JP5896458B2 - Ultra fine martensite high hardness steel and its manufacturing method - Google Patents

Ultra fine martensite high hardness steel and its manufacturing method Download PDF

Info

Publication number
JP5896458B2
JP5896458B2 JP2012038191A JP2012038191A JP5896458B2 JP 5896458 B2 JP5896458 B2 JP 5896458B2 JP 2012038191 A JP2012038191 A JP 2012038191A JP 2012038191 A JP2012038191 A JP 2012038191A JP 5896458 B2 JP5896458 B2 JP 5896458B2
Authority
JP
Japan
Prior art keywords
steel
hardness
manufacturing
less
hardness steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012038191A
Other languages
Japanese (ja)
Other versions
JP2013173970A (en
Inventor
花村 年裕
年裕 花村
鳥塚 史郎
史郎 鳥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012038191A priority Critical patent/JP5896458B2/en
Publication of JP2013173970A publication Critical patent/JP2013173970A/en
Application granted granted Critical
Publication of JP5896458B2 publication Critical patent/JP5896458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建造物や橋梁等の構造物、自動車の足回り鋼、機械用歯車等部品に使用される鋼であって、特に高硬度鋼に関するものである。   The present invention relates to steel used for parts such as structures such as buildings and bridges, undercarriage steel for automobiles, and mechanical gears, and particularly to high-hardness steel.

近年、構造物の大型化や自動車部品の軽量化に伴って、これまで以上に高性能な鋼が求められている。これに加えて当該鋼を製造するに当たり、省資源かつ省エネルギーであることも重要な課題である。そして、当該鋼を製造するに当たっては設備を増設ないし新設することなく、しかも従来の製造工程よりも省工程で目的とする鋼を製造できることが望まれている。   In recent years, with the increase in size of structures and the weight reduction of automobile parts, higher performance steel is required than ever. In addition to this, it is an important issue to save resources and energy when manufacturing the steel. And when manufacturing the said steel, it is desired that the target steel can be manufactured by a process saving rather than the conventional manufacturing process, without expanding or newly installing an installation.

従来、高強度鋼板は多数開発されてきている。例えば、特許文献1には、高強度と高延性を両立させ、プレス成形性と衝撃エネルギー吸収能に優れた自動車用の冷延鋼板に関する技術が開示されている。これは高価な合金元素の添加量を抑制してフェライト結晶粒の微細化によりを上昇させ、しかもプレス成形性に重要となると延性とのバランスに優れた薄鋼板である。そしてその製造工程では熱間圧延の後、冷間圧延を行ない、適切な焼鈍を行なうというものである。しかしながら、この技術によれば、MoやNi等の高価な合金元素が少量ではあるが添加必須元素であり、薄鋼板に圧延後、焼鈍処理を必要としている。   Conventionally, many high strength steel plates have been developed. For example, Patent Document 1 discloses a technology related to a cold-rolled steel sheet for automobiles that has both high strength and high ductility and is excellent in press formability and impact energy absorption capability. This is a thin steel sheet that suppresses the addition amount of expensive alloy elements to increase the fineness of ferrite crystal grains and is excellent in balance with ductility when it is important for press formability. In the manufacturing process, after hot rolling, cold rolling is performed and appropriate annealing is performed. However, according to this technique, a small amount of expensive alloy elements such as Mo and Ni are essential elements to be added, and an annealing treatment is required after rolling into a thin steel plate.

また、非特許文献1には、高価な合金元素を添加せずにMnとSi含有量を高めた0.1%C−5%Mn−2%Siという低炭素鋼に準じる化学成分組成鋼を用い、焼鈍後の低温再加熱処理において高含有量のMnにより残留オーステナイトの分率を高めると同時に、高含有量のSiによりフェライト中からオーステナイトへ排出されたCにより残留オーステナイトを安定化させることによる加工硬化指数を高めた鋼板(New TRIP鋼と称される)が開示されている。しかし、このプロセスは薄鋼板に圧延後に複雑なプロセスである焼鈍処理及び低温再加熱処理を必要としており、省エネルギーの観点からの問題が解決されていない。そして、薄鋼板を製造対象鋼としているので、熱間圧延に加えて冷間圧延工程も必須としている。   Further, Non-Patent Document 1 discloses a chemical composition steel according to a low carbon steel of 0.1% C-5% Mn-2% Si in which the contents of Mn and Si are increased without adding an expensive alloy element. Used, by increasing the fraction of retained austenite with a high content of Mn in low-temperature reheating treatment after annealing, and at the same time stabilizing the retained austenite with C discharged from ferrite into austenite with a high content of Si A steel sheet (called New TRIP steel) with an increased work hardening index is disclosed. However, this process requires an annealing process and a low-temperature reheating process, which are complicated processes after rolling into a thin steel sheet, and the problem from the viewpoint of energy saving has not been solved. And since the thin steel plate is made into steel for manufacture, in addition to hot rolling, the cold rolling process is also essential.

