JP5894308B2 - Colored biaxially stretched polyester film for metal plate lamination - Google Patents

Colored biaxially stretched polyester film for metal plate lamination Download PDF

Info

Publication number
JP5894308B2
JP5894308B2 JP2015060974A JP2015060974A JP5894308B2 JP 5894308 B2 JP5894308 B2 JP 5894308B2 JP 2015060974 A JP2015060974 A JP 2015060974A JP 2015060974 A JP2015060974 A JP 2015060974A JP 5894308 B2 JP5894308 B2 JP 5894308B2
Authority
JP
Japan
Prior art keywords
layer
film
metal plate
copolyester
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015060974A
Other languages
Japanese (ja)
Other versions
JP2015157482A (en
Inventor
裕美 城間
裕美 城間
小山松 淳
淳 小山松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2015060974A priority Critical patent/JP5894308B2/en
Publication of JP2015157482A publication Critical patent/JP2015157482A/en
Application granted granted Critical
Publication of JP5894308B2 publication Critical patent/JP5894308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、金属貼板合せ成形加工用着色2軸延伸ポリエステルフィルムに関するものである。さらに詳しくは、隠蔽性に優れ、金属板に貼合せた後に缶へ成形加工する際に優れた成形加工性を発現し、さらにインキの密着性も良好な金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムに関するものである。   The present invention relates to a colored biaxially stretched polyester film for metallized sheet laminated molding. More specifically, it is excellent in concealment, exhibits excellent molding processability when it is molded into a can after being bonded to a metal plate, and has excellent ink adhesion, and is a biaxial coloring plate for metal plate lamination molding processing. The present invention relates to a stretched polyester film.

金属缶には内外面の腐食防止として、一般に塗装が施されている。近年、工程簡素化、衛生性向上、公害防止等の目的で有機溶剤を使用せずに防錆性を付与する方法としてポリエステルフィルムのような熱可塑性樹脂フィルムによる被覆が行われている。即ち、ブリキ、ティンフリースチール、アルミニウム等の金属板に熱可塑性樹脂フィルムをラミネートした後、絞り缶や薄肉化絞り缶のなどのような厳しい成形加工が施される食缶および飲料缶用途へ使用されている。これらの用途に用いられる缶は、コスト低減の観点からさらに加工条件を厳しくした薄肉化絞り加工やしごき加工を施して製造されるようになってきている。   Metal cans are generally painted to prevent internal and external corrosion. In recent years, coating with a thermoplastic resin film such as a polyester film has been performed as a method for imparting rust prevention without using an organic solvent for the purpose of simplifying the process, improving hygiene, and preventing pollution. In other words, it is used for food cans and beverage cans where a thermoplastic resin film is laminated on a metal plate such as tin, tin-free steel, aluminum, etc. and then subjected to severe molding such as drawn cans and thinned drawn cans. Has been. The cans used for these applications have been manufactured by performing thinning drawing and ironing with stricter processing conditions from the viewpoint of cost reduction.

このような厳しい成形加工を施す場合、金属板の薄肉化にともなって樹脂フィルムも薄肉化する。食缶や飲料缶の外面は意匠性を高めるために一般に印刷が施されるが、樹脂フィルム被覆金属板から成形された缶においては、その印刷下地として金属板の色を隠蔽するために、白色または様々な色の顔料を含んだ樹脂フィルムを金属板にラミネートしたものが使用されている。このようなラミネート金属板に厳しい加工を施した場合、樹脂の厚さは大幅に薄くなり、添加した顔料の厚さ方向の絶対量が減少するため、下地の十分な隠蔽性を得られないという問題が発生する。またこのような厳しい薄肉化加工による樹脂厚さの低減を見越して顔料を予め多量に樹脂フィルム中に添加した場合には、樹脂フィルムの強度が低下し、加工時に樹脂フィルムが削れたり傷付きやすくなり、さらには樹脂フィルムが割れて剥げ落ちたりする現象が発生し、隠蔽性を向上させ、なおかつ被覆した樹脂フィルムの強度を高く保つことはきわめて困難である。   When such a strict molding process is performed, the resin film is also thinned as the metal plate is thinned. The outer surface of food cans and beverage cans is generally printed to enhance design, but in cans molded from resin film-coated metal plates, white is used to conceal the color of the metal plate as the printing ground. Or what laminated | stacked the resin film containing the pigment of various colors on the metal plate is used. When such a laminated metal plate is subjected to severe processing, the thickness of the resin is significantly reduced, and the absolute amount in the thickness direction of the added pigment is reduced, so that sufficient concealment of the base cannot be obtained. A problem occurs. In addition, if a large amount of pigment is added to the resin film in advance in anticipation of a reduction in the resin thickness due to such a strict thinning process, the strength of the resin film will decrease, and the resin film will be easily scratched or damaged during processing. Furthermore, a phenomenon in which the resin film is cracked and peeled off occurs, and it is extremely difficult to improve the concealing property and to keep the strength of the coated resin film high.

例えば、2軸延伸ポリエステルフィルムを金属板にラミネートし、製缶材料として用いる方法(特開平11−342577号公報、特開2000−37836号公報)が提案されているが、より厳しい加工を施して成形する際に樹脂フィルムが削れたり傷付ついたり、極端な場合には破断が発生する。また、未延伸ポリエステルフィルムを金属板にラミネートし、製缶材料として用いる方法(特開平11−348218号公報)が提案されているが、未延伸フィルムは非常に脆いため、製膜する際や取扱う際に切断し易く、生産性が悪いという問題がある。   For example, a method of laminating a biaxially stretched polyester film on a metal plate and using it as a can-making material has been proposed (Japanese Patent Laid-Open Nos. 11-342577 and 2000-37836). During molding, the resin film is scraped or scratched, and in extreme cases, breakage occurs. In addition, a method of laminating an unstretched polyester film on a metal plate and using it as a can-making material has been proposed (Japanese Patent Laid-Open No. 11-348218). There is a problem that it is easy to cut and the productivity is poor.

特開平11−342577号公報Japanese Patent Laid-Open No. 11-342577 特開2000−37836号公報JP 2000-37836 A 特開平11−348218号公報Japanese Patent Laid-Open No. 11-348218

本発明は上記を鑑みなされたもので、その目的は、上記のように厳しい加工が要求される缶に使用された場合でも、下地の金属板に対して優れた隠蔽性を有し、金属板に貼合せた後に缶へ成形加工する際にフィルムが削れたり、疵付いたり、剥がれたりすることのない優れた成形加工性を発現し、さらにインキの密着性も良好な金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムを提供することにある。   The present invention has been made in view of the above, and its purpose is to provide excellent concealment to the underlying metal plate even when used in a can that requires severe processing as described above. Metal plate lamination molding process that exhibits excellent moldability without causing film to be scraped, wrinkled or peeled off when molded into cans It is to provide a colored biaxially stretched polyester film.

本発明者らの研究によれば、上記課題は、固有粘度が0.66〜0.85、融点が215〜230℃の共重合ポリエステルからなり、着色顔料の含有量が10重量%以下である表層(A層)と、固有粘度が0.46〜0.66、融点が235〜245℃の共重合ポリエステルからなり、着色顔料の含有量が10重量%を超え50重量%以下である裏層(B層)の2層からなる着色2軸延伸ポリエステルフィルムであって、前記A層およびB層の共重合ポリエステルの融点および固有粘度が下記(1)〜(2)式を満足し、かつポリエステルフィルムの破断強度が100MPa以上であり、B層が金属板面に貼り合されることを特徴とする、しごき加工を行う金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルム(項1)により達成されることが見出された。
TmB−TmA≦20℃ −−−(1)
IVA−IVB≧0.15 −−−(2)
ただし、TmA、IVAはそれぞれA層の共重合ポリエステルの融点、固有粘度を示し、TmB、IVBはそれぞれB層の共重合ポリエステルの融点、固有粘度を示す。
According to the study by the present inventors, the above problem is made of a copolyester having an intrinsic viscosity of 0.66 to 0.85 and a melting point of 215 to 230 ° C., and the content of the color pigment is 10% by weight or less. A back layer comprising a surface layer (A layer) and a copolyester having an intrinsic viscosity of 0.46 to 0.66 and a melting point of 235 to 245 ° C., and the content of the color pigment is more than 10% by weight and 50% by weight or less A colored biaxially stretched polyester film comprising two layers (B layer), the melting point and intrinsic viscosity of the copolymer polyester of the A layer and B layer satisfy the following formulas (1) to (2), and polyester Achieved by a colored biaxially stretched polyester film (Claim 1) for metal plate laminating and forming that performs ironing, characterized in that the film has a breaking strength of 100 MPa or more and the B layer is bonded to the surface of the metal plate. Is It has been found.
TmB-TmA ≦ 20 ° C. --- (1)
IVA-IVB ≧ 0.15 −−− (2)
However, TmA and IVA represent the melting point and intrinsic viscosity of the copolyester of the A layer, respectively, and TmB and IVB represent the melting point and intrinsic viscosity of the copolyester of the B layer, respectively.

また、本発明の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムは、好ましい態様として以下の項2の態様を包含する。
2. A層およびB層を構成する共重合ポリエステルが、いずれもイソフタル酸共重合ポリエチレンテレフタレートである、項1に記載の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルム。
Moreover, the colored biaxially stretched polyester film for metal plate lamination molding processing of the present invention includes the following aspect 2 as a preferred embodiment.
2. Item 2. The colored biaxially stretched polyester film for metal plate lamination molding processing according to Item 1, wherein the copolymer polyester constituting the A layer and the B layer is isophthalic acid copolymerized polyethylene terephthalate.

本発明の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムは、隠蔽性に優れ、金属板に貼合せた後に缶へ成形加工する際に缶壁部のフィルムに削れ、傷付き、剥がれが生じることのない優れた成形加工性を発現し、さらには成形後の缶へのインキ密着性も良好である。   The colored biaxially stretched polyester film for metal plate laminating and forming of the present invention is excellent in concealment, and when it is molded into a can after being laminated to a metal plate, it can be scraped into a film on the can wall, scratched or peeled off. It exhibits excellent molding processability that does not occur, and also has good ink adhesion to the can after molding.

以下、本発明を詳しく説明する。
本発明におけるA層およびB層を構成する共重合ポリエステルは、後述する融点の要件を満たしていれば、ポリエチレンテレフタレート共重合体、ポリエチレン−2,6−ナフタレート共重合体のいずれでもよいが、なかでもポリエチレンテレフタレート共重合体が好ましい。
The present invention will be described in detail below.
The copolymer polyester constituting the A layer and the B layer in the present invention may be either a polyethylene terephthalate copolymer or a polyethylene-2,6-naphthalate copolymer as long as it satisfies the melting point requirement described later. However, a polyethylene terephthalate copolymer is preferable.

かかる共重合ポリエステルの共重合成分は、酸成分でもアルコール成分でも良い。酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸等の如き主たる酸成分以外の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸等の如き脂肪族ジカルボン酸等を挙げることができ、アルコール成分としては1,6−ヘキサンジオールの如き脂肪族ジオール、1,4−ヘキサメチレンジメタノールの如き脂環族ジオール等を挙げることができる。これらは単独または2種以上を使用することができる。これらの中、本発明の効果の点から、イソフタル酸、セバシン酸が好ましく、特にイソフタル酸が好ましい。   The copolymer component of the copolymer polyester may be an acid component or an alcohol component. Examples of acid components include aromatic dicarboxylic acids other than the main acid components such as isophthalic acid, phthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid. Examples of the alcohol component include aliphatic diols such as 1,6-hexanediol, and alicyclic diols such as 1,4-hexamethylenedimethanol. These may be used alone or in combination of two or more. Of these, isophthalic acid and sebacic acid are preferable from the viewpoint of the effects of the present invention, and isophthalic acid is particularly preferable.

かかる共重合成分の共重合割合は、A層の場合は共重合ポリエステルの融点が215〜230℃、好ましくは220〜230℃の範囲となる割合にする必要がある。この融点が215℃未満では耐熱性が劣るため、製缶後の印刷における加熱に耐えられなくなるので好ましくない。一方、230℃を超えると製缶後に印刷を施す際のインキとの密着性が悪くなるため好ましくない。   In the case of layer A, the copolymerization ratio of such copolymerization components needs to be such that the melting point of the copolymerized polyester is in the range of 215 to 230 ° C, preferably 220 to 230 ° C. If the melting point is less than 215 ° C., the heat resistance is inferior, and it is not preferable because it cannot withstand the heating in printing after canning. On the other hand, if the temperature exceeds 230 ° C., the adhesion with the ink when printing after canning is deteriorated, which is not preferable.

B層の場合は共重合ポリエステルの融点が235〜245℃の範囲となる割合にする必要がある。この融点が235℃未満では耐熱性が劣るため、成形加工時の発熱によって削れが発生するため好ましくない。一方、融点が245℃を超えると、共重合ポリエステルの結晶性が高くなり、成形加工性が損なわれるため好ましくない。なおB層は、着色2軸延伸ポリエステルフィルムを金属板に貼合せる際に金属板に接着されるため、印刷されることがないので融点が230℃を超えていても問題はない。   In the case of the B layer, it is necessary that the copolymer polyester has a melting point in the range of 235 to 245 ° C. If the melting point is less than 235 ° C., the heat resistance is inferior. On the other hand, if the melting point exceeds 245 ° C., the crystallinity of the copolyester becomes high and the molding processability is impaired, which is not preferable. The B layer is not printed because it is bonded to the metal plate when the colored biaxially stretched polyester film is bonded to the metal plate, so there is no problem even if the melting point exceeds 230 ° C.

A層またはB層を構成する上述の共重合ポリエステルは、それぞれの樹脂原料として共重合ポリエステルのみであってもよいし、共重合ポリエステルとホモポリエステルとのブレンドからなる樹脂原料であってもよい。これらの中でも缶へ成形加工する際の成形加工性の観点より、A層には樹脂原料として共重合ポリエステルのみを用い、B層には共重合ポリエステルとホモポリエステルとのブレンドからなる樹脂原料を用いる態様が好ましい。   The above-mentioned copolymer polyester constituting the A layer or the B layer may be only a copolymer polyester as each resin material, or may be a resin material comprising a blend of a copolymer polyester and a homopolyester. Among these, from the viewpoint of moldability when molding into a can, only the copolymer polyester is used as the resin material for the A layer, and the resin material consisting of a blend of the copolymer polyester and homopolyester is used for the B layer. Embodiments are preferred.

樹脂原料として共重合ポリエステルのみを用いる場合には、上述の融点を有する共重合ポリエステル1種類を用いてもよいし、共重合成分の種類または共重合量の異なる共重合ポリエステルを2種類以上用いてフィルム形成後の融点がかかる範囲となるよう調整してもよい。   When only the copolymer polyester is used as the resin raw material, one type of copolymer polyester having the above melting point may be used, or two or more types of copolymer polyesters having different types of copolymer components or different copolymerization amounts may be used. You may adjust so that melting | fusing point after film formation may become this range.

また、樹脂原料として共重合ポリエステルとホモポリエステルとのブレンドからなる樹脂原料を用いることにより、フィルム形成後の融点がかかる範囲となるよう調整してもよい。樹脂原料の1つとしてホモポリエステルを用いることにより、層を構成する共重合ポリエステルがランダム共重合の状態ではなくブロック共重合の状態に制御することができ、金属板に貼合せた後に缶へ成形加工する際、該層の配向性が高まることにより、成形加工性を高めやすい。   Moreover, you may adjust so that melting | fusing point after film formation may become this range by using the resin raw material which consists of a blend of copolyester and homopolyester as a resin raw material. By using homopolyester as one of the resin raw materials, the copolyester constituting the layer can be controlled to a block copolymerized state rather than a random copolymerized state, and then molded into a can after being bonded to a metal plate When processing, the orientation of the layer is increased, so that molding processability is easily improved.

樹脂原料として共重合ポリエステルとホモポリエステルとのブレンドからなる樹脂原料を用いる場合、該層を構成するポリエステル全量を基準としてホモポリエステルの含有量は15重量%以上35重量%以下の範囲であることが好ましい。また、ホモポリエステルはホモポリエチレンテレフタレートであることが好ましい。   When using a resin raw material comprising a blend of a copolyester and a homopolyester as the resin raw material, the homopolyester content should be in the range of 15 wt% or more and 35 wt% or less based on the total amount of the polyester constituting the layer. preferable. The homopolyester is preferably homopolyethylene terephthalate.

A層またはB層を構成する共重合ポリエステルの原料が2種類以上の共重合ポリエステルである場合、あるいは共重合ポリエステルとホモポリエステルとのブレンドからなる場合、各層の融点ピークは1つであることが好ましい。   When the raw material of the copolyester constituting the A layer or the B layer is two or more types of copolyester or a blend of copolyester and homopolyester, the melting point peak of each layer may be one. preferable.

さらに本発明の2軸延伸ポリエステルフィルムは、厳しい条件で成形加工を施しても缶壁部に削れ、傷つき、剥がれなどが生じることのない良好な加工性を実現するために、金属板に貼合せる際に結晶成分が全溶融する条件で貼り合せる必要がある。このため、A層とB層の融点差の上限は20℃以下である必要があり、好ましくは15℃以下である。   Furthermore, the biaxially stretched polyester film of the present invention is bonded to a metal plate in order to realize good workability that does not cause scratching, scratching or peeling even if it is subjected to molding under severe conditions. At this time, it is necessary to bond them under the condition that the crystal components are completely melted. For this reason, the upper limit of the melting point difference between the A layer and the B layer needs to be 20 ° C. or less, preferably 15 ° C. or less.

融点差が20℃を超えると、フィルムの結晶成分が全溶融する温度条件で金属板と貼り合せる際にA層がラミネートロールに融着してしまうので好ましくない。
ここで共重合ポリエステルの融点測定はフィルムの各層それぞれについて行ったものであり、サンプル約20mgを採取し、TA Instruments Q100 DSCを用い、昇温速度20℃/分で昇温しながら融解ピークを求める方法による。
When the melting point difference exceeds 20 ° C., the A layer is fused to the laminate roll when it is bonded to the metal plate under the temperature condition where the crystalline components of the film are completely melted, which is not preferable.
Here, the melting point of the copolyester was measured for each layer of the film. About 20 mg of a sample was taken, and a melting peak was obtained while raising the temperature at a rate of temperature rise of 20 ° C./min using a TA Instruments Q100 DSC. Depending on the method.

次に、本発明におけるA層を構成する共重合ポリエステル(ポリマー部分)の固有粘度は0.66〜0.85の範囲である必要があり、好ましくは0.70〜0.85の範囲である。本発明において、A層を構成するポリエステルが上述の融点を有する共重合ポリエステルであるため、固有粘度の高い共重合ポリエステルでないと、金属板に貼合せた後に缶へ成形加工する際に厳しい加工条件で成形加工を行うことが難しい。この固有粘度が0.66に満たない場合には、厳しい加工条件で缶に成形加工する際に傷付きやすく、表面欠陥が生じやすい。一方0.85を超えるものは過剰品質であるだけでなく、原料共重合ポリエステルの生産性も落ちるので不経済である。   Next, the intrinsic viscosity of the copolyester (polymer portion) constituting the A layer in the present invention needs to be in the range of 0.66 to 0.85, preferably in the range of 0.70 to 0.85. . In the present invention, since the polyester constituting the A layer is a copolymer polyester having the above-mentioned melting point, if it is not a copolymer polyester having a high intrinsic viscosity, severe processing conditions are required when it is molded into a can after being bonded to a metal plate. It is difficult to perform the molding process. When this intrinsic viscosity is less than 0.66, the can is easily damaged when it is molded into a can under severe processing conditions, and surface defects are likely to occur. On the other hand, those exceeding 0.85 are uneconomical because not only are the excessive quality but also the productivity of the raw material copolyester is lowered.

ここで、A層の共重合ポリエステルの固有粘度は、製膜に用いられる共重合ポリエステル組成物をo−クロロフェノールに溶解後、遠心分離機により着色顔料等を取り除き35℃溶液にて測定して得られる値である。また、A層を構成する共重合ポリエステルの原料が2種類以上の共重合ポリエステルであるか、共重合ポリエステルとホモポリエステルとのブレンドである場合には、ブレンドするそれぞれの原料の固有粘度を測定し、その重量平均がかかる範囲であればよい。   Here, the intrinsic viscosity of the copolyester of layer A was measured in a 35 ° C. solution after dissolving the copolyester composition used for film formation in o-chlorophenol and then removing the color pigments with a centrifuge. This is the value obtained. When the raw material of the copolyester constituting the layer A is two or more types of copolyester or a blend of copolyester and homopolyester, the intrinsic viscosity of each raw material to be blended is measured. The weight average may be in such a range.

また、本発明におけるB層を構成する共重合ポリエステル(ポリマー部分)の固有粘度は0.46〜0.66の範囲である必要があり、好ましくは0.48〜0.64の範囲である。この固有粘度が0.46に満たない場合には、フィルム延伸時の破断が起き易くなるだけでなく、得られたフィルムを金属板に貼合せ後、缶に成形加工する際に破断を生じやすい。一方、該固有粘度が0.66を超える場合、着色顔料を高濃度含有するので顔料の凝集が生じやすく、さらに過剰品質であるだけでなく、原料共重合ポリエステルの生産性も落ちる。   In addition, the intrinsic viscosity of the copolyester (polymer portion) constituting the B layer in the present invention needs to be in the range of 0.46 to 0.66, preferably in the range of 0.48 to 0.64. When the intrinsic viscosity is less than 0.46, not only is the film easily broken when stretched, but the resulting film is likely to break when it is molded into a can after being bonded to a metal plate. . On the other hand, when the intrinsic viscosity exceeds 0.66, since the pigment is contained in a high concentration, aggregation of the pigment is likely to occur, and not only the quality is excessive, but also the productivity of the raw material copolyester is lowered.

ここで、B層の共重合ポリエステルの固有粘度は、製膜に用いられる共重合ポリエステル組成物をo−クロロフェノールに溶解後、遠心分離機により着色顔料等を取り除き35℃溶液にて測定して得られる値である。また、B層を構成する共重合ポリエステルの原料が2種類以上の共重合ポリエステルであるか、共重合ポリエステルとホモポリエステルとのブレンドである場合には、ブレンドするそれぞれの原料の固有粘度を測定し、その重量平均がかかる範囲であればよい。   Here, the intrinsic viscosity of the copolyester of layer B is measured in a 35 ° C. solution after dissolving the copolyester composition used for film formation in o-chlorophenol and then removing the color pigments with a centrifuge. This is the value obtained. When the raw material of the copolyester constituting the B layer is two or more types of copolyester or a blend of copolyester and homopolyester, the intrinsic viscosity of each raw material to be blended is measured. The weight average may be in such a range.

さらに本発明の2軸延伸ポリエステルフィルムは、厳しい条件で成形加工を施しても缶壁部に削れ、傷つき、剥がれなどが生じることのない良好な成形加工性を実現するために、A層の固有粘度はB層の固有粘度よりも0.15以上、好ましくは0.18以上大きいことが必要である。   Furthermore, the biaxially stretched polyester film of the present invention is unique to the A layer in order to achieve good moldability without being scratched, scratched or peeled off even if it is molded under severe conditions. The viscosity needs to be 0.15 or more, preferably 0.18 or more larger than the intrinsic viscosity of the B layer.

次に本発明におけるA層の着色顔料の含有量は10重量%以下である必要がある。着色顔料の含有量が10重量%を超える場合には、得られたフィルムを金属板に貼合せ後、缶に成形加工する際に缶壁部に傷付きが生じやすくなり、表面欠陥が多くなるので好ましくない。一方B層の着色顔料の含有量は10重量%を超え50重量%以下である必要があり、好ましくは20〜50重量%、さらに好ましくは30〜50重量%の範囲である。着色顔料の含有量が下限に満たない場合には、隠蔽性に劣るため好ましくない。一方、着色顔料の含有量が上限を超える場合には、隠蔽性の向上効果が飽和するだけでなく、フィルムが脆くなってフィルム延伸時にフィルム破断が生じやすくなり、かつ得られたフィルムを金属板に貼合せた後、缶に成形加工する際に破断が生じやすい。A層およびB層に含有させる着色顔料としては無機、有機系のいずれであってもよいが、無機系の方が好ましい。無機系顔料としては、アルミナ、二酸化チタン、炭酸カルシウム、硫酸バリウム等が好ましく例示され、なかでも二酸化チタンが好ましい。   Next, the content of the color pigment in the A layer in the present invention needs to be 10% by weight or less. When the content of the color pigment exceeds 10% by weight, the resulting film tends to be damaged when it is molded into a can after being bonded to a metal plate, resulting in increased surface defects. Therefore, it is not preferable. On the other hand, the content of the color pigment in the B layer needs to be more than 10% by weight and 50% by weight or less, preferably 20 to 50% by weight, more preferably 30 to 50% by weight. When the content of the color pigment is less than the lower limit, the concealability is poor, which is not preferable. On the other hand, when the content of the color pigment exceeds the upper limit, not only the effect of improving the concealability is saturated, but the film becomes brittle and easily breaks during stretching, and the obtained film is formed into a metal plate. After being bonded to each other, breakage is likely to occur when the can is molded. The coloring pigment contained in the A layer and the B layer may be either inorganic or organic, but is preferably inorganic. Preferred examples of the inorganic pigment include alumina, titanium dioxide, calcium carbonate, barium sulfate and the like, and titanium dioxide is particularly preferable.

なお、A層およびB層を構成する共重合ポリエステルには、本発明の目的を阻害しない範囲内で、必要に応じて他の添加物、例えば蛍光増白剤、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤等を添加することができる。特に白度を向上させる場合には、蛍光増白剤が有効である。   The copolymer polyester constituting the A layer and the B layer has other additives such as a fluorescent whitening agent, an antioxidant, a heat stabilizer, as necessary, as long as the object of the present invention is not impaired. An ultraviolet absorber, an antistatic agent, etc. can be added. In particular, in order to improve whiteness, a fluorescent whitening agent is effective.

本発明の2軸延伸ポリエステルフィルムは、フィルム長手方向(縦方向またはMD方向と言うことがある)、幅方向(横方向またはTD方向ということがある)のいずれも破断強度が100MPa以上である必要があり、特に120MPa以上であることが好ましい。破断強度が100MPa未満である場合には、フィルムを製造する際に切断が発生しやすくなり、生産性が低下するので好ましくない。   The biaxially stretched polyester film of the present invention must have a breaking strength of 100 MPa or more in both the film longitudinal direction (sometimes referred to as the longitudinal direction or MD direction) and the width direction (sometimes referred to as the transverse direction or TD direction). In particular, it is preferably 120 MPa or more. When the breaking strength is less than 100 MPa, it is not preferable because cutting tends to occur when the film is produced, and productivity is lowered.

ここで2軸延伸ポリエステルフィルムの破断強度は、引張試験機(東洋ボールドウィン社製の商品名「テンシロン」)を用い、得られた2軸延伸ポリエステルフィルムからそれぞれ長手方向150mm×幅方向10mm、および幅方向150mm×長手方向10mmのサンプルを採取し、常温雰囲気下で間隔を100mmにセットしたチャックに挟んで固定した後、100mm/分の速度で引張試験機に装着されたロードセルで荷重を測定した。そして、破断時の荷重を読み取り、引張前サンプル断面積で割って破断強度(MPa)を計算した。   Here, the breaking strength of the biaxially stretched polyester film was determined from the obtained biaxially stretched polyester film by using a tensile tester (trade name “Tensilon” manufactured by Toyo Baldwin Co., Ltd.). A sample having a direction of 150 mm × longitudinal direction of 10 mm was taken and fixed in a normal temperature atmosphere with a chuck set at an interval of 100 mm, and then the load was measured with a load cell attached to a tensile tester at a speed of 100 mm / min. And the load at the time of a fracture | rupture was read, and the fracture strength (MPa) was calculated by dividing by the sample cross-sectional area before tension.

次に本発明の2軸延伸ポリエステルフィルムの厚みは、必要に応じて適宜変更できるが全体の厚みで6〜75μmの範囲が好適であり、なかでも10〜75μm、特に15〜50μmの範囲が好ましい。厚みが6μm未満では成形加工時に削れ等が生じやすくなり、一方75μmを超えるものは過剰品質であって不経済である。
本発明の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムは、上述の表層(A層)と上述の裏層(B層)の2層のみからなり、裏層(B層)が金属板面に貼り合される。
さらにA層とB層の厚み比(X/X:但し、XはA層の厚み、XとはB層の厚み)は、成形加工性と隠蔽性の点から1/7〜1/3の範囲が適当である。
Next, the thickness of the biaxially stretched polyester film of the present invention can be appropriately changed as necessary, but the total thickness is preferably in the range of 6 to 75 μm, and more preferably in the range of 10 to 75 μm, particularly 15 to 50 μm. . If the thickness is less than 6 μm, scraping or the like is likely to occur during the molding process, while those exceeding 75 μm are excessive quality and uneconomical.
The colored biaxially stretched polyester film for laminating and forming a metal plate of the present invention comprises only the above-mentioned surface layer (A layer) and the above-mentioned back layer (B layer), and the back layer (B layer) is a metal plate. Bonded to the surface.
Furthermore, the thickness ratio between the A layer and the B layer (X A / X B : where X A is the thickness of the A layer, and X B is the thickness of the B layer) is 1/7 to from the viewpoint of moldability and concealability A range of 1/3 is appropriate.

以上に説明した本発明の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムの製造方法は特に限定されず、従来公知の製膜方法により先ず未延伸積層シートを作成し、次いで二方向に延伸すればよい。
例えばA層用に調整した共重合ポリエステルを十分に乾燥させた後、融点〜(融点+70)℃の温度で押出機内で溶融する。同時にB層用に調整した共重合ポリエステルを十分に乾燥させた後、他の押出機に供給し、融点〜(融点+70)℃の温度で溶融する。続いて、両方の溶融樹脂をダイ内部で積層する方法、例えばマルチマニホールドダイを用いた同時積層押出法により、積層された未延伸積層シートが製造される。かかる同時積層押出法によると、一つの層を形成する樹脂の溶融物と別の層を形成する樹脂の溶融物はダイ内部で積層され、積層形態を維持した状態でダイよりシート状に成形される。
The manufacturing method of the colored biaxially stretched polyester film for metal plate laminating processing of the present invention described above is not particularly limited. First, an unstretched laminated sheet is prepared by a conventionally known film forming method, and then stretched in two directions. do it.
For example, after sufficiently drying the copolyester prepared for the A layer, it is melted in the extruder at a temperature of the melting point to (melting point + 70) ° C. At the same time, the copolyester prepared for layer B is sufficiently dried and then supplied to another extruder and melted at a temperature of melting point to (melting point + 70) ° C. Subsequently, a laminated unstretched laminated sheet is manufactured by a method of laminating both molten resins inside the die, for example, a simultaneous lamination extrusion method using a multi-manifold die. According to this simultaneous lamination extrusion method, the melt of the resin that forms one layer and the melt of the resin that forms another layer are laminated inside the die and formed into a sheet shape from the die while maintaining the laminated form. The

次いで該未延伸フィルムを逐次または同時二軸延伸し、熱固定する方法で製造することができる。逐次二軸延伸により製膜する場合、未延伸積層シートをロール加熱、赤外線加熱等で加熱して先ず縦方向に延伸し、次いでステンターにて横延伸する。この時、延伸温度を共重合ポリエステルのガラス転移点(Tg)より20〜50℃高い温度とし、縦延伸倍率を2.5〜3.6倍、横延伸倍率を2.6〜3.7倍の範囲とすることが好ましい。熱固定の温度は、150〜230℃の範囲で共重合ポリエステルの融点に応じて、フィルム品質を調整するべく選択するのが好ましい。   Then, the unstretched film can be produced by a method of sequentially or simultaneously biaxially stretching and heat setting. When forming a film by sequential biaxial stretching, the unstretched laminated sheet is heated by roll heating, infrared heating or the like, first stretched in the longitudinal direction, and then stretched transversely by a stenter. At this time, the stretching temperature is 20 to 50 ° C. higher than the glass transition point (Tg) of the copolyester, the longitudinal stretching ratio is 2.5 to 3.6 times, and the transverse stretching ratio is 2.6 to 3.7 times. It is preferable to set it as the range. The heat setting temperature is preferably selected in order to adjust the film quality in the range of 150 to 230 ° C. according to the melting point of the copolyester.

本発明の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムが貼合される金属板、特に製缶用金属板としては、ブリキ、ティンフリースチール、アルミニウム等の板が適切である。金属板への貼合せは、例えば下記の方法で行うことができる。
金属板をB層の共重合ポリエステル融点以上に加熱し、フィルムの全層が非晶状態となるように、B層側を金属板面に配置してフィルムを貼合せ、フィルム全層の非晶状態を維持するように冷却して密着させる。この時、フィルムの非晶化が部分的である場合には、成形加工する際に缶壁部に削れ等が発生しやすくなる。
As the metal plate to which the colored biaxially stretched polyester film for metal plate laminating molding processing of the present invention is bonded, particularly as a metal plate for can making, a plate of tin, tin-free steel, aluminum or the like is suitable. The lamination to the metal plate can be performed, for example, by the following method.
Heat the metal plate above the melting point of the copolyester of the B layer, and place the B layer side on the metal plate surface so that the entire layer of the film is in an amorphous state. Cool and adhere to maintain the state. At this time, if the film is partially amorphized, the can wall portion is likely to be scraped during molding.

以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ重量部および重量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples. Each characteristic value was measured by the following method. Moreover, unless otherwise indicated, the part and% in an Example mean a weight part and weight%, respectively.

(融点)
フィルム各層についてサンプル約20mgを採取し、TA Instruments Q100 DSCを用い、昇温速度20℃/分で昇温しながら融解ピークを求める方法により、共重合ポリエステルの融点測定を行った。
(Melting point)
About 20 mg of a sample was taken for each layer of the film, and the melting point of the copolyester was measured by a method of obtaining a melting peak while raising the temperature at a rate of temperature increase of 20 ° C./min using a TA Instruments Q100 DSC.

(固有粘度)
製膜に用いられる共重合ポリエステル組成物をo−クロロフェノールに溶解後、遠心分離機により着色顔料等を取り除き35℃溶液にて測定した。単位はdl/gである。
(Intrinsic viscosity)
The copolyester composition used for film formation was dissolved in o-chlorophenol, and then the color pigments and the like were removed with a centrifuge, and the measurement was performed with a 35 ° C. solution. The unit is dl / g.

(破断強度)
フィルム破断強度は、引張試験機(東洋ボールドウィン社製の商品名「テンシロン」)を用い、得られた共重合ポリエステルフィルムからそれぞれ長手方向150mm×幅方向10mm、および幅方向150mm×長手方向10mmのサンプルを採取し、常温雰囲気下で間隔を100mmにセットしたチャックに挟んで固定した後、100mm/分の速度で引張試験機に装着されたロードセルで荷重を測定した。そして、破断時の荷重を読み取り、引張前サンプル断面積で割って、フィルム長手方向、フィルム幅方向それぞれの破断強度(MPa)を計算した。
(Breaking strength)
The film breaking strength was determined by using a tensile tester (trade name “Tensilon” manufactured by Toyo Baldwin Co., Ltd.), and samples obtained from the obtained copolymer polyester film of 150 mm in the longitudinal direction × 10 mm in the width direction and 150 mm in the width direction × 10 mm in the longitudinal direction, respectively. The sample was collected and fixed in a normal temperature atmosphere with a chuck set at an interval of 100 mm, and then the load was measured with a load cell attached to a tensile tester at a speed of 100 mm / min. And the load at the time of a fracture | rupture was read, and it divided | segmented by the sample cross-sectional area before tension | pulling, and calculated the breaking strength (MPa) of a film longitudinal direction and each film width direction.

(成形加工性)
板厚0.18mm、幅1mのティンフリースチール(金属クロム量:120mg/m、クロム水酸化物量:クロムとして15mg/m)の片面に熱融着によりポリエステルフィルムサンプルをラミネートした。かかるラミネートの際、ポリエステルフィルムの裏層(B層)が金属板側になるよう配置した。
得られたフィルム貼合せ金属板を直径160mmのブランクに打ち抜いた後、フィルム被覆面が缶外面側となるようにして、缶底径100mmの絞り缶とした。ついで再絞り加工により缶底径80mmの再絞り缶とした。さらにこの再絞り缶をストレッチ加工と同時にしごき加工を行う複合加工により、缶底径65mmの絞りしごき缶とした。この複合加工において、缶の上端部となる再絞り加工部としごき加工部間の間隔は20mm、再絞りダイスの肩アールは板厚の1.5倍、再絞りダイスとポンチのクリアランスは板厚の1.0倍、しごき加工部のクリアランスは元板厚の50%となるように加工条件を設定した。
このようにして得られた缶体30缶の缶壁におけるポリエステルフィルム層の削れおよび疵付きの発生状況により、以下の基準で成形加工性を評価した。
◎:削れや傷付きの発生は認められない。
○:一部の缶に削れや傷付きの発生が認められるが実用上の問題なし。
△:一部の缶に実用上問題となる削れや傷付きが認められる。
×:かなりの数の缶に実用上問題となる削れ、傷付きおよび剥がれが認められる。
(Molding processability)
A polyester film sample was laminated by thermal fusion on one side of tin-free steel having a thickness of 0.18 mm and a width of 1 m (amount of chromium metal: 120 mg / m 2 , chromium hydroxide amount: 15 mg / m 2 as chromium). During the lamination, the polyester film was placed so that the back layer (B layer) was on the metal plate side.
The obtained film-laminated metal plate was punched out into a blank having a diameter of 160 mm, and then a drawn can having a can bottom diameter of 100 mm was formed such that the film-coated surface was on the outer surface side of the can. Then, a redraw can with a can bottom diameter of 80 mm was made by redraw. Furthermore, this redrawn can was made into a drawn and ironed can having a can bottom diameter of 65 mm by a composite process in which the ironing process was performed simultaneously with the stretch process. In this combined processing, the distance between the redrawing portion and the ironing portion that is the upper end of the can is 20 mm, the shoulder radius of the redrawing die is 1.5 times the plate thickness, and the clearance between the redrawing die and the punch is the plate thickness The machining conditions were set so that the clearance of the ironing part was 50% of the original plate thickness.
Molding processability was evaluated according to the following criteria based on the occurrence of scraping and wrinkling of the polyester film layer on the can wall of the can body 30 thus obtained.
A: No occurrence of shaving or scratching is observed.
○: Some cans are scraped or scratched, but there is no practical problem.
(Triangle | delta): The shaving and damage which are a problem practically are recognized by some cans.
X: Scraping, scratching and peeling that are practical problems are observed in a considerable number of cans.

(隠蔽性)
フィルムサンプルのCIE1976(L*、a*、b*)色空間の定義による白さを表すL*値を、日本電色製のSE6000分光色差計を用いて、フィルムの下に何も置かずに測定し、以下の基準で隠蔽性を評価した。
◎:L*値:85以上 優れた隠蔽性を示す。
○:L*値:80以上85未満 良好な隠蔽性を示す。
△:L*値:75以上80未満 隠蔽性がやや劣る。
×:L*値:75未満 隠蔽性が劣る。
(Concealment)
The L * value representing the whiteness defined by the CIE 1976 (L *, a *, b *) color space of the film sample was placed under the film using a Nippon Denshoku SE6000 spectrocolorimeter. Measured and evaluated for concealment according to the following criteria.
A: L * value: 85 or more Excellent concealability.
○: L * value: 80 or more and less than 85 Good concealability is exhibited.
Δ: L * value: 75 or more and less than 80 The concealability is slightly inferior.
X: L * value: less than 75 The concealability is inferior.

(製膜安定性)
フィルムを製膜したときの製膜性を観察し、下記の基準で評価した。
○:破断は起こらず、きわめて安定に製膜が可能。4日間以上無切断。
△:時々切断が起こり、製膜が不安定。
切断頻度(1回/4日間)以上,(1回/1日)未満
×:破断が多発し、実質的に安定な製膜が不可能。切断頻度(1回/1日)以上
(Film formation stability)
The film forming property when the film was formed was observed and evaluated according to the following criteria.
○: Breakage does not occur and film formation is extremely stable. Uncut for more than 4 days.
Δ: Cutting sometimes occurs, and film formation is unstable.
Cutting frequency (once per 4 days) or more, less than (once per day) ×: Many breaks occur and substantially stable film formation is impossible. Cutting frequency (once / day) or more

(インキ密着性)
インキ密着性をデュポン衝撃試験で評価した。
2軸延伸フィルムサンプルを貼合せた金属板からなる缶に、公知の熱硬化性インキ、熱硬化性仕上げニスを缶胴に塗布した後、焼付けオーブンにて焼付け硬化した。得られた缶を切り開き、缶胴部を平らに伸ばして試験片とした。得られた試験片を、側壁内面側を上にして接地部から90mmの位置部分に撃芯があたるよう、デュポン衝撃試験機にセットした。撃芯は重さ300gで先端球の直径が3/8インチであり、試験片をセットした位置を基準として高さ50mmから落下させて缶外面側が凸になるように加工した。
加工後の缶外面側に、凸部の頂点を中心として、18mm×40mmの面積のセロハンテープ(ニチバン株式会社製,商品名)を接着させて、180°で引き剥がす作業を行った。得られた缶5缶について各缶当たり2箇所でこの測定を行った。インキの剥離した合計の面積を次の基準で評価した。○、△が許容範囲である。
○:剥離面積が20%未満
△:剥離面積が20%以上40%未満
×:剥離面積が40%以上
(Ink adhesion)
Ink adhesion was evaluated by the DuPont impact test.
A known thermosetting ink and a thermosetting finish varnish were applied to a can body made of a metal plate to which a biaxially stretched film sample was bonded, and then baked and cured in a baking oven. The obtained can was opened, and the can body portion was flattened to obtain a test piece. The obtained test piece was set in a DuPont impact tester so that the inner surface side of the side wall faced up and the impact core hit a position 90 mm from the ground contact portion. The hitting core weighed 300 g and had a tip sphere diameter of 3/8 inch, and was processed so that the outer surface side of the can became convex by dropping from a height of 50 mm on the basis of the position where the test piece was set.
A cellophane tape (manufactured by Nichiban Co., Ltd., product name) having an area of 18 mm × 40 mm with the apex of the convex portion as the center was adhered to the outer surface of the can after processing, and the work was peeled off at 180 °. This measurement was performed at two locations for each of the five cans obtained. The total area from which the ink was peeled was evaluated according to the following criteria. ○ and Δ are acceptable ranges.
○: Peeling area is less than 20% Δ: Peeling area is 20% or more and less than 40% ×: Peeling area is 40% or more

[実施例1〜10、比較例1〜8]
着色顔料としてルチル型酸化チタンを用いた、表1に示すA層用共重合ポリエステルおよびB層用共重合ポリエステルをそれぞれ独立に乾燥・溶融後、隣接したダイより共押出し、急冷固化して未延伸積層フィルムを得た。次いで、この未延伸フィルムを100℃で3倍に縦延伸した後、120℃で3倍に横延伸し、続いて180℃で熱固定して2軸延伸ポリエステルフィルムを得た。フィルムの全厚みは17μmであり、A層およびB層の厚みはそれぞれ4μm、13μmであった。得られたポリエステルフィルムの評価結果を表2に示す。
[Examples 1 to 10, Comparative Examples 1 to 8]
Using the rutile type titanium oxide as the coloring pigment, the A layer copolyester and the B layer copolyester shown in Table 1 are dried and melted independently, and then co-extruded from adjacent dies, rapidly solidified and unstretched. A laminated film was obtained. Next, the unstretched film was longitudinally stretched 3 times at 100 ° C., then transversely stretched 3 times at 120 ° C., and then heat-set at 180 ° C. to obtain a biaxially stretched polyester film. The total thickness of the film was 17 μm, and the thicknesses of the A layer and B layer were 4 μm and 13 μm, respectively. The evaluation results of the obtained polyester film are shown in Table 2.

[比較例9]
未延伸フィルムの全厚みを17μmとする以外は実施例1と同様にして未延伸積層フィルムを得た。A層およびB層の厚みはそれぞれ4μm、13μmであった。得られた未延伸積層フィルムの評価結果を表2に示す。
[Comparative Example 9]
An unstretched laminated film was obtained in the same manner as in Example 1 except that the total thickness of the unstretched film was 17 μm. The thicknesses of the A layer and the B layer were 4 μm and 13 μm, respectively. Table 2 shows the evaluation results of the obtained unstretched laminated film.

[比較例10]
B層用のポリエステルとして表1に示す共重合ポリエステルとポリブチレンテレフタレートの70/30(重量比)のブレンドを用いる以外は、実施例1と同様に行った。その評価結果を表2に示す。B層は融点が2つ観察され、そのうちの1つの融点が235℃に満たないため、成形加工性が十分ではなかった。
[Comparative Example 10]
The same procedure as in Example 1 was carried out except that a 70/30 (weight ratio) blend of the copolymerized polyester and polybutylene terephthalate shown in Table 1 was used as the polyester for the B layer. The evaluation results are shown in Table 2. The B layer had two melting points, and one of them had a melting point of less than 235 ° C., so that the moldability was not sufficient.

Figure 0005894308
Figure 0005894308

Figure 0005894308
Figure 0005894308

[実施例11〜13]
着色顔料としてルチル型酸化チタンを用い、表3に示すA層用共重合ポリエステル、およびB層にはイソフタル酸12モル%共重合ポリエチレンテレフタレートとホモポリエチレンテレフタレートを表3に示す共重合モル比となるようにブレンドしたポリエステルを、それぞれ独立に乾燥・溶融後、隣接したダイより共押出し、急冷固化して未延伸積層フィルムを得た。次いで、この未延伸フィルムを100℃で3倍に縦延伸した後、120℃で3倍に横延伸し、続いて180℃で熱固定して2軸延伸ポリエステルフィルムを得た。フィルムの全厚みは17μmであり、A層およびB層の厚みはそれぞれ4μm、13μmであった。得られたポリエステルフィルムの評価結果を表4に示す。
[Examples 11 to 13]
Rutile titanium oxide is used as the color pigment, and the copolymerized polyester for layer A shown in Table 3 and the copolymeric molar ratio of isophthalic acid 12 mol% copolymerized polyethylene terephthalate and homopolyethylene terephthalate shown in Table 3 are as shown in Table 3. The polyesters blended in this manner were dried and melted independently, and then coextruded from adjacent dies and rapidly solidified to obtain an unstretched laminated film. Next, the unstretched film was longitudinally stretched 3 times at 100 ° C., then transversely stretched 3 times at 120 ° C., and then heat-set at 180 ° C. to obtain a biaxially stretched polyester film. The total thickness of the film was 17 μm, and the thicknesses of the A layer and B layer were 4 μm and 13 μm, respectively. Table 4 shows the evaluation results of the obtained polyester film.

[実施例14]
B層の着色顔料濃度と、2軸延伸後のポリエステルフィルムの全厚みが17μmで、A層およびB層の厚みがそれぞれ2.5μm、14.5μmとなるよう変更した以外は実施例13と同様にして2軸延伸ポリエステルフィルムを得た。得られたポリエステルフィルムの評価結果を表4に示す。
[Example 14]
Same as Example 13 except that the color pigment concentration of the B layer and the total thickness of the biaxially stretched polyester film are 17 μm and the thicknesses of the A layer and the B layer are 2.5 μm and 14.5 μm, respectively. Thus, a biaxially stretched polyester film was obtained. Table 4 shows the evaluation results of the obtained polyester film.

Figure 0005894308
Figure 0005894308

Figure 0005894308
Figure 0005894308

本発明の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルムは、隠蔽性に優れ、金属板に貼合せた後に厳しい条件で例えば缶へ成形加工しても、缶壁部のフィルムに削れ、傷付き、剥がれが生じることのない優れた成形加工性を発現し、さらには成形後の缶へのインキ密着性も良好であるので、例えば飲料缶、食品缶等の金属缶用として好適に使用することができる。   The colored biaxially stretched polyester film for metal plate laminating molding of the present invention is excellent in concealment, and even if it is molded into a can under severe conditions after being laminated to a metal plate, it can be scraped into a film on the can wall, Expresses excellent molding processability without causing scratches and peeling, and also has good ink adhesion to the can after molding, so it is suitably used for metal cans such as beverage cans and food cans. can do.

Claims (2)

固有粘度が0.66〜0.85、融点が215〜230℃の共重合ポリエステルからなり、着色顔料の含有量が10重量%以下である表層(A層)と、固有粘度が0.46〜0.66、融点が235〜245℃の共重合ポリエステルからなり、着色顔料の含有量が10重量%を超え50重量%以下である裏層(B層)の2層からなる着色2軸延伸ポリエステルフィルムであって、前記A層およびB層の共重合ポリエステルの融点および固有粘度が下記(1)〜(2)式を満足し、かつポリエステルフィルムの破断強度が100MPa以上であり、B層が金属板面に貼り合されることを特徴とする、しごき加工を行う金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルム。
TmB−TmA≦20℃ −−−(1)
IVA−IVB≧0.15 −−−(2)
ただし、TmA、IVAはそれぞれA層の共重合ポリエステルの融点、固有粘度を示し、TmB、IVBはそれぞれB層の共重合ポリエステルの融点、固有粘度を示す。
A surface layer (A layer) comprising a copolyester having an intrinsic viscosity of 0.66 to 0.85 and a melting point of 215 to 230 ° C., and having a color pigment content of 10% by weight or less, and an intrinsic viscosity of 0.46 to A colored biaxially stretched polyester comprising two layers of a back layer (B layer) comprising a copolyester having a melting point of 0.66 and a melting point of 235 to 245 ° C. The melting point and intrinsic viscosity of the copolymer polyester of the A layer and the B layer satisfy the following formulas (1) to (2), the breaking strength of the polyester film is 100 MPa or more, and the B layer is a metal A colored biaxially stretched polyester film for laminating and processing a metal plate, which is laminated on a plate surface.
TmB-TmA ≦ 20 ° C. --- (1)
IVA-IVB ≧ 0.15 −−− (2)
However, TmA and IVA represent the melting point and intrinsic viscosity of the copolyester of the A layer, respectively, and TmB and IVB represent the melting point and intrinsic viscosity of the copolyester of the B layer, respectively.
A層およびB層を構成する共重合ポリエステルが、いずれもイソフタル酸共重合ポリエチレンテレフタレートである請求項1に記載の金属板貼合せ成形加工用着色2軸延伸ポリエステルフィルム。   The colored biaxially stretched polyester film for metal plate laminating molding according to claim 1, wherein the copolymer polyester constituting the A layer and the B layer is isophthalic acid copolymer polyethylene terephthalate.
JP2015060974A 2011-06-30 2015-03-24 Colored biaxially stretched polyester film for metal plate lamination Active JP5894308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015060974A JP5894308B2 (en) 2011-06-30 2015-03-24 Colored biaxially stretched polyester film for metal plate lamination

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011146052 2011-06-30
JP2011146052 2011-06-30
JP2015060974A JP5894308B2 (en) 2011-06-30 2015-03-24 Colored biaxially stretched polyester film for metal plate lamination

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013522936A Division JP5721829B2 (en) 2011-06-30 2012-06-28 Colored biaxially stretched polyester film for metal plate lamination

Publications (2)

Publication Number Publication Date
JP2015157482A JP2015157482A (en) 2015-09-03
JP5894308B2 true JP5894308B2 (en) 2016-03-23

Family

ID=47424209

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013522936A Active JP5721829B2 (en) 2011-06-30 2012-06-28 Colored biaxially stretched polyester film for metal plate lamination
JP2015060974A Active JP5894308B2 (en) 2011-06-30 2015-03-24 Colored biaxially stretched polyester film for metal plate lamination

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013522936A Active JP5721829B2 (en) 2011-06-30 2012-06-28 Colored biaxially stretched polyester film for metal plate lamination

Country Status (3)

Country Link
JP (2) JP5721829B2 (en)
CN (1) CN103619589B (en)
WO (1) WO2013002323A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753932B (en) * 2013-12-27 2015-02-04 天津万华股份有限公司 Directly-compoundable low-melting-point polyester thin film preparation method for laminated steel
JP6363499B2 (en) * 2014-12-26 2018-07-25 帝人フィルムソリューション株式会社 Colored biaxially stretched polyester film for metal plate lamination
JP6701790B2 (en) * 2015-02-27 2020-05-27 東レ株式会社 Polyester film
JP6721957B2 (en) 2015-07-31 2020-07-15 東洋紡フイルムソリューション株式会社 Colored biaxially stretched polyester film for metal plate laminating process
JP6779755B2 (en) 2015-11-26 2020-11-04 東洋紡フイルムソリューション株式会社 Colored biaxially stretched polyester film for metal plate laminating molding processing
JPWO2019124416A1 (en) * 2017-12-22 2020-12-10 東洋製罐株式会社 Organic resin coated two-piece aluminum can

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115854A (en) * 1995-10-02 2003-09-30 Toray Industries A biaxially oriented polyester film to be formed into containers
JP3262031B2 (en) * 1996-08-06 2002-03-04 東洋製罐株式会社 Laminate and container using the same
JP3602044B2 (en) * 2000-09-25 2004-12-15 東洋鋼鈑株式会社 Method for producing resin-coated metal plate
JP4773006B2 (en) * 2001-09-14 2011-09-14 大和製罐株式会社 Manufacturing method of aluminum can
JP2004130536A (en) * 2002-10-08 2004-04-30 Teijin Dupont Films Japan Ltd White polyester film for laminate molding processing of metal sheet
US20050058846A1 (en) * 2003-09-16 2005-03-17 Ryosuke Matsui Polyester film
JP4445787B2 (en) * 2004-03-31 2010-04-07 新日本製鐵株式会社 Polyester resin film coated metal plate and polyester resin film coated metal can
JP2006051670A (en) * 2004-08-11 2006-02-23 Toray Ind Inc Colored polyester film for metal lamination

Also Published As

Publication number Publication date
JP2015157482A (en) 2015-09-03
WO2013002323A1 (en) 2013-01-03
CN103619589A (en) 2014-03-05
JP5721829B2 (en) 2015-05-20
CN103619589B (en) 2015-09-02
JPWO2013002323A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5894308B2 (en) Colored biaxially stretched polyester film for metal plate lamination
US10661537B2 (en) Biaxially drawn colored polyester film for laminating metal sheet
EP2839954A1 (en) Laminated metal sheet, and canning container for food
JP4955480B2 (en) Biaxially stretched laminated polyester film for simultaneous decoration
JP2005314700A (en) White biaxially oriented polyester film and its production method
JP6583880B2 (en) Polyester resin-coated metal plate and container using the same
JP6363499B2 (en) Colored biaxially stretched polyester film for metal plate lamination
JP6779755B2 (en) Colored biaxially stretched polyester film for metal plate laminating molding processing
TW202239595A (en) Resin-coated metal plate for containers
JP6389059B2 (en) Colored biaxially stretched polyester film for metal plate lamination
JP7153206B2 (en) Colored biaxially oriented polyester film for lamination of metal sheets
JP2018161831A (en) Colored biaxial oriented polyester film for metal plate laminating molding process
JP6345956B2 (en) Biaxially stretched polyester film for metal plate lamination
JP3893240B2 (en) Polyester film laminated metal plate, method for producing the same, and metal container
JP2003012904A (en) Polyester film for laminating forming metal sheet
JP2017121775A (en) Biaxially oriented polyester film for metal sheet lamination molding
JP4604405B2 (en) Laminated polyester film for thermal lamination of metal plates
JP2017121774A (en) Biaxially oriented polyester film for metal sheet lamination molding
JP6426348B2 (en) Biaxially oriented polyester film for metal plate bonding and forming
WO2024209846A1 (en) Resin-coated metal plate and method for manufacturing same
JP2018140565A (en) Laminated film for metal sheet lamination molding
JP2001315282A (en) White laminated polyester film for laminating outer surface of metal can
JP2017100344A (en) Film for metal laminate mold processing
JP2004067865A (en) Polyester film for laminating metal plate
JP2003001758A (en) Resin-coated seamless can

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R150 Certificate of patent or registration of utility model

Ref document number: 5894308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250