JP5898437B2 - Amorphous carbon film laminated member and manufacturing method thereof - Google Patents

Amorphous carbon film laminated member and manufacturing method thereof Download PDF

Info

Publication number
JP5898437B2
JP5898437B2 JP2011202654A JP2011202654A JP5898437B2 JP 5898437 B2 JP5898437 B2 JP 5898437B2 JP 2011202654 A JP2011202654 A JP 2011202654A JP 2011202654 A JP2011202654 A JP 2011202654A JP 5898437 B2 JP5898437 B2 JP 5898437B2
Authority
JP
Japan
Prior art keywords
amorphous carbon
carbon film
plating
laminated member
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011202654A
Other languages
Japanese (ja)
Other versions
JP2013063539A (en
Inventor
邦彦 澁澤
邦彦 澁澤
千夏 帖佐
千夏 帖佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Original Assignee
TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD. filed Critical TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Priority to JP2011202654A priority Critical patent/JP5898437B2/en
Publication of JP2013063539A publication Critical patent/JP2013063539A/en
Application granted granted Critical
Publication of JP5898437B2 publication Critical patent/JP5898437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非晶質炭素膜積層部材及びその製造方法に関し、特に、非晶質炭素膜を部品や材料等の搬送用フィーダ、キャリア、ハンドリング用のトレイなどの除電対策に用いる、或いは、電池等の電極、又はセパレータ等に用いる非晶質炭素膜積層部材及びその製造方法に関する。   The present invention relates to an amorphous carbon film laminated member and a method for manufacturing the same, and in particular, the amorphous carbon film is used as a countermeasure for static elimination such as a feeder for conveying parts and materials, a carrier, a tray for handling, or the like. The present invention relates to an amorphous carbon film laminated member used for an electrode, a separator, and the like, and a manufacturing method thereof.

非晶質炭素膜又はシリコン等を含む非晶質炭素膜(以下、これらをまとめて「非晶質炭素膜」という。)は、硬く耐摩耗性に優れ、摩擦係数が小さく、軟質金属に対する凝着防止性も有しており、基材の表面に高機能を付与することができ、小型部品や材料の搬送用フィーダやキャリア、ハンドリング用のトレイなどを中心に、広い産業分野で利用され始めている。   An amorphous carbon film or an amorphous carbon film containing silicon or the like (hereinafter collectively referred to as an “amorphous carbon film”) is hard and excellent in wear resistance, has a small friction coefficient, and has a high cohesiveness against a soft metal. It also has anti-sticking properties, can give high functionality to the surface of the base material, and has begun to be used in a wide range of industrial fields, mainly for feeders and carriers for small parts and materials, and trays for handling. Yes.

非晶質炭素膜は、膜厚などの成膜条件、原料ガスや後処理にも依存するが、その導電性に係る体積抵抗率は10〜1012Ω・cm程度であって、絶縁体的な性格を有している。このため、非晶質炭素膜を前述の部品や材料等、また、被搬送物である部品や材料等の搬送を容易、円滑にするために添加されるマブシ粉のような粉体等(以下、「部品等」と称す)の搬送用フィーダやキャリア、ハンドリング用のトレイなどの被覆材として用いる際に、該部品等の一般的な静電気付着防止方法として、非晶質炭素膜厚を十分薄く形成し、さらに該非晶質炭素膜の形成された導電性を有する基材を基準電位点(大地等)に電気伝導体で接続すること、つまりアースすることにより、ワークが非晶質炭素膜と接触することで発生する静電気を、非晶質炭素膜、さらには基材を通じてアースに除去し、基材上に被覆した非晶質炭素膜へのワークの静電気付着を防止できていた。
しかし、非晶質炭素膜に接触し摺動する部品等のサイズが微小化するに従い、従来の非晶質炭素膜の静電気除去能力(導電性)、除去方法では不十分となり、静電気による非晶質炭素膜表面への付着・残留などの現象が確認されるようになってきた。
今日では携帯型電子機器が多くなり、使用される部品も微小化している。このような状況において、微小部品の生産過程に於ける部品搬送、部品加工のための整列、保管等の工程で部品の貼り付きによる残留が発生することは、性能の異なる部品の異種性能ロットへの混入や、生産ロット間の混入によるトレサビリティーの消失などの問題を惹起させ、生産工程の品質管理に重大な問題を引き起こすようになってきた。
The amorphous carbon film depends on the film forming conditions such as the film thickness, the source gas and the post-treatment, but the volume resistivity related to the conductivity is about 10 8 to 10 12 Ω · cm, It has a personality. For this reason, the amorphous carbon film is made of powder such as mabushi powder which is added to facilitate and smooth the transportation of the aforementioned parts and materials, etc. ) (Referred to as “parts”) as a coating material for transport feeders, carriers, handling trays, etc., as a general method for preventing electrostatic adhesion of such parts, the amorphous carbon film thickness is sufficiently thin. Further, by connecting the conductive base material on which the amorphous carbon film is formed to a reference potential point (ground, etc.) with an electric conductor, that is, grounding, the workpiece is connected to the amorphous carbon film. Static electricity generated by contact is removed to the ground through the amorphous carbon film and further through the base material, so that the work can be prevented from adhering to the amorphous carbon film coated on the base material.
However, as the size of the parts that come into contact with and slide on the amorphous carbon film is miniaturized, the static removal ability (conductivity) and removal method of the conventional amorphous carbon film are insufficient, and the amorphous due to static electricity. Phenomena such as adhesion and residue on the surface of carbonaceous carbon films have been confirmed.
Today, the number of portable electronic devices is increasing, and the parts used are also becoming smaller. In such a situation, residue due to sticking of parts in the process of parts transportation, alignment for parts processing, storage, etc. in the production process of micro parts can lead to different performance lots of parts with different performances. And problems such as loss of traceability due to mixing between production lots, causing serious problems in quality control of production processes.

また、リチウムイオン電池においては、正電極板として用いられる金属電極箔(金属集電体)の耐食性と導電性を向上させるべく、その表面に非晶質炭素膜が形成される(特許文献1)。また、燃料電池用セパレータにおいても、低電気抵抗性金属板の全表面を、良好な電気伝導性及び耐食性を有する非晶質炭素膜が被覆される(特許文献2)。しかしながら、非晶質炭素膜を厚く形成する場合、むしろ導電性が低下する虞がある。また、非晶質炭素膜が有する成膜プロセス上の異常放電等に起因するピンフォール等の膜欠陥を通して、電解液が浸透、基材である電極に達し、電極金属が腐食する事態が起こる虞もある。
また、通常の非晶質炭素膜でも、非常に薄く成膜した場合は、トンネル効果などで非晶質炭素膜を介しても通電は可能となるが、摩擦耐久性、非晶質炭素膜の連続性などを著しく損なうことになる。
In a lithium ion battery, an amorphous carbon film is formed on the surface of a metal electrode foil (metal current collector) used as a positive electrode plate in order to improve the corrosion resistance and conductivity (Patent Document 1). . Also in the fuel cell separator, the entire surface of the low electrical resistance metal plate is covered with an amorphous carbon film having good electrical conductivity and corrosion resistance (Patent Document 2). However, when the amorphous carbon film is formed thick, there is a possibility that the conductivity is rather lowered. In addition, the electrolyte solution may penetrate through the film defects such as pinfall caused by abnormal discharge etc. in the film formation process of the amorphous carbon film, and the electrode metal may be corroded and the electrode metal may be corroded. There is also.
In addition, even when an ordinary amorphous carbon film is formed very thin, it can be energized through the amorphous carbon film due to a tunnel effect or the like. Continuity etc. will be significantly impaired.

一方、他の耐磨耗・軟質金属凝着防止、低摩擦の表面処理として、いわゆる「導電性アルマイト」と称される、アルミニウム、またはアルミニウム合金の素材に10Ω・cm程度の体積電気抵抗率を保持させるよう陽極酸化処理を行い、該膜をより薄めに基材上に形成することで、該膜に接するワークの帯電量を抑制したものも存在するが(特許文献3参照)、なお電気抵抗値は大きく、更に非晶質炭素膜のような優れた耐磨耗性や低摩擦性、軟質金属凝着防止性などの機能は発現できていない。 On the other hand, a volume electrical resistance of about 10 6 Ω · cm is applied to a material of aluminum or an aluminum alloy, which is called “conductive anodized”, as another anti-abrasion / soft metal adhesion prevention and low friction surface treatment. In some cases, the amount of charge of the workpiece in contact with the film is suppressed by anodizing so as to maintain the rate and forming the film on the substrate thinner (see Patent Document 3). The electrical resistance value is large, and furthermore, functions such as excellent wear resistance, low friction, and soft metal adhesion prevention like an amorphous carbon film cannot be expressed.

特開2009−134988号公報JP 2009-134988 A 特開2000−67881号公報JP 2000-67881 A 特開2006−291259号公報JP 2006-291259 A

近年、非晶質炭素膜自体も、シリコンを含有する非晶質炭素膜など通常の非晶質炭素膜に比べて電気抵抗の大きいものを下地密着層として用いたり、或いは、非晶質炭素膜の耐久性を高めるため、より厚く膜を構成するようになってきている現状があり、従来の静電気除電に貢献したと思われる方法では静電気の除去や、通電の確保が困難になってきている。   In recent years, the amorphous carbon film itself has also been used as a base adhesion layer having a higher electric resistance than a normal amorphous carbon film such as an amorphous carbon film containing silicon, or an amorphous carbon film. In order to improve the durability, there is the present situation that the film is made thicker, and it is difficult to remove static electricity and secure energization by the method that seems to have contributed to the conventional static electricity removal. .

小型電子機器に使用されるチップ状電子部品は、チップ抵抗、チップLED、チップコンデンサなどと呼ばれ、部品の小型化が進み、0603形状(縦幅0.6mm×横幅0.3mm×厚み0.3mm)、0402形状(縦幅0.4mm×横幅0.2mm×厚み0.2mm)、といった超小型、軽量部品となってきている。前記小型軽量チップ部品の重量は0.4〜0.1mg程度のものも存在し、これら軽量物の製造工程に於ける搬送、整列、又は貯蔵等のハンドリングが必要になってくると、従来に比較し、一層微弱な静電気(電気的な吸引力)でも小型軽量部品のフィーダなどハンドリング用基材への付着は発生しやすくなり、より小さな電気抵抗を有するハンドリング基材が要求されるようになってきた。
そこで、非晶質炭素膜を前述の搬送用のフィーダやキャリア、ハンドリング用のトレイなどの被覆材として用いる際には、非晶質炭素膜を含め被覆した基材の静電気を除去する工夫がより一層必要である。
さらには、静電気による故障の可能性もある電子部品等のハンドリング基材における静電気除去は重要性を増している。
Chip-shaped electronic components used in small electronic devices are called chip resistors, chip LEDs, chip capacitors, and the like, and the size of the components has been reduced, resulting in a 0603 shape (length 0.6 mm × width 0.3 mm × thickness 0. 3 mm) and 0402 shape (vertical width 0.4 mm × lateral width 0.2 mm × thickness 0.2 mm). The small and lightweight chip parts have a weight of about 0.4 to 0.1 mg, and handling such as transportation, alignment or storage in the manufacturing process of these lightweight objects is required. In comparison, even weaker static electricity (electrical attraction) tends to adhere to handling substrates such as feeders for small and lightweight parts, and handling substrates with smaller electrical resistance are required. I came.
Therefore, when using the amorphous carbon film as a coating material such as the above-mentioned transport feeder, carrier, handling tray, etc., a device for removing static electricity from the coated substrate including the amorphous carbon film is more effective. More needed.
Furthermore, the removal of static electricity from handling substrates such as electronic components that may be damaged by static electricity is becoming increasingly important.

また、各種電池電極等、導電性の材料で形成されている電極の表面にトンネル効果を発現するような薄膜の非晶質炭素膜を形成する場合、成膜プロセス上の異常放電等に起因するピンフォール、電極基材の表面凹凸に起因する非晶質炭素膜の非連続状態等の非晶質炭素膜欠陥を通して、電解液等が浸透、下地に達し、電極金属が腐食する事態が起こるという問題もある。   In addition, when a thin amorphous carbon film that exhibits a tunnel effect is formed on the surface of an electrode formed of a conductive material such as various battery electrodes, it is caused by abnormal discharge during the film forming process. Through an amorphous carbon film defect such as a discontinuous state of the amorphous carbon film caused by pin fall and surface irregularities of the electrode substrate, the electrolyte solution penetrates, reaches the base, and the electrode metal corrodes. There is also a problem.

本発明は、こうした現状を鑑み、簡単な構成で、しかも安価に製造可能であり、微小電子部品など各種部品等の搬送・整列・貯蔵において、さらには、非晶質炭素膜にて各種導電性電極等を被覆した場合の、非晶質炭素膜及び基材を通じて電気的な導通を確保し得る非晶質炭素膜積層部材、及びその製造方法を提供することを目的とするものである。   In view of the current situation, the present invention can be manufactured with a simple configuration and at a low cost. In the transportation / alignment / storage of various parts such as microelectronic parts, and further, various conductivity is achieved with an amorphous carbon film. An object of the present invention is to provide an amorphous carbon film laminated member capable of ensuring electrical conduction through an amorphous carbon film and a substrate when an electrode or the like is coated, and a method for manufacturing the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、以下のような手段を確立した。すなわち、基材上に非晶質炭素膜を成膜した後、非晶質炭素膜の表層部に「飛び飛び」の間隔にて、金属メッキを部分析出させることにより、非晶質炭素膜と基材との電気伝導性を確保するものである。そして、該手法により、前述の摩擦・摺動部品の表面処理用途においては、導電性を有する金属メッキが、「飛び飛びの部分」の状態で非晶質炭素膜の表面に存在し、非晶質炭素膜を形成した基材上に供給され、基材との摩擦等にて静電気を帯びた部品等のワークの少なくとも一部分が、ワークの存在、移動する経路含め、上記金属メッキ部分と常時、若しくは瞬時に物理的な接点(接触)を取ることを可能とするとともに(接触端子化)、当該接点を通じて除電が可能となる表面積層部材を提供しうることを見いだしたものである。また、前述の電池の電極やセパレータ等の被覆材用途に応用した場合には、該金属メッキ部分を通じてより低い電気抵抗での通電を確保するものである。   As a result of intensive studies to achieve the above object, the present inventors have established the following means. That is, after an amorphous carbon film is formed on a substrate, metal plating is partially deposited on the surface layer portion of the amorphous carbon film at intervals of “jumping”, whereby the amorphous carbon film This ensures electrical conductivity with the base material. By this method, in the surface treatment application of the friction / sliding parts described above, the conductive metal plating is present on the surface of the amorphous carbon film in a “flying portion” state. At least a part of the workpiece, such as a component that is supplied on the substrate on which the carbon film is formed and is electrostatically charged due to friction with the substrate, etc., including the presence of the workpiece, the path of movement, etc. It has been found that it is possible to provide a surface laminated member that makes it possible to instantaneously take a physical contact (contact) (to make a contact terminal) and to remove static electricity through the contact. Moreover, when applied to coating materials such as the above-described battery electrodes and separators, it is possible to ensure energization with a lower electrical resistance through the metal plating portion.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
〈1〉基材上に成膜された非晶質炭素膜において、該非晶質炭素膜の表層部分及び/又は欠陥内壁部分に金属めっきが部分析出されていることを特徴とする非晶質炭素膜積層部材。
〈2〉前記非晶質炭素膜が、ケイ素を含有することを特徴とする上記〈1〉の非晶質炭素膜積層部材。
〈3〉前記非晶質炭素膜を最上層とする、部品搬送用部材、部品整列用部材又は部品保管用部材であることを特徴とする上記〈1〉又は〈2〉の非晶質炭素膜積層部材。
〈4〉電池用の電極集電体であることを特徴とする上記〈1〉又は〈2〉の非晶質炭素膜積層部材。
〈5〉燃料電池用のセパレータであることを特徴とする上記〈1〉又は〈2〉の非晶質炭素膜積層部材。
〈6〉基材上に非晶質炭素膜を成膜した後、該非晶質炭素膜の表層部分及び/又は欠陥内壁部分に金属めっきを部分析出させることにより、非晶質炭素膜と基材との電気伝導性を確保することを特徴とする、非晶質炭素膜積層部材の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
<1> An amorphous carbon film formed on a substrate, wherein the metal plating is partially deposited on a surface layer portion and / or a defect inner wall portion of the amorphous carbon film. Carbon film laminated member.
<2> The amorphous carbon film laminated member according to <1>, wherein the amorphous carbon film contains silicon.
<3> The amorphous carbon film according to <1> or <2>, wherein the amorphous carbon film is a component transporting member, a component aligning member, or a component storage member having the amorphous carbon film as an uppermost layer. Laminated member.
<4> The amorphous carbon film laminated member according to <1> or <2> above, which is an electrode current collector for a battery.
<5> The amorphous carbon film laminated member according to the above <1> or <2>, which is a separator for a fuel cell.
<6> After an amorphous carbon film is formed on the substrate, metal plating is partially deposited on the surface layer part and / or the defect inner wall part of the amorphous carbon film to thereby form the amorphous carbon film and the substrate. A method for producing an amorphous carbon film laminated member, wherein electrical conductivity with a material is ensured.

本発明によれば、非晶質炭素膜は静電気除電効果を保持し、部品等を非晶質炭素膜に接触させる方法で行う搬送・整列・貯蔵等にて生じる静電気の除去の促進、以て部品等の非晶質炭素膜への静電気付着を抑制することができる。
また、本発明を、電池の電極やセパレータなどの導電性基板表面に適用した場合、非晶質炭素膜の形成による導電性の低下を抑制することが可能となる。
According to the present invention, the amorphous carbon film retains the static neutralization effect, and promotes the removal of static electricity generated by transportation, alignment, storage, etc. performed by a method in which a part or the like is brought into contact with the amorphous carbon film. Electrostatic adhesion to the amorphous carbon film such as parts can be suppressed.
In addition, when the present invention is applied to the surface of a conductive substrate such as a battery electrode or separator, it is possible to suppress a decrease in conductivity due to the formation of an amorphous carbon film.

実施例1のCCDカメラによる観察写真(×500)Observation photograph by CCD camera of Example 1 (× 500) 実施例1のCCDカメラによる観察写真(×5000)Observation photograph by the CCD camera of Example 1 (× 5000) 比較例のCCDカメラによる観察写真(×500)Observation photograph with CCD camera of comparative example (× 500) 実施例2のCCDカメラによる観察写真Observation photograph by CCD camera of Example 2 実施例2のFIB加工部位を示す写真Photograph showing FIB processed part of Example 2 凸部1のFIB−SEMによる断面観察写真Cross section observation photograph by FIB-SEM of convex part 1

本発明の一実施形態に於いては、基材上に非晶質炭素膜を成膜した後、非晶質炭素膜の有するピンフォール等の欠陥部分に金属メッキを部分析出させることにより、非晶質炭素膜と基材との電気伝導性を向上、確保することを特徴とするものである。   In one embodiment of the present invention, after depositing an amorphous carbon film on a substrate, by partially depositing metal plating on a defective portion such as pin fall of the amorphous carbon film, It is characterized by improving and ensuring the electrical conductivity between the amorphous carbon film and the substrate.

最初に、本発明における基体と非晶質炭素膜、及び該非晶質炭素膜の形成方法について、順に説明する。
[基体]
本発明において、基体は、鉄、銅、アルミニウム、チタンなどの金属、アルミニウム合金、ステンレス鋼(SUS)等の各種合金金属系材料、導電性を有する炭素繊維とその構成物などの導電性を有する材料、さらには、導電性の接着剤や樹脂、導電性の金属薄膜や金属酸化物薄膜(ITOなど)を被覆した、ガラス、炭化ケイ素、セラミックス等の無機系材料、ポリエリレン、ポリプロピレン、ポリスチレン等の高分子材料など、さらには、導電性を有するメッキ皮膜、または蒸着等導電性のイオンプレーティングの形成された各種基材等、用途に応じた種々の材質を用いることができる。
具体的な基体の一例としては、被搬送部品等に基材を通じて細かな振動を加えることにより部品等を移動させるボールフィーダーやリニアフィーダー、部品等を部品を収納するために形成された部屋(キャビティー)に収納し、さらに排出することで部品等の移動を行うインデックスキャリア、部品等を重力にて滑らせながら移動させるホッパーやシュート、部品等に加工、検査など行う際、単独、または複数の部品を一定の位置に保持固定するため部品等の保持、位置決めのための部屋(キャビティー)を形成した部品保持用のパレット、部品等を大気中の負圧(バキューム)にて吸着し移送、検査などを行う吸着ノズルや吸着板などの冶具などの各種部品等の搬送用フィーダーや、キャリア、部品整列、収納用の冶具などの少なくとも必要な一部の表面などである。
First, a substrate, an amorphous carbon film, and a method for forming the amorphous carbon film in the present invention will be described in order.
[Substrate]
In the present invention, the substrate has conductivity such as metals such as iron, copper, aluminum, and titanium, various alloy metal materials such as aluminum alloys and stainless steel (SUS), conductive carbon fibers, and components thereof. In addition, materials such as inorganic materials such as glass, silicon carbide, and ceramics coated with conductive adhesives and resins, conductive metal thin films and metal oxide thin films (ITO, etc.), polyerylene, polypropylene, polystyrene, etc. Various materials can be used depending on the application, such as a polymer material, a plating film having conductivity, or various base materials on which conductive ion plating such as vapor deposition is formed.
As an example of a specific substrate, a ball feeder or linear feeder that moves parts by applying fine vibrations to the parts to be transported through the base material, a room formed to store the parts (cavities) Index carrier that moves parts by storing them in the tee) and discharging them, and when processing and inspecting parts such as hoppers and chutes that move parts while sliding them by gravity, etc. To hold and fix parts at a fixed position, hold parts, etc., and hold and transfer parts holding pallets that form a chamber for positioning (vacuum), etc. At least necessary for feeding feeders for various parts such as jigs such as suction nozzles and suction plates for inspection, and jigs for carriers, parts alignment and storage It is such a part of the surface such.

〔非晶質炭素膜〕
本発明の一実施形態に係る非晶質炭素膜層は、前記基体上に直接、或いは、接着層などの他の層を介して間接的に設けられるものである。
なお、本明細書において非晶質炭素膜とは、水素を含むか若しくは水素を含まないで形成され、膜の構造は、ダイヤモンド構造(sp3結合)とグラファイト構造(sp2結合)との双方を含む非晶質であればよく、その混在比率および水素含有の有無及び含有量は特に限定されない。両者の混在比率および水素含有量は、任意に調整することができる。
本実施形態の非晶質炭素膜は、各種PVD法、CVD法にて形成される。
例えば、PVD法であれば、2極スパッタリング法、3極スパッタリング法、4極スパッタリング法、マグネトロンスパッタリング法、対抗ターゲット式スパッタリング法などの様々なプラズマスパッタリング法、イオンビームスパッタリング法、ECRスパッタリング法などの様々なイオンビームスパッタリング法、直流印加式(DC)イオンプレーティング法、活性化反応蒸着法(ARE方式)、ホロカソード放電法(HCD法)、高周波励起法(RF法)などのプラズマを利用する様々なイオンプレーティング法、イオンクラスタービーム蒸着法(ICB法)、イオンビームエピタキシー法(IBE法)、イオンビーム蒸着法(IBD法)、イオンビームアシスト蒸着法(IBAD法)、イオン蒸着薄膜形成法(IVD法)などのイオンビームを利用する様々なイオンプレーティング法などであり、CVD法であれば、直流(DC)プラズマCVD法、低周波プラズマCVD法、高周波(RF)プラズマCVD法、パルス波プラズマCVD法、マイクロ波プラズマCVD法などの様々なプラズマCVD法であり、さらにはこれらの組み合わせなどの様々な公知のドライプロセスにより形成される。
なお、成膜する際の基体温度、ガス濃度、圧力、時間などの条件は、形成する非晶質炭素膜の組成、膜厚に応じて、適宜設定される。
[Amorphous carbon film]
The amorphous carbon film layer according to an embodiment of the present invention is provided directly on the substrate or indirectly through another layer such as an adhesive layer.
In this specification, an amorphous carbon film is formed with or without hydrogen, and the structure of the film includes both a diamond structure (sp3 bond) and a graphite structure (sp2 bond). It may be amorphous, and the mixing ratio, presence or absence of hydrogen, and content are not particularly limited. Both mixing ratio and hydrogen content can be adjusted arbitrarily.
The amorphous carbon film of this embodiment is formed by various PVD methods and CVD methods.
For example, in the case of the PVD method, various plasma sputtering methods such as dipolar sputtering method, tripolar sputtering method, quadrupole sputtering method, magnetron sputtering method, and counter target sputtering method, ion beam sputtering method, ECR sputtering method, etc. Various ion beam sputtering methods, direct current application (DC) ion plating methods, activated reaction vapor deposition methods (ARE methods), holocathode discharge methods (HCD methods), various methods using plasma such as radio frequency excitation methods (RF methods) Ion plating method, ion cluster beam deposition method (ICB method), ion beam epitaxy method (IBE method), ion beam deposition method (IBD method), ion beam assisted deposition method (IBAD method), ion deposition thin film formation method ( IVD method) Various ion plating methods using a beam, etc. If it is a CVD method, a direct current (DC) plasma CVD method, a low frequency plasma CVD method, a high frequency (RF) plasma CVD method, a pulse wave plasma CVD method, a microwave It is various plasma CVD methods, such as plasma CVD method, Furthermore, it forms by various well-known dry processes, such as these combination.
The conditions such as the substrate temperature, gas concentration, pressure, and time during film formation are appropriately set according to the composition and film thickness of the amorphous carbon film to be formed.

さらに、必要に応じて、前記非晶質炭素膜にチタン、ケイ素、酸素、窒素、ホウ素、イオウなどの元素、またはチタン、ケイ素、酸素、窒素、ホウ素、イオウなどの元素を含む原料ガスや固形原料(ターゲットなど)を非晶質炭素膜の形成過程に使用、または混合、混載し、非晶質炭素膜の膜中にチタン、ケイ素、酸素、窒素、ホウ素、イオウなどの元素の少なくとも1つの元素を含有させたものでも良く、あるいは、非晶質炭素膜形成後、チタン、ケイ素、酸素、窒素、ホウ素、イオウなどの元素、またはチタン、ケイ素、酸素、窒素、ホウ素、イオウなどの元素を含む原料ガスまたは固形原料(ターゲットなど)を用い、前記元素をプラズマ照射することで、非晶質炭素膜の少なくとも表層にチタン、ケイ素、酸素、窒素、ホウ素、イオウなどの元素の少なくとも1つの元素を含有させたものでも良い。   Further, if necessary, the amorphous carbon film may be a raw material gas or solid containing an element such as titanium, silicon, oxygen, nitrogen, boron, or sulfur, or an element such as titanium, silicon, oxygen, nitrogen, boron, or sulfur. A raw material (such as a target) is used in the formation process of an amorphous carbon film, or mixed and mixed, and at least one of elements such as titanium, silicon, oxygen, nitrogen, boron, and sulfur is contained in the amorphous carbon film. It may be one containing elements, or after forming an amorphous carbon film, an element such as titanium, silicon, oxygen, nitrogen, boron, sulfur, or an element such as titanium, silicon, oxygen, nitrogen, boron, sulfur is added. By using a source gas or a solid source (such as a target) containing plasma and irradiating the element with plasma, at least the surface layer of the amorphous carbon film is made of titanium, silicon, oxygen, nitrogen, boron, It may be one which contains at least one element of the elements such as.

例えば、本発明の一実施形態に係るa−C:H:Si膜は、非晶質炭素膜にケイ素を含有させるものであって、非晶質炭素膜中の、ケイ素含有量は、4〜50原子%である。
具体的には、プラズマCVD法の場合、テトラメチルシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジメトキシジオメチルシランなどのケイ素を含む原料ガスを使用することにより、或いは、非晶質炭素膜の原料ガスであるエチレン、アセチレン、メタンなどの炭化水素系の原料ガスに前記ケイ素を含むガスを混合することによりケイ素を含む非晶質炭素膜を形成することができる。
For example, an aC: H: Si film according to an embodiment of the present invention includes an amorphous carbon film containing silicon, and the silicon content in the amorphous carbon film is 4 to 4 50 atomic percent.
Specifically, in the case of the plasma CVD method, by using a source gas containing silicon such as tetramethylsilane, methylsilane, dimethylsilane, trimethylsilane, and dimethoxydiomethylsilane, or a source gas for an amorphous carbon film An amorphous carbon film containing silicon can be formed by mixing the gas containing silicon with a hydrocarbon-based source gas such as ethylene, acetylene, or methane.

[非晶質炭素膜の形成方法]
本発明の一実施形態にかかる基材表面に形成される非晶質炭素膜は、その成膜プロセス上、安定したグロー/アフターグロー放電下で安定的に作成されるのが理想的ではあるが、実際は、成膜基材上の細かな汚れ、基材の酸化による電気的な絶縁状態や、基材表面の起伏状態などに起因し、局所的に大電流を伴うアーク放電が多数起こっていると考えられ、成膜後の非晶質炭素膜表面を観察すると多数のクレータ状の細かな凹状の欠陥が観察できる。
非晶質炭素膜は、真空雰囲気中で加熱すると導電性が増大することが知られており、大電流を伴うアーク放電等にて、真空状態下で高温にて形成されたピンフォールなどの非晶質炭素欠陥部位は、導電性が高くなっていると想定できる。
[Method of forming amorphous carbon film]
The amorphous carbon film formed on the substrate surface according to one embodiment of the present invention is ideally formed stably under a stable glow / after glow discharge in the film formation process. Actually, many arc discharges with large current locally occur due to fine dirt on the film formation substrate, electrical insulation due to oxidation of the substrate, and undulation on the surface of the substrate. When the surface of the amorphous carbon film after film formation is observed, many crater-like fine concave defects can be observed.
Amorphous carbon films are known to increase conductivity when heated in a vacuum atmosphere, and non-carbon films such as pinfalls formed at high temperatures under vacuum conditions due to arc discharge with large currents, etc. It can be assumed that the crystalline carbon defect site has high conductivity.

また、ステンレス鋼板など、導電性の金属基材上に非晶質炭素膜を成膜し、基材側の面(ステンレス鋼板の非晶質炭素膜を成膜していない側の面)と、対向する非晶質炭素膜を形成した側の面にテスター(Kaise Ku−1133)のそれぞれの極を当て電気抵抗を測定した場合に、無限大(∞)の電気抵抗値が示されるものであっても、同一の非晶質炭素膜表面に、表面張力の小さく、毛管現象による浸透性の高いイソプロピルアルコール(IPA)などを滴下した後、該滴下した液滴部分にテスターの端子を当て電気抵抗を計測すると、20MΩ前後の抵抗値、さらには、非晶質炭素膜の膜厚が薄い場合は数kΩの抵抗が確認されることが簡易的な通電試験を通じて確認できている。
これは、非晶質炭素膜のピンフォール等の欠陥、特に微細な凹形状で、通常はテスターのプローブと直接接触しない欠陥にIPAが浸透し、その一部は基材に達し、基材との通電を助長する導電媒体になっているから、と推定できる。
In addition, an amorphous carbon film is formed on a conductive metal substrate such as a stainless steel plate, and the surface on the substrate side (the surface on which the amorphous carbon film of the stainless steel plate is not formed), When the resistance of each tester (Kaise Ku-1133) was applied to the surface on which the opposing amorphous carbon film was formed and the electrical resistance was measured, an electrical resistance value of infinity (∞) was shown. However, after dropping isopropyl alcohol (IPA) having a low surface tension and high permeability by capillary action onto the same amorphous carbon film surface, the tester terminal is applied to the dropped liquid portion and electric resistance is applied. It is confirmed through a simple energization test that a resistance value of about 20 MΩ is measured and a resistance of several kΩ is confirmed when the amorphous carbon film is thin.
This is because the IPA penetrates into defects such as pin-fall of the amorphous carbon film, particularly fine concave shapes, and usually not in direct contact with the tester probe, part of which reaches the substrate, It can be estimated that this is a conductive medium that facilitates energization.

次に、非晶質炭素膜に形成される部分メッキ被膜について説明する。
本発明にて非晶質炭素膜に形成される部分メッキ被膜は、電解Cuメッキ、電解Crメッキ、電解Snメッキ、電解Ni−Co合金メッキ、その他合金メッキ等、各種公知のメッキ法、及びメッキ皮膜を適宜選択することができる。
例えば、本発明の一実施形態にかかる電解Niメッキを非晶質炭素膜上に分部析出させる場合は、非晶質炭素膜が形成された基材を、スルファミン酸Ni、塩化Ni及びホウ酸を含み、約55℃に維持された溶液中で通電することによって形成される。
この溶液には、必要に応じ添加剤(光沢剤)を含めてもよい。電解Niメッキ層は、添加される添加剤(光沢剤)の添加量を調整することなどにより、Hv500程度の硬度を有するように形成することができる。
さらに、本発明の一実施形態にかかる電解Niメッキのメッキ浴中にフッ素樹脂の微粒子を予め分散させ、析出するNiメッキ皮膜中にフッ素微粒子を含有させることも公知の方法であり可能である。
Next, the partial plating film formed on the amorphous carbon film will be described.
The partial plating film formed on the amorphous carbon film in the present invention includes various known plating methods such as electrolytic Cu plating, electrolytic Cr plating, electrolytic Sn plating, electrolytic Ni—Co alloy plating, and other alloy plating, and plating. A film can be appropriately selected.
For example, in the case where the electrolytic Ni plating according to one embodiment of the present invention is partially deposited on an amorphous carbon film, the substrate on which the amorphous carbon film is formed is made of Ni sulfamate, Ni chloride and boric acid. And is energized in a solution maintained at about 55 ° C.
This solution may contain an additive (brightening agent) as necessary. The electrolytic Ni plating layer can be formed to have a hardness of about Hv500 by adjusting the amount of additive (brightening agent) added.
Furthermore, it is also a known method to disperse fluorine resin fine particles in advance in a plating bath for electrolytic Ni plating according to an embodiment of the present invention, and to contain fluorine fine particles in the deposited Ni plating film.

本発明の一実施形態に係る非晶質炭素膜に形成される部分メッキ被膜(特に電解メッキ皮膜)は、基材表面(本願の場合は非晶質炭素膜)の結晶欠陥やピンフォール部分などからメッキ皮膜成長の原点になる「メッキ核」を形成する特徴があり、また、非晶質炭素膜の下地基材に通じるピンフォール部などでは、導電性を有するメッキ液が毛管現象によりピンフォールに浸透することで基材に達し、さらに、ピンフォールに充填されたメッキ液部分に印加される電圧により、導電性の高いピンフォール部分に電界が集中するため、非晶質炭素膜表層に無数に散在するピンフォール等の欠陥部分にまず微小なメッキ核が「飛び飛びの状態」で形成されるようになる。
このため、メッキ時間などの条件を調整することで、非晶質炭素膜の全面にめっき被膜を成長形成させること無く、導電性確保と、腐食の発生原因になるピンフォール等の非晶質炭素膜表面の「飛び飛びの欠陥部分」を、ある程度選択的、優先的、部分的に埋める形でメッキ核を形成されることが可能となる。
結果、本発明の一実施形態に係る非晶質炭素膜積層部材は、ピンフォール等の欠陥をメッキで埋め、非晶質炭素膜の耐候性の向上を併せて図ることができる。
The partial plating film (especially the electrolytic plating film) formed on the amorphous carbon film according to the embodiment of the present invention is a crystal defect or pinfall part on the surface of the substrate (in this case, the amorphous carbon film). It has the characteristic of forming “plating nuclei” that become the starting point of plating film growth from the surface. Also, in the pin fall part leading to the base material of the amorphous carbon film, the conductive plating solution causes pin fall due to capillary action. Since the electric field concentrates on the pinfold part with high conductivity due to the voltage applied to the plating solution part filled in the pinfall, the infinite number of layers on the amorphous carbon film surface. First, minute plating nuclei are formed in a “jumping state” in a defective portion such as pin fall scattered in the surface.
For this reason, by adjusting the conditions such as the plating time, it is possible to ensure conductivity and grow amorphous carbon such as pin fall that causes corrosion without growing a plating film on the entire surface of the amorphous carbon film. Plating nuclei can be formed in such a way that the “defects on the surface of the film” are partially, selectively, preferentially partially filled.
As a result, the amorphous carbon film laminated member according to one embodiment of the present invention can fill defects such as pinfalls with plating and improve the weather resistance of the amorphous carbon film.

また、本発明の一実施形態に係る非晶質炭素膜状の部分メッキの形成は、導電性の基材上に形成可能な公知の各種電解メッキ法、例えば、電解Cuメッキ、電解Crメッキ、電解Ni−Co合金メッキ法など様々な方法により適宜選択適用することが可能である。
例えば、本発明の一実施形態にかかる非晶質炭素膜上に部分形成されたNiメッキ上に、耐食性の高い硬質Crメッキ皮膜などを重ねて積層形成する、Niメッキ核の上に電位差の少ないSn−Ni合金メッキ層を積層形成する、さらには、硫黄成分を多く含む層を有するトリNiメッキ層(3層メッキ)のように、他のメッキ層の腐食進行を抑制するメッキ層をさらに追加積層形成するなど、公知のメッキ法を複数選択することにより、耐食性をより向上させることも可能である。
In addition, the formation of the partial plating of the amorphous carbon film according to the embodiment of the present invention may be performed by various known electroplating methods that can be formed on a conductive substrate, for example, electrolytic Cu plating, electrolytic Cr plating, It can be appropriately selected and applied by various methods such as an electrolytic Ni—Co alloy plating method.
For example, the Ni plating nucleus is formed by stacking a highly corrosion-resistant hard Cr plating film on the Ni plating partially formed on the amorphous carbon film according to an embodiment of the present invention. Add a plating layer that suppresses the progress of corrosion of other plating layers, such as a tri-Ni plating layer (three-layer plating) that forms a layer of Sn-Ni alloy plating layer and has a layer containing a large amount of sulfur components. Corrosion resistance can be further improved by selecting a plurality of well-known plating methods such as stacking.

さらに、本発明の実施形態に係る様々な部分メッキを形成させた非晶質炭素膜積層部材の更に表面(上層部)に、本発明の「基材(基体)上に形成された電気伝導性が十分でない非晶質炭素膜の電気伝導性を改善、向上させる」という趣旨に反しない範囲で更に他の膜を形成することも可能である。
例えば、本発明の一実施形態に係る部品搬送用部材、部品整列用部材又は部品保管用部材の場合、具体的には、本発明の一実施形態に係る部分メッキの析出した非晶質炭素膜のさらに上層に20nm〜50nm程度の非常に薄いフッ素樹脂膜を追加形成することにより、本発明の非晶質炭素膜積層部材に撥水、撥油性を付与することも可能である。本発明の非晶質炭素膜積層部材において、通電させる静電気は数万ボルトの電圧に及ぶ場合もあり、静電気は非常に薄いフッ素樹脂膜を容易に通過することが可能であり、また、本発明の非晶質炭素膜積層部材の表層の凹凸の凸部に形成された薄いフッ素樹脂膜は耐摩耗性に乏しく、搬送される部品等の接触にて容易に摩滅し、フッ素樹脂膜が摩滅した部分に本発明の非晶質炭素膜積層部材が露出することになるためである。
Furthermore, on the surface (upper layer portion) of the amorphous carbon film laminated member on which various partial platings according to the embodiment of the present invention are formed, the “electrical conductivity formed on the substrate (substrate)” of the present invention. It is also possible to form another film within a range that does not violate the meaning of “improvement and improvement of electric conductivity of an amorphous carbon film that is insufficient”.
For example, in the case of a component conveying member, a component aligning member, or a component storage member according to an embodiment of the present invention, specifically, an amorphous carbon film having a partially plated portion according to an embodiment of the present invention. It is also possible to impart water repellency and oil repellency to the amorphous carbon film laminated member of the present invention by additionally forming a very thin fluororesin film having a thickness of about 20 nm to 50 nm on the upper layer. In the amorphous carbon film laminated member of the present invention, the static electricity to be applied may reach a voltage of several tens of thousands of volts, and the static electricity can easily pass through a very thin fluororesin film. The thin fluororesin film formed on the convex and concave portions of the surface layer of the amorphous carbon film laminate member has poor wear resistance, and was easily worn away by contact with parts to be transported, and the fluororesin film was worn away. This is because the amorphous carbon film laminated member of the present invention is exposed at the portion.

更なる具体例として、本発明の様々な実施形態において、本発明の部分メッキを形成した非晶質炭素膜積層部材の上層に、更に別の非晶質炭素膜を、本発明の非晶質炭素膜積層部材の電気導電性を著しく損なわない厚さや物性で追加形成し、部分的なメッキ部分を非晶質炭素膜で被覆すると共に、該メッキ部分を強固に固定することも可能である。
また、電池等の電極に本発明の一実施形態に係る部分メッキを形成した非晶質炭素膜積層部材を形成する場合、さらに、その上層部に導電性のグラファイト、アセチレンブラック、カーボンブラックなど電池の活剤層として用いられる層を形成することは当然に予定される。
更なる具体例としては、電池等の電極に本発明の一実施形態に係る部分メッキを形成した非晶質炭素膜積層部材を形成する場合において、さらにその上層部に導電性を確保しながら、耐食性を向上させる目的で、耐食性に優れたチタン、クロムなどの金属層、金、白金、ロジウムなどの貴金属の薄膜層を形成する、または、本発明にて形成された部分メッキの非晶質炭素膜への侵食を一層促進させないように、無電解Niメッキ、金メッキその他各種公知の無電解メッキ層を追加形成することも可能である。
As a further specific example, in various embodiments of the present invention, another amorphous carbon film is formed on the amorphous carbon film laminated member on which the partial plating of the present invention is formed. It is also possible to additionally form the carbon film laminated member with a thickness and physical properties that do not significantly impair the electrical conductivity, cover the partially plated portion with an amorphous carbon film, and firmly fix the plated portion.
In addition, when an amorphous carbon film laminated member in which a partial plating according to an embodiment of the present invention is formed on an electrode of a battery or the like, a battery such as conductive graphite, acetylene black, or carbon black is further formed on the upper layer portion. It is naturally planned to form a layer used as an active agent layer.
As a further specific example, in the case of forming an amorphous carbon film laminated member formed with partial plating according to an embodiment of the present invention on an electrode of a battery or the like, while further ensuring conductivity in the upper layer portion thereof, For the purpose of improving the corrosion resistance, a metal layer such as titanium or chromium having excellent corrosion resistance, a thin film layer of noble metal such as gold, platinum or rhodium, or partially plated amorphous carbon formed in the present invention Various known electroless plating layers such as electroless Ni plating, gold plating and the like can be additionally formed so as not to further promote erosion of the film.

さらに、非晶質炭素膜の予め基材まで続いていない凹状の欠陥に形成されたメッキ核は、その成長に伴い非晶質炭素膜を基材側に向けて侵食しながら成長することが確認できる。
本発明の一実施形態に於いて、通常の非晶質炭素膜に比べ絶縁性の高い、基材と非晶質炭素膜との間に形成されるシリコンを含む非晶質炭素膜で構成される中間密着層を、従来のように導電性を考慮して極力薄く形成すること無しに、予め十分厚く該膜の連続性や応力緩和機能の発現に必要な十分な厚さで形成することが可能となる。
この場合、形成されるメッキ核と、基材との中間に位置する、より絶縁性の非晶質炭素膜がメッキの侵食により薄膜化することで、メッキ核と基材が接近し、電流が流れ易くなると考えることができる。
このように、本発明の一実施形態に於いては、従来は絶縁性をより増長させてしまうため使用できなかった、または、必要以上に薄く形成していた各種の「通常の非晶質炭素膜よりも絶縁性の高い非晶質炭素膜」の使用範囲を拡大することが可能となる。
Furthermore, it is confirmed that the plating nuclei formed on the concave defects that do not continue to the base material in advance of the amorphous carbon film grow while eroding the amorphous carbon film toward the base material side as it grows. it can.
In one embodiment of the present invention, it is composed of an amorphous carbon film containing silicon formed between a base material and an amorphous carbon film, which has a higher insulating property than a normal amorphous carbon film. The intermediate adhesion layer can be formed with a sufficient thickness necessary for the continuity of the film and the expression of the stress relaxation function in advance, without forming the intermediate adhesion layer as thin as possible in consideration of conductivity. It becomes possible.
In this case, a more insulating amorphous carbon film located between the plating nucleus to be formed and the base material is thinned by erosion of the plating, so that the plating nucleus and the base material come close to each other, and the current flows. It can be considered that it becomes easy to flow.
As described above, in one embodiment of the present invention, various “normal amorphous carbons” that could not be used because of increasing the insulation properties or were formed thinner than necessary. The range of use of the “amorphous carbon film having higher insulation than the film” can be expanded.

以下、本発明について、実施例を用いて説明するが、本発明は、これらに限定されるものではない。   Hereinafter, although the present invention is explained using an example, the present invention is not limited to these.

1.薄く形成した非晶質炭素膜での実施
ステンレス鋼(SUS304)を表面粗さRa0.02μm程度に研磨したフィーダ(100mm×100mm、厚さ1mm)を2つ準備し、高圧DCパルスプラズマCVD装置に配置し非晶質炭素膜を成膜した。
成膜条件は、Arガスを流量30SCCM、ガス圧2Paに調整し、印加電圧−3kVでプラズマクリーニングを行った後、Arガスを排気し、トリメチルシランガスを流量30SCCM、ガス圧2Paにて導入し、印加電圧−4kVpにて密着用の下地層を100nm前後の厚さで形成した後、さらに非晶質炭素膜を以下の条件で成膜した。
なお、成膜装置初期到達真空度は7×10−4Pa、であり、高圧DCパルスプラズマCVD装置パルス電源のパルス周波数はいずれも10kHz、パルス幅10μsである。
・原料ガス:アセチレン
・成膜ガス圧力:2Pa
・ガス流量:30SCCM
・印加電圧:−5kVp
成膜時間:15分間
形成した非晶質炭素膜の総膜厚は、密着用の下地層含め概ね400nm程度である。
1. Implementation with thin amorphous carbon film Two feeders (100 mm x 100 mm, thickness 1 mm) prepared by polishing stainless steel (SUS304) to a surface roughness Ra of 0.02 μm were prepared, and the high-pressure DC pulse plasma CVD apparatus was used. Then, an amorphous carbon film was formed.
The film forming conditions were: Ar gas was adjusted to a flow rate of 30 SCCM and gas pressure of 2 Pa, plasma cleaning was performed at an applied voltage of −3 kV, Ar gas was exhausted, and trimethylsilane gas was introduced at a flow rate of 30 SCCM and gas pressure of 2 Pa. After an adhesion underlayer having a thickness of about 100 nm was formed at an applied voltage of −4 kVp, an amorphous carbon film was further formed under the following conditions.
Note that the initial arrival vacuum degree of the film forming apparatus is 7 × 10 −4 Pa, and the pulse frequency of the high-voltage DC pulse plasma CVD apparatus pulse power supply is 10 kHz and the pulse width is 10 μs.
・ Raw material gas: Acetylene ・ Deposition gas pressure: 2 Pa
・ Gas flow rate: 30SCCM
-Applied voltage: -5 kVp
Deposition time: 15 minutes The total thickness of the formed amorphous carbon film is about 400 nm including the adhesion underlayer.

非晶質炭素膜を成膜した一方を実施例1として、スルファミン酸Niメッキ浴にて通電し、下記条件にて公知の方法で電解Niメッキを行った。メッキしない他の一方を比較例とした。
・電流密度:1A/dm
・メッキ時間:1分間
・電圧:2.4V前後
One of the amorphous carbon films formed as Example 1 was energized in a sulfamic acid Ni plating bath, and electrolytic Ni plating was performed by a known method under the following conditions. The other one not plated was used as a comparative example.
・ Current density: 1 A / dm 2
・ Plating time: 1 minute ・ Voltage: Around 2.4V

まず、実施例1及び比較例の表面状態をCCDカメラで観察した。
図1は、実施例1のCCDカメラによる観察写真であり、(A)、(B)は、それぞれ500倍、5000倍の拡大写真である。非晶質炭素膜の表面に散在する欠陥の凹部に、φ1μm〜10μm前後のNiメッキの核が凸状に無数に成長しているのが確認できる。
図2は、比較例のCCDカメラによる観察写真(×500)である。多数の非晶質炭素膜の欠陥が観察できる。
実施例1において、非晶質炭素膜の欠陥部分にNiメッキ核が成長するのは、被着物表面の欠陥部分を起点にメッキ核が成長するメッキ本来の性質に加え、前述のように、非晶質炭素膜に存在する、基材または基材近傍までの深度で存在するピンフォールに浸透したメッキ液により、該部分のメッキ析出が起こりやすいことに起因すると考えられる。
First, the surface states of Example 1 and Comparative Example were observed with a CCD camera.
FIG. 1 is a photograph taken by the CCD camera of Example 1, and (A) and (B) are magnified photographs of 500 times and 5000 times, respectively. It can be confirmed that innumerable Ni plating nuclei having a diameter of about 1 μm to 10 μm grow in a convex shape in the concave portions of the defects scattered on the surface of the amorphous carbon film.
FIG. 2 is an observation photograph (× 500) with a CCD camera of a comparative example. Many amorphous carbon film defects can be observed.
In Example 1, Ni plating nuclei grow on defective portions of the amorphous carbon film in addition to the original properties of plating nuclei where the plating nuclei grow from the defective portions on the surface of the adherend. It is considered that this is because the plating solution that penetrates into the base material or the pinfall existing at a depth to the vicinity of the base material, which is present in the crystalline carbon film, is likely to cause plating deposition in the portion.

実施例1の非晶質炭素膜を形成していないステンレス鋼側の面にテスターの一方の極であるプローブを、さらに、非晶質炭素膜を形成した側の面との電気抵抗を、テスターのもう一方のプローブを凸状のNiメッキ核に接触させる方法で測定した。テスターは、kaise Ku−1133を使用した。
下記に示す測定抵抗値は、異なる任意のメッキ核10点にプローブを接触させて計測した際の電気抵抗の最大値と最小値である。
(1)Niメッキの析出部分
最大抵抗値:200kΩ 最小抵抗値:20kΩ
(2)非晶質炭素膜部分:∞(無限大)
測定の結果、Niメッキ核部分で電気抵抗が数十kΩレベルへ飛躍的に低下していることが確認できた。
以上のことから、非晶質炭素膜上に分散析出したNiメッキ核は、非晶質炭素膜を介して、基材であるステンレス鋼と電気的な導通を確保する手段であることが確認できた。よって静電気を帯びた非晶質炭素膜上の物質は、該Niメッキ析出物に接触することで、帯電した静電気を基材であるステンレス鋼側にアースすることが可能となる。
The probe which is one of the poles of the tester is formed on the surface on the stainless steel side where the amorphous carbon film of Example 1 is not formed, and the electric resistance between the surface on which the amorphous carbon film is formed and the tester Measurement was performed by bringing the other probe into contact with a convex Ni plating nucleus. The tester used was kaise Ku-1133.
The measurement resistance values shown below are the maximum and minimum values of electrical resistance when measured by bringing a probe into contact with 10 different plating nuclei.
(1) Ni plating deposition portion Maximum resistance value: 200 kΩ Minimum resistance value: 20 kΩ
(2) Amorphous carbon film part: ∞ (infinity)
As a result of the measurement, it was confirmed that the electrical resistance drastically decreased to the level of several tens of kΩ at the Ni plating core.
From the above, it can be confirmed that the Ni plating nuclei dispersed and deposited on the amorphous carbon film is a means for ensuring electrical continuity with the stainless steel substrate through the amorphous carbon film. It was. Therefore, the material on the amorphous carbon film charged with static electricity can be grounded to the stainless steel side as the base material by contacting the Ni plating deposit.

2.厚く形成した非晶質炭素膜での実施
ステンレス鋼(SUS304)の基材100mm×100mm、厚さ1mmに、高圧DCパルスプラズマCVD装置にて非晶質炭素膜を成膜した。
成膜条件は、装置の反応容器を7×10−4Paまで真空減圧した後、Arガスを流量30SCCM、ガス圧2Paに調整し、印加電圧−3kVpでプラズマクリーニングを行った後、Arガスを排気、続いてトリメチルシランガスを流量30SCCM、ガス圧2Paにて導入し、印加電圧−4kVpにて密着用の下地層を200nm前後成膜し、トリメチルシランを排気した後、アセチレンガスを流量30SCCM、ガス圧2Paにて導入し、印加電圧−5kVpにて非晶質炭素膜を260nm前後成膜した後、さらにアセチレンガスを排気し、再びトリメチルシランガスを流量30SCCM、ガス圧2Paにて導入し、印加電圧−5kVpにてシリコンを含む非晶質炭素膜層(最外層)を200nm程度の厚さで成膜し3層構造の総膜厚、約660nmの非晶質炭素膜層を形成した。非晶質炭素膜を成分の異なる3層構造としたのは、非晶質炭素膜に形成されたメッキ核の下部の状態〔特にメッキ核の非晶質炭素膜の最上層から中間層、最下層への成長状態〕が、各層でどのようになっているか後にSEM写真等で確認し易いためである。
なお、パルス状の印加電圧の周波数は、いずれも10kHz、パルス幅は10μsである。
2. Implementation with Thick Amorphous Carbon Film An amorphous carbon film was formed on a stainless steel (SUS304) base material 100 mm × 100 mm and a thickness of 1 mm using a high-pressure DC pulse plasma CVD apparatus.
The film forming conditions were as follows: the reactor reaction chamber was vacuum depressurized to 7 × 10 −4 Pa, Ar gas was adjusted to a flow rate of 30 SCCM, gas pressure 2 Pa, plasma cleaning was performed at an applied voltage of −3 kVp, and Ar gas was After exhausting, trimethylsilane gas was introduced at a flow rate of 30 SCCM and a gas pressure of 2 Pa, an adhesion underlayer was formed at a thickness of about 200 nm at an applied voltage of −4 kVp, trimethylsilane was exhausted, and acetylene gas was supplied at a flow rate of 30 SCCM and gas After introducing an amorphous carbon film with an applied voltage of -5 kVp and a thickness of about 260 nm, the acetylene gas was further exhausted, and trimethylsilane gas was introduced again at a flow rate of 30 SCCM and a gas pressure of 2 Pa. An amorphous carbon film layer (outermost layer) containing silicon is formed at a thickness of about 200 nm at −5 kVp, and the total film thickness of the three-layer structure is To form an amorphous carbon film layer of 660 nm. The amorphous carbon film has a three-layer structure with different components because the state of the lower part of the plating nucleus formed in the amorphous carbon film (particularly, from the uppermost layer to the intermediate layer of the plating nucleus, This is because it is easy to confirm later with a SEM photograph or the like what the growth state in the lower layer] is in each layer.
Note that the frequency of the pulsed applied voltage is 10 kHz, and the pulse width is 10 μs.

上記試料をスルファミン酸Niメッキ浴中にて通電し、下記条件で公知の電解Niメッキを行い実施例2とした。
・電流密度:0.3A/dm
・メッキ時間:1分間
・電圧:2.4V前後
The sample was energized in a sulfamic acid Ni plating bath, and known electrolytic Ni plating was performed under the following conditions to obtain Example 2.
・ Current density: 0.3 A / dm 2
・ Plating time: 1 minute ・ Voltage: Around 2.4V

実施例2をCCDカメラにて表面状態を観察した写真を、図3に示す。
Niメッキの核が星雲状に基材一面に分散析出しているのが確認できる。
The photograph which observed the surface state of Example 2 with the CCD camera is shown in FIG.
It can be confirmed that Ni plating nuclei are dispersed and deposited on the entire surface of the substrate in a nebula shape.

次に、Niメッキ核の部分を基材、非晶質炭素膜を含めて断面研磨し、該断面(非晶質炭素膜自体の膜構造)を観察した。
メッキ析出部分の集束イオンビーム(FIB)加工−走査型電子顕微鏡(SEM)による、非晶質炭素膜断面写真を、図5に示す。
なお、加工、観察条件は、FIB加工と2次電子象観察までが、メーカ:株式会社日立ハイテクノロジーズ、型式:NB5000形、日立集束イオンビーム加工観察装置システム、加速電圧:5.0kV
WD:5.0mm、5.1mm、信号検出器:LOWER-SE、検出信号:2次電子であり、
反射電子象の観察は、メーカ:株式会社日立ハイテクノロジーズ、型式:NB5000形、日立集束イオンビーム加工観察装置システム、加速電圧:5.0kV、WD:5.2mm、信号検出器:UPPER-SE
*E×B信号処理、検出信号:反射電子である。
Next, the Ni plating nucleus part was polished in cross section including the base material and the amorphous carbon film, and the cross section (film structure of the amorphous carbon film itself) was observed.
FIG. 5 shows a cross-sectional photograph of the amorphous carbon film obtained by focused ion beam (FIB) processing of the plated deposit portion-scanning electron microscope (SEM).
The processing and observation conditions are FIB processing and secondary electron image observation. Manufacturer: Hitachi High-Technologies Corporation, Model: NB5000, Hitachi Focused Ion Beam Processing and Observation System, Acceleration Voltage: 5.0kV
WD: 5.0mm, 5.1mm, signal detector: LOWER-SE, detection signal: secondary electron,
Reflection electron elephant observation: Manufacturer: Hitachi High-Technologies Corporation, Model: NB5000, Hitachi Focused Ion Beam Processing and Observation System, Acceleration Voltage: 5.0kV, WD: 5.2mm, Signal Detector: UPPER-SE
* E × B signal processing, detection signal: backscattered electrons.

1)断面観察用の加工
図4は、実施例2を試料に用いた、集束イオンビーム(FIB)による断面形成の加工部位を説明する図である。集束イオンビームを当てて試料表面の原子をはじきとばすことで試料を削ることが可能である。集束イオンビームは数100nmから数nmまで絞ることができるので、微細な加工が可能となる。
非晶質炭素膜平坦部に部分メッキが析出した凸部を選択し、断面観察時に最表面が認識できるように、試料をFIB−SEMに搭載前に試料全面にPt膜を20nmの厚さでコーティングした。
また、更に、評価領域である、Pt膜を形成した凸部に保護膜(カーボン膜)を形成した。
その後、上記中央の図、向かって右側の凸部1、左側の凸部2に対してそれぞれ集束イオンビーム(FIB)加工(85μm×12μm)を施した。
1) Processing for cross-sectional observation FIG. 4 is a diagram for explaining a processing portion for forming a cross-section by using a focused ion beam (FIB) using Example 2 as a sample. It is possible to cut the sample by hitting the focused ion beam and repelling the atoms on the sample surface. Since the focused ion beam can be narrowed from several 100 nm to several nm, fine processing becomes possible.
Select the convex part where the partial plating is deposited on the flat part of the amorphous carbon film, so that the outermost surface can be recognized at the time of cross-sectional observation. Coated.
Furthermore, a protective film (carbon film) was formed on the convex part where the Pt film was formed, which was an evaluation region.
Thereafter, focused ion beam (FIB) processing (85 μm × 12 μm) was applied to the right convex portion 1 and the left convex portion 2 in the center view.

2)凸部断面の状態
図4の右端の図は、前記の凸部1の拡大写真であり、該図の破線部における断面の状態を図5に示す。
図5に示す各図面は、凸部1の断面露出(FIB加工)後の写真であり、向かって左側上段から下段までの3つの図が光学顕微鏡二次電子像(Lower)、及び写真向かって右側上段から下段の3つの図が反射電子像である。
凸部1の中央部下に窪みが確認された(右上写真(1))。
また、凸部の右側の非晶質炭素膜平坦部は、3層構造であることが確認できる(右下写真(2))。
凸部1中央部下と基板の距離は100nm程度まで近接している。
また、3層構造の上部側の層から、析出した部分メッキにより3層構造の非晶質炭素膜が上層部層から下部層に向かって順次侵食されたような非晶質炭素膜層の端断面の傾斜状態が確認できる。
よって、部分的なメッキ析出部分は、非晶質炭素膜の元来有する凹部の欠陥部分に該凹部をその形状のまま埋めるように析出したものではなく、メッキ核として析出後成長しながら非晶質炭素膜を下部側に向かって侵食していることが確認できる。
2) State of convex section cross section The rightmost drawing of FIG. 4 is an enlarged photograph of the convex section 1, and FIG. 5 shows the state of the cross section at the broken line portion of the figure.
Each drawing shown in FIG. 5 is a photograph after the cross-section exposure (FIB processing) of the convex portion 1, and three drawings from the upper left side to the lower stage are an optical microscope secondary electron image (Lower) and a photo. Three figures from the upper right to the lower are the reflected electron images.
A depression was confirmed below the center of the convex portion 1 (upper right photo (1)).
Moreover, it can confirm that the amorphous carbon film flat part of the right side of a convex part is a 3 layer structure (lower right photograph (2)).
The distance between the center of the convex portion 1 and the substrate is close to about 100 nm.
Further, the end of the amorphous carbon film layer in which the amorphous carbon film of the three-layer structure is sequentially eroded from the upper layer to the lower layer by the deposited partial plating from the upper layer of the three-layer structure. The inclined state of the cross section can be confirmed.
Therefore, the partial plating deposition portion is not deposited so as to fill the concave portion with the original shape in the concave portion of the concave portion of the amorphous carbon film. It can be confirmed that the carbonaceous film is eroding toward the lower side.

3)凸部2の断面の状態
図示しないが、凸部1と同様に、凸部2の中央部下にも凸部1同様に窪みが確認され、凸部2の下部に位置する非晶質炭素膜部は、非晶質炭素膜が薄くなっていることが確認でき、凸部2中央部下と基板の距離(非晶質炭素膜の厚み)は凸部1と同様に100nm程度まで近接している。
3) State of the cross section of the convex portion 2 Although not shown, a depression is confirmed under the central portion of the convex portion 2 in the same manner as the convex portion 1 as in the case of the convex portion 1, and amorphous carbon located under the convex portion 2 In the film part, it can be confirmed that the amorphous carbon film is thin, and the distance between the central part of the convex part 2 and the substrate (the thickness of the amorphous carbon film) is close to about 100 nm as in the convex part 1. Yes.

以上の観察から、メッキ析出部の電気伝導性が高いのは、メッキの析出初期のメッキ核が、非晶質炭素膜表面の欠陥部分に析出し、その段階ではまだ非晶質炭素膜は初期の非晶質炭素膜程度の厚みを有しているが、メッキの成長に伴い、非晶質炭素膜を侵食し、絶縁性の高い非晶質炭素膜が薄膜化することが確認できた。
結果、該部分の電気伝導性が向上するとともに、耐食性の高いNiメッキなどを非晶質炭素膜の元来有している欠陥に析出させてしまうため、非晶質炭素膜の欠陥に起因する耐候性劣化の防止も併せて行うことが可能となる。
From the above observations, the electrical conductivity of the plated deposit is high because the plating nuclei at the initial stage of plating deposition are deposited at the defects on the surface of the amorphous carbon film. It was confirmed that the amorphous carbon film was eroded with the growth of plating, and the amorphous carbon film having high insulation was thinned.
As a result, the electrical conductivity of the portion is improved, and Ni plating having high corrosion resistance is deposited on the defects inherent in the amorphous carbon film, resulting in defects in the amorphous carbon film. It is also possible to prevent deterioration of weather resistance.

Claims (7)

基材上に成膜された非晶質炭素膜を有し、該非晶質炭素膜の表層部分及び/又は欠陥内壁部分に金属メッキが部分析出されている非晶質炭素膜積層部材であって、該非晶質炭素膜を最上層とする、部品搬送用部材、部品整列用部材又は部品保管用部材であることを特徴とする非晶質炭素膜積層部材。 An amorphous carbon film laminated member having an amorphous carbon film formed on a substrate and having metal plating partially deposited on a surface layer portion and / or a defect inner wall portion of the amorphous carbon film. Te, the amorphous carbon film and the uppermost layer, the amorphous carbon film laminate member you wherein the component carrier member, a member or a component storage member for component alignment. 基材上に成膜された非晶質炭素膜を有し、該非晶質炭素膜の表層部分及び/又は欠陥内壁部分に金属メッキが部分析出されている非晶質炭素膜積層部材であって、電極であることを特徴とする非晶質炭素膜積層部材。 An amorphous carbon film laminated member having an amorphous carbon film formed on a substrate and having metal plating partially deposited on a surface layer portion and / or a defect inner wall portion of the amorphous carbon film. An amorphous carbon film laminated member characterized by being an electrode. 前記電極が電池用の電極であることを特徴とする請求項2に記載の非晶質炭素膜積層部材。The amorphous carbon film laminated member according to claim 2, wherein the electrode is an electrode for a battery. 基材上に成膜された非晶質炭素膜を有し、該非晶質炭素膜の表層部分及び/又は欠陥内壁部分に金属メッキが部分析出されている非晶質炭素膜積層部材であって、燃料電池用のセパレータであることを特徴とする非晶質炭素膜積層部材。 An amorphous carbon film laminated member having an amorphous carbon film formed on a substrate and having metal plating partially deposited on a surface layer portion and / or a defect inner wall portion of the amorphous carbon film. An amorphous carbon film laminated member, which is a separator for a fuel cell. 前記非晶質炭素膜が、ケイ素を含有することを特徴とする請求項1〜4のいずれか1項に記載の非晶質炭素膜積層部材。 The amorphous carbon film laminated member according to any one of claims 1 to 4, wherein the amorphous carbon film contains silicon. 前記非晶質炭素膜積層部材の上層に、更に別の非晶質炭素膜が、非晶質炭素膜積層部材の電気導電性を損なわない厚さで形成されていることを特徴とする請求項1〜5のいずれか1項に記載の非晶質炭素膜積層部材。The further amorphous carbon film is formed on the amorphous carbon film laminated member in a thickness that does not impair the electrical conductivity of the amorphous carbon film laminated member. The amorphous carbon film laminated member according to any one of 1 to 5. 請求項1〜6のいずれか1項に記載の非晶質炭素膜積層部材の製造方法であって、
基材上に非晶質炭素膜を成膜した後、該非晶質炭素膜の表層部分及び/又は欠陥内壁部分に金属メッキを部分析出させることにより、非晶質炭素膜と基材との電気伝導性を確保することを特徴とする非晶質炭素膜積層部材の製造方法。
It is a manufacturing method of the amorphous carbon film lamination member according to any one of claims 1 to 6 ,
After the amorphous carbon film is formed on the substrate, metal plating is partially deposited on the surface layer portion and / or the defect inner wall portion of the amorphous carbon film, whereby the amorphous carbon film and the substrate are separated. A method for producing an amorphous carbon film laminated member characterized by ensuring electrical conductivity.
JP2011202654A 2011-09-16 2011-09-16 Amorphous carbon film laminated member and manufacturing method thereof Active JP5898437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011202654A JP5898437B2 (en) 2011-09-16 2011-09-16 Amorphous carbon film laminated member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011202654A JP5898437B2 (en) 2011-09-16 2011-09-16 Amorphous carbon film laminated member and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016041828A Division JP6110533B2 (en) 2016-03-04 2016-03-04 Amorphous carbon film laminated member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013063539A JP2013063539A (en) 2013-04-11
JP5898437B2 true JP5898437B2 (en) 2016-04-06

Family

ID=48187525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011202654A Active JP5898437B2 (en) 2011-09-16 2011-09-16 Amorphous carbon film laminated member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5898437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188339B2 (en) 2019-09-26 2022-12-13 いすゞ自動車株式会社 Fan belt abnormality detector

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3009630C (en) 2015-12-16 2023-08-01 Amastan Technologies Llc Spheroidal dehydrogenated metals and metal alloy particles
JP6928448B2 (en) * 2016-12-28 2021-09-01 Dowaサーモテック株式会社 Method for forming a conductive carbon film, method for manufacturing a conductive carbon film coating member, and method for manufacturing a separator for a fuel cell
JP6961469B2 (en) * 2017-11-15 2021-11-05 太陽誘電株式会社 An electrode structure, a sensor including the electrode structure, and an analyzer including the electrode structure.
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
WO2021118762A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277763A (en) * 1987-05-07 1988-11-15 Idemitsu Petrochem Co Ltd Production of diamondlike carbon
JP2000067881A (en) * 1998-08-24 2000-03-03 Honda Motor Co Ltd Separator for fuel cell
JP2000133699A (en) * 1998-10-26 2000-05-12 Nec Kyushu Ltd Wafer carrier
JP2005023965A (en) * 2003-06-30 2005-01-27 Nsk Ltd Carrier roller for vacuum apparatus
JP2007100135A (en) * 2005-09-30 2007-04-19 Toyota Central Res & Dev Lab Inc Corrosion-resistant member
JP5207026B2 (en) * 2007-11-30 2013-06-12 トヨタ自動車株式会社 Battery electrode current collector and battery electrode manufacturing method including the electrode current collector
RU2553803C2 (en) * 2009-08-07 2015-06-20 Эрликон Трейдинг Аг, Трюббах Tribology combined with corrosion resistance: new family of pvd- and pacvd coatings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188339B2 (en) 2019-09-26 2022-12-13 いすゞ自動車株式会社 Fan belt abnormality detector

Also Published As

Publication number Publication date
JP2013063539A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5898437B2 (en) Amorphous carbon film laminated member and manufacturing method thereof
Liu et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes
Yoshimatsu et al. Lithium electrode morphology during cycling in lithium cells
JP5217243B2 (en) Amorphous carbon film, method for forming amorphous carbon film, conductive member provided with amorphous carbon film, and separator for fuel cell
WO2007136131A1 (en) Amorphous carbon film, method for forming amorphous carbon film, electroconductive member comprising amorphous carbon film, and separator for fuel battery
KR20110122177A (en) Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
US20160056455A1 (en) Structure equipped with amorphous carbon film having electrically conductive part and containing silicon, and method for manufacturing same
JP2010248570A (en) Titanium-based material and fuel cell separator
JP2016519002A (en) Grinding sawing wire and its manufacturing method and use
US9524742B2 (en) CXNYHZ film, deposition method, magnetic recording medium and method for manufacturing the same
JP2015518925A (en) Method for making a metal coating
JP6110533B2 (en) Amorphous carbon film laminated member and manufacturing method thereof
US20150380740A1 (en) Metal backed nanowire arrays
Wang et al. The effects of anodic interlayer on the morphology and mechanical performances of electroless Ni–P coating on Al alloy
JP7265081B1 (en) ALUMINUM MATERIAL, SURFACE PROPERTIES-MODULATING FILM FOR ALUMINUM MATERIAL, AND SURFACE TREATMENT METHOD FOR ALUMINUM MATERIAL
JP5727569B2 (en) Method for manufacturing DLC film-coated member and DLC film-coated member
US20200131638A1 (en) Stitching two-dimensional atomic crystals by atomic layer deposition as stable interfaces for batteries
JP2011142034A (en) Solid electrolyte membrane and method of manufacturing the same, and solid electrolyte battery
JP4095764B2 (en) Metal material member for film forming apparatus and film forming apparatus using the same
US10957628B2 (en) Bottom up electroplating with release layer
JP2009087561A (en) Copper foil for lithium secondary cell and its manufacturing method
JP2011047052A (en) Method of manufacturing member for semiconductor machining device
Gao et al. Highly‐Efficient and Robust Zn Anodes Enabled by Sub‐1‐µm Zincophilic CrN Coatings
JP5886625B2 (en) Amorphous carbon film laminated member and manufacturing method thereof
EP3548431B1 (en) Method for the exfoliation of graphene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250