一方、製造対象鋼として薄鋼板を除く構造物等に使用される高強度、高強靭鋼についても多数開発されている。例えば、特許文献2には、高強度、高延性で、耐遅れ破壊特性に優れ、しかも靭性が飛躍的に向上した高強度鋼に関する技術が開示されている。この技術によれば、引張強さが1660〜1800MPa、伸び(全伸び)が18.5〜19.2%であって、室温におけるVノッチシャルピー試験の衝撃吸収エネルギーで305〜382J/cmを有する鋼が例示されている(特許文献2の表6の実施例1及び実施例17参照)。しかし、この技術においても、化学成分組成として高価格のMoを1.0%程度含有させ、製造工程として、所定の温度及び時間の条件下において焼鈍、焼戻し及び時効処理のいずれかを施した後、350℃以上(AC1−20℃)以下の温度で加工をする(温間加工をする)工程が必要である。
以上のように、これまでに開示されている技術では省資源、省エネルギーの問題が解決されておらず、また、比較的低温領域における温間加工を実施するために通常の製造ラインにおいては加工装置に大きな負担を強いることになり、工業的に幅広く利用するには問題がある。
On the other hand, a large number of high-strength and high-tough steels that are used as structures to be manufactured for structures other than thin steel sheets have been developed. For example, Patent Document 2 discloses a technique related to high strength steel having high strength, high ductility, excellent delayed fracture resistance, and dramatically improved toughness. According to this technique, the tensile strength is 1660 to 1800 MPa, the elongation (total elongation) is 18.5 to 19.2%, and the impact absorption energy of the V-notch Charpy test at room temperature is 305 to 382 J / cm 2 . The steel which has is illustrated (refer Example 1 and Example 17 of Table 6 of patent document 2). However, even in this technique, about 1.0% of high-priced Mo is contained as a chemical component composition, and after manufacturing, annealing, tempering, or aging treatment is performed under conditions of a predetermined temperature and time. , A step of processing (warming) at a temperature of 350 ° C. or higher (A C1 −20 ° C.) or lower is required.
As described above, the technologies disclosed so far have not solved the problem of resource saving and energy saving, and a processing apparatus is used in a normal production line to perform warm processing in a relatively low temperature region. For this reason, there is a problem in using it widely industrially.

特開2007−321207号公報JP 2007-321207 A 国際公開WO2007/058364International Publication WO2007 / 058364

H.Takechi,JOM.December 2008,p.22H.Takechi, JOM.December 2008, p.22

本発明は、以上の点に鑑みて、従来技術では解決することができない上記各種の問題点、即ち、建造物や橋梁等の構造物、自動車の足回り鋼、機械用歯車等部品に使用される鋼として、高強度(本願においては、引張強さ(TS))を指標とするものである。この鋼は、例えば、前記非特許文献1に記載されている。)に優れた厚鋼板、形鋼、異形棒鋼、棒鋼及び鋼線等の鋼を製造するに当たって、高価な合金元素を添加しないで、低炭素鋼の化学成分組成を有する鋼を使用して、製造設備に過大な負荷をかけることなく現有の製造ラインにおいて、多資源・高エネルギーでかつ多工程のために安価かつ所望の鋼を製造することができないという問題を解決しようとするものである。   In view of the above points, the present invention is used for the above-mentioned various problems that cannot be solved by the prior art, that is, for structures such as buildings and bridges, undercarriage steel for automobiles, and mechanical gears. As a steel, high strength (in this application, tensile strength (TS)) is used as an index. This steel is described in Non-Patent Document 1, for example. When manufacturing steels such as thick steel plates, shaped steels, deformed steel bars, steel bars and steel wires that are excellent in), they are manufactured using steels with chemical composition of low carbon steel without adding expensive alloying elements. The present invention is intended to solve the problem that it is impossible to produce desired steel at a low cost due to multiple resources, high energy, and multiple processes in an existing production line without imposing an excessive load on the equipment.

本発明は、以上の点に鑑みて、従来技術では解決することができない上記各種の問題点、即ち、建造物や橋梁等の構造物、自動車の足回り鋼、機械用歯車等部品に使用される鋼として、高強度に優れた厚鋼板、形鋼、異形棒鋼、棒鋼及び鋼線等の鋼を製造するために、安価なMn及びSiを添加した低C鋼を基盤とした処理により、更には、所定条件の圧延のままで焼鈍処理を施さなくてもマルテンサイトを制御した超微細マルテンサイト組織を有する鋼を提供することにより解決しようとするものである。   In view of the above points, the present invention is used for the above-mentioned various problems that cannot be solved by the prior art, that is, for structures such as buildings and bridges, undercarriage steel for automobiles, and mechanical gears. In order to produce steels such as thick steel plates, shaped steels, deformed steel bars, steel bars and steel wires with excellent strength, steel based on low C steel added with inexpensive Mn and Si, Is intended to solve the problem by providing a steel having an ultrafine martensite structure in which martensite is controlled without performing annealing treatment under rolling under predetermined conditions.

製造対象とする鋼の材料特性値に関しては、機械的性質として、ビッカース硬度が490以上であることを特徴とするに優れた高硬度鋼を得ることである。   Regarding the material property value of the steel to be manufactured, the mechanical property is to obtain a high hardness steel having an excellent Vickers hardness of 490 or more.

本発明者は上記の課題を解決するために、鋼のミクロ組織形態の新規組合せの相及びその構成比率と材料特性値との関係を鋭意研究した、しかもかかる組織を得るための製造条件を研究した結果、本発明を完成するに至った。本発明は以下の特徴を有する。   In order to solve the above-mentioned problems, the present inventor has eagerly studied the phase of a novel combination of microstructures of steel and the relationship between the composition ratio and material property values, and has also studied the production conditions for obtaining such a structure. As a result, the present invention has been completed. The present invention has the following features.

第1に、化学成分組成が、質量%で、C :0.05〜0.20%、Si:1.0〜3.5%、Mn:4.5〜5.5%、Al:0.001〜0.080%、P:0.030%以下、S:0.020%以下、N:0.010%以下であって、残部がFe及び不可避不純物からなり、ミクロ組織がマルテンサイト組織であり、機械的性質として、ビッカース硬度が490以上であることを特徴とする硬度に優れた高硬度鋼である。 1stly, a chemical component composition is the mass%, C: 0.05-0.20%, Si: 1.0-3.5%, Mn: 4.5-5.5%, Al: 0.00. 001 to 0.080%, P: 0.030% or less, S: 0.020% or less, N: 0.010% or less , the balance is made of Fe and inevitable impurities, and the microstructure is a martensite structure In addition, as a mechanical property, it is a high-hardness steel excellent in hardness, characterized by having a Vickers hardness of 490 or more.

