JP4278577B2 - Panel heater - Google Patents

Panel heater Download PDF

Info

Publication number
JP4278577B2
JP4278577B2 JP2004199119A JP2004199119A JP4278577B2 JP 4278577 B2 JP4278577 B2 JP 4278577B2 JP 2004199119 A JP2004199119 A JP 2004199119A JP 2004199119 A JP2004199119 A JP 2004199119A JP 4278577 B2 JP4278577 B2 JP 4278577B2
Authority
JP
Japan
Prior art keywords
heat
electric compressor
panel
carbon dioxide
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004199119A
Other languages
Japanese (ja)
Other versions
JP2006022972A (en
Inventor
説 長谷川
弘 西川
孝 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004199119A priority Critical patent/JP4278577B2/en
Publication of JP2006022972A publication Critical patent/JP2006022972A/en
Application granted granted Critical
Publication of JP4278577B2 publication Critical patent/JP4278577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

本発明は、電動圧縮機により二酸化炭素冷媒を循環して成る冷媒回路と、光により発電を行うソーラー発電手段を備えたパネルヒータに関するものである。   The present invention relates to a panel heater provided with a refrigerant circuit in which carbon dioxide refrigerant is circulated by an electric compressor and solar power generation means for generating power with light.

従来よりパネルヒータとしては、商用電源から供給される電力を電気ヒータに通電し、オイルを温めて暖房を行うものが知られている。また、灯油などの燃料を使用するボイラーで水を温め、温水を循環して暖房するものもある。しかしながら、これらの暖房方式では電気ヒータや燃料を使用することから多大な電力や燃料を消費していた。   2. Description of the Related Art Conventionally, panel heaters are known in which electric power supplied from a commercial power source is supplied to an electric heater to heat the oil and heat it. In addition, there is a heater that heats water with a boiler that uses fuel such as kerosene and circulates the hot water for heating. However, since these heating systems use electric heaters and fuel, they consume a lot of electric power and fuel.

一方、近年では自然エネルギーでえある太陽光を利用して暖房を行うものとして太陽光暖房給湯システムがある。この太陽光暖房給湯システムでは、太陽光の熱を集熱する集熱器から得た熱を、温水或いは不凍液等の作動流体に蓄熱して搬送する、所謂顕熱熱搬送形態を採っている。そして、蓄熱した作動流体を搬送して一旦蓄熱槽に蓄え、必要に応じて作動流体の熱を給湯熱量として利用すると共に、この熱を暖房として利用していた。   On the other hand, in recent years, there is a solar heating and hot water supply system that performs heating using sunlight that is natural energy. This solar heating / hot water supply system adopts a so-called sensible heat transfer mode in which heat obtained from a heat collector that collects the heat of sunlight is stored in a working fluid such as warm water or antifreeze and transferred. Then, the stored working fluid is transported and temporarily stored in a heat storage tank, and the heat of the working fluid is used as the amount of hot water supply as needed, and this heat is used as heating.

また、タンク構造の低元蒸発器中の二酸化炭素(CO2)を固体(ドライアイス)と液状の二酸化炭素液の混合状態として低温を蓄熱する方法もある。このようにすることで、超臨界の状態で二酸化炭素を使用でき、熱効率がよい(例えば、特許文献1参照)。
特開平11−14172号公報
There is also a method of storing low temperature by mixing carbon dioxide (CO 2 ) in a low-evaporator tank structure with a solid (dry ice) and liquid carbon dioxide liquid. By doing in this way, carbon dioxide can be used in a supercritical state, and thermal efficiency is good (for example, refer patent document 1).
Japanese Patent Laid-Open No. 11-14172

しかしながら、このような太陽光暖房給湯システムでは、集熱器から蓄熱槽まで作動流体を搬送するための配管工事を行わなければならなかった。このため、特に既に建てられている家屋に据え付ける場合には困難を要する問題があった。   However, in such a solar heating hot water supply system, piping work for conveying the working fluid from the heat collector to the heat storage tank has to be performed. For this reason, there has been a problem that requires difficulty, particularly when installed in an already built house.

本発明は、係る従来技術の課題を解決するために成されたものであり、電力や燃料の消費量が少ない高効率なパネルヒータを提供することを目的とする。   The present invention has been made to solve the problems of the related art, and an object of the present invention is to provide a highly efficient panel heater that consumes less power and fuel.

即ち、本発明のパネルヒータは、電動圧縮機により二酸化炭素冷媒を循環して成る冷媒回路と、ラジエータパネルとを備え、電動圧縮機より吐出された高温の二酸化炭素冷媒をラジエータパネルに循環するものであって、冷媒回路は、電動圧縮機と、ガスクーラと、減圧装置及び蒸発器等を順次環状に配管接続して構成され、ラジエータパネルはガスクーラと並列に接続されると共に、このラジエータパネルに二酸化炭素冷媒を流すかガスクーラに流すかを制御する流路制御装置と、相変化物質を貯溜した蓄熱槽と、この蓄熱槽と蒸発器との間で熱搬送を行う熱搬送回路とを備え、ガスクーラを蓄熱槽と交熱的に設けたことを特徴とする。 That is, the panel heater of the present invention are those the refrigerant circuit formed by circulating a carbon dioxide refrigerant, which comprises a radiator panel, circulating carbon dioxide refrigerant of high temperature and discharged from the electric compressor to the radiator panel by an electric compressor The refrigerant circuit is configured by sequentially connecting an electric compressor, a gas cooler, a decompression device, an evaporator, and the like in an annular manner, and the radiator panel is connected in parallel to the gas cooler and the radiator panel is connected to the radiator panel. A gas flow cooler comprising: a flow path control device that controls whether a carbon refrigerant is flown or a gas cooler; a heat storage tank that stores a phase change material; and a heat transfer circuit that transfers heat between the heat storage tank and the evaporator. The heat storage tank is provided in a heat exchange manner.

また、請求項2の発明のパネルヒータは、上記に加えて、熱搬送回路を、オイルを封入した循環回路と、この循環回路内にオイルを循環させるためのポンプとから構成したことを特徴とする。 In addition to the above, the panel heater of the invention of claim 2 is characterized in that the heat transfer circuit is composed of a circulation circuit in which oil is enclosed and a pump for circulating oil in the circulation circuit. To do.

また、請求項3の発明のパネルヒータは、請求項2に加えて、電動圧縮機、流路制御装置及びポンプを制御する制御装置を備え、この制御装置は、ラジエータパネルによる暖房を行わないときに、電動圧縮機を運転し、流路制御装置により電動圧縮機から吐出された二酸化炭素冷媒をガスクーラに流すことにより、蓄熱槽に蓄熱を行うと共に、ラジエータパネルにて暖房を行う場合、電動圧縮機を運転し、流路制御装置により電動圧縮機から吐出された二酸化炭素冷媒をラジエータパネルに流し、且つ、ポンプを運転して蓄熱槽の熱量を蒸発器に搬送することを特徴とする。 A panel heater according to a third aspect of the invention includes, in addition to the second aspect, a control device that controls the electric compressor, the flow path control device, and the pump, and the control device does not perform heating by the radiator panel. In addition, when the electric compressor is operated and the carbon dioxide refrigerant discharged from the electric compressor by the flow path control device is caused to flow to the gas cooler, heat is stored in the heat storage tank and heating is performed by the radiator panel. The apparatus is operated, the carbon dioxide refrigerant discharged from the electric compressor by the flow path control device is caused to flow to the radiator panel, and the pump is operated to convey the heat quantity of the heat storage tank to the evaporator .

