JP5899823B2 - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
JP5899823B2
JP5899823B2 JP2011242759A JP2011242759A JP5899823B2 JP 5899823 B2 JP5899823 B2 JP 5899823B2 JP 2011242759 A JP2011242759 A JP 2011242759A JP 2011242759 A JP2011242759 A JP 2011242759A JP 5899823 B2 JP5899823 B2 JP 5899823B2
Authority
JP
Japan
Prior art keywords
discharge
primary coil
coil
energization
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011242759A
Other languages
Japanese (ja)
Other versions
JP2013096382A (en
Inventor
泰臣 今中
泰臣 今中
柴田 正道
正道 柴田
水谷 厚哉
厚哉 水谷
光一 服部
光一 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011242759A priority Critical patent/JP5899823B2/en
Publication of JP2013096382A publication Critical patent/JP2013096382A/en
Application granted granted Critical
Publication of JP5899823B2 publication Critical patent/JP5899823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Description

本発明は、点火コイルと、点火コイルの一次コイルへの通電状態を制御する手段とを備えた、内燃機関の点火装置に関する。   The present invention relates to an ignition device for an internal combustion engine, which includes an ignition coil and a means for controlling an energization state of a primary coil of the ignition coil.

一般的に、点火プラグの中心電極を負極、接地電極を正極とし、中心電極の側を起点に接地電極へ向けて火花を伸展させる放電はマイナス放電と呼ばれている。一方、中心電極を正極とし、負極である接地電極へ向けて火花を伸展させる放電はプラス放電と呼ばれている。したがって、放電時に陽イオンが電極に衝突(スパッタリング)して生じる電極の消耗は、マイナス放電時には負極である中心電極で生じ、プラス放電時には負極である接地電極で生じる。但し、接地電極は中心電極に比べて燃焼中心に近い位置にあり高温になっているため、前記消耗の度合いが大きい。そのため、消耗の少ないマイナス放電を実施する点火装置が一般的に普及している(特許文献1参照)。   In general, a discharge in which a center electrode of a spark plug is a negative electrode, a ground electrode is a positive electrode, and a spark is extended toward the ground electrode starting from the center electrode side is called a negative discharge. On the other hand, a discharge in which a center electrode is used as a positive electrode and a spark is extended toward a negative ground electrode is called a positive discharge. Therefore, electrode wear caused by cations colliding (sputtering) with the electrodes during discharge occurs at the central electrode as the negative electrode during negative discharge, and occurs at the ground electrode as the negative electrode during positive discharge. However, since the ground electrode is closer to the combustion center than the center electrode and is at a high temperature, the degree of wear is large. For this reason, an ignition device that performs minus discharge with little wear is generally popular (see Patent Document 1).

特開2007−120374号公報JP 2007-120374 A

これに対し本発明者らは、放電初期にはプラス放電を実施し、そのプラス放電の途中でマイナス放電に切り替える手法を検討した。この手法によれば、電極消耗の多いプラス放電の期間を短くできるので、電極消耗を抑制しつつプラス放電を実施できる。この手法を実現させるべく、本発明者らは図4に示す点火装置を検討した。   On the other hand, the present inventors examined a method of performing positive discharge at the beginning of discharge and switching to negative discharge during the positive discharge. According to this method, since the positive discharge period in which electrode consumption is large can be shortened, positive discharge can be performed while electrode consumption is suppressed. In order to realize this method, the present inventors examined the ignition device shown in FIG.

すなわち、プラス放電用の一次コイルL1Aとマイナス放電用の一次コイルL1Bを、同一のコア部材21xに対して別々に設ける。また、両一次コイルL1A,L1Bの各々に対して、通電を制御する半導体スイッチSWA,SWBを設ける。そして、半導体スイッチSWAへの通電を遮断してプラス放電を実施している途中で、半導体スイッチSWBへの通電を遮断してマイナス放電に切り替えるよう、ECU10xは両スイッチSWA,SWBを制御する。なお、図4の例では、一次コイルL1Aにより生じた磁束を集中させるコア部材21xと、一次コイルL1Bによる磁束を集中させるコア部材21xとを共有させて、点火コイル20xの小型化を図っている。   That is, the primary coil L1A for positive discharge and the primary coil L1B for negative discharge are separately provided for the same core member 21x. Further, semiconductor switches SWA and SWB for controlling energization are provided for each of the primary coils L1A and L1B. Then, the ECU 10x controls both switches SWA and SWB so that the semiconductor switch SWB is cut off and switched to minus discharge while the semiconductor switch SWA is cut off and the plus discharge is being performed. In the example of FIG. 4, the core member 21x for concentrating the magnetic flux generated by the primary coil L1A and the core member 21x for concentrating the magnetic flux by the primary coil L1B are shared to reduce the size of the ignition coil 20x. .

図5は、図4の装置の作動を説明するタイムチャートであり、t1〜t5の期間に一次コイルL1Bへ通電して、マイナス放電用の磁気エネルギをコイルL1Bへ蓄えさせる((b)(d)参照)。また、t2〜t3の期間に一次コイルL1Aへ通電して、プラス放電用の磁気エネルギをコイルL1Aへ蓄えさせる((a)(c)参照)。そして、t3時点で一次コイルL1Aへの通電を遮断してプラス放電を開始させ、その後、t5時点で一次コイルL1Bへの通電を遮断してマイナス放電を開始させる。これにより、t3〜t5のTa期間にプラス放電が為され、t5〜t6のTb期間にマイナス放電が為される。つまり、t5時点でプラス放電からマイナス放電に切り替わる。   FIG. 5 is a time chart for explaining the operation of the apparatus shown in FIG. 4. In the period from t1 to t5, the primary coil L1B is energized to store negative discharge magnetic energy in the coil L1B ((b) (d )reference). Further, the primary coil L1A is energized during the period from t2 to t3, and magnetic energy for plus discharge is stored in the coil L1A (see (a) and (c)). Then, energization to the primary coil L1A is cut off at time t3 to start plus discharge, and thereafter, energization to the primary coil L1B is cut off at time t5 to start minus discharge. As a result, positive discharge is performed during the Ta period from t3 to t5, and negative discharge is performed during the Tb period from t5 to t6. That is, the positive discharge is switched to the negative discharge at time t5.