第2に、上記第1の発明の硬度に優れた高硬度鋼において、前記高硬度鋼のミクロ組織は、圧延方向に平行な断面において、前記マルテンサイトの平均結晶粒径が2.6μm以下である高硬度鋼を提供する。   Secondly, in the high hardness steel excellent in hardness of the first invention, the microstructure of the high hardness steel has an average crystal grain size of the martensite of 2.6 μm or less in a cross section parallel to the rolling direction. Provide some hard steel.

第3に、第1の発明の化学成分組成の高硬度鋼を、1200℃で均一に加熱後、600℃〜400℃の温度域に冷却し、その温度域で一回鍛造により減面率88%以上の加工後、室温まで空冷する高硬度鋼の製造方法を提供する。   Thirdly, the high hardness steel having the chemical composition of the first invention is uniformly heated at 1200 ° C., then cooled to a temperature range of 600 ° C. to 400 ° C., and the surface reduction rate is 88 by performing forging once in that temperature range. Provided is a method for producing a high-hardness steel that is air-cooled to room temperature after processing at least%.

本発明の硬度に優れた高硬度鋼の製造方法によれば、本発明鋼の品質特性に近い水準の特性を備えた鋼を得るためには、従来高価な合金元素の添加が必要とされていたが、従来法では発現できなかった超微細マルテンサイトという組織を用いることにより、高価な合金元素を含有しない通常の鋼組成で目的を達成し、しかも得られる鋼の品質特性は、従来の鋼では得られていない優れた機械的性質を備えた鋼が得られる。   According to the method for producing a high hardness steel having excellent hardness according to the present invention, in order to obtain a steel having a level of characteristics close to the quality characteristics of the steel according to the present invention, it has been conventionally necessary to add an expensive alloy element. However, by using a structure called ultrafine martensite that could not be expressed by conventional methods, the objective was achieved with a normal steel composition that did not contain expensive alloy elements, and the quality characteristics of the steel obtained were In this way, a steel with excellent mechanical properties that cannot be obtained is obtained.

前組織光顕写真 (HV421)。Pre-organization photomicrograph (HV421). 25ton熱間加工シミュレータにおける試料とアンビルの構成。Sample and anvil configuration in a 25 ton hot working simulator. 実験条件:ひずみ速度 10/s 50%圧縮加工加工温度900,600,400℃。Experimental conditions: Strain rate 10 / s 50% compression processing temperature 900, 600, 400 ° C. 試料の加熱加工状態における時間−荷重記録。Time-load recording in the heat processing state of the sample. 試料の加工状態における塑性相当歪みの分布状態(FEM計算による) 。Distribution state of plastic equivalent strain in processing state of sample (by FEM calculation). 組織のHv硬さ。Hv hardness of tissue. 試料の平均粒径と硬度の関係。Relationship between average particle size and hardness of sample. 実施例と比較例の組織比較:EBSD測定による大角粒界(15度以上)の線を表示。Comparison of structure between Example and Comparative Example: A line of a large angle grain boundary (15 degrees or more) by EBSD measurement is displayed.

以下、本発明に係る鋼の化学成分組成、顕微鏡組織及び機械的性質の特徴、並びに当該鋼の製造方法の特徴について詳細に説明する。   Hereinafter, the chemical composition of the steel according to the present invention, the characteristics of the microstructure and mechanical properties, and the characteristics of the method for producing the steel will be described in detail.

<鋼の化学成分組成>
本発明に係る高硬度鋼における化学成分組成の範囲は以下の通りである(以下、成分の%はすべて質量%を示す)。
<Chemical composition of steel>
The range of the chemical component composition in the high hardness steel according to the present invention is as follows (hereinafter, “% of components” indicates “% by mass”).

C:0.05〜0.20%とする。Cは引張を確保するために必要であるが、0.05%未満では本発明に係る鋼の引張を十分に満たさないおそれがあるため、0.05%以上に規定する。一方、0.20%を超えると、鋼の延性の低下傾向及び溶接性の低下傾向を示すので、上限を0.20%に規定する。   C: Set to 0.05 to 0.20%. C is necessary for securing the tensile strength, but if it is less than 0.05%, there is a possibility that the tensile strength of the steel according to the present invention may not be sufficiently satisfied. On the other hand, if it exceeds 0.20%, the steel tends to have a lower ductility and lower weldability, so the upper limit is defined as 0.20%.

Si:1.0〜3.5%とする。Siは、材質を大きく硬質化する置換型固溶体強化元素であり、鋼の硬さを上昇させるのに有効な元素であり、1.0%以上が望ましい。しかしながら、Si含有量が過度に高くなると熱間加工時の加熱中にSiスケールが多く発生しスケール除去に余分のコストがかかることや、スケールによる表面疵が発生し易くなる問題が生じる。そこで、上限を3.5%とする。   Si: 1.0 to 3.5%. Si is a substitutional solid solution strengthening element that greatly hardens the material, is an element effective for increasing the hardness of steel, and is preferably 1.0% or more. However, if the Si content is excessively high, a large amount of Si scale is generated during heating during hot working, and there is a problem that extra cost is required for removing the scale and surface flaws are likely to occur due to the scale. Therefore, the upper limit is set to 3.5%.

Mn:4.5〜5.5%とする。
本材の特性である400℃以上の低温域加工でマルテンサイトを生成させるためにはオーステナイトの高度な安定化が必要であり、それを確保するために、高いMn含有量が効果的作用を発揮する。
Mn: 4.5 to 5.5%.
In order to generate martensite by low temperature processing at 400 ° C or higher, which is a characteristic of this material, it is necessary to highly stabilize austenite. To ensure this, a high Mn content exhibits an effective action. To do.