また、請求項4の発明のパネルヒータは、請求項1乃至請求項3に加えて、光により発電を行うソーラー発電手段を備え、このソーラー発電手段の出力を電動圧縮機及び/又はポンプに印加することを特徴とする。 In addition to the first to third aspects , the panel heater according to the fourth aspect includes solar power generation means for generating power by light, and the output of the solar power generation means is applied to the electric compressor and / or pump. characterized in that it.

本発明のパネルヒータは、電動圧縮機により二酸化炭素冷媒を循環して成る冷媒回路と、ラジエータパネルとを備え、電動圧縮機より吐出された高温の二酸化炭素冷媒をラジエータパネルに循環するので、冷媒回路にて汲み上げた熱量を用いてラジエータパネルを加熱し、このラジエータパネルによって効率的な暖房を行うことが可能となる。   The panel heater of the present invention includes a refrigerant circuit formed by circulating carbon dioxide refrigerant by an electric compressor and a radiator panel, and circulates high-temperature carbon dioxide refrigerant discharged from the electric compressor to the radiator panel. The radiator panel is heated using the amount of heat pumped up by the circuit, and efficient heating can be performed by this radiator panel.

また、電動圧縮機と、ガスクーラと、減圧装置及び蒸発器等を順次環状に配管接続して構成され、ラジエータパネルはガスクーラと並列に接続されると共に、このラジエータパネルに二酸化炭素冷媒を流すかガスクーラに流すかを制御する流路制御装置を備えているので、流路制御装置により二酸化炭素冷媒をラジエータパネルに流し、蒸発器にて汲み上げた熱量をラジエータパネルに搬送して効率的な暖房を実現することが可能となる。 In addition, an electric compressor, a gas cooler, a decompression device, an evaporator, and the like are sequentially connected in a pipe, and the radiator panel is connected in parallel with the gas cooler, and a carbon dioxide refrigerant is passed through the radiator panel or a gas cooler. Equipped with a flow path control device that controls whether it flows to the radiator panel. The flow path control device allows the carbon dioxide refrigerant to flow through the radiator panel and transports the amount of heat pumped up by the evaporator to the radiator panel for efficient heating. It becomes possible to do.

特に、相変化物質を貯溜した蓄熱槽と、この蓄熱槽と蒸発器との間で熱搬送を行う熱搬送回路とを設け、ガスクーラを蓄熱槽と交熱的に設ければ、ラジエータパネルにて暖房を行わないときにガスクーラにて蓄熱槽に蓄熱しておき、ラジエータパネルで暖房を行うときに、この蓄熱槽の熱量を蒸発器に搬送して汲み上げさせ、暖房に供することが可能となる。これにより、ラジエータパネルによる暖房能力の向上を図ることができるようになる。 In particular, if a heat storage tank that stores phase change substances and a heat transfer circuit that transfers heat between the heat storage tank and the evaporator are provided, and a gas cooler is provided in a heat exchange manner with the heat storage tank, the radiator panel When heating is not performed, heat is stored in the heat storage tank with a gas cooler, and when heating is performed with the radiator panel, the amount of heat in the heat storage tank is transported to the evaporator to be pumped and used for heating. Thereby, the improvement of the heating capability by a radiator panel can be aimed at now.

また、請求項2の如く熱搬送回路を、オイルを封入した循環回路と、この循環回路内にオイルを循環させるためのポンプとから構成すれば、比較的簡単な構成にて蓄熱槽の熱量を高効率で蒸発器に搬送することができるようになる。 Further, if the heat transfer circuit is composed of a circulation circuit filled with oil and a pump for circulating the oil in the circulation circuit as in claim 2, the heat quantity of the heat storage tank can be reduced with a relatively simple structure. It can be conveyed to the evaporator with high efficiency.

そして、請求項3の如く電動圧縮機、流路制御装置及びポンプを制御する制御装置を設け、この制御装置により、ラジエータパネルによる暖房を行わないときに、電動圧縮機を運転し、流路制御装置により電動圧縮機から吐出された二酸化炭素冷媒をガスクーラに流すことにより、蓄熱槽に蓄熱を行うと共に、ラジエータパネルにて暖房を行う場合、電動圧縮機を運転し、流路制御装置により電動圧縮機から吐出された二酸化炭素冷媒をラジエータパネルに流し、且つ、ポンプを運転して蓄熱槽の熱量を蒸発器に搬送するようにすれば、蓄熱槽への蓄熱と、暖房時の熱搬送が円滑に行われるようになる。 Then, the electric compressor, the flow path control device and the control device for controlling the pump are provided as in claim 3, and the control device operates the electric compressor when heating by the radiator panel is not performed, thereby controlling the flow path. When storing carbon dioxide refrigerant discharged from the electric compressor by the device to the gas cooler to store heat in the heat storage tank and heating by the radiator panel, the electric compressor is operated and electric compression is performed by the flow path control device. If the carbon dioxide refrigerant discharged from the machine is flowed to the radiator panel and the pump is operated to transfer the heat amount of the heat storage tank to the evaporator, the heat storage to the heat storage tank and the heat transfer during heating are smooth. To be done.

更に、請求項4の如く光により発電を行うソーラー発電手段を備え、このソーラー発電手段の出力を電動圧縮機及び/又はポンプに印加するようにすれば、通常ラジエータパネルにて暖房を行わない昼間にソーラー発電手段の出力を用いて電動圧縮機を運転し、蓄熱することができるようになり、より効率的な暖房を実現できる。また、ソーラー発電手段の出力を蓄えておき、ポンプを運転して熱搬送を行えば、尚一層の省エネ化を実現できる。 Furthermore, if the solar power generation means for generating power by light as in claim 4 is provided and the output of the solar power generation means is applied to the electric compressor and / or the pump, it is usually not heated in the radiator panel in the daytime. In addition, the electric compressor can be operated using the output of the solar power generation means to store heat, and more efficient heating can be realized. Further, if the output of the solar power generation means is stored and the pump is operated to transfer heat, further energy saving can be realized.

本発明は、二酸化炭素冷媒を循環して成る冷媒回路を備えたパネルヒータにより暖房することを最も主要な特徴とする。即ち、省エネ化を図り、より効率的な暖房を実現するという目的を、二酸化炭素冷媒を循環して成る冷媒回路とパネルヒータを組み合わせることにより実現した。   The main feature of the present invention is that heating is performed by a panel heater provided with a refrigerant circuit in which carbon dioxide refrigerant is circulated. That is, the purpose of realizing energy saving and more efficient heating is realized by combining a panel circuit heater with a refrigerant circuit formed by circulating a carbon dioxide refrigerant.

次に、図面に基づき本発明の実施の形態を詳述する。図1は本発明の一実施例を示すパネルヒータ1の構成図、図2は本発明の一実施例のパネルヒータ1に関する電気回路のブロック図をそれぞれ示している。実施例のパネルヒータ1は、冷媒回路51と熱搬送回路52とを交熱的に備えており、冷媒回路51は図1に示すように、電動圧縮機12と、該電動圧縮機12の吐出側の配管12Aに接続されたガスクーラ(放熱用の熱交換器)14と、ガスクーラ14の出口側の配管14Aに接続されたキャピラリチューブ16(減圧装置)と、キャピラリチューブ16の出口側の配管16Aに接続された蒸発器20等から成り、蒸発器20の出口を電動圧縮機12の吸込側に接続して環状の冷媒サイクルが構成されている。   Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a panel heater 1 showing an embodiment of the present invention, and FIG. 2 is a block diagram of an electric circuit related to the panel heater 1 of an embodiment of the present invention. The panel heater 1 of the embodiment includes a refrigerant circuit 51 and a heat transfer circuit 52 in a heat exchange manner, and the refrigerant circuit 51 includes an electric compressor 12 and a discharge of the electric compressor 12 as shown in FIG. A gas cooler (heat dissipation heat exchanger) 14 connected to the side pipe 12A, a capillary tube 16 (pressure reduction device) connected to the outlet side pipe 14A of the gas cooler 14, and a pipe 16A on the outlet side of the capillary tube 16 An annular refrigerant cycle is configured by connecting the outlet of the evaporator 20 to the suction side of the electric compressor 12.

ここで、冷媒回路51には冷媒として地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である高低圧差の大きい冷媒、即ち、二酸化炭素(CO2)を使用しており、電動圧縮機12の潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。 Here, the refrigerant circuit 51 uses a refrigerant having a high and low pressure difference, that is, a natural refrigerant that is friendly to the global environment as a refrigerant, taking into consideration flammability, toxicity, and the like, that is, carbon dioxide (CO 2 ). As the oil as the lubricating oil of the machine 12, existing oil such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil or the like is used.

また、電動圧縮機12の吐出側の配管12Aには、第1の三方弁18(本発明の流路制御装置に相当)が接続され、ガスクーラ14の出口側の配管14Aには、第2の三方弁22(本発明の流路制御装置に相当)が接続されている。第1の三方弁18には室内(図示せず)の暖房を行うためのラジエータパネル10の入口側の配管10Aが接続され、ラジエータパネル10の出口側の配管10Bは、第2の三方弁22に接続され、これにより、ラジエータパネル10はガスクーラ14と並列に接続される。   In addition, a first three-way valve 18 (corresponding to the flow path control device of the present invention) is connected to the discharge side pipe 12A of the electric compressor 12, and a second pipe 14A on the outlet side of the gas cooler 14 is connected to the second pipe 14A. A three-way valve 22 (corresponding to the flow path control device of the present invention) is connected. A pipe 10A on the inlet side of the radiator panel 10 for heating the room (not shown) is connected to the first three-way valve 18, and a pipe 10B on the outlet side of the radiator panel 10 is connected to the second three-way valve 22. Thus, the radiator panel 10 is connected in parallel with the gas cooler 14.

そして、第1の三方弁18は、電動圧縮機12から吐出された二酸化炭素冷媒をガスクーラ14に流す場合、電動圧縮機12から吐出された二酸化炭素冷媒がラジエータパネル10へ流れるのを阻止し、電動圧縮機12から吐出された二酸化炭素冷媒をラジエータパネル10へ流す場合、電動圧縮機12から吐出された二酸化炭素冷媒がガスクーラ14へ流れるのを阻止する。   The first three-way valve 18 prevents the carbon dioxide refrigerant discharged from the electric compressor 12 from flowing to the radiator panel 10 when flowing the carbon dioxide refrigerant discharged from the electric compressor 12 to the gas cooler 14. When flowing the carbon dioxide refrigerant discharged from the electric compressor 12 to the radiator panel 10, the carbon dioxide refrigerant discharged from the electric compressor 12 is prevented from flowing to the gas cooler 14.

また、第2の三方弁22は、電動圧縮機12から吐出された二酸化炭素冷媒をガスクーラ14に流す場合、ガスクーラ14を出た二酸化炭素冷媒をキャピラリチューブ16に流してラジエータパネル10へ流れるのを阻止し、電動圧縮機12から吐出された二酸化炭素冷媒を第1の三方弁18を介してラジエータパネル10に流す場合、ラジエータパネル10から出た二酸化炭素冷媒をキャピラリチューブ16に流してガスクーラ14に流れるのを阻止する。即ち、第1の三方弁18及び第2の三方弁22は、冷媒回路51内の二酸化炭素冷媒をラジエータパネル10に流すかガスクーラ14に流すかを制御する。   In addition, the second three-way valve 22 allows the carbon dioxide refrigerant discharged from the electric compressor 12 to flow to the gas cooler 14, so that the carbon dioxide refrigerant that has exited the gas cooler 14 flows to the capillary tube 16 and flows to the radiator panel 10. When the carbon dioxide refrigerant discharged from the electric compressor 12 is flowed to the radiator panel 10 via the first three-way valve 18, the carbon dioxide refrigerant discharged from the radiator panel 10 is caused to flow to the capillary tube 16 to the gas cooler 14. Stop flowing. In other words, the first three-way valve 18 and the second three-way valve 22 control whether the carbon dioxide refrigerant in the refrigerant circuit 51 flows through the radiator panel 10 or the gas cooler 14.

前記熱搬送回路52は、封入した例えばオイルを循環させ、このオイルにより熱を搬送するための回路で、オイルを循環させるためのポンプ30と、蓄熱を行うための蓄熱槽32とから構成されている。ポンプ30の出口側のオイル管30Bは蓄熱槽32に接続され、蓄熱槽32の出口側に設けられたオイル管32Bは蒸発器20を通りポンプ30の入口側に接続される環状のオイル循環回路を構成している。このオイル循環回路内には交熱に優れ、熱を効率よく搬送することが可能なオイルが封入される。   The heat transfer circuit 52 is a circuit for circulating, for example, enclosed oil and transferring heat by the oil, and includes a pump 30 for circulating oil and a heat storage tank 32 for storing heat. Yes. An oil pipe 30B on the outlet side of the pump 30 is connected to the heat storage tank 32, and an oil pipe 32B provided on the outlet side of the heat storage tank 32 passes through the evaporator 20 and is connected to the inlet side of the pump 30. Is configured. The oil circulation circuit is filled with oil that excels in heat exchange and can efficiently transfer heat.

蓄熱槽32内には所定の温度で個体、それ以上の温度で液体となり、このときに大量の熱を蓄えることができる相変化物質を収容している。相変化物質としては、例えば+55℃以下では固体、+55℃より高い温度で液体となる酢酸ソーダ、或いは、+47℃以下では固体、+47℃より高い温度で液体となる酢酸ソーダ混合物などが挙げられ、これらの何れかが蓄熱槽32内に貯留される。尚、本実施例では酢酸ソーダで説明する。   The heat storage tank 32 contains a phase change material that can be solid at a predetermined temperature and liquid at a temperature higher than that, and can store a large amount of heat at this time. Examples of the phase change substance include sodium acetate that is solid at + 55 ° C. or lower and liquid at a temperature higher than + 55 ° C., or sodium acetate mixture that is solid at + 47 ° C. or lower and liquid at a temperature higher than + 47 ° C. Any of these is stored in the heat storage tank 32. In the present embodiment, description will be made using sodium acetate.

また、蓄熱槽32内には、電動圧縮機12の出口側の配管12Aに接続されて高温の二酸化炭素冷媒が流通するガスクーラ14の冷媒配管14Bと、ポンプ30の入口側に接続されてオイルが流通するオイル配管32Aとが設けられている。このガスクーラ14の冷媒配管14Bと、オイル配管32Aとは蓄熱槽32内に収容した相変化物質に浸されている。   Further, in the heat storage tank 32, oil is connected to the refrigerant pipe 14 </ b> B of the gas cooler 14 connected to the pipe 12 </ b> A on the outlet side of the electric compressor 12 and through which high-temperature carbon dioxide refrigerant flows, and to the inlet side of the pump 30. A circulating oil pipe 32A is provided. The refrigerant pipe 14 </ b> B and the oil pipe 32 </ b> A of the gas cooler 14 are immersed in the phase change material accommodated in the heat storage tank 32.

詳しくは、冷媒配管14Bとオイル配管32Aは、コイル状或いは蛇行状に形成され、この状態で蓄熱槽32内全体に略均等間隔でコイル状或いは蛇行状に沈められて相変化物質に浸されている。また、冷媒配管14B内を流れる冷媒とオイル配管32A内を流れるオイルは対向流となるように構成されている。これによって、ガスクーラ14を通る二酸化炭素冷媒と蓄熱槽32内に収容した相変化物質とを交熱的に配設すると共に、オイル配管32A内を流通するオイルと蓄熱槽32内に収容した相変化物質とを交熱的に配設している。即ち、ガスクーラ14を蓄熱槽32と交熱的に配設している。   Specifically, the refrigerant pipe 14B and the oil pipe 32A are formed in a coil shape or a meandering shape, and in this state, the refrigerant pipe 14B and the oil pipe 32A are immersed in the phase change material by being submerged in a coil shape or a meandering shape at substantially equal intervals. Yes. Further, the refrigerant flowing in the refrigerant pipe 14B and the oil flowing in the oil pipe 32A are configured to face each other. As a result, the carbon dioxide refrigerant passing through the gas cooler 14 and the phase change material accommodated in the heat storage tank 32 are arranged in a heat exchange manner, and the oil flowing in the oil pipe 32A and the phase change accommodated in the heat storage tank 32 are disposed. The substance is arranged in a heat exchange manner. That is, the gas cooler 14 is disposed in a heat exchange manner with the heat storage tank 32.

そして、電動圧縮機12を出た高温の二酸化炭素冷媒がガスクーラ14内に流入して冷媒配管14Bを通過する過程で、蓄熱槽32内に収容された冷媒配管14B周囲の相変化物質を例えば+55℃以上で加熱して固体の相変化物質を液状に変化させる。この場合、固体の相変化物質を液状に変化させているので、相変化物質が固体にならない限り安定して熱エネルギーを蓄積(蓄熱)しておくことができる。係る固体の相変化物質を液状に変化させて熱エネルギーを蓄積しておく技術については、従来より周知の技術であるため詳細な説明を省略する。   Then, in the process in which the high-temperature carbon dioxide refrigerant exiting the electric compressor 12 flows into the gas cooler 14 and passes through the refrigerant pipe 14B, the phase change material around the refrigerant pipe 14B accommodated in the heat storage tank 32 is, for example, +55 The solid phase change material is changed to a liquid state by heating at a temperature of at least ° C. In this case, since the solid phase change material is changed to a liquid state, thermal energy can be stably accumulated (heat storage) as long as the phase change material does not become solid. Since the technology for changing the solid phase change material into a liquid state and accumulating heat energy is a well-known technology, detailed description thereof will be omitted.

また、蒸発器20は、例えば二酸化炭素冷媒が流通する蛇行状の冷媒配管20Aとオイルが流通するオイル管32Cとを交熱的に密着固定、或いは、2枚のプレートを貼り合わせて二酸化炭素冷媒とオイルとを流通させる流路を膨出させて形成した、所謂ロールボンド式の熱交換器にて構成されている。また、蒸発器20の冷媒配管20A内を流れる冷媒とオイル管32C内を流れるオイルは対向流となるように構成されている。このように、蒸発器20に冷媒配管20Aと熱搬送回路52のオイル管32Cとを交熱的に設けることにより、冷媒回路51と熱搬送回路52との熱を効率よく熱交換できるように構成している。   Further, the evaporator 20 is, for example, a heat-fixed heat-fixed meandering refrigerant pipe 20A through which carbon dioxide refrigerant flows and an oil pipe 32C through which oil flows, or two plates are bonded together to form carbon dioxide refrigerant. And a so-called roll bond type heat exchanger formed by expanding a flow path for circulating oil and oil. Further, the refrigerant flowing in the refrigerant pipe 20A of the evaporator 20 and the oil flowing in the oil pipe 32C are configured to face each other. As described above, the evaporator 20 is provided with the refrigerant pipe 20 </ b> A and the oil pipe 32 </ b> C of the heat transfer circuit 52 in a heat exchange manner so that the heat between the refrigerant circuit 51 and the heat transfer circuit 52 can be efficiently exchanged. is doing.

また、パネルヒータ1には図2に示すように、電動圧縮機12と第1、第2の三方弁18、22及びポンプ30の運転を制御するため、汎用のマイクロコンピュータからなる制御装置36が設けられている。該制御装置36は、第1、第2の三方弁18、22を切り換えて電動圧縮機12から二酸化炭素冷媒を第1の三方弁18、ガスクーラ14、第2の三方弁22、キャピラリチューブ16、蒸発器20を介して電動圧縮機12に戻す循環回路と、二酸化炭素冷媒を電動圧縮機12から第1の三方弁18、ラジエータパネル10、第2の三方弁22、キャピラリチューブ16、蒸発器20を介して電動圧縮機12に戻る循環回路とに切り換える。   Further, as shown in FIG. 2, the panel heater 1 has a control device 36 composed of a general-purpose microcomputer for controlling the operation of the electric compressor 12, the first and second three-way valves 18, 22 and the pump 30. Is provided. The control device 36 switches the first and second three-way valves 18 and 22 to supply carbon dioxide refrigerant from the electric compressor 12 to the first three-way valve 18, the gas cooler 14, the second three-way valve 22, the capillary tube 16, A circulation circuit for returning to the electric compressor 12 via the evaporator 20, and a carbon dioxide refrigerant from the electric compressor 12 to the first three-way valve 18, the radiator panel 10, the second three-way valve 22, the capillary tube 16, and the evaporator 20 Is switched to a circulation circuit that returns to the electric compressor 12 via

また、制御装置36は、ラジエータパネル10による暖房を行わないときは、第1、第2の三方弁18、22を制御して電動圧縮機12から吐出される二酸化炭素冷媒をガスクーラ14に流して蓄熱槽32に蓄熱を行い、ラジエータパネル10にて暖房を行う場合、第1、第2の三方弁18、22を制御して、電動圧縮機12から吐出される二酸化炭素冷媒をラジエータパネル10に流すと共に、ポンプ30を運転して蓄熱槽32に蓄熱した熱エネルギーを熱搬送回路により蒸発器20に搬送して電動圧縮機12に吸い込まれる二酸化炭素冷媒を加熱(冷媒に熱を与える)する。これにより、電動圧縮機12から吐出される二酸化炭素冷媒の温度を効果的に上昇させることができるように構成している。即ち、蓄熱槽32に蓄積した熱エネルギーで電動圧縮機12に吸い込まれる二酸化炭素冷媒の温度を上昇させ、電動圧縮機12から吐出される二酸化炭素冷媒の温度を効果的に上昇させる。これにより、ラジエータパネル10の温度を上昇させて高効率な暖房を行い、省エネを効果的に行えるように構成している。このとき、例えばラジエータパネル10内の二酸化炭素冷媒の温度が約+70℃とすると、ラジエータパネル10の表面温度約+50℃の暖房温度となる。   Further, when the heating by the radiator panel 10 is not performed, the control device 36 controls the first and second three-way valves 18 and 22 to flow the carbon dioxide refrigerant discharged from the electric compressor 12 to the gas cooler 14. When heat is stored in the heat storage tank 32 and heating is performed by the radiator panel 10, the first and second three-way valves 18 and 22 are controlled, and the carbon dioxide refrigerant discharged from the electric compressor 12 is supplied to the radiator panel 10. While flowing, the heat energy stored in the heat storage tank 32 by operating the pump 30 is transferred to the evaporator 20 by the heat transfer circuit, and the carbon dioxide refrigerant sucked into the electric compressor 12 is heated (heat is given to the refrigerant). Thereby, it is comprised so that the temperature of the carbon dioxide refrigerant discharged from the electric compressor 12 can be raised effectively. That is, the temperature of the carbon dioxide refrigerant sucked into the electric compressor 12 is increased by the heat energy accumulated in the heat storage tank 32, and the temperature of the carbon dioxide refrigerant discharged from the electric compressor 12 is effectively increased. Thereby, the temperature of the radiator panel 10 is raised to perform high-efficiency heating so that energy can be effectively saved. At this time, for example, if the temperature of the carbon dioxide refrigerant in the radiator panel 10 is about + 70 ° C., the heating temperature is about + 50 ° C. of the surface temperature of the radiator panel 10.

