JP5899775B2 - Method for producing foamable oil-in-water emulsion - Google Patents

Method for producing foamable oil-in-water emulsion Download PDF

Info

Publication number
JP5899775B2
JP5899775B2 JP2011221755A JP2011221755A JP5899775B2 JP 5899775 B2 JP5899775 B2 JP 5899775B2 JP 2011221755 A JP2011221755 A JP 2011221755A JP 2011221755 A JP2011221755 A JP 2011221755A JP 5899775 B2 JP5899775 B2 JP 5899775B2
Authority
JP
Japan
Prior art keywords
oil
water emulsion
cooling
fat
foamable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011221755A
Other languages
Japanese (ja)
Other versions
JP2013081390A (en
Inventor
潤一 冠
潤一 冠
宏幸 菰田
宏幸 菰田
一孝 伊藤
一孝 伊藤
正明 宮部
正明 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2011221755A priority Critical patent/JP5899775B2/en
Publication of JP2013081390A publication Critical patent/JP2013081390A/en
Application granted granted Critical
Publication of JP5899775B2 publication Critical patent/JP5899775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grain Derivatives (AREA)
  • Edible Oils And Fats (AREA)

Description

本発明は、起泡性水中油型乳化物の製造法に関し更に詳しくは粘度、ホイップした際の作業性、起泡性、外観に優れ、保形性、耐離水性が良く、口どけ感、食感等の品質が安定しており生産効率にも優れた起泡性水中油型乳化物の製造法に関する。   The present invention relates to a method for producing a foamable oil-in-water emulsion, more specifically, viscosity, workability when whipped, foaming, excellent appearance, shape retention, water separation resistance, mouthfeel, The present invention relates to a method for producing a foamable oil-in-water emulsion having stable texture and excellent production efficiency.

製菓、製パン分野におけるトッピング用、フィリング用、ナッペ用に使用される起泡性水中油型乳化物としては、生クリーム、コンパウンドクリーム(生クリーム及び又は乳脂肪並びに植物性油脂)、植物性クリーム(植物性油脂からなる)が用いられている。
これらのクリームに使用される油脂は、生クリームは乳脂肪だけからなる油脂であり、コンパウンドクリームは乳脂肪と他の植物性油脂の混合物であり、植物性クリームは植物性油脂であり、具体的には、ヤシ油、パーム核油などのラウリン系油脂やパーム油、菜種油等の植物油及びこれらの硬化油、分別油、エステル交換油、さらにはこれらの混合油等が挙げられる。
これらの起泡性水中油型乳化物の製造は、油脂、乳蛋白質、乳化剤及び水を含む原料を混合して、予備乳化、殺菌又は滅菌処理し、均質化、冷却するか、又は油脂、乳蛋白質、乳化剤及び水を含む原料を混合して、予備乳化、均質化、殺菌又は滅菌処理し、再均質化、冷却する方法が一般的に採用されている。
これらの起泡性水中油型乳化物は油脂を主要原料とするだけに、その品質の安定性及び生産効率の点において冷却工程が重要な工程であると考えられる。
特許文献1では、冷却工程の最終冷却温度を15〜30℃に制御する起泡性水中油型乳化組成物の製造方法が提案され、特許文献2では、クリームの加熱殺菌処理後の冷却工程において一旦7℃〜25℃まで冷却し、その温度で1分間〜30分間保持し、その後3℃〜5℃まで冷却することを特徴とする乳化安定性に優れたクリームの製造方法が提案され、特許文献3では、クリームを急冷した後、一時的な加温処理を行い冷却することにより得られる、常に安定的で良好なホイップ性を有する脂肪率27%以上35%未満の乳脂肪クリームが提案されているが、品質の安定性という点で充分ではなかった。
また、クリームの冷却について非特許文献1に、「油脂が冷却によって結晶化する場合、油脂と接する界面の違いにより結晶化の仕方が異なると考えられる。クリームの場合は、油脂/水界面の存在下で油脂の結晶化が起こるので、油脂粒子の界面に油脂成分の中で、高融点成分や極性の高い成分が優先的に界面に配向する形で結晶化していくと考えられる。」が記載されている。
Foamable oil-in-water emulsions used for topping, filling, and nappe in the confectionery and bakery fields include fresh cream, compound cream (fresh cream and / or milk fat and vegetable oil), vegetable cream (Consisting of vegetable oils and fats) is used.
The fats and oils used in these creams are fats and oils consisting only of milk fat, compound creams are a mixture of milk fat and other vegetable oils, and vegetable creams are vegetable oils and fats. Examples include lauric oils and fats such as coconut oil and palm kernel oil, vegetable oils such as palm oil and rapeseed oil, and hardened oils, fractionated oils, transesterified oils, and mixed oils thereof.
These foamable oil-in-water emulsions are prepared by mixing raw materials including fats and oils, milk proteins, emulsifiers and water, pre-emulsified, sterilized or sterilized, homogenized, cooled, or fats and oils, milk A method of mixing raw materials including protein, emulsifier and water, pre-emulsifying, homogenizing, sterilizing or sterilizing, rehomogenizing and cooling is generally employed.
Since these foamable oil-in-water emulsions are mainly made from fats and oils, the cooling process is considered to be an important process in terms of stability of quality and production efficiency.
In patent document 1, the manufacturing method of the foamable oil-in-water emulsion composition which controls the final cooling temperature of a cooling process to 15-30 degreeC is proposed, and in patent document 2, in the cooling process after the heat sterilization process of cream. A method for producing a cream with excellent emulsification stability is proposed, characterized in that it is once cooled to 7 ° C to 25 ° C, held at that temperature for 1 to 30 minutes, and then cooled to 3 ° C to 5 ° C. Document 3 proposes a milk fat cream having a fat percentage of 27% or more and less than 35%, which is always stable and has a good whipping property, which is obtained by rapidly cooling the cream and then cooling it. However, it was not sufficient in terms of stability of quality.
In addition, Non-Patent Document 1 describes cooling of creams: “When fats and oils are crystallized by cooling, it is considered that the way of crystallization is different depending on the interface in contact with the fats and oils. Since the crystallization of fats and oils occurs below, it is considered that the high melting point component and the highly polar component are preferentially oriented at the interface among the fat and oil components at the oil particle interface. Has been.

特開2000−300199号公報JP 2000-300199 A 特開2006−325426号公報JP 2006-325426 A 特開2009−142248号公報JP 2009-142248 A 村勢、佐藤 「食品とガラス化・結晶化技術」株式会社サイエンスフォーラム、2000年7月4日発行、p103Murase, Sato “Food and vitrification / crystallization technology” Science Forum, Inc., issued July 4, 2000, p103

本発明の目的は、製菓、製パン分野におけるトッピング用、フィリング用、ナッペ用に使用される起泡性水中油型乳化物であり、粘度、ホイップした際の作業性、起泡性、外観に優れ、保形性、耐離水性が良く、口どけ感、食感等の品質が安定しており、エージング時間が8時間以内で行うことが出来る生産効率に優れた起泡性水中油型乳化物の製造法を提供する事にある。   The object of the present invention is a foamable oil-in-water emulsion used for topping, filling, and nappe in the confectionery and bakery fields, with viscosity, workability when whipped, foamability, and appearance. Foaming oil-in-water emulsification with excellent production efficiency, excellent shape retention and water separation resistance, stable mouthfeel and texture, and aging time within 8 hours It is to provide a manufacturing method of goods.

本発明者らは鋭意研究を行った結果、起泡性水中油型乳化物の冷却方法において、急冷後の油脂結晶化熱を含む水中油型乳化物の冷却の温度制御が重要であり、従来の静置冷却に比して槽中で撹拌することにより油脂粒子中の油脂の結晶化が進行するという知見に基づき本発明を完成するに至った。
即ち本発明の第1は、油脂、乳蛋白質及び水を含む水中油型乳化物であって、殺菌又は滅菌処理後、水中油型乳化物を冷流路A1で急冷し、その後冷流路A1より冷却能力が低い槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させ、その後更に水中油型乳化物を冷流路A2で冷却する、起泡性水中油型乳化物の製造法である。第2は、冷流路A1での急冷が水中油型乳化物の品温を1〜20℃に急冷する、第1記載の起泡性水中油型乳化物の製造法である。第3は、冷流路A1の冷却能力が水中油型乳化物の品温を5℃/分以上に低下可能な能力である、第1記載の起泡性水中油型乳化物の製造法である。第4は、冷流路A1の冷媒の温度が0℃以上である、第1記載の起泡性水中油型乳化物の製造法である。第5は、槽中Bの冷却能力が水中油型乳化物の品温を5℃/分未満に低下可能な能力である、第1記載の起泡性水中油型乳化物の製造法である。第6は、槽中Bでの水中油型乳化物の最高品温を((急冷時の品温)+(0〜8℃))に温度制御する、第1記載の起泡性水中油型乳化物の製造法である。第7は、槽中Bの冷媒の温度が0℃以上である、第1記載の起泡性水中油型乳化物の製造法である。第8は、冷流路A2での冷却が水中油型乳化物の品温を1〜7℃に冷却する、第1記載の起泡性水中油型乳化物の製造法である。第9は、冷流路A1の急冷却時から容器充填されるまでのエージング時間が8時間以内である、第1記載の起泡性水中油型乳化物の製造法である。第10は、水中油型乳化物の油脂分が10〜50重量%である、第1記載の起泡性水中油型乳化物の製造法である。第11は、水中油型乳化物の油脂粒子の平均粒子径が0.8〜3.0μmの範囲である、第1記載の起泡性水中油型乳化物の製造法である。
As a result of intensive studies, the present inventors have found that in the cooling method for foamable oil-in-water emulsions, it is important to control the temperature of the oil-in-water emulsion cooling including the oil crystallization heat after quenching, The present invention has been completed based on the knowledge that the crystallization of the fats and oils in the fat and oil particles proceeds by stirring in the tank as compared with the stationary cooling of the.
That is, the first of the present invention is an oil-in-water emulsion containing fats and oils, milk proteins and water, and after sterilization or sterilization treatment, the oil-in-water emulsion is quenched in the cold channel A1, and then the cold channel A1. Foaming property that promotes crystallization of fat and oil in the fat and oil particles of the oil-in-water emulsion under stirring in the tank B having a lower cooling capacity, and then further cools the oil-in-water emulsion in the cold flow path A2. This is a method for producing an oil-in-water emulsion. The second is a method for producing a foamable oil-in-water emulsion according to the first aspect, wherein the rapid cooling in the cold flow path A1 rapidly cools the product temperature of the oil-in-water emulsion to 1 to 20 ° C. The third is the method for producing a foamable oil-in-water emulsion according to the first aspect, wherein the cooling capacity of the cold channel A1 is an ability to reduce the product temperature of the oil-in-water emulsion to 5 ° C./min or more. is there. The fourth is a method for producing a foamable oil-in-water emulsion according to the first aspect, wherein the temperature of the refrigerant in the cold flow path A1 is 0 ° C. or higher. The fifth is the method for producing a foamable oil-in-water emulsion according to the first aspect, wherein the cooling capacity of B in the tank is an ability to reduce the product temperature of the oil-in-water emulsion to less than 5 ° C./min. . 6th, the foamable oil-in-water type | mold of 1st which temperature-controls the maximum product temperature of the oil-in-water emulsion in the tank B to ((Product temperature at the time of rapid cooling) + (0-8 degreeC)) This is a method for producing an emulsion. 7th is the manufacturing method of the foamable oil-in-water emulsion of 1st description whose temperature of the refrigerant | coolant of B in a tank is 0 degreeC or more. Eighth is the method for producing a foamable oil-in-water emulsion according to the first aspect, wherein cooling in the cold flow path A2 cools the product temperature of the oil-in-water emulsion to 1 to 7 ° C. The ninth is the method for producing a foamable oil-in-water emulsion according to the first aspect, wherein the aging time from when the cold flow path A1 is rapidly cooled to when the container is filled is within 8 hours. 10th is the manufacturing method of the foamable oil-in-water emulsion of 1st description whose oil-and-fat content of an oil-in-water emulsion is 10 to 50 weight%. The 11th is the manufacturing method of the foamable oil-in-water emulsion of 1st aspect whose average particle diameter of the oil-fat particle | grains of an oil-in-water emulsion is the range of 0.8-3.0 micrometers.

製菓、製パン分野におけるトッピング用、フィリング用、ナッペ用に使用される起泡性水中油型乳化物であり、粘度、ホイップした際の作業性、起泡性、外観に優れ、保形性、耐離水性が良く、口どけ感、食感等の品質が安定しており、エージング時間が8時間以内で行うことが出来る生産効率に優れた起泡性水中油型乳化物の製造法を提供する事が可能になった。   It is a foamable oil-in-water emulsion used for topping, filling, and nappe in the confectionery and bakery fields. It has excellent viscosity, workability when whipped, foamability, appearance, shape retention, Providing a method for producing foamable oil-in-water emulsions that have good water separation resistance, stable mouthfeel, texture, etc., and can be produced within 8 hours with excellent aging time It became possible to do.

本発明の起泡性水中油型乳化物の製造法は、油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、殺菌又は滅菌処理し、均質化、冷却するか、又は油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、均質化、殺菌又は滅菌処理し、再均質化、冷却する方法において、殺菌又は滅菌処理後、水中油型乳化物を冷流路A1で急冷し、その後冷流路A1より冷却能力が低い槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させ、その後更に水中油型乳化物を冷流路A2で冷却することを特徴とする製造法である。
そして、起泡性水中油型乳化物であるホイップクリームの一般的な製造法として、原料計量→加熱溶解(65℃)→撹拌による予備乳化→HTST殺菌→ホモジナイザー処理→冷却(10℃以下)→エージング(約5℃)→充填→冷蔵→出荷(藤田哲「食品の乳化ー基礎と応用ー」、株式会社幸書房、2006年2月10日発行、p403)、と記載されており、従来は冷却時から充填時までのエージング時間は20時間程度であった。
The method for producing the foamable oil-in-water emulsion of the present invention comprises mixing raw materials including fats and oils, milk protein and water, pre-emulsifying, sterilizing or sterilizing, homogenizing and cooling, or fats and oils, milk In the method of mixing raw materials containing protein and water, pre-emulsifying, homogenizing, sterilizing or sterilizing, re-homogenizing and cooling, after sterilizing or sterilizing, the oil-in-water emulsion is quenched in the cold channel A1 Then, crystallization of fats and oils in the fat and oil particles of the oil-in-water emulsion is promoted under stirring in the tank B having a cooling capacity lower than that of the cold channel A1, and then the oil-in-water emulsion is further cooled in the cold channel A2. It is the manufacturing method characterized by cooling with.
And as a general manufacturing method of whipped cream which is a foamable oil-in-water emulsion, raw material measurement → heating and dissolution (65 ° C.) → preliminary emulsification by stirring → HTST sterilization → homogenizer treatment → cooling (below 10 ° C.) → Aging (about 5 ° C.) → filling → refrigeration → shipping (Satoshi Fujita “Food emulsification-basics and applications—”, Koshobo Co., Ltd., issued February 10, 2006, p403) The aging time from cooling to filling was about 20 hours.

本発明の起泡性水中油型乳化物の製造法においては、殺菌又は滅菌処理後、水中油型乳化物を冷流路A1で急冷し、その後冷流路A1より冷却能力が低い槽中Bで撹拌するのであるが、水中油型乳化物の品温を冷流路A1で1〜20℃に急冷し、好ましくは品温を3〜15℃に急冷し、更に好ましくは品温を3〜13℃に急冷する。
急冷時の品温が低すぎると乳化状態が不安定になる。急冷時の品温が高すぎるとホイップし難くなる。
急冷の平均冷却速度としては5℃/分以上が好ましく、より好ましくは7℃/分以上であり、さらに好ましくは10℃/分以上である。
In the method for producing a foamable oil-in-water emulsion of the present invention, after sterilization or sterilization treatment, the oil-in-water emulsion is rapidly cooled in the cold channel A1, and then in the tank B having a lower cooling capacity than the cold channel A1. The product temperature of the oil-in-water emulsion is rapidly cooled to 1 to 20 ° C in the cold flow path A1, preferably the product temperature is rapidly cooled to 3 to 15 ° C, and more preferably the product temperature is 3 to 3. Quench rapidly to 13 ° C.
If the product temperature at the time of rapid cooling is too low, the emulsified state becomes unstable. If the product temperature is too high during rapid cooling, it will be difficult to whip.
The average rapid cooling rate is preferably 5 ° C./min or more, more preferably 7 ° C./min or more, and further preferably 10 ° C./min or more.

本発明では、冷流路A1の冷却能力が水中油型乳化物の品温を5℃/分以上に低下可能な能力であるのが好ましく、具体的に水中油型乳化物の品温を急冷する方法としては、プレート式、チューブラー式、多管式、掻き取り式冷却方式が挙げられるが、中でも熱交換能力が高い、プレート方式、チューブラー式、多管式冷却方式を用いる連続式が好ましい。
連続式冷却の冷媒の温度が0℃以上であるのが好ましい。
その際に冷媒の温度が少なくとも2種以上であるのが好ましく、例えば、冷媒の温度が0〜5℃の温度範囲のもの、12〜18℃の温度範囲のもの、20〜40℃の温度範囲のものというように2種以上組合わせるのが好ましい。
In the present invention, it is preferable that the cooling capacity of the cold flow path A1 is an ability to reduce the product temperature of the oil-in-water emulsion to 5 ° C./min or more. Specifically, the product temperature of the oil-in-water emulsion is rapidly cooled. There are plate, tubular, multi-pipe, and scraping type cooling methods as the method to do this, but among these, the plate type, the tubular type, and the continuous type using the multi-pipe type cooling method are high. preferable.
The temperature of the continuous cooling refrigerant is preferably 0 ° C. or higher.
In that case, it is preferable that the temperature of a refrigerant | coolant is at least 2 or more types, for example, the temperature range of a refrigerant | coolant is 0-5 degreeC, the temperature range of 12-18 degreeC, the temperature range of 20-40 degreeC It is preferable to combine two or more of them.

本発明では、起泡性水中油型乳化物の製造法においては、殺菌又は滅菌処理後、水中油型乳化物を冷流路A1で急冷し、その後冷流路A1より冷却能力が低い槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させるのであるが、槽中Bの冷却能力が水中油型乳化物の品温を5℃/分未満に低下可能な能力であるのが好ましく、具体的にはタンク内での撹拌を伴なうものであり回分式冷却であって、撹拌機としてはタンクの形状、大きさ、水中油型乳化物の粘度等を考慮して選択されるが、プロペラ型、櫂型何れの撹拌羽根も使用可能である。
回転数についても適宜調整することができる。
冷流路A1で急冷され水中油型乳化物の油脂粒子の油脂の一部が結晶化し、その後槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させ、油脂粒子の残りの油脂結晶を成長安定化させることができる。
冷却の温度制御は二重ジャケット式、スプレー式、圧力型ジャケット式の何れの方法でも良い。
In the present invention, in the method for producing the foamable oil-in-water emulsion, after the sterilization or sterilization treatment, the oil-in-water emulsion is rapidly cooled in the cold channel A1, and then in a tank having a lower cooling capacity than the cold channel A1. The crystallization of the oil and fat in the oil and fat particles of the oil-in-water emulsion is promoted under stirring in B, but the cooling capacity of B in the tank reduces the product temperature of the oil-in-water emulsion to less than 5 ° C / min. It is preferable that the capacity is as high as possible. Specifically, it involves agitation in the tank and is batch-type cooling. As the agitator, the shape and size of the tank and the viscosity of the oil-in-water emulsion are used. However, either a propeller-type or a hook-type stirring blade can be used.
The number of rotations can also be adjusted as appropriate.
A part of the fat and oil of the oil-in-water emulsion is rapidly cooled in the cold flow path A1, and then the oil and fat in the oil-and-water emulsion in the oil-in-water emulsion is promoted to crystallize under stirring in the tank B. The remaining fat crystals of the fat particles can be stabilized.
The cooling temperature control may be any of a double jacket type, a spray type, and a pressure type jacket type.

上記撹拌は連続撹拌でも間けつ撹拌でも何れも採用することができる。
本発明の起泡性水中油型乳化物の製造法は、油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、殺菌又は滅菌処理し、均質化、冷却するか、又は油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、均質化、殺菌又は滅菌処理し、再均質化、冷却する方法において、殺菌又は滅菌処理後、冷流路A1で水中油型乳化物の品温を1〜20℃に急冷し、その後槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させるのであるが水中油型乳化物の最高品温を((急冷時の品温)+(0〜8℃))の温度範囲に制御し、その後更に水中油型乳化物を冷流路A2で冷却する製造法である。
そして、この水中油型乳化物の最高品温を((急冷時の品温)+(0〜8℃))に温度制御することが重要であり、好ましくは最高品温を((急冷時の品温)+(0〜7℃))の温度範囲に制御するのであり、更に好ましくは最高品温を((急冷時の品温)+(0〜6℃))の温度範囲に制御するのである。
As the stirring, either continuous stirring or intermittent stirring can be employed.
The method for producing the foamable oil-in-water emulsion of the present invention comprises mixing raw materials including fats and oils, milk protein and water, pre-emulsifying, sterilizing or sterilizing, homogenizing and cooling, or fats and oils, milk In the method of mixing raw materials containing protein and water, pre-emulsifying, homogenizing, sterilizing or sterilizing, re-homogenizing and cooling, after sterilizing or sterilizing, the product of oil-in-water emulsion in the cold channel A1 The temperature is rapidly cooled to 1 to 20 ° C., and then the crystallization of the fats and oils in the fat and oil particles of the oil-in-water emulsion is promoted under stirring in the tank B. (Product temperature during rapid cooling) + (0 to 8 ° C.)), and then the oil-in-water emulsion is further cooled in the cold flow path A2.
And it is important to control the maximum product temperature of this oil-in-water emulsion to ((product temperature at the time of rapid cooling) + (0 to 8 ° C.)), preferably the maximum product temperature ((at the time of rapid cooling) Product temperature) + (0-7 ° C.), and more preferably, the maximum product temperature is controlled to the temperature range of ((product temperature during rapid cooling) + (0-6 ° C.)). is there.

槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させるのであるが、結晶化の進行に伴なって結晶化熱が発生し水中油型乳化物の品温が上昇し結晶化促進程度を把握することができる。
また、別な方法として、水中油型乳化物の油脂の結晶量はSFC値を測定することにより求めることができる。
槽中Bの冷却能力が水中油型乳化物の品温を5℃/分未満に低下可能な能力下で冷却するのであるが、水中油型乳化物の油脂分や油脂の種類を考慮して水中油型乳化物の最高品温を((急冷時の品温)+(0〜8℃))の温度範囲に制御するのが好ましい。
このような制御によって槽中における水中油型乳化物の油脂粒子中の残りの油脂結晶化を促進し安定化できるので好ましい。
水中油型乳化物の急冷時の品温をT1とし、温度制御する際の水中油型乳化物の最高品温をT2とした。
槽中Bの冷媒の温度が0℃以上であるのが好ましく、媒体としては水が好ましい。
It promotes the crystallization of the fats and oils in the fat and oil particles of the oil-in-water emulsion under stirring in the tank B, but heat of crystallization is generated with the progress of crystallization, and the product of the oil-in-water emulsion The temperature rises and the degree of crystallization promotion can be grasped.
Alternatively, the amount of oil and fat crystals in the oil-in-water emulsion can be determined by measuring the SFC value.
The cooling capacity of B in the tank is cooled under the ability to reduce the product temperature of the oil-in-water emulsion to less than 5 ° C./min. Considering the type of oil and fat in the oil-in-water emulsion and the type of oil and fat It is preferable to control the maximum product temperature of the oil-in-water emulsion to a temperature range of ((product temperature during rapid cooling) + (0 to 8 ° C.)).
Such control is preferable because crystallization of the remaining fat and oil in the fat and oil particles of the oil-in-water emulsion in the tank can be promoted and stabilized.
The product temperature at the time of rapid cooling of the oil-in-water emulsion was T1, and the maximum product temperature of the oil-in-water emulsion when temperature was controlled was T2.
The temperature of the refrigerant in the tank B is preferably 0 ° C. or higher, and water is preferable as the medium.

本発明の起泡性水中油型乳化物の製造法は、油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、殺菌又は滅菌処理し、均質化、冷却するか、又は油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、均質化、殺菌又は滅菌処理し、再均質化、冷却する方法において、殺菌又は滅菌処理後、水中油型乳化物を冷流路A1で急冷し、その後冷流路A1より冷却能力が低い槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させ、その後更に水中油型乳化物を冷流路A2で冷却することを特徴とする製造法である。
本発明では、冷流路A2での冷却が水中油型乳化物の品温を1〜7℃に冷却するのが好ましく、より好ましくは水中油型乳化物の品温を1〜6℃の冷却であり、さらに好ましくは水中油型乳化物の品温を2〜6℃の冷却である。冷却時の品温が低すぎると乳化状態が不安定になる。冷却時の品温が高すぎると冷流路A1の急冷却時から容器充填されるまでのエージング時間が長くなり生産効率が悪くなる。
本発明では、冷流路A2の冷却能力が水中油型乳化物の品温を3℃/分以上に低下可能な能力であるのが好ましく、具体的には水中油型乳化物の品温を冷却する方法としては、プレート式、チューブラー式、多管式、掻き取り式冷却方式が挙げられるが、中でも冷却後の水中油型乳化物を更に冷却するので、水中油型乳化物に対して物理的な衝撃の少ない、プレート方式、チューブラー式、多管式冷却方式を用いる連続式が好ましい。
連続式冷却の冷媒の温度が0℃以上であるのが好ましい。
The method for producing the foamable oil-in-water emulsion of the present invention comprises mixing raw materials including fats and oils, milk protein and water, pre-emulsifying, sterilizing or sterilizing, homogenizing and cooling, or fats and oils, milk In the method of mixing raw materials containing protein and water, pre-emulsifying, homogenizing, sterilizing or sterilizing, re-homogenizing and cooling, after sterilizing or sterilizing, the oil-in-water emulsion is quenched in the cold channel A1 Then, crystallization of fats and oils in the fat and oil particles of the oil-in-water emulsion is promoted under stirring in the tank B having a cooling capacity lower than that of the cold channel A1, and then the oil-in-water emulsion is further cooled in the cold channel A2. It is the manufacturing method characterized by cooling with.
In the present invention, cooling in the cold flow path A2 preferably cools the product temperature of the oil-in-water emulsion to 1 to 7 ° C, more preferably cooling the product temperature of the oil-in-water emulsion to 1 to 6 ° C. More preferably, the product temperature of the oil-in-water emulsion is cooled to 2 to 6 ° C. If the product temperature during cooling is too low, the emulsified state becomes unstable. If the product temperature at the time of cooling is too high, the aging time from when the cooling passage A1 is rapidly cooled to when the container is filled becomes long, and the production efficiency is deteriorated.
In the present invention, the cooling capacity of the cold channel A2 is preferably an ability capable of lowering the product temperature of the oil-in-water emulsion to 3 ° C./min or more. Specifically, the product temperature of the oil-in-water emulsion is controlled. Examples of the cooling method include a plate type, a tubular type, a multi-pipe type, and a scraping type cooling method. Among them, the oil-in-water emulsion after cooling is further cooled. A continuous method using a plate method, a tubular method, or a multi-tube cooling method with little physical impact is preferable.
The temperature of the continuous cooling refrigerant is preferably 0 ° C. or higher.

本発明の起泡性水中油型乳化物に使用する油脂としては、食用として使用できるものを広く採用することができ、例えばナタネ油、大豆油、ヒマワリ種子油、綿実油、落花生油、米糠油、コーン油、サフラワー油、オリーブ油、カポック油、胡麻油、月見草油、パーム油、シア脂、サル脂、カカオ脂、ヤシ油、パーム核油等の植物性油脂並びに乳脂、牛脂、豚脂、魚油、鯨油等の動物性油脂が例示でき、上記油脂類の単独または混合油あるいはそれらの硬化、分別、エステル交換等を施した加工油脂(融点15〜40℃程度のもの)が例示できる。 本発明においては上記で例示した何れの油脂も使用できる。
そして、冷流路A1の急冷時から冷蔵6日後の水中油型乳化物中の油脂結晶量はSFC値で5℃で13〜42%、10℃で12〜40%、20℃で8〜32%の範囲が好ましく、より好ましくは、5℃で15〜40%、10℃で14〜38%、20℃で10〜30%の範囲であり、更に好ましくは、5℃で17〜37%、10℃で16〜35%、20℃で12〜28%の範囲である。SFC値が低すぎると水中油型乳化物を起泡する際の起泡性、保形性が悪化する傾向にある。SFC値が高すぎると水中油型乳化物を起泡した際の起泡物の口どけが悪くなる。
As fats and oils used in the foamable oil-in-water emulsion of the present invention, those that can be used for food can be widely adopted, such as rapeseed oil, soybean oil, sunflower seed oil, cottonseed oil, peanut oil, rice bran oil, Corn oil, safflower oil, olive oil, kapok oil, sesame oil, evening primrose oil, palm oil, shea fat, monkey fat, cocoa butter, palm oil, palm kernel oil and other vegetable oils and fats, beef fat, pork fat, fish oil, Examples thereof include animal fats and oils such as whale oil, and examples thereof include single or mixed oils of the above fats and oils or processed oils and fats subjected to curing, fractionation, transesterification, etc. (having a melting point of 15 to 40 ° C.). In the present invention, any of the oils and fats exemplified above can be used.
And the amount of fat and oil crystals in the oil-in-water emulsion after 6 days of refrigeration after the rapid cooling of the cold flow path A1 is 13 to 42% at 5 ° C, 12 to 40% at 10 ° C, and 8 to 32 at 20 ° C. %, Preferably 15 to 40% at 5 ° C, 14 to 38% at 10 ° C, 10 to 30% at 20 ° C, more preferably 17 to 37% at 5 ° C, The range is 16 to 35% at 10 ° C and 12 to 28% at 20 ° C. When the SFC value is too low, the foaming property and shape retention property when foaming the oil-in-water emulsion tend to be deteriorated. If the SFC value is too high, the foamed product will have poor mouthfeel when the oil-in-water emulsion is foamed.

本発明の起泡性水中油型乳化物に使用する油脂としては上記したように食用として使用できるものであれば何れの油脂も使用でき、融点15〜40℃程度のものが好ましい。
本発明の起泡性水中油型乳化物の製造法においては、水中油型乳化物を殺菌又は滅菌処理後、水中油型乳化物の品温を1〜20℃に急冷するのであるが、冷却に際しては、これらの油脂の結晶化挙動が重要であって、油脂組成、固体脂と液体油のバランス、結晶化特性が影響する。
これらの油脂の中にあって、乳脂はその構成する脂肪酸組成が鎖長の短い脂肪酸から鎖長の長い脂肪酸まで、また、不飽和脂肪酸も含み脂肪酸種が400以上とも言われている。
本発明の製造法では油脂として乳脂を含むものであるが、好ましくは(乳脂÷全油脂)が0.85以下であり、更に好ましくは(乳脂÷全油脂)が0.70以下であり、最も好ましくは(乳脂÷全油脂)が0.50以下である。
As the fats and oils used in the foamable oil-in-water emulsion of the present invention, any fats and oils can be used as long as they are edible as described above, and those having a melting point of about 15 to 40 ° C are preferable.
In the method for producing the foamable oil-in-water emulsion of the present invention, the product temperature of the oil-in-water emulsion is rapidly cooled to 1 to 20 ° C. after the oil-in-water emulsion is sterilized or sterilized. In this case, the crystallization behavior of these fats and oils is important, and the fat and oil composition, the balance between the solid fat and the liquid oil, and the crystallization characteristics are affected.
Among these fats and oils, it is said that milk fat has a fatty acid composition of 400 to more than 400 fatty acids, including fatty acids with short chain lengths to fatty acids with long chain lengths, and unsaturated fatty acids.
In the production method of the present invention, fats and oils are contained as fats and oils, preferably (milk fat / total fats and oils) is 0.85 or less, more preferably (milk fats / total fats and oils) is 0.70 or less, most preferably (Milk fat / total fat / oil) is 0.50 or less.

本発明の起泡性水中油型乳化物の油脂分としては、10〜50重量%であり、好ましくは15〜48重量%であり、更に好ましくは20〜48重量%であり、最も好ましくは20〜47重量%ある。油脂分が多すぎると起泡性水中油型乳化物がボテ(可塑化状態)易くなり、少なすぎると、起泡性、保形性が悪化する傾向になる。   The oil and fat content of the foamable oil-in-water emulsion of the present invention is 10 to 50% by weight, preferably 15 to 48% by weight, more preferably 20 to 48% by weight, and most preferably 20 ~ 47% by weight. If the oil and fat content is too much, the foamable oil-in-water emulsion tends to be swelled (plasticized state), and if it is too little, the foamability and shape retention tend to deteriorate.

本発明の起泡性水中油型乳化物に使用する乳蛋白質としては、生乳、牛乳、脱脂乳、生クリーム、濃縮乳、無糖練乳、加糖練乳、全脂粉乳、脱脂粉乳、バターミルクパウダー、ホエー蛋白、酸カゼイン、レンネットカゼイン、若しくはカゼインナトリウム、カゼインカルシウム、カゼインカリウム等のカゼイン類、またはトータルミルクプロテイン乳由来の蛋白質が例示できる。
無脂乳固形分由来の乳蛋白質が使用のし易さと風味の点で好ましい。
無脂乳固形分由来の乳蛋白質としては生乳、牛乳、脱脂乳、生クリーム、濃縮乳、無糖練乳、加糖練乳、全脂粉乳、脱脂粉乳、バターミルクパウダー、ホエー蛋白が例示できる。 乳蛋白質の使用量は0.3〜7重量%が好ましく、より好ましくは0.3〜6重量%であり、更に好ましくは0.3〜5重量%である。乳蛋白質が少なすぎると水中油型乳化物の乳化安定性が悪くなる。乳蛋白質が多すぎると殺菌工程で風味劣化が起こりやすくなる。
As milk protein used in the foamable oil-in-water emulsion of the present invention, raw milk, cow milk, skim milk, fresh cream, concentrated milk, sugar-free condensed milk, sweetened condensed milk, whole milk powder, skimmed milk powder, butter milk powder, Examples include whey protein, acid casein, rennet casein, caseins such as sodium caseinate, calcium caseinate, and potassium casein, or proteins derived from total milk protein milk.
Milk proteins derived from non-fat milk solids are preferred in terms of ease of use and flavor.
Examples of milk protein derived from non-fat milk solids include raw milk, cow milk, skim milk, fresh cream, concentrated milk, sugar-free condensed milk, sweetened condensed milk, whole fat powdered milk, skim milk powder, buttermilk powder, and whey protein. The amount of milk protein used is preferably 0.3 to 7% by weight, more preferably 0.3 to 6% by weight, and still more preferably 0.3 to 5% by weight. When there is too little milk protein, the emulsion stability of an oil-in-water emulsion will worsen. If there is too much milk protein, flavor deterioration tends to occur during the sterilization process.

本発明の起泡性水中油型乳化物については、殺菌又は滅菌処理後、水中油型乳化物を冷流路A1で急冷し、その後冷流路A1より冷却能力が低い槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させるのであるが、冷却に際して、油脂粒子中の油脂が結晶化する過程において油脂粒子の凝集を防止するのに、乳化剤を使用するのが好ましい。使用する乳化剤としては、水中油型乳化物を調製する際に通常使用する乳化剤を適宜選択使用することが出来る。例えば、レシチン、モノグリセリド、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等の合成乳化剤が例示でき、これらの乳化剤の中から1種又は2種以上を選択して適宜使用することが出来る。   For the foamable oil-in-water emulsion of the present invention, after sterilization or sterilization, the oil-in-water emulsion is quenched in the cold channel A1, and then stirred in the tank B having a lower cooling capacity than the cold channel A1. It promotes the crystallization of the fat and oil in the oil and fat particles of the oil-in-water emulsion, but during cooling, the emulsifier is used to prevent the fat and oil particles from aggregating during the process of crystallization of the fat and oil in the fat and oil particles. It is preferable to do this. As an emulsifier to be used, an emulsifier usually used in preparing an oil-in-water emulsion can be appropriately selected and used. For example, synthetic emulsifiers such as lecithin, monoglyceride, sorbitan fatty acid ester, propylene glycol fatty acid ester, polyglycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, sucrose fatty acid ester can be exemplified, and one or two of these emulsifiers The above can be selected and used appropriately.

本発明の起泡性水中油型乳化物に使用する糖類としては、ショ糖、果糖、ブドウ糖、乳糖、麦芽糖、転化糖、トレハロース、糖アルコール、コーンシロップ、水あめ、デキストリンが例示できる。糖アルコールとしてはエリスリトール、マンニトール、ソルビトール、キシリトール等の単糖アルコール、イソマルチトール、マルチトール、ラクチトール等の2糖アルコール、マルトトリイトール、イソマルトトリイトール、パニトール等の3糖アルコール、オリゴ糖アルコール等の4糖以上の糖アルコール、還元澱粉糖化物、還元澱粉分解物が例示できる。
そして、乳蛋白質と共存している乳糖は本発明の糖類に含まれる。
糖類の使用量は概ね0.5〜20重量%が好ましく、より好ましくは0.5〜10重量%、更に0.5〜6重量%が好まく、0.5〜4.5重量%が最も好ましい。
糖類の使用量が多くなると水中油型乳化物の粘度が高くなり冷却効率が悪くなると共に、冷却装置にも負荷が掛かり、糖類の使用は少ないのが好ましい。
Examples of the saccharide used in the foamable oil-in-water emulsion of the present invention include sucrose, fructose, glucose, lactose, maltose, invert sugar, trehalose, sugar alcohol, corn syrup, starch syrup, and dextrin. Sugar alcohols include monosaccharide alcohols such as erythritol, mannitol, sorbitol, and xylitol, disaccharide alcohols such as isomaltitol, maltitol, and lactitol, trisaccharide alcohols such as maltotriitol, isomaltolitol, and panitol, and oligosaccharide alcohols. Examples thereof include sugar alcohols having 4 or more sugars such as reduced starch saccharified product and reduced starch decomposed product.
And the lactose which coexists with milk protein is contained in the saccharide | sugar of this invention.
The amount of saccharide used is generally preferably 0.5 to 20% by weight, more preferably 0.5 to 10% by weight, further preferably 0.5 to 6% by weight, most preferably 0.5 to 4.5% by weight. preferable.
When the amount of saccharide used is increased, the viscosity of the oil-in-water emulsion is increased and cooling efficiency is deteriorated. The cooling device is also loaded, and it is preferable that the amount of saccharide used is small.

本発明の起泡性水中油型乳化物については増粘多糖類を使用するのが好ましく、増粘多糖類としては、ジェランガム、キサンタンガム、ローカストビーンガム、プルラン、グァーガム、サイリウムシードガム、水溶性大豆多糖類、カラギーナン、タマリンド種子ガム及びタラガムから選択される1種又は2種以上の増粘多糖類が好ましく、更にジェランガム、キサンタンガム、プルラン、グァーガム、サイリウムシードガム、水溶性大豆多糖類、カラギーナン及びタマリンド種子ガムから選択される1種又は2種以上の増粘多糖類が好ましい。   For the foamable oil-in-water emulsion of the present invention, it is preferable to use a thickening polysaccharide, and as the thickening polysaccharide, gellan gum, xanthan gum, locust bean gum, pullulan, guar gum, psyllium seed gum, water-soluble soybean One or more thickening polysaccharides selected from polysaccharides, carrageenan, tamarind seed gum and tara gum are preferred, and gellan gum, xanthan gum, pullulan, guar gum, psyllium seed gum, water-soluble soybean polysaccharide, carrageenan and tamarind One or more thickening polysaccharides selected from seed gum are preferred.

本発明の起泡性水中油型乳化物については、各種塩類を使用するのが好ましく、ヘキサメタリン酸塩、第2リン酸塩、クエン酸ナトリウム、ポリリン酸塩、重曹等を単独又は2種以上混合使用することが望ましい。
その他所望により香料、着色剤、保存料等を使用することができる。
For the foamable oil-in-water emulsion of the present invention, it is preferable to use various salts, and hexametaphosphate, diphosphate, sodium citrate, polyphosphate, sodium bicarbonate, etc. alone or in combination of two or more. It is desirable to use it.
In addition, a fragrance, a colorant, a preservative and the like can be used as desired.

本発明の起泡性水中油型乳化物の製造法は、油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、殺菌又は滅菌処理し、均質化、冷却するか、又は油脂、乳蛋白質及び水を含む原料を混合して、予備乳化、均質化、殺菌又は滅菌処理し、再均質化、冷却する方法において、殺菌又は滅菌処理後、冷流路A1で水中油型乳化物の品温を1〜20℃に急冷し、その後槽中Bでの撹拌下で水中油型乳化物の油脂粒子中の油脂の結晶化を促進させるのであるが水中油型乳化物の最高品温を((急冷時の品温)+(0〜8℃))の温度範囲に制御し、その後更に水中油型乳化物を冷流路A2で冷却する製造法である。
この最高品温が高すぎると冷流路A1の急冷却時から容器充填されるまでのエージング時間が長くなり生産効率が悪くなる。
The method for producing the foamable oil-in-water emulsion of the present invention comprises mixing raw materials including fats and oils, milk protein and water, pre-emulsifying, sterilizing or sterilizing, homogenizing and cooling, or fats and oils, milk In the method of mixing raw materials containing protein and water, pre-emulsifying, homogenizing, sterilizing or sterilizing, re-homogenizing and cooling, after sterilizing or sterilizing, the product of oil-in-water emulsion in the cold channel A1 The temperature is rapidly cooled to 1 to 20 ° C., and then the crystallization of the fats and oils in the fat and oil particles of the oil-in-water emulsion is promoted under stirring in the tank B. (Product temperature during rapid cooling) + (0 to 8 ° C.)), and then the oil-in-water emulsion is further cooled in the cold flow path A2.
If the maximum product temperature is too high, the aging time from when the cold flow path A1 is rapidly cooled to when the container is filled becomes long, and the production efficiency deteriorates.

本発明では、殺菌又は滅菌処理後、水中油型乳化物の品温を1〜20℃に急冷し、その後水中油型乳化物の最高品温を((急冷時の品温)+(0〜8℃))の温度範囲に制御し、その後更に水中油型乳化物を冷流路A2で冷却する製造法である。
冷流路A1の急冷却時から容器充填されるまでのエージング時間が8時間以内であるのが好ましく、より好ましくは6時間以内であり、さらに好ましくは4時間以内である。
容器充填する具体的な容器としては、ピュアパック、テトラパック、エルカートン等のカートンコンテナーやショーリーパック、バッグインボックスが挙げられる。これらの容器に充填後は出荷可能である。
これらの方法の中でも生産効率と起泡性水中油型乳化物の品質の両立という点で容器容量としては20L以下、更に10L以下の容器に充填するのが好ましい。
In the present invention, after sterilization or sterilization treatment, the product temperature of the oil-in-water emulsion is rapidly cooled to 1 to 20 ° C., and then the maximum product temperature of the oil-in-water emulsion is ((product temperature at the time of quenching) + (0 8 ° C)), and then the oil-in-water emulsion is further cooled in the cold channel A2.
The aging time from the rapid cooling of the cold flow path A1 to the filling of the container is preferably within 8 hours, more preferably within 6 hours, and even more preferably within 4 hours.
Specific containers to be filled include carton containers such as pure packs, tetra packs, and el carton, Sholey packs, and bag-in-boxes. These containers can be shipped after filling.
Among these methods, the container capacity is preferably 20 L or less, and more preferably 10 L or less in terms of achieving both production efficiency and the quality of the foamable oil-in-water emulsion.

本発明の起泡性水中油型乳化物の油脂粒子の平均粒子径が0.8〜3.0μmの範囲であるのが好ましく、より好ましくは0.9〜2.8μmの範囲であり、更に好ましくは0.9〜2.6μmの範囲であり、最も好ましくは1.0〜2.5μmの範囲である。油脂粒子の平均粒子径が小さすぎるとホイップ後のオーバーランが高くなる。油脂粒子の平均粒子径が大きすぎると乳化安定性が悪くなる。   The average particle size of the fat and oil particles of the foamable oil-in-water emulsion of the present invention is preferably in the range of 0.8 to 3.0 μm, more preferably in the range of 0.9 to 2.8 μm, and further Preferably it is the range of 0.9-2.6 micrometers, Most preferably, it is the range of 1.0-2.5 micrometers. If the average particle size of the fat and oil particles is too small, the overrun after whipping increases. If the average particle size of the fat and oil particles is too large, the emulsion stability will deteriorate.

本発明の起泡性水中油型乳化物の製造法の発明に関して技術的意義を考察すると、バルク状態の油脂を冷却させた際の油脂の結晶化に関しては、佐藤らの優れた成書があり詳細に研究されている(佐藤清隆・上野聡「脂質の機能性と構造・物性」、丸善出版株式会社、平成23年6月10日発行、p51〜p93)。
しかしながら、ホイップクリームのような水中油型乳化物の油脂粒子中の油脂の結晶化については未だに未知の部分も多く経験則による所も多い。
その中にあって、起泡性水中油型乳化物の冷却方法において、急冷後の油脂結晶化熱を含む水中油型乳化物の冷却の温度制御が重要であり、従来の静置冷却に比して槽中で撹拌することにより油脂粒子中の油脂の結晶化が進行するという知見を見出したことの技術的意義は大きいものがあると思われる。
Considering the technical significance of the invention of the method for producing a foamable oil-in-water emulsion of the present invention, there is an excellent book by Sato et al. Regarding the crystallization of fats and oils when cooled in a bulk state. It has been studied in detail (Kiyotaka Sato and Satoshi Ueno, “Functionality and structure / physical properties of lipids”, Maruzen Publishing Co., Ltd., issued on June 10, 2011, p51-p93).
However, the crystallization of fats and oils in oil-in-water emulsions such as whipped cream still has many unknowns and many rules of thumb.
Among them, in the method for cooling foamable oil-in-water emulsions, it is important to control the temperature of oil-in-water emulsions including heat of oil crystallization after quenching, compared to conventional static cooling. Thus, it seems that there is a great technical significance that the finding that the crystallization of the fat and oil in the fat and oil particles proceeds by stirring in the tank.

以下に本発明の実施例を示し本発明をより詳細に説明するが、本発明の精神は以下の実施例に限定されるものではない。なお、例中、%及び部は、いずれも重量基準を意味する。また、結果については以下の方法で評価した。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the spirit of the present invention is not limited to the following examples. In the examples, “%” and “part” mean weight basis. The results were evaluated by the following method.

冷却工程における測定項目とその方法
T1(℃):冷流路A1出口の温度計によって測定した水中油型乳化物の温度とする。
T2(℃):水中油型乳化物の最高品温;冷却工程での槽中Bに取り付けた温度計、もしくはサンプリング容器に取り付けた温度計にて測定した温度とする。
T3(℃):冷流路A2出口の温度計によって測定した水中油型乳化物の温度とする。
Measurement Item and Method in Cooling Step T1 (° C.): The temperature of the oil-in-water emulsion measured by a thermometer at the outlet of the cold flow path A1.
T2 (° C.): Maximum product temperature of the oil-in-water emulsion; a temperature measured with a thermometer attached to the tank B in the cooling step or a thermometer attached to the sampling container.
T3 (° C.): The temperature of the oil-in-water emulsion measured by a thermometer at the outlet of the cold flow path A2.

水中油型乳化物の評価方法
水中油型乳化物の粘度、ボテテスト(水中油型乳化物の安定性)、平均粒子径、水中油型乳化物中の油脂結晶量を評価した。方法は以下の通りである。
粘度:B型粘度計(株式会社東京計器製)にて、2号ローター、30rpmの条件下で行った。
ボテテスト:水中油型乳化物を100ml容ビーカーに50g採り、20℃で2時間インキュベートし、その後5分間撹拌した時のボテの発生の有無を確認した。
平均粒子径:レーザー回折式粒度分布測定装置(株式会社島津製作所製、SALD−2200)を用いて、水中油型乳化物を蒸留水で測定可能範囲に希釈し測定後、データとして出力される平均値を平均粒子径とした。
水中油型乳化物中の油脂結晶量:SFC値の測定;Bruker社製、mq20 NMR Analyerより求めた。
Evaluation method of oil-in-water emulsion The viscosity of the oil-in-water emulsion, the bottest (stability of the oil-in-water emulsion), the average particle diameter, and the amount of oil and fat crystals in the oil-in-water emulsion were evaluated. The method is as follows.
Viscosity: A B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) was used under the conditions of No. 2 rotor and 30 rpm.
Botte Test: 50 g of an oil-in-water emulsion was taken in a 100 ml beaker, incubated at 20 ° C. for 2 hours, and then checked for the presence or absence of bottling when stirred for 5 minutes.
Average particle size: average output as data after measurement by diluting an oil-in-water emulsion with distilled water to a measurable range using a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, SALD-2200) The value was defined as the average particle size.
Fat crystal amount in oil-in-water emulsion: measurement of SFC value; obtained from Bruker, mq20 NMR Analyzer.

水中油型乳化物を起泡させた場合の評価方法
(1)ホイップタイム:水中油型乳化物1kgをホバードミキサー(HOBART CORPORATION製 MODEL N−5)3速(300rpm)にてホイップし、最適起泡状態に達するまでの時間及び、同2速(130rpm)にて緩やかに混ぜた時間
(2)オーバーラン:[(一定容積の水中油型乳化物重量)ー(一定容積の起泡後の起泡物重量)]÷(一定容積の起泡後の起泡物重量)×100
(3)保形性:造花した起泡物を5℃及び15℃で24時間放置した場合の美しさ
四段階評価 A;良好 B;やや良好
C;やや悪い D;悪い(実用的でない)
(4)離水:上記保形性評価と同時に離水状態を評価
四段階評価 A; 無し B;殆ど無し
C; 有り D;非常に多い
風味の評価方法
起泡したクリームの口溶け、乳味感、食感を評価
(5)口溶け
五段階評価 5;良好 4;やや良好 3;可
2;やや悪い 1;悪い
(6)乳味感
五段階評価 5;良好 4;やや良好 3;可
2;やや悪い 1;悪い
(7)食感
五段階評価 5;良好 4;やや良好 3;可
2;やや悪い 1;悪い
Evaluation method when foaming oil-in-water emulsion (1) Whip time: 1 kg of oil-in-water emulsion is whipped at 3rd speed (300 rpm) by Hovard mixer (MODEL N-5 manufactured by HOBART CORPORATION). Time until foaming state is reached and time when gently mixed at the second speed (130 rpm) (2) Overrun: [(weight of oil-in-water emulsion of a certain volume)-(after foaming of a certain volume Foam weight)] ÷ (foam weight after foaming a certain volume) × 100
(3) Shape retention: Beauty when artificial foam is left at 5 ° C and 15 ° C for 24 hours. Four-step evaluation A: Good B: Somewhat good
C: Slightly bad D: Bad (not practical)
(4) Water separation: Evaluation of water separation at the same time as the above-mentioned shape retention evaluation Four-stage evaluation A; None B; Almost none
C; Yes D; Very many flavor evaluation methods Evaluate the mouth melt, milky taste, and texture of the foamed cream (5) Melt in the mouth Five-step evaluation 5; Good 4; Slightly good 3;
2; Slightly bad 1; Bad (6) Milky taste Five-level evaluation 5; Good 4; Slightly good 3;
2; Slightly bad 1; Poor (7) Texture 5 grade evaluation 5; Good 4; Slightly good 3;
2; Somewhat bad 1; Bad

実施例1
パーム中融点油脂(融点29℃)16.5部、S2L含有油脂(融点30.5℃)3.5部にレシチン0.05部、ポリグリセリン脂肪酸エステル(坂本薬品工業(株)製、商品名SYグリスターMO-3S)0.06部を添加混合溶解し油相とする。
これとは別に水66.92部に、脱脂粉乳8.59部、デキストリン3.8部、ポリグリセリン脂肪酸エステル(太陽化学(株)製、 商品名:サンソフトA−181E)0.2部、ヘキサメタリン酸ナトリウム0.18部、重曹0.02部、キサンタンガム0.05部、グァーガム0.03部、ミルクフレーバー0.1部を溶解し水相を調製する。
上記油相と水相を60℃で30分間調合タンクで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、6MPa の均質化圧力で均質化して、冷流路A1であるプレート冷却装置で直ちに冷却した。このときの冷却直後の品温(T1)は10.5℃であり、起泡性水中油型乳化物中の油脂結晶量は、SFC値で5.7%であった。その後冷流路A1より冷却能力の低い槽中Bでの撹拌下で起泡性水中油型乳化物の油脂粒子中の油脂の結晶化を促進させた。槽中Bでの起泡性水中油型乳化物の最高品温(T2)は11.8℃であった。急冷時から最高品温到達時までの時間は3000秒であった。その後、冷流路A2であるプレート冷却装置で3℃(T3)に冷却し10Lショーリー袋に充填し、段ボールケースに入れて起泡性水中油型乳化物を得た。起泡性水中油型乳化物中の油脂結晶量は、SFC値で、19.0%であった(水中油型乳化物の処理量は60kg)。この時の、冷流路A1であるプレート冷却から充填までの時間は、4時間であった。冷蔵6日間経過後の品温5℃での起泡性水中油型乳化物中の油脂結晶量は、SFC値で20.5%であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表1に纏めた。
Example 1
16.5 parts of palm oil having a melting point (melting point 29 ° C.), 3.5 parts of S2L-containing oil and fat (melting point 30.5 ° C.), 0.05 part of lecithin, polyglycerin fatty acid ester (manufactured by Sakamoto Pharmaceutical Co., Ltd., trade name) 0.06 part of SY Glister MO-3S) is added, mixed and dissolved to obtain an oil phase.
Apart from this, 66.92 parts of water, 8.59 parts of skim milk powder, 3.8 parts of dextrin, 0.2 parts of polyglycerin fatty acid ester (manufactured by Taiyo Kagaku Co., Ltd., trade name: Sunsoft A-181E), An aqueous phase is prepared by dissolving 0.18 part of sodium hexametaphosphate, 0.02 part of sodium bicarbonate, 0.05 part of xanthan gum, 0.03 part of guar gum and 0.1 part of milk flavor.
The oil phase and aqueous phase are stirred in a preparation tank for 30 minutes at 60 ° C. and pre-emulsified, and then sterilized by a direct heating method at 144 ° C. for 4 seconds using an ultra-high temperature sterilizer (Iwai Kikai Kogyo Co., Ltd.). Then, the mixture was homogenized at a homogenization pressure of 6 MPa, and immediately cooled with a plate cooling device as the cold flow path A1. The product temperature (T1) immediately after cooling at this time was 10.5 ° C., and the amount of oil crystals in the foamable oil-in-water emulsion was 5.7% in terms of SFC. Thereafter, crystallization of fats and oils in the fat and oil particles of the foamable oil-in-water emulsion was promoted under stirring in the tank B having a lower cooling capacity than the cold flow path A1. The maximum product temperature (T2) of the foamable oil-in-water emulsion in the tank B was 11.8 ° C. The time from the rapid cooling to the maximum product temperature was 3000 seconds. Then, it cooled to 3 degreeC (T3) with the plate-cooling apparatus which is cold flow path A2, was filled with a 10L shawly bag, and it put into the cardboard case, and obtained the foamable oil-in-water emulsion. The amount of fat and oil crystals in the foamable oil-in-water emulsion was 19.0% as the SFC value (the processing amount of the oil-in-water emulsion was 60 kg). At this time, the time from the plate cooling which is the cold flow path A1 to the filling was 4 hours. The amount of fat crystals in the foamable oil-in-water emulsion at a product temperature of 5 ° C. after 6 days of refrigeration was 20.5% in SFC value.
To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 1.

実施例2
パーム中融点油脂(融点29℃)23.8部、硬化やし油(融点33℃)10.4部、S2L含有油脂(融点30.5℃)1.0部に卵黄油0.3部を添加混合溶解し油相とする。
これとは別に水58.17部に、脱脂粉乳6.33部を溶解し水相を調製する。
上記油相と水相を60℃で30分間調合タンクで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、2MPa の均質化圧力で均質化して、冷流路A1であるプレート冷却装置で直ちに冷却した。このときの冷却直後の品温(T1)は10.5℃であり、起泡性水中油型乳化物中の油脂結晶量は、SFC値で4.4%であった。その後冷流路A1より冷却能力の低い槽中Bでの撹拌下で起泡性水中油型乳化物の油脂粒子中の油脂の結晶化を促進させた。槽中Bでの起泡性水中油型乳化物の最高品温(T2)は12.2℃であった。急冷時から最高品温到達時までの時間は5760秒であった。その後、冷流路A2であるプレート冷却装置で3℃(T3)に冷却し10Lショーリー袋に充填し、段ボールケースに入れて起泡性水中油型乳化物を得た(水中油型乳化物の処理量は60kg)。 この時の、冷流路A1であるプレート冷却から充填までの時間は、4時間であった。冷蔵6日間経過後の品温5℃での起泡性水中油型乳化物中の油脂結晶量は、SFC値で34.0%であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表1に纏めた。
Example 2
23.8 parts of oil and fat (melting point 29 ° C) in palm, 10.4 parts of hardened coconut oil (melting point 33 ° C), 1.0 part of S2L-containing oil and fat (melting point 30.5 ° C) 0.3 parts of egg yolk oil Add and dissolve to make oil phase.
Separately, 6.33 parts of skim milk powder are dissolved in 58.17 parts of water to prepare an aqueous phase.
The oil phase and aqueous phase are stirred in a preparation tank for 30 minutes at 60 ° C. and pre-emulsified, and then sterilized by a direct heating method at 144 ° C. for 4 seconds using an ultra-high temperature sterilizer (Iwai Kikai Kogyo Co., Ltd.). Thereafter, the mixture was homogenized at a homogenization pressure of 2 MPa, and immediately cooled with a plate cooling device as the cold flow path A1. The product temperature (T1) immediately after cooling at this time was 10.5 ° C., and the amount of fat and oil crystals in the foamable oil-in-water emulsion was 4.4% in terms of SFC. Thereafter, crystallization of fats and oils in the fat and oil particles of the foamable oil-in-water emulsion was promoted under stirring in the tank B having a lower cooling capacity than the cold flow path A1. The maximum product temperature (T2) of the foamable oil-in-water emulsion in the tank B was 12.2 ° C. The time from the rapid cooling to the maximum product temperature was 5760 seconds. Thereafter, the plate was cooled to 3 ° C. (T3) with a plate cooling device serving as a cold flow path A2, filled into a 10 L Shawley bag, and placed in a cardboard case to obtain a foamable oil-in-water emulsion (oil-in-water emulsion) Is 60 kg). At this time, the time from the plate cooling which is the cold flow path A1 to the filling was 4 hours. The amount of fat and oil crystals in the foamable oil-in-water emulsion at a product temperature of 5 ° C. after 6 days of refrigeration was 34.0% in terms of SFC.
To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 1.

実施例3
大豆硬化油(融点31℃)17.5部、パーム硬化油(融点36℃)13.15部、ヤシ油(融点24℃)8部、バターオイル7.1部にレシチン0.30部を添加混合溶解し油相とする。
これとは別に水48.04部に、脱脂粉乳5.46部、ショ糖飽和脂肪酸エステル(三菱化学フーズ(株)製、 商品名:S−570)0.13部、ヘキサメタリン酸ナトリウム0.10部、重曹0.02部、ミルクフレーバー0.2部を溶解し水相を調製する。
上記油相と水相を67℃で30分間調合タンクで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、3MPa の均質化圧力で均質化して、冷流路A1であるプレート冷却装置で直ちに冷却した。このときの冷却直後の品温(T1)は5℃であり、起泡性水中油型乳化物中の油脂結晶量は、SFC値で9.9%であった。その後冷流路A1より冷却能力の低い槽中Bでの撹拌下で起泡性水中油型乳化物の油脂粒子中の油脂の結晶化を促進させた。槽中Bでの起泡性水中油型乳化物の最高品温(T2)は10.8℃であった。急冷時から最高品温到達時までの時間は2400秒であった。その後、冷流路A2であるプレート冷却装置で3℃(T3)に冷却し10Lショーリー袋に充填し、段ボールケースに入れて起泡性水中油型乳化物を得た(水中油型乳化物の処理量は60kg)。この時の、冷流路A1であるプレート冷却から充填までの時間は、2時間であった。冷蔵6日間経過後の品温5℃での起泡性水中油型乳化物中の油脂結晶量は、SFC値で25.5%であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表1に纏めた。
Example 3
17.5 parts of soybean hardened oil (melting point 31 ° C), 13.15 parts of hydrogenated palm oil (melting point 36 ° C), 8 parts of coconut oil (melting point 24 ° C), 7.1 parts of butter oil added 0.30 parts of lecithin Mix and dissolve to make oil phase.
Separately from this, 48.04 parts of water, 5.46 parts of skim milk powder, 0.13 part of sucrose saturated fatty acid ester (Mitsubishi Chemical Foods Co., Ltd., trade name: S-570), 0.10 sodium hexametaphosphate Part, 0.02 part of baking soda, and 0.2 part of milk flavor are dissolved to prepare an aqueous phase.
The oil phase and aqueous phase are stirred in a preparation tank for 30 minutes at 67 ° C. and pre-emulsified, and then sterilized by a direct heating method at 144 ° C. for 4 seconds using an ultra-high temperature sterilizer (manufactured by Iwai Kikai Kogyo Co., Ltd.). Thereafter, the mixture was homogenized at a homogenization pressure of 3 MPa, and immediately cooled with a plate cooling device as the cold flow path A1. The product temperature (T1) immediately after cooling at this time was 5 ° C., and the amount of oil crystals in the foamable oil-in-water emulsion was 9.9% in terms of SFC. Thereafter, crystallization of fats and oils in the fat and oil particles of the foamable oil-in-water emulsion was promoted under stirring in the tank B having a lower cooling capacity than the cold flow path A1. The maximum product temperature (T2) of the foamable oil-in-water emulsion in the tank B was 10.8 ° C. The time from the rapid cooling to the maximum product temperature was 2400 seconds. Thereafter, the plate was cooled to 3 ° C. (T3) with a plate cooling device serving as a cold flow path A2, filled into a 10 L Shawley bag, and placed in a cardboard case to obtain a foamable oil-in-water emulsion (oil-in-water emulsion) Is 60 kg). At this time, the time from the plate cooling which is the cold flow path A1 to the filling was 2 hours. The amount of fat crystals in the foamable oil-in-water emulsion at 5 ° C. after 6 days of refrigeration was 25.5% in terms of SFC.
To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 1.

実施例4
パーム核油(融点28℃)20.4部、パーム硬化油(融点31℃)5部、硬化パーム核油(融点38℃)5部にレシチン0.25部、ポリグリセリン脂肪酸エステル(坂本薬品工業(株)製、商品名SYグリスターMO−3S)0.01部を添加混合溶解し油相とする。
これとは別に水65.25部に、脱脂粉乳3.4部、ショ糖飽和脂肪酸エステル(三菱化学フーズ(株)製、 商品名:S−570)0.12部、ポリグリセリン脂肪酸エステル(坂本薬品工業(株)製、商品名SYグリスターMS −5S)0.05部、ヘキサメタリン酸ナトリウム0.2部、重曹0.02部、グァーガム0.05部、キサンタンガム0.05部、ミルクフレーバー0.2部を溶解し水相を調製する。
上記油相と水相を65℃で30分間調合タンクで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、4MPa の均質化圧力で均質化して、 冷流路A1であるプレート冷却装置で直ちに冷却した。このときの冷却直後の品温(T1)は11℃であり、起泡性水中油型乳化物中の油脂結晶量は、SFC値で3.0%であった。その後冷流路A1より冷却能力の低い槽中Bでの撹拌下で起泡性水中油型乳化物の油脂粒子中の油脂の結晶化を促進させた。槽中Bでの起泡性水中油型乳化物の最高品温(T2)は13.8℃であった。急冷時から最高品温到達時までの時間は660秒であった。その後、冷流路A2であるプレート冷却装置で3℃(T3)に冷却し10Lショーリー袋に充填し、段ボールケースに入れて起泡性水中油型乳化物を得た。起泡性水中油型乳化物中の油脂結晶量は、SFC値で20.2%であった(水中油型乳化物の処理量は60kg)。この時の、冷流路A1であるプレート冷却から充填までの時間は、6時間であった。冷蔵6日間経過後の品温5℃での起泡性水中油型乳化物中の油脂結晶量は、SFC値で21.9%であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表1に纏めた。
Example 4
20.4 parts of palm kernel oil (melting point 28 ° C.), 5 parts of hardened palm oil (melting point 31 ° C.), 5 parts of hardened palm kernel oil (melting point 38 ° C.), 0.25 part of lecithin, polyglycerin fatty acid ester (Sakamoto Pharmaceutical Co., Ltd.) 0.01 part by product, product name SY Glister MO-3S) is added, mixed and dissolved to obtain an oil phase.
Separately, 65.25 parts of water, 3.4 parts of skim milk powder, sucrose saturated fatty acid ester (product name: S-570, manufactured by Mitsubishi Chemical Foods Co., Ltd.) 0.12 part, polyglycerin fatty acid ester (Sakamoto Yakuhin Kogyo Co., Ltd., trade name: SY Glister MS-5S) 0.05 part, sodium hexametaphosphate 0.2 part, sodium bicarbonate 0.02 part, guar gum 0.05 part, xanthan gum 0.05 part, milk flavor 0. Dissolve 2 parts to prepare the aqueous phase.
The oil phase and the aqueous phase are stirred in a preparation tank for 30 minutes at 65 ° C. and pre-emulsified, and then sterilized by a direct heating method at 144 ° C. for 4 seconds using an ultra-high temperature sterilizer (manufactured by Iwai Kikai Kogyo Co., Ltd.). Thereafter, the mixture was homogenized at a homogenization pressure of 4 MPa, and immediately cooled with a plate cooling device as the cold flow path A1. The product temperature (T1) immediately after cooling at this time was 11 ° C., and the amount of fat and oil crystals in the foamable oil-in-water emulsion was 3.0% in terms of SFC. Thereafter, crystallization of fats and oils in the fat and oil particles of the foamable oil-in-water emulsion was promoted under stirring in the tank B having a lower cooling capacity than the cold flow path A1. The maximum product temperature (T2) of the foamable oil-in-water emulsion in the tank B was 13.8 ° C. The time from the rapid cooling to the maximum product temperature was 660 seconds. Then, it cooled to 3 degreeC (T3) with the plate-cooling apparatus which is cold flow path A2, was filled with a 10L shawly bag, and it put into the cardboard case, and obtained the foamable oil-in-water emulsion. The amount of fat and oil crystals in the foamable oil-in-water emulsion was 20.2% in terms of SFC value (the processing amount of the oil-in-water emulsion was 60 kg). At this time, the time from the plate cooling which is the cold flow path A1 to the filling was 6 hours. The amount of fat and oil crystals in the foamable oil-in-water emulsion at 5 ° C. after 6 days of refrigeration was 21.9% in terms of SFC value.
To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 1.

実施例1〜実施例4の結果を表1に纏めた。

Figure 0005899775
The results of Examples 1 to 4 are summarized in Table 1.
Figure 0005899775

参考例1
実施例4の配合において65℃で30分間調合タンクで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、4MPa の均質化圧力で均質化して、冷流路A1であるプレート冷却装置で直ちに冷却した。このときの冷却直後の品温(T1)は11℃であり、起泡性水中油型乳化物中の油脂結晶量は、SFC値で3.0%であった。その後冷流路A1より冷却能力の低い槽中Bでの撹拌下で起泡性水中油型乳化物の油脂粒子中の油脂の結晶化を促進させた。槽中Bでの起泡性水中油型乳化物の最高品温(T2)は13.8℃であった。急冷時から最高品温到達時までの時間は660秒であった。その後冷却し10Lショーリー袋に充填し、段ボールケースに入れて起泡性水中油型乳化物を得た。起泡性水中油型乳化物中の油脂結晶量は、SFC値で、21.7%であった(水中油型乳化物の処理量は60kg)。この時の、冷流路A1であるプレート冷却から充填までの時間は、10時間であった。冷蔵6日間経過後の品温5℃での起泡性水中油型乳化物中の油脂結晶量は、SFC値で23.1%であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表2に纏めた。
Reference example 1
In the formulation of Example 4, the mixture was stirred and pre-emulsified at 65 ° C. for 30 minutes, and then sterilized by an ultra-high temperature sterilizer (manufactured by Iwai Kikai Kogyo Co., Ltd.) for 4 seconds at 144 ° C. After that, the mixture was homogenized at a homogenization pressure of 4 MPa, and immediately cooled by a plate cooling device which is a cold flow path A1. The product temperature (T1) immediately after cooling at this time was 11 ° C., and the amount of fat and oil crystals in the foamable oil-in-water emulsion was 3.0% in terms of SFC. Thereafter, crystallization of fats and oils in the fat and oil particles of the foamable oil-in-water emulsion was promoted under stirring in the tank B having a lower cooling capacity than the cold flow path A1. The maximum product temperature (T2) of the foamable oil-in-water emulsion in the tank B was 13.8 ° C. The time from the rapid cooling to the maximum product temperature was 660 seconds. Thereafter, it was cooled, filled into a 10 L Shawley bag, and placed in a cardboard case to obtain a foamable oil-in-water emulsion. The amount of fat and oil crystals in the foamable oil-in-water emulsion was 21.7% as SFC value (the processing amount of the oil-in-water emulsion was 60 kg). At this time, the time from the plate cooling which is the cold flow path A1 to the filling was 10 hours. The amount of fat and oil crystals in the foamable oil-in-water emulsion at 5 ° C. after 6 days of refrigeration was 23.1% in terms of SFC.
To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 2.

比較例1
実施例1の配合において60℃で30分間調合タンクで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、6MPa の均質化圧力で均質化して、冷流路A1であるプレート冷却装置で直ちに冷却した。このときの冷却直後の品温(T1)は10.5℃であり、起泡性水中油型乳化物中の油脂結晶量はSFC値で、5.7%であった。その後冷流路A1より冷却能力の低い槽中Bでの撹拌下で起泡性水中油型乳化物の油脂粒子中の油脂の結晶化を促進させた。槽中Bでの起泡性水中油型乳化物の最高品温(T2)は11.8℃であった。急冷時から最高品温到達時までの時間は3000秒であった。その後冷却し10Lショーリー袋に充填し、段ボールケースに入れて起泡性水中油型乳化物を得た。起泡性水中油型乳化物中の油脂結晶量は、SFC値で、23.2%であった(水中油型乳化物の処理量は60kg)。 この時の、冷流路A1であるプレート冷却から充填までの時間は、12時間であった。冷蔵6日間経過後の品温5℃での起泡性水中油型乳化物中の油脂結晶量は、SFC値で23.8%であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表2に纏めた。
Comparative Example 1
In the formulation of Example 1, the mixture was stirred in a preparation tank at 60 ° C. for 30 minutes and pre-emulsified, and then sterilized by an ultrahigh temperature sterilizer (manufactured by Iwai Kikai Kogyo Co., Ltd.) for 4 seconds at 144 ° C. After that, it was homogenized at a homogenization pressure of 6 MPa, and immediately cooled with a plate cooling device as the cold flow path A1. The product temperature (T1) immediately after cooling at this time was 10.5 ° C., and the amount of fat crystals in the foamable oil-in-water emulsion was 5.7% in terms of SFC. Thereafter, crystallization of fats and oils in the fat and oil particles of the foamable oil-in-water emulsion was promoted under stirring in the tank B having a lower cooling capacity than the cold flow path A1. The maximum product temperature (T2) of the foamable oil-in-water emulsion in the tank B was 11.8 ° C. The time from the rapid cooling to the maximum product temperature was 3000 seconds. Thereafter, it was cooled, filled into a 10 L Shawley bag, and placed in a cardboard case to obtain a foamable oil-in-water emulsion. The amount of oil and fat crystals in the foamable oil-in-water emulsion was 23.2% in terms of SFC (the amount of oil-in-water emulsion processed was 60 kg). At this time, the time from the plate cooling which is the cold flow path A1 to the filling was 12 hours. The amount of fat crystals in the foamable oil-in-water emulsion at a product temperature of 5 ° C. after 6 days of refrigeration was 23.8% in terms of SFC.
80 g of granulated sugar was added to 1 kg of this foamable oil-in-water emulsion and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 2.

比較例2
実施例1の配合において、油相と水相を65℃で30分間ホモミキサーで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、5MPa の均質化圧力で均質化して、直ちに25℃に冷却した。冷却工程における冷却時の品温は25.0℃であり、その後の品温上昇は観察されなかった。冷却して起泡性水中油型乳化物を得た(水中油型乳化物の処理量は10kg)。
そして、急冷時から最終冷却品温5℃までの時間は8時間であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表2に纏めた。
Comparative Example 2
In the formulation of Example 1, the oil phase and the aqueous phase were stirred with a homomixer at 65 ° C. for 30 minutes and pre-emulsified, and then directly at 144 ° C. for 4 seconds using an ultra-high temperature sterilizer (Iwai Kikai Kogyo Co., Ltd.). After sterilization by the heating method, the mixture was homogenized at a homogenization pressure of 5 MPa and immediately cooled to 25 ° C. The product temperature during cooling in the cooling step was 25.0 ° C., and no subsequent increase in product temperature was observed. It cooled and the foamable oil-in-water emulsion was obtained (the processing amount of an oil-in-water emulsion is 10 kg).
The time from the rapid cooling to the final cooled product temperature of 5 ° C. was 8 hours.
To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 2.

比較例3
実施例1の配合において、油相と水相を65℃で30分間ホモミキサーで撹拌し予備乳化した後、超高温滅菌装置(岩井機械工業(株)製)によって、144℃において4秒間の直接加熱方式による滅菌処理を行った後、5MPa の均質化圧力で均質化して、直ちに5℃に冷却した。冷却後5℃の冷蔵庫にて1時間保持したクリームを15℃にて1時間一時的加温処理した。一時的加温処理後再び5℃の冷蔵庫にて冷却して起泡性水中油型乳化物を得た(水中油型乳化物の処理量は10kg)。
そして、急冷時から最終冷却品温5℃までの時間は10時間であった。
この起泡性水中油型乳化物1kgに80gのグラニュー糖を加えて上記ホイップ方法にてホイップし、上記の方法に従いオーバーラン、保形性、離水の測定を行った。またホイップしたクリームの口溶け、乳味感、食感の評価を行った。これらの結果を表2に纏めた。
Comparative Example 3
In the formulation of Example 1, the oil phase and the aqueous phase were stirred with a homomixer at 65 ° C. for 30 minutes and pre-emulsified, and then directly at 144 ° C. for 4 seconds using an ultra-high temperature sterilizer (Iwai Kikai Kogyo Co., Ltd.). After sterilization by the heating method, the mixture was homogenized at a homogenization pressure of 5 MPa and immediately cooled to 5 ° C. After cooling, the cream kept for 1 hour in a refrigerator at 5 ° C. was temporarily heated at 15 ° C. for 1 hour. After the temporary heating treatment, the mixture was cooled again in a refrigerator at 5 ° C. to obtain a foamable oil-in-water emulsion (the processing amount of the oil-in-water emulsion was 10 kg).
The time from the rapid cooling to the final cooled product temperature of 5 ° C. was 10 hours.
To 1 kg of this foamable oil-in-water emulsion, 80 g of granulated sugar was added and whipped by the above whipping method, and overrun, shape retention and water separation were measured according to the above methods. The whipped cream was evaluated for melting in the mouth, milky taste and texture. These results are summarized in Table 2.

参考例1及び比較例1〜比較例3の結果を表2に纏めた。

Figure 0005899775
The results of Reference Example 1 and Comparative Examples 1 to 3 are summarized in Table 2.
Figure 0005899775

本発明は、起泡性水中油型乳化物の製造法関し更に詳しくは粘度、ホイップした際の作業性、起泡性、外観に優れ、保形性、耐離水性が良く、口どけ感、食感等の品質が安定しており生産効率にも優れた起泡性水中油型乳化物の製造法に関するものである。   The present invention relates to a method for producing a foamable oil-in-water emulsion, more specifically, viscosity, workability when whipped, foaming, excellent appearance, shape retention, water separation resistance, mouthfeel, The present invention relates to a process for producing a foamable oil-in-water emulsion having a stable texture and excellent production efficiency.

Claims (4)

油脂、乳蛋白質及び水を含み、水の量が48.04〜66.92重量%の水中油型乳化物であって、殺菌又は滅菌処理後、水中油型乳化物の品温を5℃/分以上に低下可能な能力で、冷媒の温度が0℃以上である冷流路A1で水中油型乳化物の品温を3〜13℃に急冷し、その後冷却能力が水中油型乳化物の品温を5℃/分未満に低下可能な能力で、冷媒の温度が0℃以上で、タンク内での攪拌を伴うものである槽中Bでの撹拌下で水中油型乳化物の最高品温を((急冷時の品温)+(0〜8℃))に温度制御し、油脂粒子中の油脂の結晶化を促進させ、その後更に水中油型乳化物を冷流路A2で冷却し、当該冷却が水中油型乳化物の品温を1〜7℃に冷却する、起泡性水中油型乳化物の製造法。 Fats, seen including a milk protein and water, the amount of water is an oil-in-water emulsion of 48.04 to 66.92 wt%, after sterilization or sterilization, the product temperature of the oil-in-water emulsion 5 ° C. The temperature of the oil-in-water emulsion is rapidly cooled to 3 to 13 ° C. in the cold flow path A1 where the temperature of the refrigerant is 0 ° C. or higher, and the cooling capacity is thereafter the oil-in-water emulsion. The maximum temperature of the oil-in-water emulsion under stirring in the tank B where the temperature of the refrigerant is lower than 5 ° C./min, the temperature of the refrigerant is 0 ° C. or higher, and stirring is performed in the tank. The product temperature is controlled to ((product temperature at the time of rapid cooling) + (0 to 8 ° C.)) to promote the crystallization of fats and oils in the fat and oil particles, and then the oil-in-water emulsion is further cooled in the cold channel A2. And the said cooling cools the product temperature of an oil-in-water emulsion to 1-7 degreeC, The manufacturing method of a foamable oil-in-water emulsion. 冷流路A1の冷却時から容器充填されるまでのエージング時間が8時間以内である、請求項1記載の起泡性水中油型乳化物の製造法。The method for producing a foamable oil-in-water emulsion according to claim 1, wherein the aging time from cooling of the cold flow path A1 to filling of the container is within 8 hours. 水中油型乳化物の油脂分が10〜50重量%である、請求項1記載の起泡性水中油型乳化物の製造法。The manufacturing method of the foamable oil-in-water emulsion of Claim 1 whose fats and oils content of an oil-in-water emulsion is 10 to 50 weight%. 水中油型乳化物の油脂粒子の平均粒子径が0.8〜3.0μmの範囲である、請求項1記載の起泡性水中油型乳化物の製造法。The process for producing a foamable oil-in-water emulsion according to claim 1, wherein the average particle diameter of the oil-and-fat particles of the oil-in-water emulsion is in the range of 0.8 to 3.0 µm.
JP2011221755A 2011-10-06 2011-10-06 Method for producing foamable oil-in-water emulsion Active JP5899775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221755A JP5899775B2 (en) 2011-10-06 2011-10-06 Method for producing foamable oil-in-water emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221755A JP5899775B2 (en) 2011-10-06 2011-10-06 Method for producing foamable oil-in-water emulsion

Publications (2)

Publication Number Publication Date
JP2013081390A JP2013081390A (en) 2013-05-09
JP5899775B2 true JP5899775B2 (en) 2016-04-06

Family

ID=48527297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221755A Active JP5899775B2 (en) 2011-10-06 2011-10-06 Method for producing foamable oil-in-water emulsion

Country Status (1)

Country Link
JP (1) JP5899775B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831489B2 (en) 2013-04-09 2015-12-09 トヨタ自動車株式会社 Vehicle front structure
JP6848313B2 (en) * 2016-09-30 2021-03-24 日油株式会社 Oil-in-water emulsified composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1119935B (en) * 1979-09-11 1986-03-19 Ferrero & C Spa P SWEET PROTEIN FOOD PRODUCT IN FOAMED PLASTIC MASS FORM
JP2000300199A (en) * 1999-04-19 2000-10-31 Kao Corp Production of foaming o/w-type emulsion composition
US6638556B1 (en) * 2001-08-07 2003-10-28 Peak Foods, Llc Process of making a frozen whipped topping
JP4165762B2 (en) * 2005-05-23 2008-10-15 明治乳業株式会社 Method for producing cream with good emulsification stability

Also Published As

Publication number Publication date
JP2013081390A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP6301252B2 (en) Low-fat or non-fat foam-containing emulsion
JP4211868B2 (en) Foamable oil-in-water emulsion
JP2010273616A (en) Foaming oil-in-water type emulsion containing erythritol
JPWO2013008904A1 (en) Foamable oil-in-water emulsion and method for producing the same
JP5942489B2 (en) Production method of oil-in-water emulsion
JP6236935B2 (en) Production method of oil-in-water emulsion
JP5365000B2 (en) Oil-in-water emulsion
JP2002335897A (en) Oil-in-water type emulsion composition and method for producing the same
JP2010051231A (en) Foaming oil-in-water emulsion having low oil content
JP5899775B2 (en) Method for producing foamable oil-in-water emulsion
JP6711078B2 (en) Foaming oil-in-water emulsion and aerated food
JP2000333602A (en) Oil-in-water type emulsified oil and fat composition
JPWO2006035543A1 (en) Oil-in-water emulsion
JP2011234712A (en) Method of manufacturing foaming oil-in-water type emulsion material
JP6855156B2 (en) Cheese and / or egg yolk high content frozen dessert and its manufacturing method
JP6624344B2 (en) Foamable oil-in-water emulsion and method for producing foamed oil-in-water emulsion
JP2015139406A (en) Method for producing oil-in-water type emulsion
JP2001245620A (en) Oil in water type emulsion and whipped cream
JP2013141423A (en) Method of producing foamable oil-in-water emulsion
JP7210150B2 (en) Foaming oil-in-water emulsion and whipped cream
JP2012019766A (en) Foaming oil-in-water emulsified oil and fat composition for chilled distribution whipped cream
JP4390375B2 (en) Oil-in-water emulsified fat
JP6539034B2 (en) Novel whipped cream
JP4243913B2 (en) Oil composition for foaming oil-in-water emulsified fat
JP2016032438A (en) Method for producing oil-in-water type emulsion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20151016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5899775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150