルタの下流側の水のモル濃度、IPAのモル濃度を表し、X、Xは、それぞれ分離フィルタの上流側の水のモル濃度、IPAのモル濃度を表す。
And while measuring the flow volume and molar concentration of IPA and water which permeate | transmitted the separation filter, the separation factor (separation factor) was computed. The higher the value of the separation factor, the higher the selectivity of the target substance to be separated. The separation factor was determined by the following formula.
Separation factor = (Y W / Y A ) / (X W / X A )
In the above formula, Y W and Y A represent the molar concentration of water downstream of the separation filter and the molar concentration of IPA, respectively. X W and X A represent the molar concentration of water upstream of the separation filter and IPA, respectively. Represents the molar concentration of.

図6に分離係数と焼成温度との関係を示すとともに、表1に流量及び分離係数を示す。また、図7(A)、(B)にNTR7450−150における流量の経時変化、分離係数の経時変化をそれぞれ示す。また、図8(A)、(B)にNTR7450−BTESE150における流量の経時変化、分離係数の経時変化をそれぞれ示す。また、図9(A)、(B)にNTR7450−200における流量の経時変化、分離係数の経時変化を、図10(A)、(B)にNTR7450−BTESE200における流量の経時変化、分離係数の経時変化をそれぞれ示す。   FIG. 6 shows the relationship between the separation factor and the firing temperature, and Table 1 shows the flow rate and the separation factor. FIGS. 7A and 7B show the change with time of the flow rate and the change with time of the separation coefficient in NTR7450-150, respectively. FIGS. 8A and 8B show the change over time in the flow rate and the change over time in the separation coefficient in NTR7450-BTESE150, respectively. FIGS. 9A and 9B show the change over time in the flow rate and separation coefficient of the NTR7450-200 in FIGS. 9A and 10B, and FIGS. Each change over time is shown.

NTR7450−BTESE100、NTR7450−BTESE150、NTR7450−BTESE200では、NTR7450−100、NTR7450−150、NTR7450−200に比べて、いずれもそれぞれ分離係数が大きくなっており、IPAの透過を阻止しており、選択性が大幅に向上していることがわかる。BTESEを塗布して焼成したことで、緻密なネットワークの無機有機ハイブリッド膜が形成されたためである。なお、NTR7450−200でも分離係数が向上しているが、焼成によりSPES自身に形成されている孔が小さくなったものと考えられる。   NTR7450-BTESE100, NTR7450-BTESE150, and NTR7450-BTESE200 all have higher separation factors than NTR7450-100, NTR7450-150, and NTR7450-200, respectively, and prevent IPA transmission. It can be seen that is significantly improved. This is because a dense network inorganic-organic hybrid film was formed by applying BTESE and baking. NTR7450-200 also has an improved separation factor, but it is thought that the holes formed in SPES itself have been reduced by firing.

また、図7〜図10の分離フィルタを通過する水、IPAの流量並びに分離係数の経時変化を見ても、時間による変化はさほどなく、ほぼ一定の値で推移している。したがって、長時間の使用においても一定の分離能を発揮する耐性を備えていることがわかる。   Moreover, even if the time-dependent change of the water which passes the separation filter of FIGS. 7-10, the flow volume of IPA, and a separation coefficient is seen, there are not many changes with time, and it has changed by the substantially constant value. Therefore, it can be seen that even when used for a long time, it has a resistance to exhibit a certain resolution.

耐熱性高分子支持体として、NTR−7450HGに代えて、NTR−7410HG(製品番号、日東電工株式会社;NaCl阻止率10%,推定細孔径2−3nm)を用い、実施例1と同様にして分離フィルタを作製した。なお、焼成温度は100℃、150℃とした。この分離フィルタをNTR7410−BTESE100、NTR7410−BTESE150と記す。   In place of NTR-7450HG, NTR-7410HG (product number, Nitto Denko Corporation; NaCl rejection 10%, estimated pore diameter 2-3 nm) was used as the heat-resistant polymer support in the same manner as in Example 1. A separation filter was produced. The firing temperature was 100 ° C. and 150 ° C. This separation filter is referred to as NTR7410-BTESE100 and NTR7410-BTESE150.

また、参照例として、5%BTESEゾルの塗布を行わずに、NTR7410を実施例1と同様にして100℃、150℃でそれぞれ焼成を行ったものを準備した。これらをそれぞれNTR7410−100、NTR7410−150と記す。   As a reference example, NTR7410 was fired at 100 ° C. and 150 ° C. in the same manner as in Example 1 without applying 5% BTESE sol. These are referred to as NTR7410-100 and NTR7410-150, respectively.

作製したそれぞれの分離フィルタの分離能について、実施例1と同様、上述した図5の装置、IPA水溶液を用い、上記と同様の条件にてIPAの分離を行った。表2に、それぞれの流量及び分離係数を示す。   About the separation power of each produced separation filter, the separation of IPA was performed under the same conditions as described above using the apparatus of FIG. Table 2 shows the respective flow rates and separation factors.

NTR7410−BTESE100、NTR7410−BTESE150では、NTR7410−100、NTR7410−150に比べて、それぞれ分離係数が大きくなっていることから、IPAの透過を阻止しており、選択性が大幅に向上していることがわかる。   NTR7410-BTESE100 and NTR7410-BTESE150 have higher separation factors than NTR7410-100 and NTR7410-150, respectively, which prevents IPA permeation and greatly improves selectivity. I understand.

また、耐熱性高分子支持体として、PSf(polysulfone)多孔膜(pore size:30−40nm)を準備し、メタノール、塩酸で30分間洗浄し、イオン交換水で洗浄して乾燥した。BTESEゾルをPSf多孔膜にスピンコーティング法で塗布した。そして、窒素雰囲気下、150℃で20分間焼成した。塗布及び焼成は5回行った。このようにして分離フィルタを作製した。この分離フィルタをPSf−BTESE150と記す。   Further, a PSf (polysulfone) porous membrane (pore size: 30-40 nm) was prepared as a heat resistant polymer support, washed with methanol and hydrochloric acid for 30 minutes, washed with ion-exchanged water and dried. BTESE sol was applied to the PSf porous film by spin coating. And it baked for 20 minutes at 150 degreeC in nitrogen atmosphere. Coating and baking were performed 5 times. In this way, a separation filter was produced. This separation filter is referred to as PSf-BTESE150.

PSf多孔膜の表面のSEM写真、PSf−BTESE150の表面のSEM写真をそれぞれ図11(A)、(B)に示す。また、PSf多孔膜の断面のSEM写真、PSf−BTESE150の断面のSEM写真を図12(A)、(B)にそれぞれ示す。PSf多孔膜の表面上に無機有機ハイブリッド膜が形成されていることがわかる。   FIGS. 11A and 11B show an SEM photograph of the surface of the PSf porous film and an SEM photograph of the surface of PSf-BTESE 150, respectively. Moreover, the SEM photograph of the cross section of a PSf porous film and the SEM photograph of the cross section of PSf-BTESE150 are shown to FIG. 12 (A) and (B), respectively. It can be seen that an inorganic-organic hybrid film is formed on the surface of the PSf porous film.

作製した分離フィルタの分離能について、上述した図5の装置、IPA水溶液を用い、上記と同様の条件にてIPAの分離を行った。   Regarding the separation ability of the produced separation filter, IPA was separated under the same conditions as described above using the apparatus of FIG. 5 described above and the IPA aqueous solution.

表3に、PSf150及びPSf−BTESE150の流量及び分離係数を示す。また、図13(A)、(B)にPSf−BTESE150における水及びIPAの流量の経時変化、分離係数の経時変化をそれぞれ示す。   Table 3 shows the flow rate and separation factor of PSf150 and PSf-BTESE150. FIGS. 13A and 13B show the change with time of the flow rates of water and IPA and the change with time of the separation coefficient in PSf-BTESE 150, respectively.

PSf150では、分離係数が1であり、IPAを分離できていなかった。一方、PSf−BTESE150では、分離係数が762と向上しており、PSf多孔膜上に無機有機ハイブリッド膜を形成することで選択性が大幅に向上していることがわかる。また、経時変化を見ても、分離係数、流量ともにほぼ一定に推移しており、長時間の使用においても一定の分離能を発揮する耐性を備えていることがわかる。   In PSf150, the separation factor was 1, and IPA could not be separated. On the other hand, in PSf-BTESE150, the separation factor is improved to 762, and it can be seen that the selectivity is greatly improved by forming the inorganic-organic hybrid membrane on the PSf porous membrane. Moreover, even if it sees a time-dependent change, it turns out that the separation factor and the flow volume are substantially constant, and it has the tolerance to exhibit a constant separation ability even when used for a long time.

NTR−7450HG、NTR−7410HGを用い、焼成時間を15分間とした以外、実施例1と同様にして分離フィルタをそれぞれ作製した。なお、焼成温度は150℃とした。作製した分離フィルタをそれぞれNTR7450−BTESE150−2、NTR7410−BTESE150−2と記す。   Separation filters were produced in the same manner as in Example 1 except that NTR-7450HG and NTR-7410HG were used and the firing time was 15 minutes. The firing temperature was 150 ° C. The produced separation filters are referred to as NTR7450-BTES150-2 and NTR7410-BTES150-2, respectively.

また、参照例として、5%BTESEゾルの塗布を行わずに、上記と同様にしてNTR7450、NTR7410を実施例1と同様に150℃でそれぞれ焼成した。これをそれぞれNTR7450−150−2、NTR7410−150−2と記す。   Further, as a reference example, NTR7450 and NTR7410 were fired at 150 ° C. in the same manner as in Example 1 without applying 5% BTESE sol in the same manner as described above. These are referred to as NTR7450-150-2 and NTR7410-150-2, respectively.

作成したそれぞれの分離フィルタについて、25℃、フィード圧1.5MPaの条件でNaCl水溶液(2000ppm)を流し、水透過係数及びNaClの阻止率を測定した。その結果を表4に示す。また、NTR7410−150−2の水透過係数及びNaClの阻止率の経時変化を図14に、NTR7410−BTESE150−2の水透過係数及びNaClの阻止率の経時変化を図15に示す。   About each created separation filter, NaCl aqueous solution (2000 ppm) was flowed on 25 degreeC and feed pressure 1.5MPa conditions, and the water permeability coefficient and the rejection rate of NaCl were measured. The results are shown in Table 4. FIG. 14 shows changes with time of the water permeability coefficient and NaCl rejection of NTR7410-150-2, and FIG. 15 shows changes with time of the water permeability coefficient and NaCl rejection of NTR7410-BTES150-2.

NTR7450−BTESE150−2、NTR7410−BTESE150−2では、NTR7450−150−2、NTR7410−150−2に比べ、NaClの阻止率が大幅に向上しており、逆浸透膜としても利用できることを確認した。   In NTR7450-BTESE150-2 and NTR7410-BTESE150-2, compared with NTR7450-150-2 and NTR7410-150-2, it confirmed that the rejection rate of NaCl was improved and it can be used also as a reverse osmosis membrane.

本発明に係る分離フィルタの製造方法で製造された分離膜は、液体又は気体からの目的物の捕集、分離や逆浸透膜等に利用可能である。   The separation membrane manufactured by the method for manufacturing a separation filter according to the present invention can be used for collection, separation, reverse osmosis membrane, and the like of a target substance from a liquid or gas.

Claims (4)

(RO)Si−X−Si(OR)で表される化合物と水を含む溶媒とを混合してポリマーゾルを調製するポリマーゾル調製工程と、
前記ポリマーゾルを膜状又は中空状の多孔質から構成され細孔径が1〜3nmの耐熱性高分子支持体上に塗布する塗布工程と、
焼成して前記耐熱性高分子支持体上に−Si−X−Si−結合を有する無機有機ハイブリッド膜を形成する焼成工程と、を含む、
ことを特徴とする分離フィルタの製造方法。
(上記Xは、1つ以上の水素が置換されていてもよい直鎖状飽和炭化水素鎖又は直鎖状不飽和炭化水素鎖を表し、Rはアルキル基を表す。)
A polymer sol preparation step of preparing a polymer sol by mixing a compound represented by (RO) 3 Si—X—Si (OR) 3 and a solvent containing water;
An application step of applying the polymer sol on a heat-resistant polymer support composed of a film-like or hollow porous material having a pore diameter of 1 to 3 nm ;
Firing to form an inorganic-organic hybrid film having —Si—X—Si— bonds on the heat-resistant polymer support.
A method for manufacturing a separation filter.
(The above X represents a linear saturated hydrocarbon chain or a linear unsaturated hydrocarbon chain in which one or more hydrogens may be substituted, and R represents an alkyl group.)
前記耐熱性高分子支持体がポリスルホン、ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、ポリイミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン及びこれらの誘導体からなる群から選択される高分子化合物から形成されている、
ことを特徴とする請求項1に記載の分離フィルタの製造方法。
The heat-resistant polymer support is formed from a polymer compound selected from the group consisting of polysulfone, polyethersulfone, sulfonated polysulfone, sulfonated polyethersulfone, polyimide, polytetrafluoroethylene, polyvinylidene fluoride, and derivatives thereof. Being
The method for manufacturing a separation filter according to claim 1.
100℃より高く400℃より低い温度で焼成する、
ことを特徴とする請求項1又は2に記載の分離フィルタの製造方法。
Firing at a temperature higher than 100 ° C. and lower than 400 ° C.
The method for manufacturing a separation filter according to claim 1 or 2.
100℃以上200℃以下で焼成する、
ことを特徴とする請求項3に記載の分離フィルタの製造方法。
Firing at 100 ° C. or more and 200 ° C. or less,
The method for manufacturing a separation filter according to claim 3.
JP2014220030A 2013-10-30 2014-10-29 Method for manufacturing separation filter Active JP6474583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014220030A JP6474583B2 (en) 2013-10-30 2014-10-29 Method for manufacturing separation filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013225304 2013-10-30
JP2013225304 2013-10-30
JP2014220030A JP6474583B2 (en) 2013-10-30 2014-10-29 Method for manufacturing separation filter

Publications (2)

Publication Number Publication Date
JP2015110218A JP2015110218A (en) 2015-06-18
JP6474583B2 true JP6474583B2 (en) 2019-02-27

Family

ID=53525555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014220030A Active JP6474583B2 (en) 2013-10-30 2014-10-29 Method for manufacturing separation filter

Country Status (1)

Country Link
JP (1) JP6474583B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854580A (en) * 2017-05-11 2018-11-23 苏州赛比膜分离科技有限公司 A kind of preparation method of the inorganic microporous silicon composite membrane of sulfonated polyether sulfone/porous polysulfones organic film support
CN107445378A (en) * 2017-08-25 2017-12-08 苏州赛比膜分离科技有限公司 A kind of processing method of high-salt wastewater
CN107352722A (en) * 2017-08-25 2017-11-17 苏州赛比膜分离科技有限公司 A kind of high slat-containing wastewater is separated by filtration technique
CN107473507A (en) * 2017-08-25 2017-12-15 苏州赛比膜分离科技有限公司 A kind of handling process of high-salt wastewater
CN107486031A (en) * 2017-08-25 2017-12-19 苏州赛比膜分离科技有限公司 A kind of organosilicon composite membrane for high-salt wastewater processing
CN107381921A (en) * 2017-08-28 2017-11-24 苏州赛比膜分离科技有限公司 A kind of multi-filtering membrane filtration process of high slat-containing wastewater
JP7226708B2 (en) 2018-01-30 2023-02-21 日東電工株式会社 Composite semipermeable membrane and manufacturing method thereof
CN116063265A (en) * 2023-03-16 2023-05-05 常州大学 Method for separating peony seed meal flavone by using organic silicon/PA composite membrane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046688A (en) * 2003-07-31 2005-02-24 Fuji Electric Systems Co Ltd Cleaning method of ammonia-containing waste water
BRPI0706545B1 (en) * 2006-01-16 2018-07-10 Stichting Energieonderzoek Centrum Nederland MICROPOROUS ORGANIC-INORGANIC HYBRID MEMBRANE, PROCESS FOR PRODUCTION OF IT, AND USE OF A MEMBRANE
JP2011245419A (en) * 2010-05-26 2011-12-08 Nitto Denko Corp Composite separation film and method of manufacturing the same
JP5900959B2 (en) * 2011-05-16 2016-04-06 国立大学法人広島大学 Reverse osmosis membrane filter

Also Published As

Publication number Publication date
JP2015110218A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6474583B2 (en) Method for manufacturing separation filter
McGuinness et al. Vapor phase infiltration of metal oxides into nanoporous polymers for organic solvent separation membranes
Zhong et al. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties
Zhang et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes
JP5215276B2 (en) Polyamide reverse osmosis composite membrane and method for producing the same
Hou et al. Carbon nanotube networks as nanoscaffolds for fabricating ultrathin carbon molecular sieve membranes
Xu et al. Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties
JP6623758B2 (en) Solvent-resistant separation membrane
Anggarini et al. Microporous nickel-coordinated aminosilica membranes for improved pervaporation performance of methanol/toluene separation
Elyassi et al. On the use of porous and nonporous fillers in the fabrication of silicon carbide membranes
JP2015112602A (en) Semi-permeable membrane and production method thereof
US6943123B2 (en) Silica membranes and process of production thereof
JP2019130518A (en) Composite semipermeable membrane and production method of the same
JP6642861B2 (en) Method for producing water treatment separation membrane, water treatment separation membrane produced using the same, and water treatment module including water treatment separation membrane
Wang et al. Microstructure evolution and enhanced permeation of SiC membranes derived from allylhydridopolycarbosilane
Kanezashi et al. Preparation and gas permeation properties of thermally stable organosilica membranes derived by hydrosilylation
KR101487764B1 (en) Preparation method of polyamide nanofiltration composite membrane and the polyamide nanofiltration composite membrane thereby
JP2013541413A (en) Method for producing a carbon film
JP5900959B2 (en) Reverse osmosis membrane filter
JP6549557B2 (en) Organic-inorganic composite, structure and method for producing organic-inorganic composite
JP5856524B2 (en) Method for producing silica membrane filter
JP2023010865A (en) filtration membrane
WO2018159563A1 (en) Composite separation membrane, separation membrane module, separation device, composition for forming separation membrane, and method for producing composite separation membrane
KR100913786B1 (en) Silicon carbide membrane, method for producing it and hydrogen separation membrane for high temperature using it
JP2009183814A (en) Separation membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190130

R150 Certificate of patent or registration of utility model

Ref document number: 6474583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250