しかしながら、図4の検討装置では、マイナス放電用の一次電流I1(−)により生じるコア部材21xでの磁束の向きと、プラス放電用の一次電流I1(+)により生じるコア部材21xでの磁束の向きとが反対になる。そのため、両一次コイルL1A,L1Bのいずれにも通電しているt2〜t3の期間において、互いの磁束が打ち消し合うことになるので電力ロスが大きい。しかも、プラス放電用の一次コイルL1Aとマイナス放電用の一次コイルL1Bを各々備えることを要するので、点火コイルの大型化を招く。   However, in the examination apparatus of FIG. 4, the direction of the magnetic flux in the core member 21x generated by the primary current I1 (-) for negative discharge and the magnetic flux in the core member 21x generated by the primary current I1 (+) for positive discharge. The direction is opposite. Therefore, in the period from t2 to t3 in which both the primary coils L1A and L1B are energized, the mutual magnetic fluxes cancel each other, so that the power loss is large. Moreover, since it is necessary to provide the primary coil L1A for positive discharge and the primary coil L1B for negative discharge, respectively, the size of the ignition coil is increased.

本発明は、上記課題を解決するためになされたものであり、その目的は、点火コイルの大型化抑制を図りつつ、電極消耗の抑制を図ったプラス放電を可能にした、内燃機関の点火装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ignition device for an internal combustion engine that enables positive discharge while suppressing electrode consumption while suppressing increase in size of the ignition coil. Is to provide.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

第1の発明では、一次コイルおよび二次コイルを有する点火コイルと、蓄電した電力を前記一次コイルへ放電することにより、前記二次コイルに生じる二次電圧の絶対値を昇圧させて点火プラグで容量放電させる容量放電用回路と、前記一次コイルへの通電を遮断することにより、前記二次コイルに生じる二次電圧の絶対値を昇圧させて前記点火プラグで誘導放電させる誘導放電用回路と、前記点火プラグの中心電極を正極としたプラス放電を実施し、当該プラス放電の途中で、前記中心電極を負極としたマイナス放電に切り替えるよう、前記一次コイルへの通電状態を制御する制御手段と、を備え、前記制御手段は、前記プラス放電を前記容量放電により実施し、前記マイナス放電を前記誘導放電により実施するよう、前記容量放電用回路および前記誘導放電用回路の作動を制御することを特徴とする。 In the first invention, an ignition coil having a primary coil and a secondary coil, and the absolute value of the secondary voltage generated in the secondary coil are boosted by discharging the stored electric power to the primary coil. A capacitive discharge circuit for performing capacitive discharge, an induction discharge circuit for boosting an absolute value of a secondary voltage generated in the secondary coil by inducing energization to the primary coil and inductively discharging with the spark plug; Control means for controlling the energization state of the primary coil so as to perform a positive discharge with the center electrode of the spark plug as a positive electrode and switch to a negative discharge with the center electrode as a negative electrode in the middle of the positive discharge; And the control means performs the positive discharge by the capacitive discharge and performs the negative discharge by the induction discharge. And controlling the operation of the preliminary the inductive discharge circuit.

上記発明によれば、プラス放電を容量放電により実施し、マイナス放電を誘導放電により実施するので、図1中の符号I1(+),I1(−)に例示するように、プラス放電用の一次電流I1(+)が一次コイルを流れる向きと、マイナス放電用の一次電流I1(−)が一次コイルを流れる向きを同じにできる。その結果、I1(+)による磁束とI1(−)による磁束の向きが同じになる。よって、互いの磁束が打ち消し合うことによる電力ロスを回避でき、ひいては点火コイルの大型化を抑制できる。   According to the above-described invention, the positive discharge is performed by the capacitive discharge and the negative discharge is performed by the induction discharge. Therefore, as illustrated in the symbols I1 (+) and I1 (−) in FIG. The direction in which the current I1 (+) flows through the primary coil and the direction in which the primary current I1 (−) for negative discharge flows through the primary coil can be made the same. As a result, the directions of the magnetic flux due to I1 (+) and the magnetic flux due to I1 (−) are the same. Therefore, it is possible to avoid a power loss due to mutual cancellation of the magnetic fluxes, and consequently to suppress an increase in the size of the ignition coil.

しかも、上述の如く両電流I1(+),I1(−)の流れる向きを同じにできることに起因して、マイナス放電用の一次コイルとプラス放電用の一次コイルとを共用させることができる。つまり、図4の検討装置の如く、プラス放電用の一次コイルL1Aとマイナス放電用の一次コイルL1Bを各々備えることを不要にできるので、点火コイルの大型化を抑制できる。   In addition, the negative discharge primary coil and the positive discharge primary coil can be used in common because the flow directions of the two currents I1 (+) and I1 (−) can be made the same as described above. That is, it is unnecessary to provide the positive discharge primary coil L1A and the negative discharge primary coil L1B as in the examination apparatus of FIG. 4, so that the size of the ignition coil can be suppressed.

以上により、上記発明によれば、プラス放電の途中でマイナス放電に切り替えて電極消耗の多いプラス放電の期間を短くすることを、点火コイルの大型化抑制を図りつつ実現可能となる。   As described above, according to the present invention, it is possible to switch to negative discharge during the positive discharge and shorten the positive discharge period in which electrode consumption is large while suppressing the increase in size of the ignition coil.

ところで、放電開始に必要な二次電圧の絶対値は、放電維持に必要な二次電圧の絶対値よりも高い。また、容量放電は一般的に、誘導放電に比べて二次電圧の発生期間が短いものの、誘導放電に比べて二次電圧の絶対値を高くできる。これらを鑑みた上記発明では、放電開始にかかるプラス放電を容量放電で実施し、放電維持にかかるマイナス放電を誘導放電で実施するので、放電開始および放電維持に必要な二次電圧を高効率で生じさせることができる。   By the way, the absolute value of the secondary voltage necessary for starting the discharge is higher than the absolute value of the secondary voltage necessary for maintaining the discharge. In general, capacitive discharge has a shorter secondary voltage generation period than induction discharge, but the absolute value of the secondary voltage can be increased compared to induction discharge. In the above-mentioned invention in view of these, the positive discharge for starting discharge is performed by capacitive discharge, and the negative discharge for maintaining discharge is performed by induction discharge. Therefore, the secondary voltage required for starting and maintaining the discharge can be generated with high efficiency. Can be generated.

第2の発明では、前記制御手段は、前記誘導放電用回路による前記一次コイルへの通電を開始し、その後、前記容量放電用回路による前記一次コイルへの通電を実施し、その後、前記誘導放電用回路による前記一次コイルへの通電の遮断を実施するように制御することを特徴とする。 In the second invention, the control means starts energization of the primary coil by the induction discharge circuit, and thereafter energizes the primary coil by the capacitive discharge circuit, and then the induction discharge. The circuit is controlled so as to cut off the energization of the primary coil by the circuit.

上記発明によれば、容量放電用回路による一次コイルへの通電を開始して容量放電を開始させる前から、誘導放電用回路による一次コイルへの通電を開始するので、容量放電開始以降に誘導放電用回路による通電を開始する場合に比べて、マイナス放電用の磁気エネルギを一次コイルへ蓄えさせる期間を十分に長く確保できる。   According to the above invention, since the energization of the primary coil by the induction discharge circuit is started before the capacity discharge is started by starting the energization of the primary coil by the capacity discharge circuit, the induction discharge is started after the start of the capacity discharge. Compared with the case where energization by the circuit is started, it is possible to secure a sufficiently long period for storing the magnetic energy for minus discharge in the primary coil.

第3の発明では、前記点火コイルは、前記一次コイルの通電により生じた磁束を集中させるコア部材を有しており、前記誘導放電用回路による前記一次コイルへの通電開始から前記容量放電用回路による前記一次コイルへの通電開始直前までに、前記コア部材に生じる磁束が飽和量に達することのないよう、前記コア部材が選定されていることを特徴とする。 In a third aspect of the invention, the ignition coil has a core member that concentrates magnetic flux generated by energization of the primary coil, and the capacitive discharge circuit starts from energization start to the primary coil by the induction discharge circuit. The core member is selected so that the magnetic flux generated in the core member does not reach the saturation amount immediately before the start of energization of the primary coil.

ここで、コア部材の材質や形状、大きさに応じて、コア部材で集中させることのできる磁束量(飽和磁束量)は決まってくる。そのため、飽和磁束密度の低い材質や小さいコア部材を上記発明に採用すると、以下の問題が懸念されるようになる。すなわち、マイナス放電用の一次電流I1(−)を流し始めてからプラス放電用の一次電流I1(+)を流し始めるまでの期間に、コア部材での磁束が飽和してしまうと、その後I1(+)を一次コイルに流してもコア部材での磁束量が増大しなくなる。すると、プラス放電を実施できなくなることが懸念される。   Here, the amount of magnetic flux (saturated magnetic flux) that can be concentrated by the core member is determined according to the material, shape, and size of the core member. For this reason, if a material having a low saturation magnetic flux density or a small core member is adopted in the above invention, the following problems are concerned. That is, if the magnetic flux in the core member saturates during the period from when the primary current I1 (−) for negative discharge starts to flow until the primary current I1 (+) for positive discharge starts to flow, then I1 (+ ) Flows through the primary coil, the amount of magnetic flux in the core member does not increase. Then, there is a concern that the plus discharge cannot be performed.

この懸念に対し、上記発明では、I1(−)の通電開始からI1(+)の通電開始直前までに、コア部材に生じる磁束が飽和量に達することのないよう、コア部材を選定しているので、上記懸念を解消できる。   In response to this concern, in the above invention, the core member is selected so that the magnetic flux generated in the core member does not reach the saturation amount from the start of energization of I1 (−) to immediately before the start of energization of I1 (+). Therefore, the above concerns can be resolved.

本発明の一実施形態にかかる点火装置を示す回路図。The circuit diagram which shows the ignition device concerning one Embodiment of this invention. プラス放電とマイナス放電の違いを説明する図。The figure explaining the difference between positive discharge and negative discharge. 図1の点火装置の作動を示すタイムチャート。The time chart which shows the action | operation of the ignition device of FIG. 本発明者らが検討した点火装置であって、本発明との比較対象となる装置を示す回路図。The circuit diagram which shows the apparatus which is the ignition device which the present inventors examined, and becomes a comparison object with this invention. 図4の点火装置の作動を示すタイムチャート。The time chart which shows the action | operation of the ignition device of FIG.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.

図1は、本実施形態における点火装置が適用された、内燃機関の点火システムを示す概略回路図であり、電子制御装置(ECU10)に設けられたマイクロコンピュータ(制御手段)は、エンジン回転速度やアクセル操作量などのエンジンの運転状態を表す運転状態情報を取得し、その運転状態情報に基づいて最適な点火時期を算出する。そして、その点火時期に応じてプラス放電用の点火信号IGt(+)およびマイナス放電用の点火信号IGt(−)を生成し、後述する半導体スイッチSW(+),SW(−)へ出力する。   FIG. 1 is a schematic circuit diagram showing an ignition system of an internal combustion engine to which the ignition device according to the present embodiment is applied. A microcomputer (control means) provided in an electronic control unit (ECU 10) Operating state information representing the operating state of the engine such as an accelerator operation amount is acquired, and an optimal ignition timing is calculated based on the operating state information. Then, in accordance with the ignition timing, a positive discharge ignition signal IGt (+) and a negative discharge ignition signal IGt (−) are generated and output to semiconductor switches SW (+) and SW (−) described later.

ここで、図2を用いてプラス放電およびマイナス放電について説明する。図2(a)は、点火プラグ40の中心電極41および接地電極42を示す図である。図示されるように、接地電極42の表面が平らであるのに比べて中心電極41には針状の突起が形成されている。そのため、この突起部分にて電界集中が生じるため、両電極41,42間に生じる放電は、中心電極41の突起部分を起点として接地電極42へ伸展する。   Here, positive discharge and negative discharge will be described with reference to FIG. FIG. 2A shows the center electrode 41 and the ground electrode 42 of the spark plug 40. As shown in the figure, the center electrode 41 has a needle-like protrusion as compared with the flat surface of the ground electrode 42. For this reason, electric field concentration occurs at the protruding portion, so that the discharge generated between the electrodes 41 and 42 extends to the ground electrode 42 starting from the protruding portion of the center electrode 41.

但し、図2(b)に示すプラス放電時と図2(c)に示すマイナス放電時とで、二次電流I2の向きが異なる。すなわち、プラス放電時には中心電極41がプラス極、接地電極42がマイナス極として機能し、中心電極41の側から接地側へと二次電流I2が流れる。一方、プラス放電時には中心電極41がマイナス極、接地電極42がプラス極として機能し、接地側から中心電極41の側へと二次電流I2が流れる。   However, the direction of the secondary current I2 differs between the positive discharge shown in FIG. 2B and the negative discharge shown in FIG. That is, at the time of positive discharge, the center electrode 41 functions as a positive electrode and the ground electrode 42 functions as a negative electrode, and the secondary current I2 flows from the center electrode 41 side to the ground side. On the other hand, during positive discharge, the center electrode 41 functions as a negative pole and the ground electrode 42 functions as a positive pole, and a secondary current I2 flows from the ground side to the center electrode 41 side.

図1の説明に戻り、内燃機関の気筒ごとに設けられる点火コイル20は、磁気回路を形成するコア部材21、一次コイルL1および二次コイルL2等を備えて構成される。詳細には、コア部材21の外周面に、図示しない絶縁シートを介して両コイルL1,L2が重ねて巻き回されている。   Returning to the description of FIG. 1, the ignition coil 20 provided for each cylinder of the internal combustion engine includes a core member 21, a primary coil L1, a secondary coil L2, and the like that form a magnetic circuit. More specifically, the coils L1 and L2 are wound around the outer peripheral surface of the core member 21 via an insulating sheet (not shown).

コア部材21は、一次コイルL1に一次電流I1が流れることにより生じた磁束を集中させるよう機能するものであるが、このようにコア部材21で集中させることのできる磁束量(飽和磁束量)は、コア部材21の材質や形状、大きさに応じて決まってくる。したがって、点火コイル20の小型化を図りつつ飽和磁束量を大きくして所望の二次電圧V2を発生させるには、飽和磁束密度の高い材質を採用すればよいがコスト高となる。   The core member 21 functions to concentrate the magnetic flux generated by the primary current I1 flowing through the primary coil L1, but the amount of magnetic flux (saturated magnetic flux) that can be concentrated by the core member 21 is as follows. It is determined according to the material, shape and size of the core member 21. Therefore, in order to increase the saturation magnetic flux amount and generate the desired secondary voltage V2 while reducing the size of the ignition coil 20, a material having a high saturation magnetic flux density may be adopted, but the cost increases.

一方、飽和磁束密度の低い材質を採用すれば、マイナス放電用の一次電流I1(−)を流し始めてからプラス放電用の一次電流I1(+)を流し始めるまでの期間に、コア部材21に生じる磁束が飽和量に達してしまう。すると、その後I1(+)を一次コイルL1に流してもコア部材21での磁束量が増大しなくなり、プラス放電を実施できなくなることが懸念される。   On the other hand, if a material having a low saturation magnetic flux density is adopted, it occurs in the core member 21 during a period from when the primary current I1 (−) for negative discharge starts to flow until the primary current I1 (+) for positive discharge starts to flow. Magnetic flux reaches saturation. Then, even if I1 (+) is then passed through the primary coil L1, there is a concern that the amount of magnetic flux in the core member 21 will not increase, and positive discharge cannot be performed.

そこで本実施形態では、I1(−)の通電開始からI1(+)の通電開始直前までに、コア部材21に生じる磁束が飽和量に達することのないよう、最低限の飽和磁束密度を有するコア部材21を選定しているので、コスト高を抑制しつつ上記懸念を解消できる。   Therefore, in the present embodiment, the core having the minimum saturation magnetic flux density so that the magnetic flux generated in the core member 21 does not reach the saturation amount from the start of energization of I1 (−) to immediately before the start of energization of I1 (+). Since the member 21 is selected, the above-mentioned concern can be solved while suppressing an increase in cost.

一次コイルL1への供給電力は、以下に説明する容量放電用回路および誘導放電用回路の2系統から可能である。   The power supplied to the primary coil L1 can be obtained from two systems of a capacitive discharge circuit and an induction discharge circuit described below.

容量放電用回路は、先述した半導体スイッチSW(+)、DC−DCコンバータ50(昇圧手段)、コンデンサ51(蓄電手段)およびダイオード52により構成される。バッテリ30の出力電圧はDC−DCコンバータ50により昇圧され、その昇圧された電力は、半導体スイッチSW(+)をオフ作動させている期間中にコンデンサ51に蓄電される。そして、半導体スイッチSW(+)をオン作動させると、コンデンサ51に蓄電された高圧電力が一次コイルL1へ放電され、この放電に起因して、二次コイルL2での二次電圧V2の絶対値が昇圧され、点火プラグ40にて容量放電が生じる。この容量放電は、先述したプラス放電の実施に適用される。   The capacity discharging circuit is composed of the semiconductor switch SW (+), the DC-DC converter 50 (boosting means), the capacitor 51 (power storage means), and the diode 52 described above. The output voltage of the battery 30 is boosted by the DC-DC converter 50, and the boosted power is stored in the capacitor 51 during the period when the semiconductor switch SW (+) is turned off. When the semiconductor switch SW (+) is turned on, the high voltage power stored in the capacitor 51 is discharged to the primary coil L1, and due to this discharge, the absolute value of the secondary voltage V2 at the secondary coil L2. Is increased, and a capacitive discharge is generated at the spark plug 40. This capacitive discharge is applied to the implementation of the positive discharge described above.

誘導放電用回路は、先述した半導体スイッチSW(−)およびダイオード53により構成され、バッテリ30から供給される電力の一次コイルL1への通電と遮断を制御する。つまり、半導体スイッチSW(−)をオン作動させて一次コイルL1への通電を開始させると、マイナス放電用の磁気エネルギが一次コイルL1へ蓄えられることとなる。その後、半導体スイッチSW(−)をオフ作動させて通電を遮断すると、二次コイルL2に生じる二次電圧V2の絶対値が昇圧して、点火プラグ40にて誘導放電が生じる。この誘導放電は、先述したマイナス放電の実施に適用される。   The induction discharge circuit is configured by the semiconductor switch SW (−) and the diode 53 described above, and controls energization and interruption of the primary coil L <b> 1 supplied from the battery 30. That is, when the semiconductor switch SW (−) is turned on to start energization of the primary coil L1, magnetic energy for negative discharge is stored in the primary coil L1. Thereafter, when the semiconductor switch SW (−) is turned off to cut off the energization, the absolute value of the secondary voltage V2 generated in the secondary coil L2 is increased, and induction discharge is generated in the spark plug 40. This induction discharge is applied to the implementation of the negative discharge described above.

図1中の矢印I1(+),I1(−)は、容量放電用回路によるプラス放電用の一次電流I1(+)が一次コイルL1を流れる向きと、誘導放電用回路によるマイナス放電用の一次電流I1(−)が一次コイルを流れる向きを示す。これらの一次電流I1(+),I1(−)が一次コイルL1を流れる向きは同一であり、この向きが逆転することはダイオード52,53により制限される。   The arrows I1 (+) and I1 (−) in FIG. 1 indicate the direction in which the primary current I1 (+) for positive discharge by the capacitive discharge circuit flows through the primary coil L1 and the primary for negative discharge by the induction discharge circuit. The direction in which the current I1 (−) flows through the primary coil is shown. The directions in which the primary currents I1 (+) and I1 (−) flow through the primary coil L1 are the same, and the reversal of this direction is limited by the diodes 52 and 53.

ECU10は、半導体スイッチSW(+),SW(−)を制御することで、容量放電(プラス放電)により点火プラグ40での放電を開始させ、そのプラス放電の途中で、誘導放電(マイナス放電)に切り替えるよう、点火プラグ40での放電状態を制御する。   The ECU 10 controls the semiconductor switches SW (+) and SW (−) to start discharge at the spark plug 40 by capacitive discharge (plus discharge), and inductive discharge (minus discharge) during the plus discharge. The discharge state at the spark plug 40 is controlled so as to switch to.

図3は、このような放電状態の制御を実施すべく、プラス放電用の点火信号IGt(+)およびマイナス放電用の点火信号IGt(−)を出力した際のタイムチャートである。   FIG. 3 is a time chart when a positive discharge ignition signal IGt (+) and a negative discharge ignition signal IGt (−) are output in order to carry out such control of the discharge state.

先ず、点火信号IGt(−)がオフからオンに切り替わったt1時点で、半導体スイッチSW(−)がオン作動して、バッテリ30から一次コイルL1へマイナス放電用の一次電流I1(−)が流れ始める(図3(a)(c)参照)。つまり、t1時点で誘導放電(マイナス放電)のための磁気エネルギ蓄積が開始される。   First, at time t1 when the ignition signal IGt (−) is switched from off to on, the semiconductor switch SW (−) is turned on, and the primary current I1 (−) for negative discharge flows from the battery 30 to the primary coil L1. Start (see FIGS. 3A and 3C). That is, accumulation of magnetic energy for induction discharge (minus discharge) is started at time t1.

次に、点火信号IGt(+)がオフからオンに切り替わったt2時点で、半導体スイッチSW(+)がオン作動する。これにより、コンデンサ51に蓄えられていた電力エネルギが放電され、一次コイルL1へプラス放電用の一次電流I1(+)が流れ始める(図3(b)(d)参照)。その結果、中心電極41の電位が接地電極42の電位に比べて急激に高くなるよう、二次電圧V2が変化する(図3(f)参照)。その結果、中心電極41から接地電極42へ二次電流I2が流れる向きに放電(プラス放電)することとなる。つまり、t2時点で容量放電(プラス放電)が開始される。   Next, at time t2 when the ignition signal IGt (+) switches from off to on, the semiconductor switch SW (+) is turned on. As a result, the power energy stored in the capacitor 51 is discharged, and the primary current I1 (+) for positive discharge starts to flow through the primary coil L1 (see FIGS. 3B and 3D). As a result, the secondary voltage V2 changes so that the potential of the center electrode 41 is rapidly higher than the potential of the ground electrode 42 (see FIG. 3F). As a result, discharge (plus discharge) occurs in the direction in which the secondary current I2 flows from the center electrode 41 to the ground electrode. That is, capacity discharge (plus discharge) is started at time t2.

なお、一次コイルL1に実際に流れる一次電流I1(実一次電流I1)は、図3(e)に示すようにI1(−)にI1(+)を加算した値となる。実一次電流I1は、容量放電(プラス放電)の開始に伴いt3時点でピーク値となる。そして、その所定時間後のt4時点で、点火信号IGt(−)をオンからオフに切り替えて、半導体スイッチSW(−)をオフ作動させ、マイナス放電用の一次電流I1(−)の通電が遮断される。   The primary current I1 (actual primary current I1) that actually flows through the primary coil L1 is a value obtained by adding I1 (+) to I1 (−) as shown in FIG. The actual primary current I1 has a peak value at time t3 with the start of capacitive discharge (plus discharge). At time t4 after the predetermined time, the ignition signal IGt (−) is switched from on to off, the semiconductor switch SW (−) is turned off, and the energization of the negative discharge primary current I1 (−) is interrupted. Is done.

これにより、一次コイルL1に蓄えられていた磁気エネルギが開放され、中心電極41の電位が接地電極42の電位に比べて急激に低くなるよう、二次電圧V2が変化する(図3(f)参照)。その結果、接地電極42から中心電極41へ二次電流I2が流れる向きに放電(マイナス放電)することとなる。   As a result, the magnetic energy stored in the primary coil L1 is released, and the secondary voltage V2 changes so that the potential of the center electrode 41 becomes lower than the potential of the ground electrode 42 (FIG. 3 (f)). reference). As a result, a discharge (minus discharge) occurs in the direction in which the secondary current I2 flows from the ground electrode 42 to the center electrode 41.

なお、一次電流I1(−)の通電を遮断させるt4時点で、点火信号IGt(+)をオンからオフに切り替えて、半導体スイッチSW(+)をオフ作動させるので、誘導放電(マイナス放電)の開始と同時に容量放電(プラス放電)が終了する。つまり、t4時点で、容量放電(プラス放電)の継続中に誘導放電(マイナス放電)に切り替わる。   At time t4 when the primary current I1 (−) is cut off, the ignition signal IGt (+) is switched from on to off and the semiconductor switch SW (+) is turned off. The capacity discharge (plus discharge) ends at the same time as the start. That is, at time t4, the discharge is switched to induction discharge (minus discharge) while the capacity discharge (plus discharge) is continued.

その後、電極41,42間の放電電圧V2はt5時点でゼロ(正確にはバッテリ電圧(12V))になる。要するに、符号Taに示す期間にてプラス放電が実施され、そのプラス放電の途中で(t4時点で)マイナス放電に切り替わり、符号Tbに示す期間にてマイナス放電が実施される。   Thereafter, the discharge voltage V2 between the electrodes 41 and 42 becomes zero (precisely, the battery voltage (12V)) at time t5. In short, a positive discharge is performed in the period indicated by the symbol Ta, and is switched to a negative discharge in the middle of the positive discharge (at time t4), and a negative discharge is performed in the period indicated by the symbol Tb.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)放電初期にはプラス放電を実施し、そのプラス放電の途中でマイナス放電に切り替えるので、電極消耗の多いプラス放電の期間を短くできる。よって、電極消耗を抑制しつつプラス放電を実施できる。   (1) Since positive discharge is performed at the initial stage of discharge and is switched to negative discharge in the middle of the positive discharge, the period of positive discharge with a lot of electrode consumption can be shortened. Therefore, positive discharge can be performed while suppressing electrode consumption.

(2)プラス放電を容量放電により実施し、マイナス放電を誘導放電により実施するので、プラス放電用の一次電流I1(+)が一次コイルL1を流れる向きと、マイナス放電用の一次電流I1(−)が一次コイルL1を流れる向きを同じにできる。その結果、I1(+)による磁束とI1(−)による磁束が互いに打ち消し合うことによる電力ロスを回避でき、ひいては点火コイル20の大型化を抑制できる。   (2) Since the positive discharge is performed by capacitive discharge and the negative discharge is performed by induction discharge, the direction of the primary current I1 (+) for positive discharge flowing through the primary coil L1 and the primary current I1 (− for negative discharge) ) Can flow in the primary coil L1 in the same direction. As a result, it is possible to avoid a power loss due to the magnetic flux due to I1 (+) and the magnetic flux due to I1 (−) canceling each other, and consequently the increase in size of the ignition coil 20 can be suppressed.

(3)上述の如く両電流I1(+),I1(−)の流れる向きを同じにできることに起因して、マイナス放電用の一次コイルとプラス放電用の一次コイルとを共用させることができるので、点火コイル20の大型化を抑制できる。   (3) As described above, the direction in which both the currents I1 (+) and I1 (−) flow can be made the same, so that the primary coil for negative discharge and the primary coil for positive discharge can be shared. The enlargement of the ignition coil 20 can be suppressed.

(4)I1(−)の通電開始からI1(+)の通電開始直前までに、コア部材21に生じる磁束が飽和量に達することのないよう、最低限の飽和磁束密度を有するコア部材21を選定しているので、コスト高を抑制しつつ上記懸念を解消できる。   (4) From the start of energization of I1 (−) to immediately before the start of energization of I1 (+), the core member 21 having the minimum saturation magnetic flux density is set so that the magnetic flux generated in the core member 21 does not reach the saturation amount. Since it has selected, the said concern can be eliminated, suppressing the high cost.

(5)ところで、両電極41,42での絶縁破壊(放電開始)に必要な二次電圧V2の絶対値は、絶縁破壊後の放電維持に必要な二次電圧V2の絶対値よりも高い。また、容量放電は一般的に、誘導放電に比べて二次電圧V2の発生期間が短いものの、誘導放電に比べて二次電圧V2の絶対値を高くできる。これらを鑑みた本実施形態では、放電開始にかかるプラス放電を容量放電で実施し、放電維持にかかるマイナス放電を誘導放電で実施するので、放電開始および放電維持に必要な二次電圧V2を高効率で生じさせることができる。   (5) By the way, the absolute value of the secondary voltage V2 required for dielectric breakdown (discharge start) at both electrodes 41 and 42 is higher than the absolute value of the secondary voltage V2 required for maintaining discharge after dielectric breakdown. In general, the capacitive discharge has a shorter generation period of the secondary voltage V2 than the induction discharge, but the absolute value of the secondary voltage V2 can be increased compared to the induction discharge. In view of these, in the present embodiment, the positive discharge for starting discharge is performed by capacitive discharge, and the negative discharge for maintaining discharge is performed by induction discharge. Therefore, the secondary voltage V2 required for starting and maintaining the discharge is increased. Can be generated efficiently.

(他の実施形態)
上記実施形態では、プラス放電用の半導体スイッチSW(+)と、マイナス放電用の半導体スイッチSW(−)とを、t4時点で同時にオフ作動させている。これに対し、マイナス放電用の半導体スイッチSW(−)をオフ作動させて誘導放電を開始させた後に、プラス放電用の半導体スイッチSW(+)をオフ作動させてもよいし、SW(−)をオフ作動させる前にSW(+)をオフ作動させてもよい。いずれにしても、コンデンサ51からの放電がピークとなったt3時点以降にSW(+)をオフ作動させればよい。
(Other embodiments)
In the above embodiment, the semiconductor switch SW (+) for plus discharge and the semiconductor switch SW (−) for minus discharge are simultaneously turned off at time t4. On the other hand, the semiconductor switch SW (+) for minus discharge may be turned off after the semiconductor switch SW (−) for minus discharge is turned off to start the induction discharge, or the semiconductor switch SW (+) for plus discharge may be turned off. SW (+) may be turned off before turning off. In any case, SW (+) may be turned off after time t3 when the discharge from the capacitor 51 reaches a peak.

10…ECU(制御手段)、20…点火コイル、21…コア部材、40…点火プラグ、41…中心電極、L2…二次コイル、L1…一次コイル、50…DC−DCコンバータ(容量放電用回路)、51…コンデンサ(容量放電用回路)、52…ダイオード(容量放電用回路)、SW(+)…半導体スイッチ(容量放電用回路)、53…ダイオード(誘導放電用回路)、SW(−)…半導体スイッチ(誘導放電用回路)。   DESCRIPTION OF SYMBOLS 10 ... ECU (control means), 20 ... Ignition coil, 21 ... Core member, 40 ... Spark plug, 41 ... Center electrode, L2 ... Secondary coil, L1 ... Primary coil, 50 ... DC-DC converter (capacitance discharge circuit) ), 51... Capacitor (capacitance discharge circuit), 52... Diode (capacitance discharge circuit), SW (+)... Semiconductor switch (capacitance discharge circuit), 53. ... Semiconductor switch (inductive discharge circuit).

Claims (1)

一次コイルおよび二次コイルを有する点火コイルと、
蓄電した電力を前記一次コイルへ放電することにより、前記二次コイルに生じる二次電圧の絶対値を昇圧させて点火プラグで容量放電させる容量放電用回路と、
前記一次コイルへの通電を遮断することにより、前記二次コイルに生じる二次電圧の絶対値を昇圧させて前記点火プラグで誘導放電させる誘導放電用回路と、
前記点火プラグの中心電極を正極としたプラス放電を実施し、当該プラス放電の途中で、前記中心電極を負極としたマイナス放電に切り替えるよう、前記一次コイルへの通電状態を制御する制御手段と、
を備え、
前記点火コイルは、前記一次コイルの通電により生じた磁束を集中させるコア部材を有しており、
前記制御手段は、前記プラス放電を前記容量放電により実施し、前記マイナス放電を前記誘導放電により実施するよう、前記誘導放電用回路による前記一次コイルへの通電を開始し、その後、前記容量放電用回路による前記一次コイルへの通電を実施し、その後、前記誘導放電用回路による前記一次コイルへの通電の遮断を実施するように制御し、
前記誘導放電用回路による前記一次コイルへの通電開始から前記容量放電用回路による前記一次コイルへの通電開始直前までに、前記コア部材に生じる磁束が飽和量に達することのないよう、前記コア部材が選定されていることを特徴とする内燃機関の点火装置。
An ignition coil having a primary coil and a secondary coil;
A capacity discharging circuit for boosting the absolute value of the secondary voltage generated in the secondary coil by discharging the stored power to the primary coil and performing capacity discharge with a spark plug;
An induction discharge circuit that boosts the absolute value of the secondary voltage generated in the secondary coil and induces an inductive discharge with the spark plug by cutting off the energization of the primary coil;
Control means for controlling the energization state of the primary coil so as to perform a positive discharge with the center electrode of the spark plug as a positive electrode and switch to a negative discharge with the center electrode as a negative electrode in the middle of the positive discharge;
With
The ignition coil has a core member that concentrates magnetic flux generated by energization of the primary coil,
The control means starts energizing the primary coil by the circuit for inductive discharge so that the positive discharge is performed by the capacity discharge and the minus discharge is performed by the induction discharge, and then the capacity discharge is performed. Conducting the energization of the primary coil by a circuit, and then controlling the energization of the primary coil by the induction discharge circuit to be performed,
The core member so that the magnetic flux generated in the core member does not reach a saturation amount from the start of energization to the primary coil by the induction discharge circuit to immediately before the start of energization to the primary coil by the capacitive discharge circuit. An ignition device for an internal combustion engine, characterized in that is selected .
JP2011242759A 2011-11-04 2011-11-04 Ignition device for internal combustion engine Active JP5899823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011242759A JP5899823B2 (en) 2011-11-04 2011-11-04 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011242759A JP5899823B2 (en) 2011-11-04 2011-11-04 Ignition device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013096382A JP2013096382A (en) 2013-05-20
JP5899823B2 true JP5899823B2 (en) 2016-04-06

Family

ID=48618585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011242759A Active JP5899823B2 (en) 2011-11-04 2011-11-04 Ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5899823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191177B1 (en) 2021-10-18 2022-12-16 三菱電機株式会社 ignition coil

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196674A (en) * 2013-03-29 2014-10-16 本田技研工業株式会社 Ignition device for internal combustion engine
JP6331613B2 (en) * 2014-04-10 2018-05-30 株式会社デンソー Ignition device
WO2015156391A1 (en) * 2014-04-10 2015-10-15 株式会社デンソー Ignition device for internal combustion engine
JP6273986B2 (en) * 2014-04-10 2018-02-07 株式会社デンソー Ignition device for internal combustion engine
JP6427427B2 (en) * 2015-01-26 2018-11-21 株式会社Soken Igniter
CN105304297B (en) * 2015-10-22 2017-11-10 天津大学 The operation method of aviation piston type engine integrated form high energy ignition coil

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51113041A (en) * 1975-03-28 1976-10-05 Kokusan Denki Co Ltd The ignition apparatus of an internal combustion engine
JPS5441241Y2 (en) * 1976-01-26 1979-12-03
JPS6056910B2 (en) * 1982-05-24 1985-12-12 阪神エレクトリツク株式会社 Ignition system for internal combustion engines
JPH03206355A (en) * 1989-10-24 1991-09-09 Hoshino Hiroyuki Ignition method and device for engine
JP3633019B2 (en) * 1995-02-10 2005-03-30 株式会社デンソー Spark plug for internal combustion engine
JPH0935962A (en) * 1995-07-19 1997-02-07 Hitachi Ltd Ignition coil
JP3833808B2 (en) * 1998-02-12 2006-10-18 日本特殊陶業株式会社 Internal combustion engine ignition method and internal combustion engine ignition device
JP4213806B2 (en) * 1999-03-03 2009-01-21 日本特殊陶業株式会社 Coil-integrated spark plug
JP2007120374A (en) * 2005-10-27 2007-05-17 Kokusan Denki Co Ltd Capacitor discharge type internal combustion engine ignition device
JP2009228507A (en) * 2008-03-21 2009-10-08 Diamond Electric Mfg Co Ltd Ignition device of internal combustion engine
JP5906627B2 (en) * 2011-09-17 2016-04-20 株式会社デンソー Ignition device
JP2013096383A (en) * 2011-11-04 2013-05-20 Denso Corp Ignition device of internal combustion engine
JP5987294B2 (en) * 2011-11-04 2016-09-07 株式会社デンソー Ignition device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191177B1 (en) 2021-10-18 2022-12-16 三菱電機株式会社 ignition coil

Also Published As

Publication number Publication date
JP2013096382A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5899823B2 (en) Ignition device for internal combustion engine
JP6669387B2 (en) Power supply device and image forming apparatus
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
WO2013063515A2 (en) Wideband sonar with pulse compression
US20140369076A1 (en) Power supply device
JP6820080B2 (en) Methods and equipment to control the ignition system
JP2018084209A (en) Ignition device for internal combustion engine
JP6640372B2 (en) Ignition device for internal combustion engine
JP6835839B2 (en) Methods and equipment to control the ignition system
JP6673801B2 (en) Gate pulse generation circuit and pulse power supply device
JP6398601B2 (en) Ignition device for internal combustion engine
JP2013096383A (en) Ignition device of internal combustion engine
JP5987294B2 (en) Ignition device for internal combustion engine
JP4089484B2 (en) Ignition device for internal combustion engine
JP6239387B2 (en) Ignition device for internal combustion engine
JP2004147476A (en) Generation circuit for reversed-polarity electric induction energy for pulse power supply
JP2009068443A (en) Ignition coil for internal combustion engine
JP4723606B2 (en) Power supply device and timing control circuit in power supply device
JP2017199749A (en) Internal combustion engine ignition coil
JP4554346B2 (en) Magnetizer
JP4910190B2 (en) Soft switching circuit of self-excited switching power supply
JP4193714B2 (en) Ignition device for internal combustion engine
JP2008270274A (en) Magnetizer
WO2008069769A1 (en) Method for obtaining electric load from the primary and secondary transformer coils
JP6986343B2 (en) Electromagnetic retarder with automatic switching function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5899823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250