一方、電動圧縮機12、第1、第2の三方弁18、22及びポンプ30は屋内分電盤40を介して系統商用交流電源ACに接続されている。屋内分電盤40には、照明器具、洗濯機、電子レンジ、オーブン、電熱器、エアコン、暖房器具、扇風機、冷蔵庫、テレビ、ビデオなどの音響機器、コピー機器、電話或いは工作機械などの電気機器からなる室内負荷44が接続される。   On the other hand, the electric compressor 12, the first and second three-way valves 18 and 22, and the pump 30 are connected to a system commercial AC power supply AC through an indoor distribution board 40. The indoor distribution board 40 includes lighting devices, washing machines, microwave ovens, ovens, electric heaters, air conditioners, heating appliances, electric fans, refrigerators, televisions, video and other acoustic devices, copy devices, telephones, machine tools, and other electrical devices. An indoor load 44 is connected.

屋内分電盤40は、家屋内配線の一部に大量の電力が流れることにより家屋内全体の給電が停止してしまうのを防止するため家屋内を複数に分割して電力を供給すると共に、屋内配線の一部に大量の電力が流れることにより電気事故が発生してしまうのを防止するため使用箇所に応じて電力量を分配する器具である。   The indoor distribution board 40 supplies power by dividing the interior of the house into a plurality of parts in order to prevent the power supply of the entire house from stopping due to a large amount of power flowing through a part of the house wiring. In order to prevent an electrical accident from occurring due to a large amount of power flowing through a part of the indoor wiring, the appliance distributes the amount of power according to the location of use.

また、屋内分電盤40にはDC/AC変換装置48を介して、屋根上などに設置され太陽光により所定の発電電力を得られる太陽電池パネル(ソーラーパネル)46(本発明のソーラー発電手段に相当)が接続されている。該太陽電池パネル46で発電された電力は直流(DC)であるため、インバータを備えたDC/AC変換装置48を介して屋内分電盤40に接続されている。このDC/AC変換装置48は、太陽電池パネル46で発電された直流電力を昇圧して交流電力に変換し、一般家庭で使用可能な100V、或いは、200Vの交流50Hz、或いは、60Hzに変換する。   Further, a solar panel 46 (solar power generation means of the present invention) is provided on the indoor distribution board 40 through a DC / AC conversion device 48 and installed on the roof or the like to obtain predetermined generated power by sunlight. Is equivalent). Since the electric power generated by the solar cell panel 46 is direct current (DC), it is connected to the indoor distribution board 40 via a DC / AC converter 48 equipped with an inverter. The DC / AC converter 48 boosts the DC power generated by the solar battery panel 46 and converts it into AC power, and converts it into 100 V or 200 V AC 50 Hz or 60 Hz that can be used in a general home. .

また、太陽電池パネル46としては、室内負荷44及びパネルヒータ1など一般家庭で昼間使用する全体の電力量をまかなえる、例えば約3Kw〜5Kw或いはそれ以上の大きな発電能力を有するものが備えられている。尚、DC/AC変換装置48にて直流電力を一般家庭で使用できる周波数及び電圧に変換する技術については、従来より周知の技術であるため詳細な説明を省略する。   Moreover, as the solar cell panel 46, what has a large electric power generation capacity, for example, about 3 Kw-5 Kw or more, which can cover the whole electric energy used in a general household, such as the indoor load 44 and the panel heater 1, is provided. . Note that the DC / AC converter 48 converts DC power into a frequency and voltage that can be used in a general home, since it is a well-known technique and will not be described in detail.

また、屋内分電盤40には電力を系統商用交流電源ACに売電可能な売電装置(図示せず)が備えられている。この売電装置は、太陽電池パネル46にて発電された電力でパネルヒータ1や室内負荷44を動作させた状態で余剰電力が生じると、売電装置に内蔵したインバータで系統商用交流電源ACに流れる電力の電圧より所定の電圧だけ高くする。勿論インバータにて系統商用交流電源ACの周波数に一致させている。これによって、太陽電池パネル46で発電された電力を系統商用交流電源ACに流し、電力会社に売電している。尚、太陽電池パネル46で発電した電力をインバータで変換して系統商用交流電源ACに供給し、電力会社に売電する技術については従来より周知の技術であり詳細な説明を省略する。尚、売電装置は屋内分電盤40或いは別に設けても差し支えない。   Further, the indoor distribution board 40 is provided with a power selling device (not shown) capable of selling power to the system commercial AC power supply AC. When surplus power is generated in a state where the panel heater 1 and the indoor load 44 are operated with the power generated by the solar battery panel 46, the power selling device uses the inverter built in the power selling device to supply the system commercial AC power source AC. A predetermined voltage is made higher than the voltage of the flowing power. Of course, it is made to correspond with the frequency of system | strain commercial AC power supply AC with an inverter. Thereby, the electric power generated by the solar cell panel 46 is supplied to the grid commercial AC power source AC and sold to the electric power company. In addition, about the technique which converts the electric power generated with the solar cell panel 46 with an inverter, supplies it to system | strain commercial alternating current power supply AC, and sells electric power to an electric power company, it is a conventionally well-known technique and detailed description is abbreviate | omitted. The power selling device may be provided in the indoor distribution board 40 or separately.

以上の構成で次に、図3を参照してパネルヒータ1の動作を説明する。尚、図3では冷媒回路51と熱搬送回路52を図示し、太陽電池パネル46、系統商用交流電源ACなどは図示していない。また、パネルヒータ1は昼間太陽が出ているときに太陽電池パネル46にて発電された電力(この場合、電力が足りない場合は系統商用交流電源ACから補充される)で蓄熱槽32に熱エネルギーの蓄熱を行い、夜間は蓄熱槽32にした蓄熱した熱エネルギーを暖房に使用する。   Next, the operation of the panel heater 1 will be described with reference to FIG. In FIG. 3, the refrigerant circuit 51 and the heat transfer circuit 52 are illustrated, and the solar cell panel 46, the system commercial AC power source AC, and the like are not illustrated. Further, the panel heater 1 heats the heat storage tank 32 with electric power generated by the solar cell panel 46 when the sun is out during the daytime (in this case, supplemented from the system commercial AC power supply AC when the electric power is insufficient). Energy is stored, and the stored thermal energy in the heat storage tank 32 is used for heating at night.

先ず、昼間制御装置36は電動圧縮機12から吐出される二酸化炭素冷媒がガスクーラ14に流入してキャピラリチューブ16に流れるように第1、第2の三方弁18、22を切り換える。このとき、制御装置36はポンプ30の運転を行わない。そして、昼間太陽光を受けて太陽電池パネル46が発電すると、その発電した電力がDC/AC変換装置48及び屋内分電盤40を介して電動圧縮機12に供給されて駆動される。電動圧縮機12が駆動されると、図3中矢印で示すように電動圧縮機12から吐出側の配管12Aに吐出された高温高圧のガス状二酸化炭素冷媒が第1の三方弁18からガスクーラ14に至る。そして、高温のガス状の二酸化炭素冷媒はガスクーラ14内の冷媒配管14Bを通過する過程で放熱し、蓄熱槽32内に配設された相変化物質を加熱して固体の相変化物質を液状に変化させる。   First, the daytime control device 36 switches the first and second three-way valves 18 and 22 so that the carbon dioxide refrigerant discharged from the electric compressor 12 flows into the gas cooler 14 and flows into the capillary tube 16. At this time, the control device 36 does not operate the pump 30. When the solar panel 46 generates power in response to sunlight in the daytime, the generated power is supplied to the electric compressor 12 via the DC / AC converter 48 and the indoor distribution board 40 and driven. When the electric compressor 12 is driven, the high-temperature and high-pressure gaseous carbon dioxide refrigerant discharged from the electric compressor 12 to the discharge-side pipe 12A is discharged from the first three-way valve 18 to the gas cooler 14 as indicated by arrows in FIG. To. The high-temperature gaseous carbon dioxide refrigerant dissipates heat in the process of passing through the refrigerant pipe 14B in the gas cooler 14, and heats the phase change material disposed in the heat storage tank 32 to make the solid phase change material liquid. Change.

このとき、高温の二酸化炭素冷媒は、相変化物質に熱を放出して冷却され、固体の相変化物質は熱を吸収して液化することにより蓄熱するが、二酸化炭素冷媒はこの時点では凝縮せず、超臨界の状態(ガス状)でガスクーラ14の冷媒配管14B内を通過する。従って、高い加熱能力を得ることができる。そして、冷却された二酸化炭素冷媒は、ガスクーラ14の出口側の配管14Aから出て第2の三方弁22からキャピラリチューブ16に至り、そこで減圧されて液化した後、蒸発器20に流入する。蒸発器20の冷媒配管20Aに流入した二酸化炭素冷媒は蒸発(吸熱)し、電動圧縮機12に帰還する。これが繰り返され、パネルヒータ1は、太陽が出ている昼間は系統商用交流電源ACを使用せずに太陽電池パネル46にて発電された電力だけで蓄熱槽32に熱エネルギーを蓄積する。   At this time, the high temperature carbon dioxide refrigerant releases heat to the phase change material and is cooled, and the solid phase change material absorbs heat and liquefies to store heat, but the carbon dioxide refrigerant is condensed at this point. Instead, it passes through the refrigerant pipe 14B of the gas cooler 14 in a supercritical state (in a gaseous state). Therefore, a high heating capacity can be obtained. Then, the cooled carbon dioxide refrigerant exits from the piping 14A on the outlet side of the gas cooler 14, reaches the capillary tube 16 from the second three-way valve 22, is decompressed and liquefied there, and then flows into the evaporator 20. The carbon dioxide refrigerant that has flowed into the refrigerant pipe 20 </ b> A of the evaporator 20 evaporates (heat absorption) and returns to the electric compressor 12. This is repeated, and the panel heater 1 accumulates thermal energy in the heat storage tank 32 only by the electric power generated by the solar battery panel 46 without using the grid commercial AC power supply AC during the daytime when the sun is out.

次に、太陽光のない夜間暖房を使用する際、太陽電池パネル46は太陽光を受けられないので、パネルヒータ1は系統商用交流電源ACからの電力が供給される。制御装置36は、電動圧縮機12から吐出された二酸化炭素冷媒がラジエータパネル10を通過してキャピラリチューブ16に流れるように第1、第2の三方弁18、22を切り換えると共に、電動圧縮機12の運転を行う。また、暖房が高中負荷であるときはポンプ30も運転する。   Next, when using night heating without sunlight, the solar panel 46 cannot receive sunlight, so the panel heater 1 is supplied with power from the system commercial AC power supply AC. The control device 36 switches the first and second three-way valves 18 and 22 so that the carbon dioxide refrigerant discharged from the electric compressor 12 passes through the radiator panel 10 and flows to the capillary tube 16, and also the electric compressor 12. Do the operation. Further, the pump 30 is also operated when the heating is at a high or medium load.

ポンプ30が駆動されると、熱搬送回路52内のオイルは図4中矢印で示すように蓄熱槽32内のオイル配管32Aを通過する時点で蓄熱された熱で温められ、蒸発器20のオイル管32Cを経てポンプ30に戻る循環を繰り返す。同時に電動圧縮機12が駆動されて、図4矢印で示すように電動圧縮機12から吐出側の配管12Aに吐出された高温高圧のガス状二酸化炭素冷媒は、第1の三方弁18からラジエータパネル10に流入し、そこで放熱して室内の暖房を行いこれが繰り返される。同様にこのラジエータパネル10では冷媒は凝縮せず、超臨界状態のまま通過するので、高い暖房能力が得られる。そして、ラジエータパネル10で放熱した二酸化炭素冷媒は、第2の三方弁22を介してキャピラリチューブ16に至り、そこで減圧されて液化した後、蒸発器20に流入する。   When the pump 30 is driven, the oil in the heat transfer circuit 52 is warmed by the heat stored when the oil passes through the oil pipe 32A in the heat storage tank 32 as shown by the arrows in FIG. The circulation returning to the pump 30 through the pipe 32C is repeated. At the same time, the electric compressor 12 is driven, and the high-temperature and high-pressure gaseous carbon dioxide refrigerant discharged from the electric compressor 12 to the discharge-side pipe 12A as shown by an arrow in FIG. 4 is discharged from the first three-way valve 18 to the radiator panel. 10, the heat is dissipated and the room is heated, and this is repeated. Similarly, in the radiator panel 10, the refrigerant is not condensed and passes in a supercritical state, so that a high heating capacity can be obtained. Then, the carbon dioxide refrigerant radiated by the radiator panel 10 reaches the capillary tube 16 via the second three-way valve 22, where it is decompressed and liquefied, and then flows into the evaporator 20.

蒸発器20は前述した如く冷媒配管20Aと熱搬送回路52のオイル管32Cとが交熱的に設けられているので、蒸発器20の冷媒配管20Aに流入した二酸化炭素冷媒は、蓄熱槽32内で温められ、ポンプ30でオイル管32Cに搬送されたオイルと熱交換することにより、熱搬送回路52から冷媒回路51に熱を汲み上げる。そして、熱搬送回路52から熱を汲み上げ、温められた二酸化炭素冷媒は電動圧縮機12に吸い込まれる。また、蒸発器20内で二酸化炭素冷媒と熱交換し、冷やされたオイルは、熱搬送回路52を搬送されて再び蓄熱槽32内に流入し、そこでオイルは相変化物質にて温められる。このとき、液状の相変化物質は熱を放出して固化していき、熱を放出し終えると固体になり、これが繰り返される。   Since the evaporator 20 is provided with the refrigerant pipe 20A and the oil pipe 32C of the heat transfer circuit 52 in a heat exchange manner as described above, the carbon dioxide refrigerant flowing into the refrigerant pipe 20A of the evaporator 20 is stored in the heat storage tank 32. Heat is pumped from the heat transfer circuit 52 to the refrigerant circuit 51 by exchanging heat with the oil that is heated by the pump 30 and transferred to the oil pipe 32C by the pump 30. Then, the carbon dioxide refrigerant heated by pumping up heat from the heat transfer circuit 52 is sucked into the electric compressor 12. Also, the oil cooled by the heat exchange with the carbon dioxide refrigerant in the evaporator 20 is transported through the heat transport circuit 52 and flows into the heat storage tank 32 again, where the oil is warmed by the phase change material. At this time, the liquid phase change material is solidified by releasing heat, and becomes solid after releasing the heat, and this is repeated.

このように、太陽が出ている昼間は系統商用交流電源ACからの電力を使用せずに太陽電池パネル46の電力で、熱搬送回路52に設けた蓄熱槽32に蓄熱する。そして、電動圧縮機12より吐出された高温高圧の二酸化炭素冷媒をラジエータパネル10に循環すると共に、冷媒回路51の蒸発器20にて熱搬送回路52から汲み上げた熱を用いてラジエータパネル10を加熱しているので、このラジエータパネル10によって高性能且つ効率的に室内の暖房を行うことが可能となる。   In this way, during the daytime when the sun is coming out, heat is stored in the heat storage tank 32 provided in the heat transfer circuit 52 with the power of the solar cell panel 46 without using the power from the system commercial AC power supply AC. Then, the high-temperature and high-pressure carbon dioxide refrigerant discharged from the electric compressor 12 is circulated to the radiator panel 10, and the radiator panel 10 is heated using the heat pumped from the heat transfer circuit 52 by the evaporator 20 of the refrigerant circuit 51. Therefore, the radiator panel 10 can perform indoor heating with high performance and efficiency.

即ち、パネルヒータ1は、系統商用交流電源ACを使用せずに太陽電池パネル46で発電した電力で、冷媒回路51の電動圧縮機12と第1の三方弁18と第2の三方弁22及び熱搬送回路52のポンプ30を駆動し、熱搬送回路52に設けた蓄熱槽32に蓄熱し、蓄熱槽32に蓄熱した熱を汲み上げてラジエータパネル10を加熱して暖房を行っているので、系統商用交流電源ACからの電力や、ボイラーなどの加熱手段からの熱を利用しなくても好適な暖房を行うことができる。これにより、大幅な省エネを計ることが可能となる。   That is, the panel heater 1 is electric power generated by the solar battery panel 46 without using the system commercial AC power supply AC, and the electric compressor 12 of the refrigerant circuit 51, the first three-way valve 18, the second three-way valve 22, and Since the pump 30 of the heat transfer circuit 52 is driven, the heat is stored in the heat storage tank 32 provided in the heat transfer circuit 52, the heat stored in the heat storage tank 32 is pumped up, and the radiator panel 10 is heated for heating. Suitable heating can be performed without using electric power from the commercial AC power supply AC or heat from a heating means such as a boiler. As a result, significant energy savings can be achieved.

この場合、電動圧縮機12と、ガスクーラ14と、キャピラリチューブ16及び蒸発器20等を順次環状に配管接続して冷媒回路51を構成し、ラジエータパネル10をガスクーラ14と並列に接続すると共に、ラジエータパネル10に二酸化炭素冷媒を流すかガスクーラ14に流すかを制御する第1、第2の三方弁18、22を備えているので、暖房しないときには第1、第2の三方弁18、22により二酸化炭素冷媒をガスクーラ14に流して蓄熱しておき、暖房時には二酸化炭素冷媒をラジエータパネル10に流し、且つ、蒸発器20にて熱搬送回路52から汲み上げた熱をラジエータパネル10に搬送して効率的な暖房を実現することができるようになる。これにより、蓄熱槽32への蓄熱と、暖房時の熱搬送を円滑に行い、ラジエータパネル10による暖房能力を大幅に向上させることができる。   In this case, the electric compressor 12, the gas cooler 14, the capillary tube 16, the evaporator 20, and the like are sequentially connected in a pipe to form the refrigerant circuit 51, the radiator panel 10 is connected in parallel to the gas cooler 14, and the radiator Since the first and second three-way valves 18 and 22 for controlling whether the carbon dioxide refrigerant flows to the panel 10 or the gas cooler 14 are provided, the first and second three-way valves 18 and 22 are used to control the carbon dioxide. The carbon refrigerant is allowed to flow through the gas cooler 14 to store heat, the carbon dioxide refrigerant is allowed to flow to the radiator panel 10 during heating, and the heat pumped up from the heat transfer circuit 52 by the evaporator 20 is transferred to the radiator panel 10 for efficient operation. Heating can be realized. Thereby, heat storage to the heat storage tank 32 and heat transfer during heating can be performed smoothly, and the heating capacity of the radiator panel 10 can be greatly improved.

また、熱搬送回路52はオイルを封入した循環回路と、この循環回路内に設けたオイルを循環させるためのポンプ30などで構成されているので、比較的簡単な構成にて蓄熱槽32に蓄熱した熱を高効率で蒸発器20に搬送することができる。   The heat transfer circuit 52 is composed of a circulation circuit in which oil is sealed and a pump 30 for circulating oil provided in the circulation circuit. Therefore, the heat transfer circuit 52 stores heat in the heat storage tank 32 with a relatively simple structure. The heated heat can be transferred to the evaporator 20 with high efficiency.

特に、太陽光により発電を行う太陽電池パネル46の出力を電動圧縮機12やポンプ30に印加するようにしているので、通常ラジエータパネル10にて暖房を行わない昼間に系統商用交流電源ACの電力を使用せずに太陽電池パネル46の出力を用いて電動圧縮機12を運転し、蓄熱槽32に蓄熱することができる。これにより、系統商用交流電源ACの電力使用量を抑えられるのでより効率的な暖房を実現することができる。   In particular, since the output of the solar cell panel 46 that generates power by sunlight is applied to the electric compressor 12 and the pump 30, the power of the grid commercial AC power source AC is normally not heated in the radiator panel 10. The electric compressor 12 can be operated using the output of the solar battery panel 46 without using the heat storage tank 32 to store heat. Thereby, since the electric power consumption of system | strain commercial alternating current power supply AC can be suppressed, more efficient heating can be implement | achieved.

尚、暖房負荷が軽負荷の場合には、ポンプ30は停止して熱搬送回路52を使用しない。これによって、熱搬送回路52の無用な動作を防止し、更なる効率化を図ることができるようになる。   When the heating load is light, the pump 30 is stopped and the heat transfer circuit 52 is not used. Thus, unnecessary operation of the heat transfer circuit 52 can be prevented and further efficiency can be achieved.

また、実施例では太陽電池パネル46で発電された電力で室内負荷44を動作させ、余剰電力を電力会社に売電しているが、余剰電力を売電及び蓄電池に蓄えておき、ポンプ30を運転して熱搬送を行えば、尚一層の省エネ化を実現することができる。   In the embodiment, the indoor load 44 is operated with the electric power generated by the solar panel 46 and the surplus power is sold to the power company. However, the surplus power is stored in the power sale and storage battery, and the pump 30 is installed. If it is operated and transported by heat, further energy saving can be realized.

また、実施例では熱搬送回路52内にオイルを封入したが、熱搬送回路内はオイルに限らず、潜熱を利用して熱の移動を行うヒートパイプを利用しても差し支えない。このヒートパイプは、密閉された所定の長さの金属パイプと、この金属パイプ内に封入された作動流体にて構成されている。そして、ポンプ30の代わりに制御装置36にてヒートパイプ内の作動流体の移動を阻止する弁を設け、熱を蓄熱槽32に蓄熱する場合は弁を閉じてヒートパイプ内の作動流体の移動を阻止し、ラジエータパネル10にて暖房する場合は弁を閉じてヒートパイプ内の作動流体にて蓄熱槽32から蒸発器20に熱の移動を行えばよい。これにより、オイルを循環させるためのポンプ30が不要になるので、更に省エネ化を図ることができるようになる。   In the embodiment, oil is sealed in the heat transfer circuit 52. However, the heat transfer circuit is not limited to oil, and a heat pipe that moves heat using latent heat may be used. The heat pipe is configured by a sealed metal pipe having a predetermined length and a working fluid sealed in the metal pipe. Then, in place of the pump 30, the control device 36 is provided with a valve for preventing the movement of the working fluid in the heat pipe. When heat is stored in the heat storage tank 32, the valve is closed to move the working fluid in the heat pipe. When blocking and heating with the radiator panel 10, the valve may be closed and heat may be transferred from the heat storage tank 32 to the evaporator 20 with the working fluid in the heat pipe. This eliminates the need for the pump 30 for circulating the oil, thus further saving energy.

本発明の一実施例を示すパネルヒータの構成図である。It is a block diagram of the panel heater which shows one Example of this invention. 本発明の一実施例のパネルヒータの電気回路のブロック図である。It is a block diagram of the electric circuit of the panel heater of one Example of this invention. 図1のパネルヒータの蓄熱動作を示す図である。It is a figure which shows the thermal storage operation | movement of the panel heater of FIG. 図3で蓄熱した熱を利用してラジエータパネルで暖房を行うパネルヒータの暖房動作を示す図である。It is a figure which shows the heating operation | movement of the panel heater which heats with a radiator panel using the heat | fever stored in FIG.

符号の説明Explanation of symbols

1 パネルヒータ
10 ラジエータパネル
12 電動圧縮機
14 ガスクーラ
16 キャピラリチューブ(減圧装置)
18 第1の三方弁
20 蒸発器
20A 冷媒配管
22 第2の三方弁
30 ポンプ
30B オイル管
32 蓄熱槽
32A オイル配管
32B、32C オイル管
36 制御装置
40 屋内分電盤
46 太陽電池パネル(ソーラー発電手段)
48 DC/AC変換装置
51 冷媒回路
52 熱搬送回路
AC 系統商用交流電源
1 Panel heater 10 Radiator panel 12 Electric compressor 14 Gas cooler 16 Capillary tube (pressure reduction device)
18 First three-way valve 20 Evaporator 20A Refrigerant pipe 22 Second three-way valve 30 Pump 30B Oil pipe 32 Heat storage tank 32A Oil pipe 32B, 32C Oil pipe 36 Control device 40 Indoor distribution board 46 Solar cell panel (solar power generation means) )
48 DC / AC converter 51 Refrigerant circuit 52 Heat transfer circuit AC grid commercial AC power supply

Claims (4)

電動圧縮機により二酸化炭素冷媒を循環して成る冷媒回路と、ラジエータパネルとを備え、前記電動圧縮機より吐出された高温の二酸化炭素冷媒を前記ラジエータパネルに循環するパネルヒータにおいて、
前記冷媒回路は、前記電動圧縮機と、ガスクーラと、減圧装置及び蒸発器等を順次環状に配管接続して構成され、前記ラジエータパネルは前記ガスクーラと並列に接続されると共に、
該ラジエータパネルに二酸化炭素冷媒を流すか前記ガスクーラに流すかを制御する流路制御装置と、相変化物質を貯溜した蓄熱槽と、該蓄熱槽と前記蒸発器との間で熱搬送を行う熱搬送回路とを備え、前記ガスクーラを前記蓄熱槽と交熱的に設けたことを特徴とするパネルヒータ。
In a panel heater comprising a refrigerant circuit formed by circulating carbon dioxide refrigerant by an electric compressor and a radiator panel, and circulating high-temperature carbon dioxide refrigerant discharged from the electric compressor to the radiator panel ,
The refrigerant circuit is configured by sequentially connecting the electric compressor, a gas cooler, a decompression device, an evaporator, and the like in an annular manner, and the radiator panel is connected in parallel with the gas cooler,
A flow path control device that controls whether a carbon dioxide refrigerant flows through the radiator panel or the gas cooler, a heat storage tank that stores a phase change material, and heat that transfers heat between the heat storage tank and the evaporator A panel heater comprising a transfer circuit, wherein the gas cooler is provided in heat exchange with the heat storage tank.
前記熱搬送回路を、オイルを封入した循環回路と、該循環回路内にオイルを循環させるためのポンプとから構成したことを特徴とする請求項1に記載のパネルヒータ。 The panel heater according to claim 1, wherein the heat transfer circuit includes a circulation circuit in which oil is sealed, and a pump for circulating oil in the circulation circuit . 前記電動圧縮機、流路制御装置及びポンプを制御する制御装置を備え、
該制御装置は、前記ラジエータパネルによる暖房を行わないときに、前記電動圧縮機を運転し、前記流路制御装置により前記電動圧縮機から吐出された二酸化炭素冷媒を前記ガスクーラに流すことにより、前記蓄熱槽に蓄熱を行うと共に、前記ラジエータパネルにて暖房を行う場合、前記電動圧縮機を運転し、前記流路制御装置により前記電動圧縮機から吐出された二酸化炭素冷媒を前記ラジエータパネルに流し、且つ、前記ポンプを運転して前記蓄熱槽の熱量を前記蒸発器に搬送することを特徴とする請求項2に記載のパネルヒータ。
A control device for controlling the electric compressor, the flow path control device and the pump;
The control device operates the electric compressor when heating by the radiator panel is not performed, and causes the carbon dioxide refrigerant discharged from the electric compressor by the flow path control device to flow into the gas cooler. When performing heat storage in the heat storage tank and heating in the radiator panel, the electric compressor is operated, and the carbon dioxide refrigerant discharged from the electric compressor by the flow path control device is caused to flow to the radiator panel, And the panel heater of Claim 2 which drives the said pump and conveys the calorie | heat amount of the said thermal storage tank to the said evaporator .
光により発電を行うソーラー発電手段を備え、該ソーラー発電手段の出力を前記電動圧縮機及び/又は前記ポンプに印加することを特徴とする請求項1乃至請求項3の何れかに記載のパネルヒータ。 The panel heater according to any one of claims 1 to 3, further comprising solar power generation means for generating power by light, and applying an output of the solar power generation means to the electric compressor and / or the pump. .
JP2004199119A 2004-07-06 2004-07-06 Panel heater Expired - Fee Related JP4278577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199119A JP4278577B2 (en) 2004-07-06 2004-07-06 Panel heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199119A JP4278577B2 (en) 2004-07-06 2004-07-06 Panel heater

Publications (2)

Publication Number Publication Date
JP2006022972A JP2006022972A (en) 2006-01-26
JP4278577B2 true JP4278577B2 (en) 2009-06-17

Family

ID=35796369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199119A Expired - Fee Related JP4278577B2 (en) 2004-07-06 2004-07-06 Panel heater

Country Status (1)

Country Link
JP (1) JP4278577B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007379A1 (en) * 2018-07-20 2020-01-20 SYSTEM FOR MODULATING THE RECOVERY OF HEAT IN A LIQUID CHILLER

Also Published As

Publication number Publication date
JP2006022972A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4036864B2 (en) Solar power system
KR100923962B1 (en) A heat pump system using earth heat
JP2005241148A (en) Heat pump system utilizing solar light and its operation controlling method
CN104364582A (en) A solar energy system
JP2006038277A (en) Solar power generation system
JP2010144976A (en) Air-conditioning combined hot water supplying device
JP4036851B2 (en) Solar power generation system
JP2006017448A (en) Compression heat pump system and co-generation system
JP2011217590A (en) Air conditioning system
JP2009074744A (en) Gas heat pump cogeneration apparatus
JP7300474B2 (en) cooling system
KR100618292B1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
EA027263B1 (en) Heat supply method and heat supply system
CN112747394A (en) Cold and heat source storage system utilizing solar energy for power generation
JP7022487B2 (en) Solar power generation hot water supply system
JP3653256B2 (en) Hybrid energy system
JP4278577B2 (en) Panel heater
WO2019142138A1 (en) Method and system of cooling in heat generation by combustion
JP2002256970A (en) Co-generation system
JP2004139914A (en) Fuel cell power generation/water heating system
KR101678913B1 (en) Heat Pump System using Turbine-integrated Eddy Current Heater
JP2007278655A (en) Heat storage type hot water supplier
JP2007017102A (en) Cooling and heating system
CN207635640U (en) A kind of refrigerating and heating systems of energy saving self power generation
JP2012211725A (en) Hot water supply unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees