JP5899441B2 - Power control device - Google Patents

Power control device Download PDF

Info

Publication number
JP5899441B2
JP5899441B2 JP2014507041A JP2014507041A JP5899441B2 JP 5899441 B2 JP5899441 B2 JP 5899441B2 JP 2014507041 A JP2014507041 A JP 2014507041A JP 2014507041 A JP2014507041 A JP 2014507041A JP 5899441 B2 JP5899441 B2 JP 5899441B2
Authority
JP
Japan
Prior art keywords
power
peltier element
hot water
converter
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014507041A
Other languages
Japanese (ja)
Other versions
JPWO2013145069A1 (en
Inventor
岡田 茂
茂 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2013145069A1 publication Critical patent/JPWO2013145069A1/en
Application granted granted Critical
Publication of JP5899441B2 publication Critical patent/JP5899441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/20Wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/40Photovoltaic [PV] modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、太陽電池等の再生可能エネルギーから得られる直流電力を交流電力に変換する電力変換装置に用いられ、この直流電力の一部を熱エネルギーとして蓄える電力制御装置に関するものである。   The present invention relates to a power control device that is used in a power converter that converts DC power obtained from renewable energy such as solar cells into AC power, and stores a part of the DC power as thermal energy.

従来の電力変換装置は、例えば太陽電池の発電電力を交流電力に変換した後屋内の配電線に重畳し、発電電力はこの屋内の配線を介して夫々の負荷Lで消費されるものであった。   A conventional power conversion device, for example, converts the generated power of a solar cell into AC power and then superimposes it on an indoor distribution line, and the generated power is consumed by each load L via the indoor wiring. .

しかし、太陽電池など日射量の影響を受け発電電力が安定しないエネルギーを用いている場合は供給される電力と消費する電力量との間に余剰電力が発生することがある。この余剰電力は商用の電力系統Gへ逆潮流せることも可能ではあるが、この逆潮流が行えない場合は負荷Lで消費されることがなく無駄になってしまう欠点があった。   However, when using energy such as a solar battery in which generated power is not stable due to the influence of solar radiation, surplus power may be generated between the supplied power and the consumed power. Although this surplus power can be reversely flowed to the commercial power system G, there is a disadvantage that if this reverse power flow cannot be performed, it is not consumed by the load L and is wasted.

逆潮流が行えない場合としては、商用の電力系統Gが接続されていない場合、商用の系統が停電中の場合、電力変換装置が商用の系統と連動しない自立運転を行っている場合、商用の系統への逆潮流が制限されている場合などがある。   When the reverse power flow cannot be performed, when the commercial power system G is not connected, when the commercial system is out of power, when the power conversion device is performing independent operation not linked to the commercial system, There are cases where reverse power flow to the system is restricted.

太陽電池で発電された電力または余剰電力を無駄なく利用するために、この発電電力を全て貯湯タンクの加熱に用いるものが特許文献1に記載されていた。この場合、貯湯タンク内のお湯が沸きあがるまでは電力を消費できるが、この貯湯タンク内のお湯は給湯として利用されるのみであった。   Patent Document 1 discloses that all of the generated power is used for heating the hot water storage tank in order to use the power generated by the solar cell or surplus power without waste. In this case, power can be consumed until the hot water in the hot water tank is boiled, but the hot water in the hot water tank is only used as hot water.

また、ペルチェ素子を用いて庫内の収容物を温蔵保存または冷蔵保存するものが引用文献2に記載されていた。この場合も太陽電池で発電された電力は蓄冷または蓄熱として保存されることになるが庫内の温蔵または冷蔵が行えるのみであった。   Further, Patent Document 2 describes that the contents stored in the warehouse are stored in a refrigerator or refrigerated using a Peltier element. In this case as well, the electric power generated by the solar cell is stored as cold storage or heat storage, but it can only be stored in the refrigerator or refrigerated.

特開平10−292953号公報Japanese Patent Laid-Open No. 10-292953 特開平11−325710号公報JP-A-11-325710

特許文献1又は特許文献2に記載のものでは太陽電池で発電された電力をお湯または冷熱に変換して保存することにより太陽電池の発電電力の瞬時的な変動を吸収しているものであった。しかし、電力をお湯または冷熱に変換する際の変換効率を考慮すると電力を直接消費する場合に比べ電力損失が生じているものであった。
本発明は、太陽電池などの再生可能エネルギーの変換損失を抑制しながら余剰電力が生じた際に、蓄電池などの別途付加設備を設けることなく容易に電力保存を可能にした装置を構成するものである。
In the thing of patent document 1 or patent document 2, the instant fluctuation | variation of the generated electric power of a solar cell is absorbed by converting the electric power generated with the solar cell into hot water or cold energy and storing it. . However, in consideration of the conversion efficiency when converting electric power into hot water or cold heat, power loss has occurred compared to the case of directly consuming electric power.
The present invention constitutes an apparatus that can easily store power without providing additional equipment such as a storage battery when surplus power is generated while suppressing conversion loss of renewable energy such as a solar battery. is there.