この作用効果を十分に発揮させるためには、Mn含有量を4.5%以上とすることが望ましい。一方、Mnが高濃度になると、鋼の低温靭性を劣化させること、及び過度に高濃度になると凝固時の鋼中Mnの偏析が過大となり材料内部の均一性を害する。また、素材の調製工程における熱間加工工程において表面割れが発生し易くなる。よって、上限を5.5%とする。   In order to fully exhibit this effect, it is desirable to make Mn content 4.5% or more. On the other hand, if the Mn concentration is high, the low temperature toughness of the steel is deteriorated. If the Mn concentration is excessively high, segregation of Mn in the steel at the time of solidification becomes excessive and the uniformity inside the material is impaired. Further, surface cracks are likely to occur in the hot working step in the raw material preparation step. Therefore, the upper limit is set to 5.5%.

Al:0.001〜0.080%とする。Alは溶鋼の脱酸のために添加するが、真空溶解炉を使用した場合でも、0.001%未満ではその効果が不十分となる。転炉精錬の場合には、十分な脱酸をするためには、通常、0.010%以上が望ましい。一方、0.080%を超えると、AlNの生成により脆化の問題が起こる可能性がある他に、酸化物系介在物が増加して靭性を損なう可能性があるので、上限を0.080%とする。なお、本願発明においては、鋼の溶製工程としては、通常の工業的量産方法である転炉製鋼法や電気炉製鋼法を前提条件とし、真空精錬をしなくてもよい場合の他に、真空溶解炉をしようする少量生産の場合をも想定して下限値を規定している。   Al: 0.001 to 0.080%. Al is added for deoxidation of molten steel, but even when a vacuum melting furnace is used, the effect is insufficient if it is less than 0.001%. In the case of converter refining, 0.010% or more is usually desirable for sufficient deoxidation. On the other hand, if it exceeds 0.080%, the problem of embrittlement may occur due to the formation of AlN, and oxide inclusions may increase and impair toughness. %. In addition, in the present invention, as a steel melting step, a converter steelmaking method or an electric furnace steelmaking method, which is a normal industrial mass production method, is a precondition, and there is no need for vacuum refining, The lower limit is specified assuming small production using a vacuum melting furnace.

P:0.030%以下とする。Pは、鋼中に不可避的に混入する不純物元素であり、靭性を低下させるので、その含有量の上限を0.030%に制限する。また、P含有量のより一層望ましい上限は、0.015%以下である。下限値は特に限定しないが、コストを考慮し適宜決めればよい。   P: 0.030% or less. P is an impurity element inevitably mixed in the steel and lowers the toughness, so the upper limit of its content is limited to 0.030%. A more desirable upper limit of the P content is 0.015% or less. The lower limit value is not particularly limited, but may be appropriately determined in consideration of cost.

S:0.020%以下とする。Sは、Pと同様に鋼中に不可避的に混入する不純物元素であり、加工性及び靭性を損うので、その含有量の上限を0.020%に制限する。また、Sのより一層望ましい上限は、0.05%である。下限値は特に限定しないが、コストを考慮し適宜決めればよい。   S: Set to 0.020% or less. S is an impurity element that is inevitably mixed in the steel as in the case of P, and since workability and toughness are impaired, the upper limit of the content is limited to 0.020%. Further, a more desirable upper limit of S is 0.05%. The lower limit value is not particularly limited, but may be appropriately determined in consideration of cost.

N:0.010%以下とする。Nは、鋼中に不可避的に含有される元素であり、積極的に低減するためには脱ガス精錬等を必要とするので、製造コスト高を招く。また、Nは電気炉製鋼法による場合は特に原料中のN含有量にも依存するので、特に下限は規定しない。一方、N含有量が0.0080%を超えると、窒化物が増加して靭性を損なうので、上限を0.010%とする。   N: 0.010% or less. N is an element inevitably contained in the steel, and degassing refining or the like is required to actively reduce it, resulting in high manufacturing costs. Further, since N depends on the N content in the raw material particularly when the electric furnace steelmaking method is used, no lower limit is particularly defined. On the other hand, if the N content exceeds 0.0080%, nitrides increase and the toughness is impaired, so the upper limit is made 0.010%.

Nb:0.045%以下とする。Nbは、鋼中に炭化物を微細分散させて組織を微細化させる効果がある。これはNbが鋼中性分のCと反応してNbCを生成し、この微小析出物が高温のγ域におけるγ粒の成長を粒界ピニングにより抑えることによるものである。0.045%以上入れると鋼中の炭素を消費してしまい、マルテンサイト変態の駆動力を下げ、鋼の特性を劣化させる危険がある。   Nb: 0.045% or less. Nb has the effect of finely dispersing the carbide in the steel to refine the structure. This is because Nb reacts with C in the steel to produce NbC, and this fine precipitate suppresses the growth of γ grains in the high temperature γ region by grain boundary pinning. When 0.045% or more is added, carbon in the steel is consumed, and there is a risk that the driving force of the martensitic transformation is lowered and the properties of the steel are deteriorated.

<ミクロ組織と機械的特性値>
次に、本発明に係る高鋼のミクロ組織について説明する。
本発明に係る高鋼のミクロ組織は、主相がマルテンサイトであり、その粒径が2.6μm以下と通常のマルテンサイト(>100μm)と比べて格段に小さいのが特徴である。特に、600℃加工のものは2.55μm、400℃加工のものは1.60μmであり、この微細構造により、マルテンサイトそのものの状態でかなり高いが更に高くなるのを特徴とする。ビッカース硬度で比較すると4.30μm径の微細組織ではHV=448であるのに対し、2.55μmではHV=495、1.60μmではHV=504となり、高価な合金元素を添加しなければ達成できない高硬度化が通常組成のまま達成できることが特徴である。
かかるミクロ組織を有することは、所要の機械的特性値を満たすための必要条件の一つであり、そのためには上述した鋼の化学成分組成を満たすことを前提条件とするものである。
<Microstructure and mechanical properties>
Next, the microstructure of the high steel according to the present invention will be described.
The microstructure of the high steel according to the present invention is characterized in that the main phase is martensite and the particle size is 2.6 μm or less, which is much smaller than normal martensite (> 100 μm). Particularly, the one processed at 600 ° C. is 2.55 μm and the one processed at 400 ° C. is 1.60 μm, and this fine structure is characterized by being considerably higher in the state of martensite itself but higher. Compared with the Vickers hardness, the HV = 448 in the microstructure with a diameter of 4.30 μm, whereas HV = 495 in the 2.55 μm and HV = 504 in the 1.60 μm, which cannot be achieved without adding an expensive alloy element. It is characterized in that high hardness can be achieved with a normal composition.
Having such a microstructure is one of the necessary conditions for satisfying the required mechanical property values. For this purpose, it is premised on satisfying the chemical composition of the steel described above.

本発明に係る高硬度鋼は、その機械的特性値として、下記(1)式:
を満たすものである。
The high hardness steel according to the present invention has the following formula (1) as its mechanical characteristic value:
It satisfies.

上記化学成分組成を有する鋼であって、かかる機械的特性値を備えた鋼は、これまで見当たらない。   A steel having the above chemical composition and having such mechanical characteristic values has not been found so far.

<供試材の製造方法>
次に、本発明の鋼を得るための供試材の製造方法を説明する。
(1)素材(0.1%C−2%Si−5%Mn鋼)の熱間塑性加工条件について
素材の熱間における塑性加工方式としては、工業的に行われている厚鋼板製造ラインにおける平ロール圧延、極厚鋼板製造ラインにおける鍛造、棒鋼又は鋼線材製造ラインにおける溝ロール圧延、及び条鋼又は形鋼製造ラインにおける形ロール圧延の内のいずれであってもよい。これらいずれかの加工方式により、素材に対して所望の塑性相当ひずみを与える。
<Production method of specimen>
Next, the manufacturing method of the test material for obtaining the steel of this invention is demonstrated.
(1) About the hot plastic working conditions of the raw material (0.1% C-2% Si-5% Mn steel) As the hot plastic working method of the raw material, Any of flat roll rolling, forging in a heavy steel plate production line, groove roll rolling in a bar or steel wire production line, and shape roll rolling in a steel bar or shape steel production line may be used. Any one of these processing methods gives a desired plastic equivalent strain to the material.

上記の加工方式により、素材に導入される圧縮ひずみとせん断ひずみの入り方は異なる。そこで、全応力成分や全ひずみ成分の量や分布に関して理論的に塑性ひずみを算出する方法として、有限要素法(finite element methode:FEM)がある。塑性ひずみの計算については、参考文献(春海佳三郎、他「有限要素法入門」(共立出版(株):1990年3月15日)に詳述されている。しかしここでは、工業的に簡便に用いることができる塑性相当ひずみを用いてもよい。有限要素法計算で得られる塑性ひずみを用いれば一層望ましいが、ここでは工業的に簡便な、下記式(2)で定義される塑性相当ひずみ(e)を塑性ひずみの指標とする。
ただし、Rは減面率(%)であり、素材の長手方向に垂直な面の断面積をSとし、熱間加工後の方向に垂直な面の断面積をSとすると、下記式(3)で表される。
Depending on the above processing method, the way of entering the compressive strain and shear strain introduced into the material is different. Therefore, there is a finite element method (FEM) as a method for theoretically calculating the plastic strain with respect to the amount and distribution of the total stress component and the total strain component. The calculation of plastic strain is described in detail in the reference (Kasaburo Harumi, et al. “Introduction to Finite Element Method” (Kyoritsu Shuppan Co., Ltd .: March 15, 1990). The plastic equivalent strain that can be used in the calculation may be used, but it is more desirable to use the plastic strain obtained by the finite element method calculation, but here, the plastic equivalent strain defined by the following formula (2) is industrially simple. Let (e) be an index of plastic strain.
However, R is the area reduction ratio (%), and S 0 is the cross-sectional area of the surface perpendicular to the longitudinal direction of the material, and S is the cross-sectional area of the surface perpendicular to the hot-worked direction. 3).

後述する実施例1の試験において、前記化学成分組成範囲内にある0.1%C−2%Si−5%Mnの15mm角の鋼塊(素材)を1200℃で3分加熱後、5K/sで冷却し、600℃又は400℃の温度で5s保持後、7.5mm厚まで圧縮したときに得られた中心部塑性相当歪み1.1の場所におけるミクロ組織は、主相がほぼ100体積%マルテンサイトから成る平均粒径が2.55μm(600℃加工)および1.60μm(400℃加工)であった。   In the test of Example 1 described later, a 15 mm square steel ingot (material) of 0.1% C-2% Si-5% Mn within the chemical composition range was heated at 1200 ° C. for 3 minutes, and then 5K / After cooling at s, holding at 600 ° C. or 400 ° C. for 5 s, and compressing to 7.5 mm thickness, the microstructure at the location of the plastic deformation equivalent to 1.1 in the central portion has a main phase of almost 100 volumes. The average particle size consisting of% martensite was 2.55 μm (processed at 600 ° C.) and 1.60 μm (processed at 400 ° C.).

以下、実施例により本発明を更に具体的に説明する。なお、本発明は、下記の実施例によって制限されず、前記及び後記の趣旨に適合し得る範囲で適切な改変を行って実施することも可能であり、これらはいずれも本発明の技術的範囲内に含まれる。   Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that the present invention is not limited by the following examples, and can be carried out by making appropriate modifications within a range that can be adapted to the above and the gist of the following, all of which are within the technical scope of the present invention. Contained within.

<実施例1、2>
実施例1及び2における本願発明に係る高鋼の調製方法を説明する概略調製工程を図1に示す。同図に基づき以下、詳細に説明する。
<Examples 1 and 2>
FIG. 1 shows a schematic preparation process for explaining the method for preparing high steel according to the present invention in Examples 1 and 2. Details will be described below with reference to FIG.

(1)実施例1、2の供試材調整:素材を熱間鍛造
電解鉄、電解Mn及び金属Siを溶解用主原料として使用し、高周波真空誘導溶解炉を用いて溶製し、縦95mm×横95mm×高さ450mmの鋼塊に鋳造して、これを素材とした。素材の化学成分組成を表1に示す。
(1) Preparation of sample materials of Examples 1 and 2: Hot forged electrolytic iron, electrolytic Mn and metal Si were used as main raw materials for melting, and melted using a high-frequency vacuum induction melting furnace, length 95 mm X Casting into a steel ingot with a width of 95 mm and a height of 450 mm, which was used as a material. Table 1 shows the chemical composition of the material.

上記95mm角の素材(鋼塊)を加熱昇温し、1200℃で1時間加熱保持した後、上記の縦95mm×横95mmの角形状断面の素材に対して、途中で再加熱することなく縦と横とを交互に1回ずつセットのプレス鍛造を6セット行い、縦38mm×横38mmの角形状断面(38mm角という。以降、これに準じた表記をすることがある)まで鍛造し、そして最後に材料全体を直線状に矯正して、38mm角の棒材とした。この熱間鍛造において、95mm角から38mm角に至る減面率(R)は、R=84.0%であり、塑性相当ひずみ(e)は、e=1.83であり、鍛造終了温度は680℃であった。その後直ちに空冷し、室温まで冷却して、棒材とした。
ここで、減面率(R)及び塑性相当ひずみ(e)は、下記式(6)及び(7)式で算出した。Sは素材の圧延に垂直方向(C方向)の断面積であり、Sは熱間鍛造後の圧延に垂直方向(C方向)の断面積である。
この熱間鍛造により得られた38mm角の棒材のミクロ組織は、主相が95体積%以上を占めるラスマルテンサイトであった。この組織のSEM写真を図1に示す。この組織状態において、硬度HV421であった。この棒鋼をベース材として 15mm角の棒を切り出し、発明材製造のプロセスの供試材とした。
The above 95 mm square material (steel ingot) is heated and heated and held at 1200 ° C. for 1 hour, and then the above vertical 95 mm × 95 mm square material is vertically reheated without reheating. 6 press forgings, alternately and side by side, and forging to a 38 mm x 38 mm square cross section (referred to as 38 mm square, hereinafter referred to as this) Finally, the entire material was straightened to obtain a 38 mm square bar. In this hot forging, the area reduction ratio (R) from 95 mm square to 38 mm square is R = 84.0%, the plastic equivalent strain (e) is e = 1.83, and the forging end temperature is It was 680 ° C. Immediately after that, it was air-cooled, cooled to room temperature, and used as a bar.
Here, the area reduction ratio (R) and the plastic equivalent strain (e) were calculated by the following formulas (6) and (7). S 0 is a cross-sectional area in the direction perpendicular to the rolling of the material (C direction), and S is a cross-sectional area in the direction perpendicular to the rolling after hot forging (C direction).
The microstructure of the 38 mm square bar obtained by this hot forging was lath martensite in which the main phase accounted for 95 volume% or more. An SEM photograph of this structure is shown in FIG. In this structural state, the hardness was HV421. Using this steel bar as a base material, a 15 mm square bar was cut out and used as a test material for the process of manufacturing the inventive material.

(2) 実施例1、2のプロセス:15mm角棒材の25tシミュレータによる組織制御
熱間鍛造で得られた38mm角の棒材から切り出した15mm角の棒材を試料として25tシミュレータにより組織制御を行った。用いた25tシミュレータは試料を急速加熱、急速大歪み加工、急速冷却ができる装置であり、極限条件における組織制御を可能とする装置である。実際に行った組織制御の概要を図2に示す。ここでは25tシミュレータ実験時における試料とアンビルの形状、サイズ、位置関係を示している。試料は15mm角柱であり、その上下に幅25mm、深さ30mm、試料接触部15mm幅のアンビルが挟む位置関係となっている。
(2) Process of Examples 1 and 2: Structure control of 15mm square bar material by 25t simulator Structure control by 25t simulator using 15mm square bar material cut out from 38mm square bar material obtained by hot forging went. The 25t simulator used is a device capable of rapid heating, rapid large strain processing, and rapid cooling of a sample, and is a device that enables tissue control under extreme conditions. An outline of the actual organization control is shown in FIG. Here, the shape, size, and positional relationship between the sample and the anvil during the 25t simulator experiment are shown. The sample is a 15 mm prism, and has a positional relationship in which an anvil having a width of 25 mm, a depth of 30 mm, and a sample contact portion width of 15 mm is sandwiched above and below the sample.

組織制御における行程を表わしたものを図3に示す。条件は3種類あり、これら3種類中において基本的な工程は同じで唯一加工温度が400、600、900℃と異なるのみである。ここで、400℃加工のものを実施例1、600℃加工のものを実施例2、900℃加工のものを比較例1、無加工のものを比較例2とする。まず、試料を5K/sで加熱し、1200℃に到達した後、1200℃に3分保定し、5K/sで400、600、900℃のいずれかの温度に冷却し、その温度で5s保定後、歪速度10/sで50%圧縮し、空冷(AC)する。この圧縮加工中の反力を時間の関数で記録したグラフを400℃、600℃、900℃加工の各々の場合で比較プロットしたものを図4に示す。これより、加工温度が低いほど反力の値が高いことが分かる。加工反力が高いということは転位の消滅が少ないことに匹敵すると考えるとこれらの中でより低温であるほど結晶粒径が微細になることが期待される。因みに、400℃では141kN、600℃では100N、900℃では56Nであった。   FIG. 3 shows the process in the organization control. There are three types of conditions. Among these three types, the basic steps are the same, and the only processing temperatures are different from 400, 600, and 900 ° C. Here, a sample processed at 400 ° C. is referred to as Example 1, a sample processed at 600 ° C. as Example 2, a sample processed at 900 ° C. as Comparative Example 1, and a sample processed as non-processed as Comparative Example 2. First, the sample was heated at 5 K / s, and after reaching 1200 ° C., held at 1200 ° C. for 3 minutes, cooled to any of 400, 600, and 900 ° C. at 5 K / s, and held at that temperature for 5 s. Thereafter, it is compressed by 50% at a strain rate of 10 / s and air-cooled (AC). A graph in which the reaction force during the compression processing is recorded as a function of time is compared and plotted in each case of 400 ° C., 600 ° C., and 900 ° C. processing is shown in FIG. From this, it can be seen that the reaction force is higher as the processing temperature is lower. Considering that the high processing reaction force is comparable to the low dislocation disappearance, it is expected that the crystal grain size becomes finer at lower temperatures. Incidentally, it was 141 kN at 400 ° C., 100 N at 600 ° C., and 56 N at 900 ° C.

50%加工における試料断面中の塑性相当歪分布をFIM(有限要素法)計算した結果(鉄と鋼 Vol.86 (2000) No.12)を図5に示す。これから50%圧縮においては試料中心部の塑性相当歪は1.1になることが分かる。これより、本発明材製造に必要な条件である付加すべき加工歪量として塑性相当歪1.1という値が導かれる。   FIG. 5 shows the result of FIM (finite element method) calculation of the plastic equivalent strain distribution in the sample cross section at 50% working (iron and steel Vol. 86 (2000) No. 12). From this it can be seen that at 50% compression, the plastic equivalent strain at the center of the sample is 1.1. As a result, a plastic equivalent strain of 1.1 is derived as the amount of processing strain to be added, which is a necessary condition for manufacturing the material of the present invention.

実施例1,2のプロセス後の試料のビッカース硬度分布を図6に示す。これより、中心部のHVは400℃加工(実施例1)で508、600℃加工(実施例2)で495、900℃加工(比較例1)で488と低温で加工したものが大きい値を示していることが分かる。これは1200℃でγ化したままで加工を経ない試料(比較例2)がHV=423であることを考慮すれば加工による効果が明らかである。   The Vickers hardness distributions of the samples after the processes of Examples 1 and 2 are shown in FIG. As a result, the HV at the center is 508 when processed at 400 ° C. (Example 1), 495 when processed at 600 ° C. (Example 2), and 488 when processed at 900 ° C. (Comparative Example 1). You can see that Considering that HV = 423 is a sample (Comparative Example 2) that remains γ-modified at 1200 ° C. and does not undergo processing, the effect of processing is clear.

試料の平均粒径と硬度の関係を図7に示す。ここで、粒径の−1/2乗と硬度とが線形関係にあり、粒径を小さくするほど、硬度が上昇することが分かる。粒径を決定したEBSD測定からの大角粒(方位差角>15度)を図8に示す。これより、実施例1、2(400℃及び600℃加工)の粒径は比較例1(600℃加工)の粒径より圧倒的に細かいことが見られる。
このように本発明において従来得られなかった超微細粒のマルテンサイト組織が得られた理由を次に述べる。本発明で用いた組成は0.1%C−2%Si−5%Mnが基本であるが、この組成はオーステナイト(γ)の安定性を非常に高めることが我々の実験から明らかになった。すなわち、1200℃で完全に試料全体をγ化し、冷却によって400℃に温度を下げた時点においても組織は100%γ状態である。ここで50%の圧下をかけるわけであるが、通常の鋼であればこの加工によりγ→α変態が進行してしまうところを、この鋼は非常にγ安定度が高いために、相変態が起こらない。この後、空冷により、340℃付近に冷却され、初めてMS点(マルテンサイト変態開始点)に達し、マルテンサイト化する。γ粒の微細化は加工温度がより低温であるほど、より微細に再結晶化することを想定すると、本発明鋼は超微細γ組織から340℃付近でマルテンサイト化するために、粗大化が抑制され、超微細組織を保ったままマルテンサイト組織が得られたと考えられる。
FIG. 7 shows the relationship between the average particle diameter and hardness of the sample. Here, it can be seen that the −1/2 power of the particle size and the hardness are in a linear relationship, and the hardness increases as the particle size decreases. FIG. 8 shows large-angle grains (azimuth difference> 15 degrees) from the EBSD measurement in which the particle diameter was determined. From this, it can be seen that the particle sizes of Examples 1 and 2 (400 ° C. and 600 ° C. processing) are much finer than those of Comparative Example 1 (600 ° C. processing).
The reason why an ultrafine-grained martensite structure that has not been obtained in the present invention is obtained will be described below. Although the composition used in the present invention is basically 0.1% C-2% Si-5% Mn, it has been clarified from our experiments that this composition greatly enhances the stability of austenite (γ). . That is, the structure is 100% γ even when the entire sample is γ-modified at 1200 ° C. and the temperature is lowered to 400 ° C. by cooling. Here, 50% reduction is applied, but in the case of ordinary steel, the γ → α transformation progresses by this processing, but this steel has a very high γ stability, so the phase transformation Does not happen. Thereafter, it is cooled to around 340 ° C. by air cooling, reaches the MS point (martensitic transformation start point) for the first time, and becomes martensite. Assuming that the refining of γ grains becomes finer as the processing temperature is lower, the steel of the present invention martensite from the ultrafine γ structure at around 340 ° C. It is considered that a martensite structure was obtained while maintaining an ultrafine structure.

実験結果のまとめを表2に示す。このように本発明鋼は比較鋼に比べ、小さい粒径を有し、高い硬度を有していることが明らかに認められる。
A summary of the experimental results is shown in Table 2. Thus, it is clearly recognized that the steel of the present invention has a smaller particle size and higher hardness than the comparative steel.

本発明は、建造物や橋梁等の構造物、自動車の足回り鋼、機械用歯車等部品に使用される鋼であって、特に高に優れた厚鋼板や棒鋼・鋼線等の非調質鋼に関するものである。 The present invention is steel used for parts such as structures such as buildings and bridges, undercarriage steel for automobiles, gears for machinery, etc., and is particularly suitable for non-tempered steel plates, steel bars, steel wires, etc. It is about steel.

Claims (2)

化学成分組成が、質量%で、C :0.05〜0.20%、Si:1.0〜3.5%、Mn:4.5〜5.5%、Al:0.001〜0.080%、P:0.030%以下、S:0.020%以下、N:0.010%以下であって、残部がFe及び不可避不純物からなる高硬度鋼であって、ミクロ組織が平均結晶粒径2.6μm以下の超微細マルテンサイト組織であり、前記マルテンサイ組織のビッカース硬度が490以上であることを特徴とする高硬度鋼。 Chemical composition is mass%, C: 0.05-0.20%, Si: 1.0-3.5%, Mn: 4.5-5.5%, Al: 0.001-0. 080%, P: 0.030% or less, S: 0.020% or less, N: 0.010% or less, and the balance is a high-hardness steel composed of Fe and inevitable impurities, and the microstructure is an average crystal particle size 2.6μm is less ultrafine martensitic, high hardness steel Vickers hardness of the martensite structure is characterized in that 490 or more. 請求項1の高硬度鋼の製造方法であって、前記化学成分の素材を1200℃で均一に加熱後、600℃〜400℃の温度域に冷却し、その温度域で一回鍛造により塑性相当歪1.1以上の加工を施した後、室温まで空冷することを特徴とする高硬度鋼の製造方法。
It is a manufacturing method of the high hardness steel of Claim 1, Comprising: After heating the raw material of the said chemical component uniformly at 1200 degreeC, it cools to the temperature range of 600 to 400 degreeC, and is equivalent to plasticity by forging once in the temperature range. A process for producing high-hardness steel, characterized by air cooling to room temperature after processing at a strain of 1.1 or more .
JP2012038191A 2012-02-24 2012-02-24 Ultra fine martensite high hardness steel and its manufacturing method Expired - Fee Related JP5896458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038191A JP5896458B2 (en) 2012-02-24 2012-02-24 Ultra fine martensite high hardness steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038191A JP5896458B2 (en) 2012-02-24 2012-02-24 Ultra fine martensite high hardness steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2013173970A JP2013173970A (en) 2013-09-05
JP5896458B2 true JP5896458B2 (en) 2016-03-30

Family

ID=49267131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038191A Expired - Fee Related JP5896458B2 (en) 2012-02-24 2012-02-24 Ultra fine martensite high hardness steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5896458B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406762B2 (en) * 2018-02-20 2023-12-28 兵庫県公立大学法人 High strength, high ductility fine martensitic structure steel and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844725B2 (en) * 1978-03-01 1983-10-05 住友金属工業株式会社 Manufacturing method of non-magnetic steel wire and steel bar
US4373973A (en) * 1981-11-16 1983-02-15 International Harvester Co. Method of manufacture of high performance gears
JP3066390B2 (en) * 1995-10-16 2000-07-17 アイエヌジ商事株式会社 Wear resistant material
JP4681492B2 (en) * 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
JP2008208401A (en) * 2007-02-23 2008-09-11 Nano Gijutsu Kenkyusho:Kk Martensitic nanocrystal alloy steel powder, bulk material thereof, and method for producing them
JP5637342B2 (en) * 2008-09-18 2014-12-10 国立大学法人 岡山大学 Hot-pressed steel plate member and method for manufacturing the same

Also Published As

Publication number Publication date
JP2013173970A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5176885B2 (en) Steel material and manufacturing method thereof
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
EP1990430B1 (en) High-strength hot rolled steel plate and manufacturing method thereof
JP4254663B2 (en) High strength thin steel sheet and method for producing the same
KR102027769B1 (en) Ferritic stainless steel sheet and method for manufacturing same
KR102319210B1 (en) High formability steel sheet and manufacturing method for manufacturing lightweight structural parts
WO2021149676A1 (en) Steel sheet and method for producing same
WO2017208762A1 (en) High-strength steel sheet and method for producing same
JP5747249B2 (en) High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP2009173959A (en) High-strength steel sheet and producing method therefor
CN110343970A (en) A kind of hot rolling high strength and ductility medium managese steel and preparation method thereof having lower Mn content
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2018095896A (en) High strength steel sheet and method for producing the same
EP2412839A1 (en) Electric resistance welded steel pipe having excellent workability and excellent post-quenching fatigue properties
JP6798041B2 (en) Thick steel sheet with low yield ratio and high strength and high toughness and its manufacturing method
JP6021094B2 (en) High-strength non-heat treated steel material excellent in strength, ductility and toughness and method for producing the same
US10100383B2 (en) Martensitic steel and method for producing same
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
CN114040990A (en) Austenitic stainless steel having improved strength and method for manufacturing the same
JP6958214B2 (en) Manufacturing method of processed steel parts
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP5896458B2 (en) Ultra fine martensite high hardness steel and its manufacturing method
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R150 Certificate of patent or registration of utility model

Ref document number: 5896458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees