JP5892688B2 - Drilling device - Google Patents

Drilling device Download PDF

Info

Publication number
JP5892688B2
JP5892688B2 JP2011213695A JP2011213695A JP5892688B2 JP 5892688 B2 JP5892688 B2 JP 5892688B2 JP 2011213695 A JP2011213695 A JP 2011213695A JP 2011213695 A JP2011213695 A JP 2011213695A JP 5892688 B2 JP5892688 B2 JP 5892688B2
Authority
JP
Japan
Prior art keywords
drilling
shaft body
rotating shaft
derivative
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011213695A
Other languages
Japanese (ja)
Other versions
JP2013071226A (en
Inventor
亮祐 足塚
亮祐 足塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Precision Ltd
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Precision Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Precision Ltd, Hitachi Metals Ltd filed Critical Hitachi Metals Precision Ltd
Priority to JP2011213695A priority Critical patent/JP5892688B2/en
Priority to CN201210365301.5A priority patent/CN103029166B/en
Publication of JP2013071226A publication Critical patent/JP2013071226A/en
Application granted granted Critical
Publication of JP5892688B2 publication Critical patent/JP5892688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

本発明は、紙、樹脂フィルム、金属箔、薄板や、これらが積層されたものに対し、穿孔刃を直線的に移動して穿孔する穿孔装置に関する。   The present invention relates to a perforation apparatus that perforates a paper, a resin film, a metal foil, a thin plate, or a laminate of these by moving a perforation blade linearly.

従来、紙、樹脂フィルム、金属箔、薄板や、これらが積層されたもの(以下、まとめて「シート材」という。)に対し、穿孔刃を直線的に移動して穿孔する穿孔装置がある。これら穿孔装置において、具備する穿孔刃を穿孔方向および復帰方向へ直線的に往復移動するための駆動機構は、例えば、ソレノイドによる磁気力を用いて穿孔刃を往復移動するソレノイド式(特許文献1)、穿孔刃の一端に特別に設けたカムによる押下力とこれに抗するバネ力を用いて穿孔刃を往復移動するカム押下式(特許文献2)、ギヤ機構により穿孔刃を軸周りに回転しながら別のギヤ機構を用いて穿孔刃を往復移動するダブルギヤ回転式(特許文献3)、穿孔刃の外周に形成した一筋の螺旋状溝に穿孔刃以外の装置本体に固定した係合ピンを係合させた状態で、クランク機構のリンクによる押下力を用い、穿孔刃を軸周りに回転しながら往復移動するクランク押下回転式(特許文献4)、などの機械的機構が知られている。   2. Description of the Related Art Conventionally, there is a perforation apparatus that perforates by moving a perforation blade linearly on paper, a resin film, a metal foil, a thin plate, or a laminate of these (hereinafter collectively referred to as “sheet material”). In these drilling apparatuses, a drive mechanism for linearly reciprocating the drilling blade provided in the drilling direction and the return direction is, for example, a solenoid type that reciprocates the drilling blade using a magnetic force of a solenoid (Patent Document 1). A cam push-down type that reciprocates the drilling blade using a pressing force by a cam specially provided at one end of the drilling blade and a spring force against the cam (Patent Document 2). The gear mechanism rotates the drilling blade around its axis. However, a double-gear rotary type that reciprocates the drilling blade using another gear mechanism (Patent Document 3), and an engagement pin fixed to the device body other than the drilling blade is engaged with a single spiral groove formed on the outer periphery of the drilling blade. A mechanical mechanism such as a crank pressing rotary type (Patent Document 4) that reciprocates while rotating a drilling blade around an axis using a pressing force by a link of a crank mechanism in a combined state is known.

上述のソレノイド式やカム押下式を適用した穿孔装置では、穿孔方向へ直線的に移動された穿孔刃の刃先がシート材に突き刺さり、シート材を打ち抜くように穿孔することができる。また、上述のダブルギヤ回転式やクランク押下回転式を適用した穿孔装置では、穿孔刃は軸周りの一方回転によって穿孔方向へ直線的に移動し、刃先がシート材に突き刺ささりながらシート材を切り込むようにして穿孔できる。そして、穿孔刃は他方回転によって待機位置へ復帰できる。このように穿孔刃を軸周りに回転しながらの穿孔は、所要穿孔力が低減して駆動源が小型化できるため、穿孔装置の省エネルギー化に有利となる。   In the punching device to which the above-described solenoid type or cam pressing type is applied, the cutting edge of the punching blade moved linearly in the punching direction can pierce the sheet material and punch the sheet material. Further, in the above-described drilling device to which the double gear rotary type or the crank pressing rotary type is applied, the drilling blade moves linearly in the drilling direction by one rotation around the axis, and the cutting edge is inserted into the sheet material while cutting the sheet material. Can be perforated. Then, the drilling blade can return to the standby position by the other rotation. In this way, drilling while rotating the drilling blade around the axis is advantageous for energy saving of the drilling device because the required drilling force is reduced and the drive source can be miniaturized.

特開2000−301495号公報JP 2000-301495 A 特開2000−141294号公報JP 2000-141294 A 特開2006−943号公報JP 2006-943 A 特開平5−138599号公報JP-A-5-138599

上述した穿孔装置では、穿孔刃の駆動機構が、穿孔装置全体の形状寸法を決定付ける支配的要因のひとつである。近年、穿孔装置のコンパクト化が強く所望されているものの、穿孔刃の駆動機構のコンパクト化が容易でなく、穿孔装置のコンパクト化は満足できるものではない。例えば、ソレノイド式ではソレノイド自体の小型化や出力増強、カム押下式やダブルギヤ回転式では部品数の削減や占有空間の縮小、クランク押下回転式では機構動作に要する空間の縮小や、特殊材である穿孔刃に形成する螺旋状溝加工費用の低減、穿孔刃の回転制御の簡素化など、解決を所望されている課題がある。   In the drilling device described above, the driving mechanism of the drilling blade is one of the dominant factors that determine the overall shape and size of the drilling device. In recent years, there has been a strong demand for downsizing of the drilling device, but it is not easy to downsize the driving mechanism of the drilling blade, and the downsizing of the drilling device is not satisfactory. For example, in the solenoid type, the size of the solenoid itself is reduced and the output is increased. In the cam press type and double gear rotary type, the number of parts is reduced and the occupied space is reduced. There are problems that are desired to be solved, such as reducing the cost of processing the spiral groove formed on the drilling blade and simplifying the rotation control of the drilling blade.

本発明は、上述の解決課題に鑑みてなされたものであり、その目的は、穿孔刃の駆動機構を機械的にも制御的にも簡易なものとし、格段にコンパクト化された穿孔装置を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a drilling apparatus that is extremely compact by making the driving mechanism of the drilling blade simple mechanically and controllable. It is to be.

本発明者は、上述したクランク押下回転式の穿孔刃に形成された螺旋状溝と係合ピンとの構成関係を詳細に検討し、駆動源に連結する回転軸の外周に二筋の螺旋状溝を形成し、該回転軸の一方回転によって穿孔刃を直線的に往復移動できる機械的構成を見出し、本発明に到達した。   The present inventor has studied in detail the structural relationship between the helical groove formed on the crank-pressing rotary drilling blade and the engaging pin, and has two helical grooves on the outer periphery of the rotating shaft connected to the drive source. And a mechanical configuration capable of linearly reciprocating the drilling blade by one rotation of the rotating shaft has been found, and the present invention has been achieved.

すなわち、本発明の穿孔装置の第一形態は、穿孔刃を直線的に移動して被穿孔物に穿孔する穿孔装置であって、穿孔方向側で連続する互いに逆巻きの関係の二筋の螺旋状溝を軸の外周に備え、前記穿孔刃の移動方向に沿って前記軸が延長された回転軸体と、前記回転軸体の軸が連通する穿孔方向に沿った貫通孔を備える支持体と、前記穿孔刃に連結し、前記螺旋状溝に対して凸部で係合し、前記回転軸体の回転を軸方向の移動に変換する誘導体と、を有し、前記誘導体は、前記貫通孔に直交して設けられた前記支持体の孔に、前記凸部が前記回転軸体の螺旋状溝に入り込む位置まで挿入され、前記回転軸体の回転により、前記誘導体が前記螺旋状溝の一方に沿って穿孔方向へ移動することによって、前記誘導体に連結した前記穿孔刃が穿孔方向へ移動し、前記穿孔刃が前記被穿孔物を穿孔した後、前記誘導体が前記螺旋状溝の他方に沿って復帰方向へ移動することによって、前記誘導体および前記穿孔刃が復帰方向へ移動する、穿孔装置である。 That is, the first form of the drilling device of the present invention is a drilling device that moves a drilling blade linearly to drill an object to be drilled, and has two spirals in a reversely wound relationship that are continuous on the drilling direction side. A rotary shaft body provided with a groove on an outer periphery of the shaft, the shaft extending along the moving direction of the drilling blade, and a support body including a through hole along the drilling direction in which the shaft of the rotary shaft body communicates; coupled to the cutting head engages the convex portion with respect to the helical groove, anda derivative to convert axial movement of the rotation of the rotating shaft body, wherein said derivative is in the through-hole The convex portion is inserted into a hole of the support body provided orthogonal to a position where the convex portion enters the spiral groove of the rotating shaft body, and the derivative is inserted into one of the spiral grooves by the rotation of the rotating shaft body. The drilling blade connected to the derivative is moved in the drilling direction After the perforating blade has perforated the workpiece, the derivative moves along the other of the spiral grooves in the returning direction, so that the derivative and the perforating blade move in the returning direction. It is a punching device.

本発明の第一形態においては、前記回転軸体の二筋の螺旋状溝が復帰方向側においても連続していることが望ましい。   In the first embodiment of the present invention, it is desirable that the two spiral grooves of the rotating shaft body are continuous on the return direction side.

また、本発明の穿孔装置の第二形態は、穿孔刃を回転させながら直線的に移動して被穿孔物に穿孔する穿孔装置であって、復帰方向側で連続する互いに逆巻きの関係の二筋の螺旋状溝を軸の外周に備え、前記穿孔刃の移動方向に沿って前記軸が延長され、かつ、前記軸の穿孔方向端部に前記穿孔刃が連結した回転軸体と、前記回転軸体の軸が連通する穿孔方向に沿った貫通孔を備える支持体と、前記螺旋状溝に対して凸部で係合し、前記回転軸体の回転を前記回転軸体自体の軸方向の移動に変換する誘導体と、を有し、前記誘導体は、前記貫通孔に直交して設けられた前記支持体の孔に、前記凸部が前記回転軸体の螺旋状溝に入り込む位置まで挿入され、前記回転軸体の回転により、前記回転軸体が穿孔方向へ移動することによって、前記回転軸体に連結した前記穿孔刃が回転しながら穿孔方向へ移動し、前記穿孔刃が前記被穿孔物を穿孔した後、前記誘導体の前記螺旋状溝の他方への係合によって、前記回転軸体および前記穿孔刃が復帰方向へ移動する、穿孔装置である。 Further, a second form of the punching device of the present invention is a punching device that moves linearly while rotating a punching blade and punches an object to be drilled, and has two lines in a reversely wound relationship that are continuous on the return direction side. A rotating shaft body provided on the outer periphery of the shaft, the shaft extending along the moving direction of the drilling blade, and the drilling blade connected to an end of the shaft in the drilling direction, and the rotating shaft A support having a through-hole along the drilling direction in which the axis of the body communicates, and a convex portion engage with the spiral groove, and the rotation of the rotating shaft is moved in the axial direction of the rotating shaft itself And the derivative is inserted into the hole of the support provided perpendicular to the through hole to a position where the convex portion enters the spiral groove of the rotating shaft body, The rotation shaft body moves in the perforation direction by the rotation of the rotation shaft body, so that the rotation After the drilling blade connected to the shaft body rotates and moves in the drilling direction, the drilling blade drills the object to be drilled, and then the rotation shaft body is engaged with the other of the helical grooves of the derivative. And a drilling device in which the drilling blade moves in the return direction.

本発明の第二形態においては、前記回転軸体の二筋の螺旋状溝が穿孔方向側においても連続していることが望ましい。   In the second embodiment of the present invention, it is desirable that the two spiral grooves of the rotating shaft body are continuous on the perforation direction side.

また、本発明の第一形態の穿孔装置を複数用いて多数穿孔用に構成できる。
また、本発明の第二形態の穿孔装置を複数用いて多数穿孔用に構成できる。
Further, a plurality of perforation apparatuses according to the first embodiment of the present invention can be used for a large number of perforations.
Further, a plurality of perforation apparatuses according to the second embodiment of the present invention can be used for a large number of perforations.

本発明によれば、回転軸体と該回転軸体との係合関係で移動できる誘導体とでなる簡易かつ新規な機械的機構の適用によって穿孔刃の往復移動が可能となるため、上述した従来方式の穿孔装置に比べ、機構動作に要する空間や機構部品による占有空間が縮小でき、穿孔刃に特別な加工を施す必要もなくなる。また、駆動系の構成部品点数が低減されて機械的効率が向上できるため、消費電力や騒音・振動の低減も可能となる。特に、本発明の第二形態は、特殊材である穿孔刃に複雑な加工を行うことなく、従来のダブルギヤ回転式(特許文献3)やクランク押下回転式(特許文献4)など、穿孔刃を軸周りに回転しながら穿孔する方式の利点を有しつつ上述の効果が発揮でき、好適である。   According to the present invention, the drilling blade can be reciprocated by applying a simple and novel mechanical mechanism composed of a rotating shaft body and a derivative that can move in an engaging relationship with the rotating shaft body. Compared with the drilling device of the type, the space required for the mechanism operation and the space occupied by the mechanism parts can be reduced, and it is not necessary to perform special processing on the drilling blade. In addition, since the number of components of the drive system is reduced and mechanical efficiency can be improved, it is possible to reduce power consumption, noise and vibration. In particular, according to the second embodiment of the present invention, a drilling blade such as a conventional double gear rotary type (Patent Document 3) or a crank pressing rotary type (Patent Document 4) is used without performing complicated processing on a drilling blade which is a special material. The above-mentioned effects can be exhibited while having the advantage of the method of drilling while rotating around the axis, which is preferable.

さらに、本発明によれば、回転軸体への簡易な加工の追加により、回転軸体の回転方向を切り替えることなく穿孔刃の往復移動を連続して行うことも可能となる。
したがって、本発明の穿孔装置は、機械的に格段にコンパクトな穿孔装置となり、さらには制御的にも簡易化された穿孔装置にもなる。
Furthermore, according to the present invention, the reciprocating movement of the drilling blade can be continuously performed without switching the rotation direction of the rotating shaft body by adding a simple process to the rotating shaft body.
Therefore, the punching device of the present invention becomes a mechanically much more compact punching device, and also becomes a drilling device that is simplified in terms of control.

加えて、本発明の穿孔装置は一つの穿孔刃を一つの駆動機構で往復移動できるため、例えば本発明の穿孔装置を所望の穿孔数分だけ用いて多数穿孔用の穿孔装置として構成することができる。この構成によれば、複数の駆動機構の駆動と非駆動を選択的に連動制御する複雑な制御方式でなく、個々の穿孔刃に対応した個々の駆動機構を個別に制御する簡易な制御方式が適用できるため、多数穿孔用の穿孔装置の低コスト化に寄与できる。   In addition, since the drilling apparatus of the present invention can reciprocate one drilling blade with one drive mechanism, for example, the drilling apparatus of the present invention can be configured as a drilling apparatus for multiple drilling by using the desired number of drilling holes. it can. According to this configuration, a simple control method that individually controls each drive mechanism corresponding to each drilling blade is used instead of a complicated control method that selectively controls the drive and non-drive of a plurality of drive mechanisms. Since it can be applied, it can contribute to the cost reduction of the drilling apparatus for multiple drilling.

本発明の穿孔装置の第一形態を例示した図である。It is the figure which illustrated the 1st form of the perforation apparatus of the present invention. 図1に示す穿孔装置の詳細構成を示した図である。It is the figure which showed the detailed structure of the perforation apparatus shown in FIG. 本発明で適用できる回転軸体の二筋の螺旋状溝を例示した図である。It is the figure which illustrated the two spiral groove | channel of the rotating shaft body which can be applied by this invention. 本発明で適用できる回転軸体の螺旋状溝とこれに係合する誘導体との係合関係を例示した図である。It is the figure which illustrated the engagement relationship of the helical groove | channel of the rotating shaft body which can be applied by this invention, and the derivative | guide_body engaged with this. 本発明の穿孔装置の第二形態を例示した図である。It is the figure which illustrated the 2nd form of the punching apparatus of this invention. 図5に示す穿孔装置の詳細構成を示した図である。It is the figure which showed the detailed structure of the punching apparatus shown in FIG.

本発明は、穿孔刃を直線的に移動して被穿孔物に穿孔する穿孔装置であって、技術的に重要な特徴は、穿孔刃を駆動するための機械的機構にある。具体的には、穿孔刃駆動機構の要部を、互いに逆巻きの関係の二筋の螺旋状溝を外周に備えた回転軸体と、前記螺旋状溝に対して係合し、前記回転軸体の回転を軸方向の移動に変換する誘導体とで、構成したことにある。なお、前記回転軸体の外周に設けられた二筋の螺旋状溝が、上述の第一形態では穿孔方向側で連続し、上述の第二形態では復帰方向側で連続する。   The present invention relates to a piercing device that moves a piercing blade linearly to pierce an object to be drilled, and a technically important feature is a mechanical mechanism for driving the piercing blade. Specifically, the main part of the drilling blade driving mechanism is engaged with a rotating shaft body provided with two spiral grooves on the outer periphery in a reversely wound relationship with each other, and the rotating shaft body Is composed of a derivative that converts the rotation of the shaft into a movement in the axial direction. In addition, the two spiral grooves provided on the outer periphery of the rotating shaft body are continuous on the perforation direction side in the first embodiment described above, and are continued on the return direction side in the second embodiment described above.

上述の二筋の螺旋状溝に関し、連続とは、一方の螺旋状溝と他方の螺旋状溝が繋がって、前記誘導体が、一方の螺旋状溝から他方の螺旋状溝へ、またその逆へ、移動可能に形成されていることを意味する。また、穿孔刃が被穿孔物を穿孔するために移動する方向を穿孔方向、被穿孔物への穿孔後に穿孔刃が元の待機位置へ戻るために移動する方向を復帰方向といい、上述の回転軸体において、穿孔方向側とは軸体の被穿孔物に近い側を、復帰方向側とは軸体の被穿孔物から遠い側を意味する。   Regarding the above-mentioned two spiral grooves, continuous means that one spiral groove is connected to the other spiral groove, and the derivative is transferred from one spiral groove to the other spiral groove and vice versa. , Meaning that it is movable. Also, the direction in which the drilling blade moves to pierce the workpiece is referred to as the piercing direction, and the direction in which the piercing blade moves to return to the original standby position after piercing the workpiece is referred to as the return direction. In the shaft body, the drilling direction side means the side close to the drilled object of the shaft body, and the return direction side means the side far from the drilled object of the shaft body.

以下、本発明の穿孔装置につき、本発明者が最適と考える具体例を挙げ、図面を引用して説明する。
(穿孔装置の第一形態)
本発明の穿孔装置の第一形態を図1に例示し、その詳細構成を図2に示す。
図1に示す穿孔装置は、駆動源となるモータ1と、被穿孔物(図示せず)に穿孔する穿孔刃11と、該穿孔刃11を直線的に移動する穿孔刃駆動機構とを含む。そして、穿孔刃駆動機構は、穿孔刃11の移動方向に沿うように軸が配置された回転軸体4と、穿孔刃11を連結する側であって回転軸体4と係合する誘導体5とを有する。
Hereinafter, the punching apparatus of the present invention will be described with reference to the drawings, taking specific examples considered by the present inventor to be optimal.
(First form of punching device)
A first embodiment of the drilling device of the present invention is illustrated in FIG. 1, and its detailed configuration is shown in FIG.
The piercing device shown in FIG. 1 includes a motor 1 serving as a driving source, a piercing blade 11 that pierces an object to be drilled (not shown), and a piercing blade driving mechanism that linearly moves the piercing blade 11. The drilling blade driving mechanism includes a rotating shaft body 4 having a shaft arranged along the moving direction of the drilling blade 11, a derivative 5 that is connected to the drilling blade 11 and is engaged with the rotating shaft body 4, Have

回転軸体4は、軸が支持体6に設けられた穿孔方向に沿った貫通孔に連通され、両端側がフレーム7、8によって回転自在に支持されている。回転軸体4の外周には、互いに逆巻きの関係の二筋の螺旋状溝4aが設けられ、それぞれの螺旋状溝が穿孔方向側で連続に形成されている。また、回転軸体4のフレーム7側の軸端部には歯車3が設けられ、フレーム7に取り付けられたモータ1の回転軸には歯車2が設けられ、歯車2と歯車3とが噛み合っている。   The rotating shaft body 4 is communicated with a through hole provided in the support body 6 along the perforating direction, and both ends are rotatably supported by the frames 7 and 8. The outer periphery of the rotating shaft body 4 is provided with two spiral grooves 4a that are reversely wound with each other, and the respective spiral grooves are continuously formed on the perforation direction side. A gear 3 is provided at the shaft end of the rotating shaft body 4 on the frame 7 side, and a gear 2 is provided on the rotating shaft of the motor 1 attached to the frame 7 so that the gear 2 and the gear 3 are engaged with each other. Yes.

誘導体5は、凸部5aを有し、支持体6の前記貫通孔に直行して設けられた孔に、凸部5aが回転軸体4の螺旋状溝に入り込む位置まで挿入されている。そして、誘導体5が後退して螺旋状溝から離脱しないように、板9を用いて飛び出し防止が図られている。これにより、誘導体5は、回転軸体4の螺旋状溝に対して係合し、回転軸体4の回転によって螺旋状溝に沿って回転軸体4の軸方向へ移動可能となる。また、好ましい実施態様においては、凸部5aの先端は力の伝達および部材の耐久性を考慮して板状に構成されており、螺旋状溝の角度の変化に従って誘導体5が支持体6に設けられた前記孔の中で自在に回転できるように構成されている。なお、回転軸体の回転による誘導体の移動については、後段で詳述する。したがって、誘導体5が、穿孔方向に沿って軸が配置された回転軸体4の螺旋状溝を穿孔方向または復帰方向へ移動すると、支持体6もまた誘導体5と同方向に移動される。   The derivative 5 has a convex portion 5 a and is inserted into a hole provided so as to go straight to the through hole of the support 6 to a position where the convex portion 5 a enters the spiral groove of the rotating shaft body 4. Further, the plate 9 is used to prevent the derivative 5 from retreating and leaving the spiral groove. As a result, the derivative 5 is engaged with the spiral groove of the rotating shaft body 4 and can move in the axial direction of the rotating shaft body 4 along the spiral groove by the rotation of the rotating shaft body 4. In a preferred embodiment, the tip of the convex portion 5a is formed in a plate shape in consideration of force transmission and durability of the member, and the derivative 5 is provided on the support body 6 according to the change in the angle of the spiral groove. It is configured to be able to rotate freely in the formed hole. The movement of the derivative by the rotation of the rotating shaft will be described in detail later. Therefore, when the derivative 5 moves in the drilling direction or the return direction in the spiral groove of the rotating shaft body 4 whose axis is arranged along the drilling direction, the support 6 is also moved in the same direction as the derivative 5.

穿孔刃11は、誘導体5を取り付けた支持体6に対し、ピン10によって取り付けられている。したがって、穿孔刃11は、誘導体5が回転軸体4の回転を軸方向の移動に変換して移動するとき、誘導体5と同方向へ移動する支持体6によって、誘導体5と同方向へ移動される。
よって、上述した構成によれば、回転軸体4の一方回転により、穿孔刃11は、誘導体5が一方の螺旋状溝に沿って穿孔方向へ移動されて穿孔方向へ移動し、被穿孔物となるシート材などを打ち抜き穿孔でき、この後は、誘導体5が他方の螺旋状溝に沿って復帰方向へ移動されて復帰方向へ移動し、待機位置に戻ることができる。
The perforating blade 11 is attached by a pin 10 to the support 6 to which the derivative 5 is attached. Therefore, the perforating blade 11 is moved in the same direction as the derivative 5 by the support 6 that moves in the same direction as the derivative 5 when the derivative 5 moves by converting the rotation of the rotary shaft 4 into the movement in the axial direction. The
Therefore, according to the above-described configuration, by one rotation of the rotary shaft body 4, the drilling blade 11 is moved in the drilling direction by moving the derivative 5 along the one spiral groove, and moves to the drilling direction. The sheet material or the like to be punched can be punched, and thereafter, the derivative 5 can be moved in the return direction along the other spiral groove, moved in the return direction, and returned to the standby position.

(穿孔装置の第二形態)
次に、本発明の穿孔装置の第二形態を図5に例示し、その詳細構成を図6に示す。
図5に示す穿孔装置は、駆動源となるモータ21と、被穿孔物(図示せず)に穿孔する穿孔刃31と、該穿孔刃31を回転しながら直線的に移動する穿孔刃駆動機構とを含む。そして、穿孔刃駆動機構は、穿孔刃31を連結する側であって該穿孔刃31の移動方向に沿うように軸が配置された回転軸体24と、該回転軸体24と係合する誘導体25とを有する。
(Second form of punching device)
Next, a second embodiment of the drilling device of the present invention is illustrated in FIG. 5, and its detailed configuration is shown in FIG.
The piercing device shown in FIG. 5 includes a motor 21 serving as a drive source, a piercing blade 31 that pierces an object to be drilled (not shown), and a piercing blade drive mechanism that moves linearly while rotating the piercing blade 31. including. The drilling blade drive mechanism includes a rotary shaft body 24 on the side where the drilling blade 31 is coupled and a shaft arranged along the moving direction of the drilling blade 31, and a derivative engaged with the rotary shaft body 24. 25.

回転軸体24は、軸が支持体26に設けられた穿孔方向に沿った貫通孔に連通され、フレーム27に固定された前記支持体26によって回転自在に支持されている。回転軸体24の外周には、互いに逆巻きの関係の二筋の螺旋状溝24aが設けられ、それぞれの螺旋状溝が復帰方向側で連続に形成されている。また、回転軸体24の穿孔方向側の軸端部にはピン30を用いて穿孔刃31が取り付けられ、復帰方向側の軸端部には歯車23が取り付けられている。また、歯車23は、フレーム77に取り付けられたモータ21の回転軸に取り付けられた歯車22に対して噛み合っている。なお、歯車23は回転軸体24の軸方向への移動に伴って移動するため、歯車22および歯車23の噛み合いが外れないように、歯車22と歯車23の一方または両方を軸方向に長く構成することが好ましい。   The rotary shaft body 24 is rotatably supported by the support body 26 fixed to the frame 27 so that the shaft communicates with a through hole provided in the support body 26 along the drilling direction. The outer periphery of the rotating shaft body 24 is provided with two spiral grooves 24a that are reversely wound with each other, and each spiral groove is continuously formed on the return direction side. Further, a drilling blade 31 is attached to the shaft end portion of the rotary shaft body 24 on the drilling direction side using a pin 30, and a gear 23 is attached to the shaft end portion on the return direction side. The gear 23 meshes with the gear 22 attached to the rotating shaft of the motor 21 attached to the frame 77. Since the gear 23 moves as the rotary shaft 24 moves in the axial direction, one or both of the gear 22 and the gear 23 are configured to be long in the axial direction so that the gear 22 and the gear 23 are not disengaged. It is preferable to do.

誘導体25は、凸部25aを有し、支持体26の前記貫通孔に直行して設けられた孔に、凸部25aが回転軸体24の螺旋状溝に入り込む位置まで挿入されている。そして、誘導体5が後退して螺旋状溝から離脱しないように、板29を用いて飛び出し防止が図られている。このように、回転軸体24外の支持体26に固定された誘導体25が軸方向に移動自在に配置された回転軸体24と係合することで、回転軸体24の回転によって該回転軸体24自体が穿孔方向へ移動されるのである。したがって、回転軸体24の回転により、固定された誘導体25が回転軸体24の案内標点となって、一方または他方の螺旋状溝24aへ誘導体25が係合し、回転軸体24自体が穿孔方向または復帰方向へ移動することとなる。なお、回転軸体の回転による回転軸体自体の軸方向への移動については、後段でも詳述する。   The derivative 25 has a convex portion 25 a, and is inserted into a hole provided so as to be orthogonal to the through hole of the support body 26 to a position where the convex portion 25 a enters the spiral groove of the rotating shaft body 24. Further, the plate 29 is used to prevent the derivative 5 from retreating and leaving the spiral groove. In this way, the derivative 25 fixed to the support body 26 outside the rotating shaft body 24 is engaged with the rotating shaft body 24 that is disposed so as to be movable in the axial direction. The body 24 itself is moved in the drilling direction. Therefore, by the rotation of the rotating shaft body 24, the fixed derivative 25 becomes a guide mark of the rotating shaft body 24, the derivative 25 engages with one or the other spiral groove 24a, and the rotating shaft body 24 itself It will move in the drilling direction or return direction. Note that the movement of the rotary shaft itself in the axial direction due to the rotation of the rotary shaft will be described in detail later.

穿孔刃31は、回転軸体24の穿孔方向側の軸端部に取り付けられている。したがって、上述のように回転軸体24自体の軸方向への移動を生じた場合、回転軸体24に連結する穿孔刃31もまた回転軸体24と同方向へ移動される。
よって、上述した構成によれば、回転軸体24の一方回転により、誘導体25の一方の螺旋状溝への係合によって回転軸体24自体が穿孔方向へ回転しながら移動されるため、穿孔刃31もまた回転されながら穿孔方向へ移動されることになる。それ故に、被穿孔物となるシート材などを穿孔刃31の回転による引き切り効果を利用しながら打ち抜き穿孔できる。そして、穿孔後、誘導体5の他方の螺旋状溝への係合によって回転軸体24自体が回転しながら復帰方向へ移動されるため、穿孔刃31は、回転されながら復帰方向へ移動され、待機位置に戻ることができる。
The piercing blade 31 is attached to the shaft end of the rotating shaft body 24 on the piercing direction side. Accordingly, when the rotation shaft body 24 itself moves in the axial direction as described above, the drilling blade 31 connected to the rotation shaft body 24 is also moved in the same direction as the rotation shaft body 24.
Therefore, according to the above-described configuration, the rotation shaft body 24 is moved while rotating in the drilling direction by the one rotation of the rotation shaft body 24 by the engagement of the derivative 25 with the one spiral groove. 31 is also moved in the drilling direction while being rotated. Therefore, it is possible to punch and punch a sheet material or the like that is to be punched while utilizing the cutting effect by the rotation of the punching blade 31. Then, after the drilling, the rotary shaft 24 itself is moved in the return direction while rotating due to the engagement of the derivative 5 with the other spiral groove, so that the drilling blade 31 is moved in the return direction while being rotated, and waits. Can return to position.

(回転軸体の二筋の螺旋状溝)
本発明で適用できる二筋の螺旋状溝は、互いに逆巻きの関係で、溝の断面形状が継続されて、第一形態では穿孔方向側で連続するように、第二形態では復帰方向側で連続するように、形成されている。その構成について、図3を用いて説明する。なお、図3に示す螺旋状溝は、その構成をより明確にするために、図2に示す回転軸体4の螺旋溝4aよりも、また図6に示す回転軸体24の螺旋溝24aよりも、螺旋状溝の巻き数を増してある。
(Two spiral grooves of rotating shaft)
The two spiral grooves that can be applied in the present invention are reversely wound with each other, and the cross-sectional shape of the grooves is continued. To be formed. The configuration will be described with reference to FIG. In order to clarify the configuration of the spiral groove shown in FIG. 3, the spiral groove 4a of the rotary shaft body 4 shown in FIG. 2 and the spiral groove 24a of the rotary shaft body 24 shown in FIG. However, the number of turns of the spiral groove is increased.

図3に示す二筋の螺旋状溝は、互いに逆巻きの関係で、穿孔方向側と復帰方向側の両側で連続し、溝に入り込んで係合する誘導体(図示せず)が各矢印で示すように自在に移動可能となるように形成されている。二筋の螺旋状溝が両側で連続する構成の回転軸体は、本発明の第一形態と第二形態の両方に適用できる。なお、二筋の螺旋状溝が穿孔方向側に限り連続する構成の回転軸体は第一形態に、復帰方向側に限り連続する構成の回転軸体は第二形態に、それぞれ適用できる。   The two spiral grooves shown in FIG. 3 are continuously wound on both sides of the perforation direction and the return direction in a reversely wound relationship, and derivatives (not shown) that enter and engage with the grooves are indicated by arrows. It is formed to be freely movable. A rotating shaft body having a configuration in which two spiral grooves are continuous on both sides can be applied to both the first embodiment and the second embodiment of the present invention. A rotating shaft body having a configuration in which two spiral grooves are continuous only on the perforation direction side can be applied to the first embodiment, and a rotating shaft body having a configuration continuous only on the return direction side can be applied to the second embodiment.

(回転軸体と誘導体との係合関係)
図4に、図6に示す第二形態の具体例に基づき、回転軸体24と誘導体25の係合関係例を、一部断面を含んで示す。
誘導体25は、図示しないフレーム27に固定された支持体26と、板29とによって、誘導体25の係合による回転軸体24自体の軸方向への移動を妨げないように、凸部25aを回転軸体24の螺旋状溝24aに入り込ませて組み付けている。そして、支持体26に設けた孔に挿入された誘導体25は、該孔において回転および前後微動が自在であるため、凸部25aが螺旋状溝24aの壁面の当接状態に対応して好適な姿勢になることができる。このような誘導体25の凸部25aの螺旋状溝24aへの入り込みによって、回転軸体24と誘導体25との係合関係を保つことができる。なお、螺旋状溝や凸部の形状や材質などは、回転軸体の径や長さ、穿孔刃などの可動部分の質量や機械的構成を考慮し、適宜設計することができる。
(Engagement relationship between rotating shaft body and derivative)
FIG. 4 shows an example of the engagement relationship between the rotating shaft body 24 and the derivative 25 including a partial cross section based on the specific example of the second form shown in FIG.
The derivative 25 rotates the convex portion 25a by the support 26 fixed to the frame 27 (not shown) and the plate 29 so as not to prevent the rotation shaft 24 itself from moving in the axial direction due to the engagement of the derivative 25. The shaft body 24 is assembled by being inserted into the spiral groove 24a. And since the derivative | guide_body 25 inserted in the hole provided in the support body 26 is free to rotate and finely move back and forth in the hole, the convex portion 25a is suitable for the contact state of the wall surface of the spiral groove 24a. It can be a posture. By engaging the protrusion 25a of the derivative 25 into the spiral groove 24a, the engagement relationship between the rotary shaft body 24 and the derivative 25 can be maintained. It should be noted that the shape and material of the spiral groove and the convex portion can be appropriately designed in consideration of the diameter and length of the rotary shaft body, the mass of the movable part such as the drilling blade, and the mechanical configuration.

(回転軸体の回転による誘導体の移動)
図4に示す構成の場合、回転軸体24の回転により、固定された誘導体25は移動できず、回転軸体24は回転しながら自ら軸方向に移動できる。また、図示は略すが、誘導体側を固定せず移動自在とし、回転軸体の軸方向への移動を止めた場合、回転軸体の回転により、回転軸体は移動できず、誘導体側が軸方向に移動できる。
(Movement of derivative by rotation of rotating shaft)
In the case of the configuration shown in FIG. 4, the fixed derivative 25 cannot move due to the rotation of the rotating shaft body 24, and the rotating shaft body 24 can itself move in the axial direction while rotating. Although illustration is omitted, if the derivative side is fixed and movable, and the movement of the rotating shaft body in the axial direction is stopped, the rotating shaft body cannot be moved by rotation of the rotating shaft body, and the derivative side is axially moved. Can be moved to.

さらに詳細に説明すると、図3において、例えば図3の右方を穿孔方向とした場合、回転軸体の一方回転により、一方の螺旋状溝を矢印Aで示すように移動した誘導体(図示せず)は、二筋の螺旋状溝が連続する穿孔方向側の箇所において、矢印Bから矢印Cそして矢印Dで示すように他方の螺旋状溝へと移行されることになる。同様に、回転軸体の同じ一方回転により、一方の螺旋状溝を矢印A’で示すように移動した誘導体(図示せず)は、復帰方向側の箇所において、矢印B’から矢印C’そして矢印D’で示すように他方の螺旋状溝へと移行される。   More specifically, in FIG. 3, for example, when the right side of FIG. 3 is the drilling direction, a derivative (not shown) that has moved one spiral groove as indicated by an arrow A by one rotation of the rotating shaft body. ) Is transferred from the arrow B to the other spiral groove as indicated by the arrow C and the arrow D at a position on the perforation direction side where the two spiral grooves are continuous. Similarly, a derivative (not shown) that has moved one spiral groove as indicated by an arrow A ′ by the same one rotation of the rotating shaft body is changed from an arrow B ′ to an arrow C ′ at a position on the return direction side. As indicated by the arrow D ′, the process moves to the other spiral groove.

したがって、互いに逆巻きの関係で穿孔方向側で連続する二筋の螺旋状溝に対して誘導体を上述のように係合させる構成により、回転軸体の一方回転により、つまり回転軸体の回転方向を切り替えることなく、回転軸体の穿孔方向側で穿孔方向から復帰方向へと、回転軸体の復帰方向側で復帰方向から穿孔方向へと、誘導体の移動方向を連続的に切り替えることができる。なお、二筋の螺旋状溝が穿孔方向側あるいは復帰方向側のどちらかに限り連続する構成の回転軸体を適用する場合は、1回の穿孔動作を回転軸体の一方回転によって行い、次回の穿孔動作を回転軸体の他方回転によって行うことができる。   Therefore, the structure in which the derivative is engaged with the two spiral grooves continuous on the perforation direction side in a reversely wound relationship as described above, the rotation direction of the rotation shaft body is changed by one rotation of the rotation shaft body. Without switching, the moving direction of the derivative can be continuously switched from the drilling direction to the return direction on the drilling direction side of the rotating shaft, and from the return direction to the drilling direction on the return direction side of the rotary shaft body. In addition, when applying a rotating shaft body having a configuration in which two spiral grooves are continuous only on either the drilling direction side or the return direction side, one drilling operation is performed by one rotation of the rotating shaft body, and the next time Can be performed by the other rotation of the rotating shaft.

(回転軸体と誘導体の間の移動)
上述した回転軸体と誘導体の構成において、軸方向への移動を止めた回転軸体を適用した場合、回転軸体の回転により、回転軸体が螺旋状溝を介して誘導体を押して駆動し、螺旋状溝に沿って誘導体を回転軸体の軸方向へ移動できる。また、回転軸体外に固定した誘導体を適用した場合、回転軸体の回転により、回転軸体が螺旋状溝を介して誘導体を押そうとするものの誘導体が固定されているため、誘導体が螺旋状溝を介して回転軸体を押して駆動し、回転する回転軸体を軸方向へ移動できる。したがって、上述した構成関係にあれば、誘導体と回転軸体とは、誘導体が移動するか、回転軸体が移動するか、の相対移動ができる構成となる。
(Movement between rotating shaft and derivative)
In the configuration of the rotary shaft body and the derivative described above, when the rotary shaft body that stops moving in the axial direction is applied, the rotary shaft body is driven by pushing the derivative through the spiral groove by the rotation of the rotary shaft body, The derivative can be moved in the axial direction of the rotary shaft along the spiral groove. In addition, when a derivative fixed outside the rotating shaft body is applied, the derivative is fixed in a helical form because the rotating shaft body tries to push the derivative through the spiral groove by rotation of the rotating shaft body. The rotating shaft body can be driven and driven through the groove, and the rotating shaft body can be moved in the axial direction. Therefore, if it has the structure mentioned above, a derivative | guide_body and a rotating shaft body will become a structure which can be relatively moved whether a derivative | guide_body moves or a rotating shaft body moves.

以上述べたように、本発明の穿孔装置は、穿孔刃駆動機構の要部に、穿孔方向側で連続する互いに逆巻きの関係の二筋の螺旋状溝を軸の外周に備え、前記穿孔刃の移動方向に沿って前記軸が延長された回転軸体と、前記穿孔刃に連結し、前記螺旋状溝に対して係合し、前記回転軸体の回転を軸方向の移動に変換する誘導体と、を有する。あるいは、復帰方向側で連続する互いに逆巻きの関係の二筋の螺旋状溝を軸の外周に備え、前記穿孔刃の移動方向に沿って前記軸が延長され、かつ、前記軸の穿孔方向端部に前記穿孔刃が連結した回転軸体と、前記螺旋状溝に対して係合し、前記回転軸体の回転を前記回転軸体自体の軸方向の移動に変換する誘導体と、を有する。すなわち、本発明の穿孔装置は、誘導体と回転軸体との相対移動を、簡易かつ新規な機械的機構で実現して穿孔刃の往復移動を可能としたものである。   As described above, the piercing device of the present invention is provided with two spiral grooves on the outer periphery of the shaft, which are provided in the main part of the piercing blade driving mechanism and have two spiral grooves that are continuously wound in the piercing direction side. A rotating shaft body having the shaft extended along a moving direction, a derivative coupled to the drilling blade, engaged with the spiral groove, and converting the rotation of the rotating shaft body into axial movement; Have. Alternatively, two spiral grooves that are reversely wound in relation to each other on the return direction side are provided on the outer periphery of the shaft, the shaft is extended along the moving direction of the drilling blade, and the end of the shaft in the drilling direction And a derivative that engages with the spiral groove and converts the rotation of the rotating shaft body into movement in the axial direction of the rotating shaft body itself. That is, the perforating apparatus of the present invention realizes the relative movement between the derivative and the rotating shaft body by a simple and novel mechanical mechanism, and enables the reciprocating movement of the perforating blade.

したがって、穿孔装置において、機構動作に要する空間や機構部品による占有空間が縮小でき、穿孔刃に特別な加工を施す必要もなくなる。また、駆動系の構成部品点数が低減されて機械的効率が向上できるため、消費電力や騒音・振動の低減も可能となる。さらに、二筋の螺旋状溝の両端とも連続させることにより、回転軸体の回転方向を切り替えることなく穿孔刃の往復移動を連続して行うことも可能となる。
よって、本発明の穿孔装置は、機械的に格段にコンパクトな穿孔装置となり、さらには制御的にも簡易化された穿孔装置にもなる。
Therefore, in the drilling apparatus, the space required for the mechanism operation and the space occupied by the mechanism parts can be reduced, and it is not necessary to perform special processing on the drilling blade. In addition, since the number of components of the drive system is reduced and mechanical efficiency can be improved, it is possible to reduce power consumption, noise and vibration. Furthermore, by making both ends of the two spiral grooves continuous, the reciprocating movement of the drilling blade can be continuously performed without switching the rotation direction of the rotary shaft body.
Therefore, the punching device of the present invention becomes a mechanically much more compact punching device, and further becomes a punching device that is simplified in terms of control.

加えて、本発明の穿孔装置は、一つの穿孔刃を一つの駆動機構で往復移動できる。それ故に、本発明の穿孔装置を所望の穿孔数分だけ複数用いて多数穿孔用の穿孔装置として構成することができる。この構成によれば、複数の駆動機構の駆動と非駆動を選択的に連動制御する複雑な制御方式でなく、個々の穿孔刃に対応した個々の駆動機構を個別に制御する簡易な制御方式が適用できるため、多数穿孔用の穿孔装置の低コスト化に寄与できる。   In addition, the perforating apparatus of the present invention can reciprocate one perforating blade with one driving mechanism. Therefore, a plurality of perforating apparatuses according to the present invention can be used as many perforations as desired to form a perforating apparatus for a large number of perforations. According to this configuration, a simple control method that individually controls each drive mechanism corresponding to each drilling blade is used instead of a complicated control method that selectively controls the drive and non-drive of a plurality of drive mechanisms. Since it can be applied, it can contribute to the cost reduction of the drilling apparatus for multiple drilling.

1.モータ、2.歯車、3.歯車、4.回転軸体、4a.螺旋状溝、5.誘導体、5a.凸部、6.支持体、7.フレーム、8.フレーム、9.板、10.ピン、11.穿孔刃、21.モータ、22.歯車、23.歯車、24.回転軸体、24a.螺旋状溝、25.誘導体、25a.凸部、26.支持体、27.フレーム、29.板、30.ピン、31.穿孔刃 1. Motor, 2. Gears, 3. Gears, 4. Rotating shaft body, 4a. 4. spiral groove; Derivatives, 5a. Convex part, 6. 6. support, Frame, 8. Frame, 9. Plate, 10. Pin, 11. Drilling blade, 21. Motor, 22. Gears, 23. Gears, 24. Rotating shaft 24a. Spiral groove, 25. Derivatives, 25a. Convex part, 26. Support, 27. Frame, 29. Plate, 30. Pin, 31. Perforated blade

Claims (6)

穿孔刃を直線的に移動して被穿孔物に穿孔する穿孔装置であって、穿孔方向側で連続する互いに逆巻きの関係の二筋の螺旋状溝を軸の外周に備え、前記穿孔刃の移動方向に沿って前記軸が延長された回転軸体と、前記回転軸体の軸が連通する穿孔方向に沿った貫通孔を備える支持体と、前記穿孔刃に連結し、前記螺旋状溝に対して凸部で係合し、前記回転軸体の回転を軸方向の移動に変換する誘導体と、を有し、前記誘導体は、前記貫通孔に直交して設けられた前記支持体の孔に、前記凸部が前記回転軸体の螺旋状溝に入り込む位置まで挿入され、前記回転軸体の回転により、前記誘導体が前記螺旋状溝の一方に沿って穿孔方向へ移動することによって、前記誘導体に連結した前記穿孔刃が穿孔方向へ移動し、前記穿孔刃が前記被穿孔物を穿孔した後、前記誘導体が前記螺旋状溝の他方に沿って復帰方向へ移動することによって、前記誘導体および前記穿孔刃が復帰方向へ移動する、ことを特徴とする穿孔装置。 A drilling device for linearly moving a drilling blade to drill an object to be drilled, comprising two spiral grooves that are continuously wound in the reverse direction of the drilling direction on the outer periphery of the shaft, and the movement of the drilling blade A rotating shaft body having the shaft extended along a direction, a support body having a through-hole along the drilling direction in which the shaft of the rotating shaft body communicates, and the drilling blade connected to the spiral groove And a derivative that engages with a convex part and converts the rotation of the rotating shaft body into movement in the axial direction, and the derivative is provided in the hole of the support body provided orthogonal to the through hole, The convex portion is inserted to a position where it enters the spiral groove of the rotating shaft body, and the derivative moves to the perforating direction along one of the spiral grooves by the rotation of the rotating shaft body. The connected drilling blade moves in the drilling direction, and the drilling blade punches the workpiece. After by the derivative moves return direction along the other of said helical grooves, punching device wherein said derivative and said punching blade moves return direction, characterized in that. 前記回転軸体の二筋の螺旋状溝が復帰方向側においても連続していることを特徴とする請求項1に記載の穿孔蔵置。   2. The perforated storage according to claim 1, wherein the two spiral grooves of the rotating shaft body are continuous on the return direction side. 穿孔刃を回転させながら直線的に移動して被穿孔物に穿孔する穿孔装置であって、復帰方向側で連続する互いに逆巻きの関係の二筋の螺旋状溝を軸の外周に備え、前記穿孔刃の移動方向に沿って前記軸が延長され、かつ、前記軸の穿孔方向端部に前記穿孔刃が連結した回転軸体と、前記回転軸体の軸が連通する穿孔方向に沿った貫通孔を備える支持体と、前記螺旋状溝に対して凸部で係合し、前記回転軸体の回転を前記回転軸体自体の軸方向の移動に変換する誘導体と、を有し、前記誘導体は、前記貫通孔に直交して設けられた前記支持体の孔に、前記凸部が前記回転軸体の螺旋状溝に入り込む位置まで挿入され、前記回転軸体の回転により、前記回転軸体が穿孔方向へ移動することによって、前記回転軸体に連結した前記穿孔刃が回転しながら穿孔方向へ移動し、前記穿孔刃が前記被穿孔物を穿孔した後、前記誘導体の前記螺旋状溝の他方への係合によって、前記回転軸体および前記穿孔刃が復帰方向へ移動する、ことを特徴とする穿孔装置。 A perforating apparatus that linearly moves while rotating a perforating blade to perforate an object to be perforated, and includes two spiral grooves that are continuously wound in a reverse direction on the return direction side on the outer periphery of the shaft. A rotating shaft body in which the shaft is extended along the moving direction of the blade and the drilling blade is connected to an end portion of the shaft in the drilling direction, and a through hole along the drilling direction in which the shaft of the rotating shaft body communicates And a derivative that engages with a convex portion with respect to the spiral groove and converts rotation of the rotating shaft body into axial movement of the rotating shaft body itself, and the derivative is The protrusion is inserted into a hole of the support body provided perpendicular to the through hole until the position where the convex part enters the spiral groove of the rotary shaft body, and the rotary shaft body is rotated by the rotation of the rotary shaft body. By moving in the drilling direction, the drilling blade connected to the rotary shaft does not rotate. After moving in the drilling direction, and the drilling blade punches the workpiece, the rotary shaft body and the drilling blade move in the return direction by the engagement of the derivative with the other spiral groove. A perforating apparatus. 前記回転軸体の二筋の螺旋状溝が穿孔方向側においても連続していることを特徴とする請求項3に記載の穿孔蔵置。   The perforated storage according to claim 3, wherein the two spiral grooves of the rotating shaft body are continuous on the perforating direction side. 請求項1または2に記載の穿孔装置を複数用いて多数穿孔用に構成していることを特徴とする穿孔装置。   3. A perforating apparatus using a plurality of perforating apparatuses according to claim 1 or 2 for a large number of perforations. 請求項3または4に記載の穿孔装置を複数用いて多数穿孔用に構成していることを特徴とする穿孔装置。   5. A perforating apparatus using a plurality of perforating apparatuses according to claim 3 or 4 for a large number of perforations.
JP2011213695A 2011-09-29 2011-09-29 Drilling device Active JP5892688B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011213695A JP5892688B2 (en) 2011-09-29 2011-09-29 Drilling device
CN201210365301.5A CN103029166B (en) 2011-09-29 2012-09-26 Perforating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011213695A JP5892688B2 (en) 2011-09-29 2011-09-29 Drilling device

Publications (2)

Publication Number Publication Date
JP2013071226A JP2013071226A (en) 2013-04-22
JP5892688B2 true JP5892688B2 (en) 2016-03-23

Family

ID=48476143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011213695A Active JP5892688B2 (en) 2011-09-29 2011-09-29 Drilling device

Country Status (1)

Country Link
JP (1) JP5892688B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009509B2 (en) * 2014-08-12 2016-10-19 株式会社リヒトラブ Drilling device
CN104233298B (en) * 2014-09-12 2016-10-05 昆山科森科技股份有限公司 Manufacture method for the continuous etching and processing of metal material belt
CN112077194B (en) * 2020-08-21 2022-07-29 九江新恒机械制造有限公司 Stamping equipment for automobile parts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039097A (en) * 1983-08-09 1985-02-28 安西化成工業株式会社 Drill for continuous plastic film band
JPS6056685U (en) * 1983-09-27 1985-04-20 日本鋼管株式会社 Winch wire shifter device
JPH03111200A (en) * 1989-09-21 1991-05-10 Hitachi Metals Ltd Perforating device for sheet member
JPH058996A (en) * 1991-06-28 1993-01-19 Toyota Autom Loom Works Ltd Winding device for wire of winch
JPH1034406A (en) * 1996-07-25 1998-02-10 Asahi Chem Ind Co Ltd Boring tool and forming method of bottom expansion hole
JP2003136481A (en) * 2001-11-01 2003-05-14 Hitachi Metals Ltd Sheet material boring device
JP3158047U (en) * 2009-12-28 2010-03-11 株式会社セーコウ Sheet punching device
CN201619097U (en) * 2010-01-11 2010-11-03 付俊杰 Multifunctional electric tool

Also Published As

Publication number Publication date
JP2013071226A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5792965B2 (en) Automatic bookbinding machine punching device structure
JP5892688B2 (en) Drilling device
JP2011161601A (en) Punching device
JP6487751B2 (en) Rotor and pump device
JP2011161601A5 (en)
JP2008043993A (en) Linear motor-mounted press machine
JP2007098546A (en) Punch device
JP5214689B2 (en) Drilling device
JP4709422B2 (en) Drilling device
US20050132859A1 (en) Electromotive hole puncher
JP6083895B2 (en) Drilling device
JP2002337095A (en) Punch unit
JP5988482B2 (en) Drilling device having a cylindrical drilling blade
JP5346733B2 (en) Drilling device
JP6133666B2 (en) Automatic threading device
JP3995193B2 (en) Sheet material punching device
JP5741953B2 (en) Punching device
JP2005254364A (en) Power punching device
CN103029166B (en) Perforating device
JP2005088156A (en) Sheet material punching device
CN219114892U (en) Double-sided perforating machine
JP6649066B2 (en) Deburring device
KR101193089B1 (en) Piercing unit for forming piercing hole in metal strip and, method for piercing
JPH10309694A (en) Sheet material drilling device
CN215698509U (en) Sheet punching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5892688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350