本発明は、太陽電池等の再生可能エネルギーから得られる直流電力を交流電力に変換する電力変換装置の直流電力と接続可能に構成されたDC/DCコンバータを備え、DC/DCコンバータにはペルチェ素子が配線接続されこのペルチェ素子の吸熱面を冷凍庫の冷気を循環させるダクト内に望ませ、当該ペルチェ素子の放熱面は水熱交換器を介して貯湯タンク内の湯と熱交換を成すように構成すると共に、再生可能エネルギーから得られる直流電力の一部をDC/DCコンバータを介してペルチェ素子へ供給し、また少なくとも冷凍庫内の冷熱もしくは貯湯タンク内の温熱のいずれか一方を用いて当該ペルチェ素子から得られる直流電力をDC/DCコンバータを介して電力変換器へ供給する構成を有するものであり、太陽電池等で発電された電力の一部を冷/温熱に変換して利用しまた電力に変換して利用することができるものである。   The present invention includes a DC / DC converter configured to be connectable to DC power of a power conversion device that converts DC power obtained from renewable energy such as a solar cell into AC power, and the DC / DC converter includes a Peltier element. Is connected to the Peltier element in the duct that circulates the cool air of the freezer, and the heat dissipation surface of the Peltier element is configured to exchange heat with the hot water in the hot water storage tank via the water heat exchanger. In addition, a part of the DC power obtained from the renewable energy is supplied to the Peltier element via the DC / DC converter, and at least one of the cold heat in the freezer and the hot heat in the hot water storage tank is used to provide the Peltier element. The DC power obtained from the above is supplied to the power converter via the DC / DC converter, and is generated by a solar cell or the like. It was a part of the power utilized by converting the cold / heat also those which can be used to convert the power.

本発明によれば、太陽電池等の再生可能エネルギーかられ得られる電力の一部を冷/温熱に変換して蓄冷/蓄熱が行えるものである。   According to the present invention, a part of electric power obtained from renewable energy such as a solar cell is converted into cold / hot heat to perform cold storage / heat storage.

また本発明は、ペルチェ素子の放熱面と貯湯タンク内とを循環する循環回路中に放熱器を設け、該放熱器でペルチェ素子の放熱を行うように構成するものであり、貯湯タンク内への温熱の保存量を制御することができるものである。   Further, the present invention provides a radiator in a circulation circuit that circulates between the heat dissipation surface of the Peltier element and the hot water storage tank, and is configured to dissipate the Peltier element with the heat radiator. It can control the storage amount of warm heat.

また本発明は、電力変換装置とDC/DCコンバータとを単一の筐体内に収納、もしくは一体に構成することにより、冷蔵庫および給湯器に容易に接続が行えるように成るものである。   Further, according to the present invention, the power conversion device and the DC / DC converter can be easily connected to the refrigerator and the water heater by being housed in a single casing or integrally formed.

本発明の電力制御装置では、太陽電池等から得られる再生可能エネルギーは電力変換装置により直流電力から交流電力に変換された後、屋内配線を介して利用される共に、一部の電力は冷/温熱に変換されて保存・利用され、または電力に再変換されて負荷Lで直接消費されるものである。   In the power control apparatus of the present invention, the renewable energy obtained from the solar cell or the like is converted from DC power to AC power by the power converter and then used through the indoor wiring, and part of the power is cooled / It is converted into warm heat for storage and use, or reconverted into electric power and consumed directly by the load L.

図1は本発明の一実施例を示す概略の説明図である。FIG. 1 is a schematic explanatory view showing an embodiment of the present invention. 図2は図1に示した冷蔵庫に設けたペルチェ素子付近の拡大図である。FIG. 2 is an enlarged view of the vicinity of the Peltier element provided in the refrigerator shown in FIG. 図1に示したDC/DCコンバータの一実施例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of the DC / DC converter illustrated in FIG. 1.

図1は本発明の一実施例を示す説明図であり、1は太陽電池モジュールであり複数の太陽電池セルから構成されている。また太陽電池モジュール1に限ることなく、風力発電・波力発電による電力等の再生可能エネルギーを用いた電力を用いることができる。2は電力変換装置であり、太陽電池モジュール1から供給される直流電力を電力系統Gの交流電力と同じ周波数でありかつ同期した交流電力に変換した後屋内の電流ブレーカー3に供給するものである。電力変換装置2から供給される交流電力はこの電流ブレーカー3および屋内配線を介して負荷Lに供給されるものである。   FIG. 1 is an explanatory view showing an embodiment of the present invention. Reference numeral 1 denotes a solar cell module, which is composed of a plurality of solar cells. Moreover, it is not restricted to the solar cell module 1, The electric power using renewable energy, such as the electric power by wind power generation and wave power generation, can be used. Reference numeral 2 denotes a power converter, which converts DC power supplied from the solar cell module 1 into AC power having the same frequency as that of the AC power of the power grid G and then supplies the AC power to the indoor current breaker 3 after conversion. . The AC power supplied from the power converter 2 is supplied to the load L via the current breaker 3 and the indoor wiring.

電力変換装置2は太陽電池モジュール1で発電される電力が最大になるように動作し、その電力を超えることなく電流ブレーカー3へ交流電力を供給するものである。電流ブレーカー3につながる負荷Lで消費される電力が太陽電池モジュール1で発電される電力を下回るときは、売電メータを設置しその余剰電力を電力系統Gへ逆潮流させることが可能であるが、この売電の際の売電価格が低い時は屋内で自己消費した方が有利であるので、本実施例では売電機能がない状態で説明を行う。また、停電、電力系統Gへの接続が遮断されている状態でも同様の状態となる。   The power converter 2 operates so that the power generated by the solar cell module 1 is maximized, and supplies AC power to the current breaker 3 without exceeding the power. When the electric power consumed by the load L connected to the current breaker 3 is lower than the electric power generated by the solar cell module 1, it is possible to install a power selling meter and reverse the surplus power to the power system G. When the power sale price at the time of this power sale is low, it is more advantageous to self-consume indoors. Therefore, in this embodiment, the explanation will be made in the state without the power sale function. Moreover, the same state is obtained even in a state where the power failure and the connection to the power system G are interrupted.

尚、このような余剰電力が生じている時は、電力変換装置2は太陽電池モジュール1の最適動作点をずらして余剰電力分の発電を太陽電池モジュール1が行わないように制御するものであり太陽電池モジュール1の発電効率が抑制されていることになる。本発明はこの余剰電力分をペルチェ素子へ供給して太陽電池モジュール1を最適動作点で発電させるものである。   When such surplus power is generated, the power conversion device 2 shifts the optimum operating point of the solar cell module 1 so as to prevent the solar cell module 1 from generating power for the surplus power. The power generation efficiency of the solar cell module 1 is suppressed. In the present invention, the surplus power is supplied to the Peltier element, and the solar cell module 1 is generated at the optimum operating point.

4はDC/DCコンバータであり、太陽電池モジュール1と電力変換装置2とをつなぐ直流電力用の配線に接続されて前記余剰電力を流すものである。この余剰電力の大きさは太陽電池モジュール1の出力電圧と出力電流との積から求まる発電電力に対して、電力系統Gへ逆潮流状態が生じ始める際の負荷Lで消費される電力又は負荷Lへ供給される電流が増加しなくなった状態の電力を供給するように入力側の太陽電池モジュール1の発電電力を超えない範囲で昇圧比を制御した後、DC/DCコンバータ4の昇圧比を太陽電池モジュール1の発電電力が最適動作点に至るように制御し、太陽電池モジュール1で発電される電力と負荷Lに供給される電力との差分をDC/DCコンバータ4を通過させるように設定するものである。尚、この一連の制御は電力変換装置2の制御部が行うものであり、このDC/DCコンバータ4は電力変換装置2の筐体内に内蔵されていてもよく、また外部に一体に構成されかつ設けられても良いものである。   Reference numeral 4 denotes a DC / DC converter, which is connected to a direct current power line connecting the solar cell module 1 and the power conversion device 2 to flow the surplus power. The magnitude of this surplus power is the power consumed by the load L or the load L when the reverse power flow state starts to occur in the power system G with respect to the generated power obtained from the product of the output voltage and output current of the solar cell module 1. After controlling the step-up ratio in a range not exceeding the generated power of the solar cell module 1 on the input side so as to supply electric power in a state where the current supplied to no longer increases, the step-up ratio of the DC / DC converter 4 is changed to the sun. Control is performed so that the generated power of the battery module 1 reaches the optimum operating point, and the difference between the power generated by the solar cell module 1 and the power supplied to the load L is set to pass through the DC / DC converter 4. Is. Note that this series of control is performed by the control unit of the power converter 2, and the DC / DC converter 4 may be built in the casing of the power converter 2, or may be configured integrally with the outside. It may be provided.

このDC/DCコンバータ4は直流電圧を双方向に昇圧するコンバータであり、太陽電池モジュール1で発電された電力の負荷Lに対する余剰分に相当する一部の電力をペルチェ素子5へ供給するかもしくは、ペルチェ素子5から得られる電力を太陽電池モジュール1と電力変換装置2とをつなぐ直流電力用の配線へ供給するものである。尚、ペルチェ素子5へ印加する電圧を調整する必要がある際はDC/DCコンバータ4とペルチェ素子5との間にさらに定電圧回路等を設けてもよい。ペルチェ素子5へ供給される一部の電力は、このような余剰電力に相当する電力量に限らず、一定の電力量や太陽電池モジュール1の発電電力に対する一定比率の電力量であっても良いものである。   The DC / DC converter 4 is a converter that boosts the DC voltage bidirectionally, and supplies a part of the power corresponding to the surplus with respect to the load L of the power generated by the solar cell module 1 to the Peltier element 5 or The electric power obtained from the Peltier element 5 is supplied to the wiring for direct current power connecting the solar cell module 1 and the power conversion device 2. When it is necessary to adjust the voltage applied to the Peltier element 5, a constant voltage circuit or the like may be further provided between the DC / DC converter 4 and the Peltier element 5. The part of power supplied to the Peltier element 5 is not limited to the amount of power corresponding to such surplus power, but may be a certain amount of power or a certain amount of power relative to the generated power of the solar cell module 1. Is.

DC/DCコンバータ4を流れる電流を検出しこの電流に基づく電力が設定の値になるように昇圧比を制御すれば、一定の電力がペルチェ素子5へ供給されることになる。この電力はペルチェ素子5の定格出力又は太陽電池モジュール1の発電電力からの所定の割合に応じて設定すればよい。   If the current flowing through the DC / DC converter 4 is detected and the step-up ratio is controlled so that the power based on this current becomes a set value, a constant power is supplied to the Peltier element 5. This power may be set according to a predetermined ratio from the rated output of the Peltier element 5 or the generated power of the solar cell module 1.

ペルチェ素子5は通電されることにより一方が吸熱面(冷却面)として作用し、他方が放熱面(加熱面)として作用する。冷却面5aは冷蔵庫6の冷凍室Fへ冷気を供給するダクト内に面して設けられ、加熱面5bは水熱交換器7につながって設けられている。   When energized, one of the Peltier elements 5 acts as a heat absorbing surface (cooling surface), and the other acts as a heat radiating surface (heating surface). The cooling surface 5 a is provided facing the duct for supplying cold air to the freezer compartment F of the refrigerator 6, and the heating surface 5 b is provided connected to the water heat exchanger 7.

冷蔵庫6は冷蔵室R、野菜室V、冷凍室Fの3温度帯からなる汎用型の冷蔵庫であり、冷蔵室R・野菜室V用の蒸発器E1と冷凍室F用の蒸発器E2とを備える冷凍サイクルを備えるものであり、矢印8は送風機(図示せず)で循環される冷蔵室R・野菜室V用の冷気の流れを示し、矢印9は送風機(図示せず)で循環される冷凍室Fの冷気の流れを示している。冷凍室Fへ供給される冷気の流れるダクト内にペルチェ素子5の冷却面が設けられており、このダクト内の冷気を冷やすことができる。またはペルチェ素子5を通電していないときは、このペルチェ素子5が冷気で冷やされるものである。   The refrigerator 6 is a general-purpose refrigerator composed of three temperature zones of a refrigerator compartment R, a vegetable compartment V, and a freezer compartment F. An evaporator E1 for the refrigerator compartment R / vegetable compartment V and an evaporator E2 for the freezer compartment F are provided. The arrow 8 indicates the flow of cold air for the refrigerator compartment R / vegetable room V circulated by a blower (not shown), and the arrow 9 is circulated by a blower (not shown). The flow of the cold air of the freezer compartment F is shown. The cooling surface of the Peltier element 5 is provided in the duct through which the cool air supplied to the freezer compartment F flows, and the cool air in the duct can be cooled. Alternatively, when the Peltier element 5 is not energized, the Peltier element 5 is cooled by cold air.

蒸発器E2は冷凍室内の温度がマイナス20度となるように設計されているのに対して、ペルチェ素子5の冷却面5aの温度は蒸発器の温度より低く例えばマイナス40度まで低下させることができる。冷凍室F内に収納される食品等は冷凍室F内の温度が低ければ低い程良く、また冷熱量をより多く蓄冷できるものである。尚、ペルチェ素子5の冷却面5aの温度はこのマイナス20度以下であり蒸発器E2で冷却された空気の温度より低くければ蓄冷の効果がより得られるものである。   The evaporator E2 is designed so that the temperature in the freezer compartment is minus 20 degrees, whereas the temperature of the cooling surface 5a of the Peltier element 5 is lower than the evaporator temperature, for example, minus 40 degrees. it can. The food stored in the freezer compartment F is better as the temperature in the freezer compartment F is lower, and can store more cold energy. In addition, if the temperature of the cooling surface 5a of the Peltier element 5 is minus 20 degrees or less and lower than the temperature of the air cooled by the evaporator E2, the effect of cold storage can be obtained more.

ペルチェ素子5の加熱面5bに設けられた水熱交換器7内の水は加熱されたのち送風機(図示せず)を備える放熱器11を介して貯湯タンク10の上部に供給され同貯湯タンク10の下部から再度水熱交換器へ回る循環回路が構成されている。ポンプ12は水熱交換器7で加熱された温水を貯湯タンク10の上部へ供給するものであり、ポンプ13は逆に貯湯タンクの上部のお湯を熱交換器側へ循環さえるものである。   The water in the water heat exchanger 7 provided on the heating surface 5b of the Peltier element 5 is heated and then supplied to the upper part of the hot water storage tank 10 via a radiator 11 having a blower (not shown). A circulation circuit is formed that recirculates from the lower part to the water heat exchanger. The pump 12 supplies hot water heated by the water heat exchanger 7 to the upper part of the hot water storage tank 10, and the pump 13 conversely circulates hot water in the upper part of the hot water storage tank to the heat exchanger side.

ペルチェ素子5へ通電が行われているときは冷却面5aで冷却された冷気が冷凍室内の温度を通常の冷蔵庫の運転による温度以下に冷やし、ペルチェ素子5の加熱面5bで加熱された温水は貯湯タンク10に供給されることになる。貯湯タンク10に供給される温水の温度はポンプ12の循環量を変えることによって制御され、例えば、沸騰する前の90度前後となるように制御される。貯湯タンク10の下部から出力される貯湯タンク10内の温水の温度がこの設定温度を超えた場合は、貯湯タンク10内への蓄熱ができなくなるため放熱器11に取り付けられている送風機を運転し大気中への放熱を行う。この放熱はペルチェ素子5の放熱面5bから得られる熱量に相当するように行わるものである。さらに冷凍室F内の温度がマイナス40度以下となった際にはさらにペルチェ素子5のへの通電を停止し蓄冷・蓄熱を終了する。   When the Peltier element 5 is energized, the cold air cooled by the cooling surface 5a cools the temperature in the freezer compartment to a temperature lower than the normal refrigerator operation temperature, and the hot water heated by the heating surface 5b of the Peltier element 5 is The hot water storage tank 10 is supplied. The temperature of the hot water supplied to the hot water storage tank 10 is controlled by changing the circulation amount of the pump 12, and is controlled to be, for example, about 90 degrees before boiling. When the temperature of the hot water in the hot water storage tank 10 output from the lower part of the hot water storage tank 10 exceeds this set temperature, the heat storage in the hot water storage tank 10 cannot be performed, so the blower attached to the radiator 11 is operated. Dissipate heat to the atmosphere. This heat radiation is performed so as to correspond to the amount of heat obtained from the heat radiation surface 5 b of the Peltier element 5. Furthermore, when the temperature in the freezer compartment F becomes minus 40 degrees or less, energization to the Peltier element 5 is further stopped, and cold storage and heat storage are ended.

貯湯の動作は、例えば冷媒にCO2(二酸化炭素)を超臨界で作動さる冷凍サイクルを用いていれば90度程度のお湯を直接沸かすことができる。ペルチェ素子5による加熱は補助的に行うものであり冷凍サイクルの運転に要する電力を節電できる。また電気ヒータを熱源とする場合や、フロン系の冷媒を用いる冷凍サイクルを用いた際には貯湯タンク10内のお湯の温度が65度程度に設定さることがあり、この場合はペルチェ素子5で加熱されるお湯の温度はこの65度程度の温度に設定する。   As for the operation of the hot water storage, for example, if a refrigeration cycle that operates CO2 (carbon dioxide) in a supercritical state is used as a refrigerant, hot water of about 90 degrees can be directly boiled. Heating by the Peltier element 5 is performed in an auxiliary manner, and the power required for the operation of the refrigeration cycle can be saved. When the electric heater is used as a heat source or when a refrigeration cycle using a chlorofluorocarbon refrigerant is used, the temperature of hot water in the hot water storage tank 10 may be set to about 65 degrees. The temperature of the hot water to be heated is set to a temperature of about 65 degrees.

このようにペルチェ素子5へ電力を供給する際は吸熱と放熱とを同時に行うことができ変換時の損失を抑制できるものである。また、DC/DCコンバータを直流電力線に電力を供給する側へ作動させると同時に冷気の循環とポンプ13による温水の循環とを行えばペルチェ素子5内の熱移動によって生じる発電電力を昇圧して供給することができる。この場合は吸熱面と放熱面との温度差が大きいほど発電電力が大きくなるが、冷凍室F内の保存品の劣化を考慮すると冷凍室F内の温度がマイナス20度程度に上昇るまでペルチェ素子5による発電を継続させることができる。尚、緊急時など保存品の劣化を考慮しなければさらに発電を行うことができるものである。   Thus, when supplying electric power to the Peltier element 5, heat absorption and heat dissipation can be performed simultaneously, and loss during conversion can be suppressed. Further, if the DC / DC converter is operated to the side where power is supplied to the DC power line, and at the same time circulation of cold air and circulation of hot water by the pump 13 are performed, the generated power generated by the heat transfer in the Peltier element 5 is boosted and supplied can do. In this case, the larger the temperature difference between the heat absorbing surface and the heat radiating surface, the larger the generated power, but considering the deterioration of the stored product in the freezer compartment F, the Peltier until the temperature in the freezer compartment F rises to about minus 20 degrees. Power generation by the element 5 can be continued. Note that further power generation can be performed without considering deterioration of stored products such as in an emergency.

図1において、14は熱源機であり、冷凍サイクルが収納され、この冷凍サイクルで加熱されたお湯が貯湯タンク10の上部から供給される。15は市水供給口であり貯湯タンク10内のお湯が上部の給湯口16から供給される毎に注水されるものである。   In FIG. 1, reference numeral 14 denotes a heat source machine that houses a refrigeration cycle, and hot water heated by the refrigeration cycle is supplied from the upper part of the hot water storage tank 10. Reference numeral 15 denotes a city water supply port, and water is poured every time hot water in the hot water storage tank 10 is supplied from the upper hot water supply port 16.

このように太陽電池モジュール1で発電された電力の一部を用いて冷凍室Fの温度低下と貯湯タンク10の温水供給とを同時に行い、例えば余剰電力を蓄冷/蓄熱することができ、これらの蓄冷/蓄熱はそのまま利用することができる。もしくは電力に変換して利用することも可能になるものである。   Thus, using a part of the electric power generated by the solar cell module 1, the temperature reduction of the freezer compartment F and the hot water supply of the hot water storage tank 10 can be performed at the same time, for example, surplus power can be stored / stored. Cold storage / heat storage can be used as it is. Alternatively, it can be converted into electric power for use.

図3はDC/DCコンバータの一例を示す回路図である。この図において、端子A、Bは太陽電池モジュール1と電力変換装置2とをつなぐ直流電力用の配線に接続され、端子C、Dはペルチェ素子5に接続されるものである。リレー接片R1、R2が閉じている時(リレー接片R3、R4は開いている)はリアクタ20、スイッチング素子21、ダイオード22、コンデンサ23が昇圧回路を構成し端子A、B間の電圧を所定の電圧に昇圧した後端子C、Dからペルチェ素子5へ印加するものである。この昇圧回路はスイッチング素子21のON/OFFを所定の周期をもって1周期内のONデューティを制御する汎用タイプの回路を用いることができるので詳細な動作説明は省略する。ペルチェ素子5へ供給する電流の値を測定(電流検出器は図示せず)し供給する直流電力が設定値に成るように昇圧比を制御すればペルチェ素子5の吸熱量/放熱量を制御することができる。   FIG. 3 is a circuit diagram showing an example of a DC / DC converter. In this figure, terminals A and B are connected to a DC power line connecting the solar cell module 1 and the power converter 2, and terminals C and D are connected to a Peltier element 5. When the relay contacts R1 and R2 are closed (relay contacts R3 and R4 are open), the reactor 20, the switching element 21, the diode 22, and the capacitor 23 constitute a booster circuit, and the voltage between the terminals A and B is The voltage is boosted to a predetermined voltage and then applied to the Peltier element 5 from the terminals C and D. Since this booster circuit can use a general-purpose type circuit that controls the ON duty within one period with a predetermined period of ON / OFF of the switching element 21, a detailed description of the operation is omitted. If the value of the current supplied to the Peltier element 5 is measured (current detector is not shown) and the step-up ratio is controlled so that the supplied DC power becomes a set value, the amount of heat absorbed / heat released by the Peltier element 5 is controlled. be able to.

リレー接片R3、R4が閉じている時(リレー接片R1、R2は開いている)はリアクタ24、スイッチング素子25、ダイオード26、コンデンサ27が昇圧回路を構成し端子C、D間の電圧を所定の電圧に昇圧した後端子A、Bから直流電力用の配線へ印加するものである。このペルチェ素子5から出力される電流値を測定(電流検出器は図示せず)し配線へ供給する直流電力が設定値に成るように昇圧比を制御すればペルチェ素子5の発電量を制御することができる。尚、この昇圧回路の動作は前記昇圧回路と同じであるため説明は省略する。   When the relay contacts R3 and R4 are closed (the relay contacts R1 and R2 are open), the reactor 24, the switching element 25, the diode 26, and the capacitor 27 constitute a booster circuit, and the voltage between the terminals C and D is After boosting to a predetermined voltage, the voltage is applied from the terminals A and B to the wiring for DC power. If the current value output from the Peltier element 5 is measured (current detector is not shown) and the step-up ratio is controlled so that the DC power supplied to the wiring becomes the set value, the power generation amount of the Peltier element 5 is controlled. be able to. Since the operation of this booster circuit is the same as that of the booster circuit, description thereof is omitted.

太陽電池などの再生可能エネルギーを効率よく利用する装置などに適用できるものである。   The present invention can be applied to devices that efficiently use renewable energy such as solar cells.

1 太陽電池モジュール
2 電力変換装置
3 屋内ブレーカー
4 DC/DCコンバータ
5 ペルチェ素子
5a 冷却面
5b 加熱面
7 水熱交換器
8 冷蔵用の冷気の循環方向
9 冷凍用の冷気の循環方向
10 貯湯タンク
11 放熱器
12 ポンプ
13 ポンプ
14 熱源機
15 市水供給口
16 給湯口
20 リアクタ
21 スッチング素子
22 ダイオード
23 コンデンサ
24 リアクタ
25 スッチング素子
26 ダイオード
27 コンデンサ
DESCRIPTION OF SYMBOLS 1 Solar cell module 2 Power converter 3 Indoor breaker 4 DC / DC converter 5 Peltier element 5a Cooling surface 5b Heating surface 7 Hydrothermal exchanger 8 Refrigeration cold air circulation direction 9 Refrigeration cold air circulation direction 10 Hot water storage tank 11 Radiator 12 Pump 13 Pump 14 Heat source machine 15 City water supply port 16 Hot water supply port 20 Reactor 21 Switching element 22 Diode 23 Capacitor 24 Reactor 25 Switching element 26 Diode 27 Capacitor

Claims (3)

太陽電池等の再生可能エネルギーから得られる直流電力を交流電力に変換する電力変換装置の前記直流電力と接続可能に構成されたDC/DCコンバータを備え、
前記DC/DCコンバータにはペルチェ素子が配線接続されこのペルチェ素子の吸熱面を冷凍庫の冷気を循環させるダクト内に望ませ、当該ペルチェ素子の放熱面は水熱交換器を介して貯湯タンク内の湯と熱交換を成すように構成すると共に、前記再生可能エネルギーから得られる直流電力の一部を前記DC/DCコンバータを介して前記ペルチェ素子へ供給し、また少なくとも冷凍庫内の冷熱もしくは貯湯タンク内の温熱のいずれか一方を用いて当該ペルチェ素子から得られる直流電力を前記DC/DCコンバータを介して前記電力変換器へ供給する構成を有することを特徴とする電力制御装置。
A DC / DC converter configured to be connectable to the DC power of the power conversion device that converts DC power obtained from renewable energy such as a solar cell into AC power;
A peltier element is connected to the DC / DC converter by wiring, and a heat absorption surface of the peltier element is desired in a duct for circulating cold air in a freezer, and a heat radiation surface of the peltier element is provided in a hot water storage tank via a water heat exchanger. It is configured to exchange heat with hot water, and a part of direct current power obtained from the renewable energy is supplied to the Peltier element via the DC / DC converter, and at least in the cold or hot water storage tank in the freezer A power control apparatus having a configuration in which direct current power obtained from the Peltier element is supplied to the power converter via the DC / DC converter using any one of the above-mentioned heats.
前記ペルチェ素子の放熱面と貯湯タンク内とを循環する循環回路中に放熱器を設け、該放熱器で前記ペルチェ素子の放熱を行うように構成することを特徴とする請求項1に記載の電力制御装置。   2. The electric power according to claim 1, wherein a radiator is provided in a circulation circuit that circulates between a heat radiation surface of the Peltier element and a hot water storage tank, and the Peltier element is radiated by the radiator. Control device. 前記電力変換装置とDC/DCコンバータとを単一の筐体内に収納、もしくは一体に構成することを特徴とする請求項2に記載の電力制御装置。
The power control apparatus according to claim 2, wherein the power conversion apparatus and the DC / DC converter are housed in a single casing or configured integrally.
JP2014507041A 2012-03-26 2012-03-26 Power control device Expired - Fee Related JP5899441B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057688 WO2013145069A1 (en) 2012-03-26 2012-03-26 Power control device

Publications (2)

Publication Number Publication Date
JPWO2013145069A1 JPWO2013145069A1 (en) 2015-08-03
JP5899441B2 true JP5899441B2 (en) 2016-04-06

Family

ID=49258439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014507041A Expired - Fee Related JP5899441B2 (en) 2012-03-26 2012-03-26 Power control device

Country Status (2)

Country Link
JP (1) JP5899441B2 (en)
WO (1) WO2013145069A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848629A (en) * 2015-05-29 2015-08-19 方亚琴 Hybrid electric energy-saving refrigerator
JP2016128058A (en) * 2016-04-10 2016-07-14 加治佐 功 Commercial cas freezer supercooling use non-cytoclasis inexpensive corpse freezer storage method 2

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087309A (en) * 1960-12-22 1963-04-30 Ohio Commw Eng Co Method and apparatus for refrigeration
JPH10292953A (en) * 1997-04-18 1998-11-04 Hinode:Kk Electronic hot water supply apparatus
JP2006300403A (en) * 2005-04-20 2006-11-02 Tsutomu Masujima Heating and cooling device using heat exchange
JP4974369B2 (en) * 2007-10-09 2012-07-11 東京瓦斯株式会社 Air conditioner

Also Published As

Publication number Publication date
WO2013145069A1 (en) 2013-10-03
JPWO2013145069A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
US10094577B2 (en) Solar energy system
US20110139221A1 (en) Photovoltaic system
WO2005122311A1 (en) Cooling device for fuel cell and vehicle having the same
JP2013530370A (en) Compact heat combined power generation system and control method thereof
JP5899441B2 (en) Power control device
KR102599984B1 (en) Heat exchanger for cooling IGBT module
JP5003607B2 (en) Hot water system
JP6668551B1 (en) Heat source storage system using photovoltaic power generation
JP5996288B2 (en) Cogeneration system and method of operating cogeneration system
JP5378018B2 (en) Hot water supply system and operation method thereof
KR102080867B1 (en) Heat exchanger for cooling IGBT module
JPWO2014002263A1 (en) Power converter
US20160156192A1 (en) Power supply system and heat pump system
JP2009150612A (en) Heat pump type water heater
CN111447809B (en) Photovoltaic air conditioner, cooling assembly and control method of cooling assembly
JP2006105452A (en) Cogeneration system and its control method
JP2012211725A (en) Hot water supply unit
US20240235431A9 (en) Thermoelectric clean energy
JP4278577B2 (en) Panel heater
US20170321912A1 (en) Forced air thermal energy storage system
NL2033272B1 (en) An industrial scale power plant, a system including an industrial scale power plant and one or more appliances, a convection oven, and a hot and cold thermal oil supply method
CN217876365U (en) Electric control system of modular water cooling unit
WO2016127535A1 (en) Solar photovoltaic air conditioning system
JP2021071282A (en) Heat source storage system utilizing solar power generation
KR20180038301A (en) Energy storage apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R151 Written notification of patent or utility model registration

Ref document number: 5899441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees