JP5885622B2 - Slurry composition containing basic ceramics - Google Patents

Slurry composition containing basic ceramics Download PDF

Info

Publication number
JP5885622B2
JP5885622B2 JP2012185618A JP2012185618A JP5885622B2 JP 5885622 B2 JP5885622 B2 JP 5885622B2 JP 2012185618 A JP2012185618 A JP 2012185618A JP 2012185618 A JP2012185618 A JP 2012185618A JP 5885622 B2 JP5885622 B2 JP 5885622B2
Authority
JP
Japan
Prior art keywords
group
slurry composition
weight
cationic
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012185618A
Other languages
Japanese (ja)
Other versions
JP2013067552A5 (en
JP2013067552A (en
Inventor
修一 稲家
修一 稲家
吉田 宏之
宏之 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012185618A priority Critical patent/JP5885622B2/en
Publication of JP2013067552A publication Critical patent/JP2013067552A/en
Publication of JP2013067552A5 publication Critical patent/JP2013067552A5/ja
Application granted granted Critical
Publication of JP5885622B2 publication Critical patent/JP5885622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

本発明は、塩基性セラミックス含有スラリー組成物に関する。   The present invention relates to a basic ceramic-containing slurry composition.

セラミックス微粉末を含有するスラリー組成物は、シート成形により、電子機器分野におけるセラミック電子部品に使用される。とりわけ高度な電子機器分野におけるエレクトロセラミック部品の製造において、塩基性セラミックス含有スラリー組成物から製造される焼成前のセラミックス成形品(セラミックシート)が好適に用いられるが、成形時の異物付着防止の観点からセラミックシートの帯電防止性が要求される。   The slurry composition containing the ceramic fine powder is used for ceramic electronic components in the electronic equipment field by sheet molding. In particular, in the production of electroceramic parts in the field of advanced electronic equipment, a ceramic molded product (ceramic sheet) before firing produced from a basic ceramic-containing slurry composition is preferably used. Therefore, the antistatic property of the ceramic sheet is required.

特許文献1は、帯電防止性を備えた分散剤としてアミジニウムカチオンの有機塩酸を含む、セラミックス製造用スラリー組成物を開示する。   Patent Document 1 discloses a slurry composition for producing ceramics containing organic hydrochloric acid of an amidinium cation as a dispersant having antistatic properties.

特開2002−321981号公報JP 2002-321981 A

積層セラミック電子部品においては、電子機器の小型化、高性能化が進められており、それに伴ってセラミック材料の小粒径化、セラミックシートの薄膜化が進んでいる。しかしながら、セラミック材料の小粒径化、セラミックシートの薄膜化によって、従来よりもセラミックシートの強度不足や剥離性の悪化といったハンドリング性の問題が大きくなっている。特許文献1はセラミックシートの帯電防止性向上について開示するが、強度や剥離性等のハンドリング性に関して性能が不十分であり、また、厚み15μm以下のセラミックシートを製造することやそれに伴う問題点についての認識も示されていない。   In multilayer ceramic electronic components, electronic devices have been reduced in size and performance, and accordingly, the ceramic material has been reduced in particle size and the ceramic sheet has been reduced in thickness. However, with the reduction in the particle size of the ceramic material and the thinning of the ceramic sheet, the handling problems such as the insufficient strength of the ceramic sheet and the deterioration of the peelability have become larger than before. Patent Document 1 discloses improvement in antistatic properties of ceramic sheets, but performance is insufficient with respect to handling properties such as strength and releasability, and problems associated with the production of ceramic sheets having a thickness of 15 μm or less. The recognition of is also not shown.

本発明は、ハンドリング性に優れるセラミックシートを製造可能な塩基性セラミックス含有スラリー組成物を提供する。好ましくは、本発明は、剥離帯電量及び剥離力が小さく、かつ、シート強度すなわち靭性に優れるセラミックシートを製造可能な塩基性セラミックス含有スラリー組成物を提供する。   The present invention provides a basic ceramic-containing slurry composition capable of producing a ceramic sheet having excellent handling properties. Preferably, the present invention provides a basic ceramic-containing slurry composition capable of producing a ceramic sheet having a small peel charge amount and peel force and excellent sheet strength, that is, toughness.

本発明は、含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物、高分子分散剤、非水系溶媒、塩基性セラミックス材料及びポリビニルアセタール樹脂を含有するスラリー組成物に関する。   The present invention relates to a slurry composition containing a cationic compound containing a nitrogen-containing heteroaromatic quaternary ammonium cation group, a polymer dispersant, a non-aqueous solvent, a basic ceramic material, and a polyvinyl acetal resin.

本発明によれば、セラミックシートにおいて帯電防止性、剥離性及び靭性に優れる塩基性セラミックス含有スラリー組成物の提供が可能となる。したがって、本発明の塩基性セラミックス含有スラリー組成物によれば、好ましくは、セラミックシートのハンドリング特性が向上することにより、品質が向上した積層型セラミック電子部品を効率よく製造できる。また、セラミックシートの薄膜化が進行すれば、従来よりもさらに高い強度や剥離性が要求されるが、本発明によれば、例えば、厚み15μm以下の薄いセラミックシートにおいても、ハンドリング特性を向上させることができ、高品質の積層型セラミック電子部品を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, provision of the basic ceramic containing slurry composition which is excellent in antistatic property, peelability, and toughness in a ceramic sheet | seat is attained. Therefore, according to the basic ceramic-containing slurry composition of the present invention, it is preferable that a multilayer ceramic electronic component with improved quality can be efficiently manufactured by improving the handling characteristics of the ceramic sheet. Further, if the ceramic sheet is made thinner, higher strength and releasability than before are required. However, according to the present invention, for example, even in a thin ceramic sheet having a thickness of 15 μm or less, handling characteristics are improved. It is possible to manufacture a high-quality multilayer ceramic electronic component.

本発明は、非水系溶媒、塩基性セラミックス材料及びポリビニルアセタール樹脂を含有するスラリー組成物に、帯電防止剤として含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物を含有させ、さらに高分子分散剤とを含有させることにより、帯電防止性、剥離性及び靭性に優れる薄層化セラミックシートを製造できるという知見に基づく。   In the present invention, a slurry composition containing a non-aqueous solvent, a basic ceramic material, and a polyvinyl acetal resin contains a cation compound containing a nitrogen-containing heteroaromatic quaternary ammonium cation group as an antistatic agent, and a polymer. It is based on the knowledge that a thin-layered ceramic sheet excellent in antistatic properties, peelability and toughness can be produced by containing a dispersant.

本発明の効果発現のメカニズムの詳細は不明であるが、以下の様に推定している。まず、帯電防止剤として含有させる含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物は、その芳香族性により、π電子及びカチオンが非局在化するため、スラリー組成物中の塩基性セラミックス材料及び高分子分散剤との相互作用が小さくなり、それゆえセラミックシート表面へのブリードアウトが容易に起こり、優れた帯電防止能と良好な剥離性を発現する。また、高分子分散剤がセラミックス材料の表面に吸着することにより前記カチオン化合物がセラミックス材料表面に吸着することが抑制され、セラミックシートに均一に分散して可塑性を付与することによって、セラミックシートの靭性が向上する。但し、これらは推定であって、本発明は、これらメカニズムに限定されない。   The details of the mechanism of the effect of the present invention are not clear, but are estimated as follows. First, since a cation compound containing a nitrogen-containing heteroaromatic quaternary ammonium cation group to be contained as an antistatic agent delocalizes π electrons and cations due to its aromaticity, the basicity in the slurry composition The interaction between the ceramic material and the polymer dispersant is reduced, and therefore bleed-out to the surface of the ceramic sheet easily occurs, and excellent antistatic ability and good peelability are exhibited. Further, the polymer dispersant is adsorbed on the surface of the ceramic material, so that the cationic compound is prevented from adsorbing on the surface of the ceramic material, and the toughness of the ceramic sheet is obtained by uniformly dispersing on the ceramic sheet and imparting plasticity. Will improve. However, these are estimations, and the present invention is not limited to these mechanisms.

すなわち、本発明は、一つの態様においてスラリー組成物であって、含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物、高分子分散剤、非水系溶媒、塩基性セラミックス材料及びポリビニルアセタール樹脂を含有するスラリー組成物(以下「本発明のスラリー組成物」ともいう。)に関する。本発明のスラリー組成物によれば、得られるセラミックシートの帯電防止性、剥離性及び靭性が優れるという効果が奏され得る。つまり、本発明のスラリー組成物は、第一に、塩基性セラミックス含有スラリー組成物から得られるセラミックシートの帯電を良好に防止し、剥離力を低減できる。また、本発明のスラリー組成物は、第二に、塩基性セラミックス含有スラリー組成物から得られるセラミックシートの靭性を向上できる。具体的には、伸びやすく、破断応力が大きいセラミックシートを製造できる。   That is, the present invention is, in one embodiment, a slurry composition comprising a cation compound containing a nitrogen-containing heteroaromatic quaternary ammonium cation group, a polymer dispersant, a non-aqueous solvent, a basic ceramic material, and a polyvinyl acetal resin. (Hereinafter also referred to as “slurry composition of the present invention”). According to the slurry composition of this invention, the effect that the antistatic property of a ceramic sheet obtained, peelability, and toughness is excellent can be show | played. That is, firstly, the slurry composition of the present invention can satisfactorily prevent charging of the ceramic sheet obtained from the basic ceramic-containing slurry composition and reduce the peeling force. Secondly, the slurry composition of the present invention can improve the toughness of the ceramic sheet obtained from the basic ceramic-containing slurry composition. Specifically, it is possible to produce a ceramic sheet that is easy to stretch and has a high breaking stress.

本明細書において「帯電防止性」とは、スラリー組成物を用いてセラミックス材料をシート状に成形して得られる焼成前のセラミックシートの剥離帯電量の程度が低いことをいい、セラミックシートの剥離帯電量の絶対値が小さいほどセラミックス材料の「帯電防止性」に優れることになる。また、本明細書において「剥離性」とは基材フィルムに塗工、乾燥させて成形したセラミックシートを基材フィルムから剥離する際に必要な力(剥離力)が小さいことをいい、剥離力が小さいほどセラミックシートの「剥離性」に優れることになる。また、本明細書においてセラミックシートの「靭性」とはセラミックシートの強度の指標の1つであって、引張試験において破断応力が大きく、破断歪み(伸び)が大きいことをいい、破断応力が大きく伸びが大きいほど、セラミックシートの「靭性」に優れることになる。   In the present specification, “antistatic property” means that the degree of peeling charge amount of a ceramic sheet before firing obtained by forming a ceramic material into a sheet shape using a slurry composition is low, and peeling of the ceramic sheet. The smaller the absolute value of the charge amount, the better the “antistatic property” of the ceramic material. In this specification, “peelability” means that a small force (peeling force) required to peel a ceramic sheet coated and dried on a base film from the base film is small. The smaller the value, the better the “peelability” of the ceramic sheet. In this specification, the “toughness” of a ceramic sheet is one of the strength indicators of the ceramic sheet, and means that the breaking stress is large and the breaking strain (elongation) is large in the tensile test, and the breaking stress is large. The greater the elongation, the better the “toughness” of the ceramic sheet.

[カチオン化合物]
本発明のスラリー組成物は、帯電防止剤として、含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物を含有する。前記含窒素複素芳香族第4級アンモニウムカチオン基としては、帯電防止性、剥離性及び靭性に優れるセラミックシートを製造する観点から、芳香環中に第4級アンモニウムを有するカチオン基であって、含窒素五員環又は六員環複素芳香族化合物の第4級アンモニウムカチオン基が好ましい。前記含窒素五員環又は六員環複素芳香族化合物の第4級アンモニウムカチオン基としては、ピリジニウム、ピラゾリウム、イミダゾリウム、ピリミジニウム、ピラジニウム、ピリダジニウム及びピロリウム等の構造を有する第4級アンモニウムカチオン基が挙げられ、その中でも好ましくは、ピリジニウム、ピラゾリウム又はイミダゾリウム構造を有する第4級アンモニウムカチオン基であり、さらに好ましくは下記一般式(1)、(2)及び(3)で表されるカチオン基からなる群より選ばれるカチオン基である。本発明のスラリー組成物は、2種以上のカチオン化合物を含有してもよい。

Figure 0005885622
[式(1)中、R1は、炭素数1〜4のアルキル基を示し、R2、R3及びR4は、同一又は異なり、水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。式(2)中、R5及びR6は、同一又は異なり、炭素数1〜4のアルキル基を示し、R7及びR8は、同一又は異なり、水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。式(3)中、R9及びR10は、同一又は異なり、炭素数1〜4のアルキル基を示し、R11は水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。] [Cationic compound]
The slurry composition of the present invention contains a cationic compound containing a nitrogen-containing heteroaromatic quaternary ammonium cationic group as an antistatic agent. The nitrogen-containing heteroaromatic quaternary ammonium cation group is a cation group having a quaternary ammonium in an aromatic ring from the viewpoint of producing a ceramic sheet excellent in antistatic property, peelability and toughness. A quaternary ammonium cation group of a nitrogen five-membered or six-membered heteroaromatic compound is preferred. The quaternary ammonium cation group of the nitrogen-containing five-membered ring or six-membered heteroaromatic compound includes a quaternary ammonium cation group having a structure such as pyridinium, pyrazolium, imidazolium, pyrimidinium, pyrazinium, pyridazinium and pyrrolium. Among them, preferred is a quaternary ammonium cationic group having a pyridinium, pyrazolium or imidazolium structure, and more preferred is a cationic group represented by the following general formulas (1), (2) and (3). A cationic group selected from the group consisting of The slurry composition of the present invention may contain two or more kinds of cationic compounds.
Figure 0005885622
[In formula (1), R 1 represents an alkyl group having 1 to 4 carbon atoms, and R 2 , R 3 and R 4 are the same or different and may have a hydrogen atom or a hydroxyl group. 1-4 alkyl groups are shown. In formula (2), R 5 and R 6 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, and R 7 and R 8 are the same or different and may have a hydrogen atom or a hydroxyl group. A good alkyl group having 1 to 4 carbon atoms is shown. In formula (3), R 9 and R 10 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, and R 11 is a hydrogen atom or an alkyl having 1 to 4 carbon atoms which may have a hydroxyl group. Indicates a group. ]

前記一般式(1)で表されるカチオン基としては、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、R1は、炭素数1〜4のアルキル基であり、メチル基又はエチル基が好ましく、エチル基がより好ましい。また、同様の観点から、R2、R3、及びR4は、同一又は異なり、水素原子、又は水酸基で置換されていてもよい炭素数1〜4のアルキル基であり、水素原子、又は水酸基で置換されていてもよい炭素数1〜2のアルキル基が好ましく、水素原子、メチル基又はヒドロキシメチル基がより好ましい。前記一般式(1)で表されるカチオン基としては、例えば1−メチルピリジニウム、1−エチルピリジニウム、1−エチル−3−ヒドロキシメチルピリジニウム、1−エチル−3−メチルピリジニウム、1−プロピルピリジニウム、1−ブチルピリジニウム、1−ブチル−3−メチルピリジニウム、1−ブチル−4−メチルピリジニウム等のカチオン基が挙げられる。これらの中でも、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、1−エチル−3−メチルピリジニウム及び1−エチル−3−ヒドロキシメチルピリジニウムが好ましい。 As the cationic group represented by the general formula (1), R 1 is an alkyl group having 1 to 4 carbon atoms from the viewpoint of improving antistatic properties, peelability and toughness of the ceramic sheet, and may be a methyl group or an ethyl group. Group is preferred, and an ethyl group is more preferred. From the same viewpoint, R 2 , R 3 , and R 4 are the same or different and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms that may be substituted with a hydroxyl group. The C1-C2 alkyl group which may be substituted by is preferable, and a hydrogen atom, a methyl group, or a hydroxymethyl group is more preferable. Examples of the cationic group represented by the general formula (1) include 1-methylpyridinium, 1-ethylpyridinium, 1-ethyl-3-hydroxymethylpyridinium, 1-ethyl-3-methylpyridinium, 1-propylpyridinium, Cationic groups such as 1-butylpyridinium, 1-butyl-3-methylpyridinium, 1-butyl-4-methylpyridinium and the like can be mentioned. Among these, 1-ethyl-3-methylpyridinium and 1-ethyl-3-hydroxymethylpyridinium are preferable from the viewpoint of improving the antistatic property, peelability, and toughness of the ceramic sheet.

前記一般式(2)で表されるカチオン基としては、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、R5及びR6は、同一又は異なり、炭素数1〜4のアルキル基であり、R5及びR6の少なくともいずれか一方が、メチル基又はエチル基であることが好ましく、メチル基であることがさらに好ましい。また、同様の観点からR5及びR6の炭素数の合計は2〜5が好ましく、2〜3がより好ましく、2がさらに好ましい。また、同様の観点から、R7及びR8は、同一又は異なり、水素原子、又は水酸基で置換されていてもよい炭素数1〜4のアルキル基であり、水素原子、又は水酸基で置換されていてもよい炭素数1〜2のアルキル基が好ましく、水素原子、メチル基又はヒドロキシメチル基がより好ましく、水素原子又はメチル基がさらに好ましく、R7及びR8の炭素数の合計が1であることがさらにより好ましい。前記一般式(2)で表されるカチオン基としては、例えば1,2−ジメチルピラゾリウム、1−メチル−2−エチルピラゾリウム、1−メチル−2−プロピルピラゾリウム、1−メチル−2−ブチルピラゾリウム、1,2−ジエチルピラゾリウム、1,2−ジプロピルピラゾリウム、1,2−ジブチルピラゾリウム、1,2,4−トリメチルピラゾリウム、1,2,3,5−テトラメチルピラゾリウム、1−エチル−2,3,5−トリメチルピラゾリウム、1−エチル−3−メトキシ−2,5−ジメチルピラゾリウム、1−プロピル−2,3,5−トリメチルピラゾリウム、1−ブチル−2,3,5−トリメチルピラゾリウム等のカチオン基が挙げられる。これらの中でも、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、1,2,4−トリメチルピラゾリウムが好ましい。 As the cationic group represented by the general formula (2), R 5 and R 6 are the same or different and are alkyl groups having 1 to 4 carbon atoms from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet. And at least one of R 5 and R 6 is preferably a methyl group or an ethyl group, and more preferably a methyl group. From the same viewpoint, the total number of carbon atoms of R 5 and R 6 is preferably 2 to 5, more preferably 2 to 3, and still more preferably 2. Further, from the same viewpoint, R 7 and R 8 are the same or different and are a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may be substituted with a hydroxyl group, and are substituted with a hydrogen atom or a hydroxyl group. An alkyl group having 1 to 2 carbon atoms which may be preferable is preferable, a hydrogen atom, a methyl group or a hydroxymethyl group is more preferable, a hydrogen atom or a methyl group is more preferable, and the total number of carbon atoms of R 7 and R 8 is 1. Even more preferred. Examples of the cationic group represented by the general formula (2) include 1,2-dimethylpyrazolium, 1-methyl-2-ethylpyrazolium, 1-methyl-2-propylpyrazolium, 1-methyl. 2-butylpyrazolium, 1,2-diethylpyrazolium, 1,2-dipropylpyrazolium, 1,2-dibutylpyrazolium, 1,2,4-trimethylpyrazolium, 1,2 , 3,5-tetramethylpyrazolium, 1-ethyl-2,3,5-trimethylpyrazolium, 1-ethyl-3-methoxy-2,5-dimethylpyrazolium, 1-propyl-2,3 , 5-trimethylpyrazolium, 1-butyl-2,3,5-trimethylpyrazolium, and other cationic groups. Among these, 1,2,4-trimethylpyrazolium is preferable from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet.

一般式(3)で表されるカチオン基としては、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、R9及びR10は、同一又は異なり、炭素数1〜4のアルキル基であり、R9及びR10の少なくともいずれか一方が、メチル基又はエチル基であることが好ましく、メチル基であることがさらに好ましい。また、同様の観点からR9及びR10の炭素数の合計は2〜5が好ましく、3〜5がより好ましい。また、同様の観点から、R11は、水素原子、又は水酸基で置換されていてもよい炭素数1〜4のアルキル基であり、水素原子、又は水酸基で置換されていてもよい炭素数1〜2のアルキル基が好ましく、水素原子、メチル基又はヒドロキシメチル基がより好ましく、水素原子がさらに好ましい。前記一般式(3)で表されるカチオン基としては、例えば1,3−ジメチルイミダゾリウム、1,2,3−トリメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、1,2,3−トリエチルイミダゾリウム、1−プロピル−3−メチルイミダゾリウム、1−プロピル−2,3−ジメチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1−ブチル−2,3−ジメチルイミダゾリウム、2−ヒドロキシエチル−1,3−ジメチルイミダゾリウム等のカチオン基が挙げられる。これらの中でも、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、1−エチル−3−メチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム及び1−ブチル−3−メチルイミダゾリウムが好ましく、1−エチル−3−メチルイミダゾリウム及び1−ブチル−3−メチルイミダゾリウムがさらに好ましい。 As the cationic group represented by the general formula (3), R 9 and R 10 are the same or different and are alkyl groups having 1 to 4 carbon atoms from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet. And at least one of R 9 and R 10 is preferably a methyl group or an ethyl group, more preferably a methyl group. Also, the total number of carbon atoms of R 9 and R 10 from the same viewpoint, preferably 2-5, 3-5 is more preferable. From the same viewpoint, R 11 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may be substituted with a hydroxyl group, and 1 to 1 carbon atoms which may be substituted with a hydrogen atom or a hydroxyl group. 2 alkyl groups are preferred, hydrogen atoms, methyl groups or hydroxymethyl groups are more preferred, and hydrogen atoms are more preferred. Examples of the cationic group represented by the general formula (3) include 1,3-dimethylimidazolium, 1,2,3-trimethylimidazolium, 1-ethyl-3-methylimidazolium, and 1,3-diethylimidazolium. 1-ethyl-2,3-dimethylimidazolium, 1,2,3-triethylimidazolium, 1-propyl-3-methylimidazolium, 1-propyl-2,3-dimethylimidazolium, 1-butyl- Cationic groups such as 3-methylimidazolium, 1-butyl-2,3-dimethylimidazolium, 2-hydroxyethyl-1,3-dimethylimidazolium and the like can be mentioned. Among these, 1-ethyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, and 1-butyl-3-methylimidazole from the viewpoint of improving the antistatic property, peelability, and toughness of the ceramic sheet. Rium is preferred, and 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium are more preferred.

本発明におけるカチオン基としては、セラミックシートの帯電防止性向上の観点から、一般式(1)及び(3)で表されるカチオン基が好ましく、一般式(3)で表されるカチオン基がより好ましい。また、セラミックシートの剥離性向上の観点から、一般式(3)で表されるカチオン基が好ましい。また、セラミックシートの靭性向上の観点から、一般式(2)及び(3)で表されるカチオン基が好ましく、一般式(3)で表されるカチオン基がより好ましい。これらの観点を総合すると、本発明におけるカチオン基としては、一般式(3)で表されるカチオン基がさらにより好ましい。   The cationic group in the present invention is preferably a cationic group represented by the general formulas (1) and (3), more preferably a cationic group represented by the general formula (3), from the viewpoint of improving the antistatic property of the ceramic sheet. preferable. Moreover, the cationic group represented by General formula (3) is preferable from a viewpoint of the peelability improvement of a ceramic sheet. Moreover, from a viewpoint of the toughness improvement of a ceramic sheet, the cationic group represented by General formula (2) and (3) is preferable, and the cationic group represented by General formula (3) is more preferable. Taking these viewpoints together, the cationic group in the present invention is more preferably a cationic group represented by the general formula (3).

前記カチオン基の分子量は、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、300以下が好ましく、200以下がより好ましく、150以下がさらに好ましく、120以下がさらにより好ましい。同様の観点から、前記カチオン基の分子量は、90以上が好ましく、95以上がより好ましく、100以上がさらに好ましい。これらの観点を総合すると、前記カチオン基の分子量は90〜300が好ましく、95〜300がより好ましく、95〜200がさらに好ましく、100〜150がさらにより好ましく、100〜120がさらによりより好ましい。   The molecular weight of the cationic group is preferably 300 or less, more preferably 200 or less, still more preferably 150 or less, and even more preferably 120 or less, from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet. From the same viewpoint, the molecular weight of the cationic group is preferably 90 or more, more preferably 95 or more, and further preferably 100 or more. When these viewpoints are put together, the molecular weight of the cationic group is preferably 90 to 300, more preferably 95 to 300, still more preferably 95 to 200, still more preferably 100 to 150, and even more preferably 100 to 120.

前記カチオン化合物は、前述のカチオン基とアニオン基との塩であってもよく、非水系溶媒の溶液であっても良い。前記アニオン基としては、セラミックシートの帯電防止性、剥離性及び靭性向上の観点、並びに電気特性の低下やさびの発生原因となりうるハロゲン化合物を含まないことから、有機アニオン基が好ましい。   The cationic compound may be a salt of the aforementioned cationic group and anionic group, or a solution of a non-aqueous solvent. The anionic group is preferably an organic anionic group because it does not contain a halogen compound that can cause the antistatic property, releasability and toughness of the ceramic sheet to be improved, and the electrical characteristics can be lowered or rusted.

前記有機アニオン基としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ウンデカン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、ヘプタデカン酸、イソ酪酸、イソ吉草酸、イソカプロン酸、エチル酪酸、メチル吉草酸、イソカプリル酸、プロピル吉草酸、エチルカプロン酸、アクリル酸、クロトン酸、メタクリル酸、イソクロトン酸、3−ブテン酸、ペンテン酸、ヘキセン酸、ヘプチン酸、オクテン酸、ノネン酸、デセン酸、ウンデセン酸、ドデセン酸、オレイン酸、3−メチルクロトン酸などの飽和及び不飽和の脂肪族カルボン酸;トルイル酸、エチル安息香酸、プロピル安息香酸、イソプロピル安息香酸、ブチル安息香酸、イソブチル安息香酸、sec−ブチル安息香酸、tert−ブチル安息香酸、レゾルシン安息香酸、ヒドロキシ安息香酸、フェニル酢酸などの芳香族カルボン酸;メチルシュウ酸、エチルシュウ酸などのアルキルシュウ酸;メチルスルホン酸、エチルスルホン酸、メタンスルホン酸、エタンスルホン酸、1,2−エタンジスルホン酸、ビニルスルホン酸、(メタ)アリルスルホン酸、p−トルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、アルキル(炭素数8〜24)ベンゼンスルホン酸、アントラキノンスルホン酸、ナフタレンスルホン酸、ナフトールスルホン酸、スチレンスルホン酸などのスルホン酸並びにメチル硫酸、エチル硫酸、ヒドロキシエチル硫酸などのアルキル硫酸及びヒドロキシアルキル硫酸等のアニオン基が挙げられる。これらの中でもセラミックシートの帯電防止性、剥離性及び靭性向上の観点から、アルキルシュウ酸、アルキル硫酸及び脂肪族カルボン酸のアニオン基が好ましく、アルキル硫酸及び脂肪族カルボン酸のアニオン基がより好ましく、メチル硫酸、エチル硫酸及び酢酸のアニオン基がさらに好ましく、帯電防止性及び靭性向上の観点から、エチル硫酸のアニオン基がさらにより好ましい。   Examples of the organic anionic group include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, undecanoic acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, isobutyric acid , Isovaleric acid, isocaproic acid, ethyl butyric acid, methyl valeric acid, isocaprilic acid, propyl valeric acid, ethyl caproic acid, acrylic acid, crotonic acid, methacrylic acid, isocrotonic acid, 3-butenoic acid, pentenoic acid, hexenoic acid, heptin Saturated and unsaturated aliphatic carboxylic acids such as acids, octenoic acid, nonenoic acid, decenoic acid, undecenoic acid, dodecenoic acid, oleic acid, 3-methylcrotonic acid; toluic acid, ethylbenzoic acid, propylbenzoic acid, isopropylbenzoic acid Acid, butylbenzoic acid, isobutylbenzoic acid, sec-butyl Aromatic carboxylic acids such as benzoic acid, tert-butylbenzoic acid, resorcin benzoic acid, hydroxybenzoic acid and phenylacetic acid; alkyl oxalic acids such as methyl oxalic acid and ethyl oxalic acid; methyl sulfonic acid, ethyl sulfonic acid, methane sulfone Acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, vinylsulfonic acid, (meth) allylsulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, alkyl (carbon number 8-24) benzenesulfonic acid , Sulfonic acids such as anthraquinone sulfonic acid, naphthalene sulfonic acid, naphthol sulfonic acid and styrene sulfonic acid, and anionic groups such as alkyl sulfuric acid and methyl alkyl sulfuric acid such as methyl sulfuric acid, ethyl sulfuric acid and hydroxyethyl sulfuric acid. Among these, anionic groups of alkyl oxalic acid, alkyl sulfuric acid and aliphatic carboxylic acid are preferred, and anionic groups of alkyl sulfuric acid and aliphatic carboxylic acid are more preferred, from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet, Anionic groups of methylsulfuric acid, ethylsulfuric acid and acetic acid are more preferred, and anionic groups of ethylsulfuric acid are even more preferred from the viewpoint of improving antistatic properties and toughness.

本発明のスラリー組成物中の前記カチオン化合物の含有量は、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、塩基性セラミックス材料100重量部に対して0.05重量部以上が好ましく、0.1重量部以上がより好ましく、0.2重量部以上がさらに好ましく、0.3重量部以上がさらにより好ましい。また、ポリビニルアセタール樹脂の可塑性の増加を抑制してセラミックス成形品の強度を維持する観点から、スラリー組成物中の前記カチオン化合物の含有量は、塩基性セラミックス材料100重量部に対して2.0重量部以下が好ましく、1.8重量部以下がより好ましく、1.5重量部以下がさらに好ましく、1.2重量部以下がさらにより好ましい。これらの観点を総合すると、スラリー組成物中の前記カチオン化合物の含有量は、塩基性セラミックス材料100重量部に対して0.05〜2.0重量部が好ましく、より好ましくは0.1〜1.8重量部、さらに好ましくは0.2〜1.5重量部、さらにより好ましくは0.3〜1.2重量部である。   The content of the cationic compound in the slurry composition of the present invention is preferably 0.05 parts by weight or more with respect to 100 parts by weight of the basic ceramic material from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet. 0.1 parts by weight or more is more preferable, 0.2 parts by weight or more is more preferable, and 0.3 parts by weight or more is even more preferable. In addition, from the viewpoint of suppressing the increase in plasticity of the polyvinyl acetal resin and maintaining the strength of the ceramic molded product, the content of the cationic compound in the slurry composition is 2.0% with respect to 100 parts by weight of the basic ceramic material. Parts by weight or less are preferred, 1.8 parts by weight or less are more preferred, 1.5 parts by weight or less are more preferred, and 1.2 parts by weight or less are even more preferred. Summing up these viewpoints, the content of the cationic compound in the slurry composition is preferably 0.05 to 2.0 parts by weight, more preferably 0.1 to 1 part per 100 parts by weight of the basic ceramic material. 0.8 parts by weight, more preferably 0.2 to 1.5 parts by weight, still more preferably 0.3 to 1.2 parts by weight.

さらに、本発明のスラリー組成物中の前記カチオン化合物の含有量は、セラミックシートの帯電防止性、剥離性及び靭性向上の観点から、ポリビニルアセタール樹脂1.0重量部に対し0.01重量部以上であることが好ましく、より好ましくは0.015重量部以上、さらに好ましくは0.02重量部以上、さらにより好ましくは0.03重量部以上である。また、ポリビニルアセタール樹脂の可塑性の増加を抑制してセラミックス成形品の強度を維持する観点から、スラリー組成物中の前記カチオン化合物の含有量は、ポリビニルアセタール樹脂1.0重量部に対し0.2重量部以下が好ましく、より好ましくは0.18重量部以下、さらに好ましくは0.15重量部以下、さらにより好ましくは0.12重量部以下である。これらの観点を総合すると、スラリー組成物中の前記カチオン化合物の含有量は、ポリビニルアセタール樹脂1.0重量部に対し0.01〜0.2重量部が好ましく、より好ましくは0.015〜0.18重量部、さらに好ましくは0.02〜0.15重量部、さらにより好ましくは0.03〜0.12重量部である。   Furthermore, the content of the cationic compound in the slurry composition of the present invention is 0.01 parts by weight or more with respect to 1.0 part by weight of the polyvinyl acetal resin from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet. More preferably, it is 0.015 weight part or more, More preferably, it is 0.02 weight part or more, More preferably, it is 0.03 weight part or more. Moreover, from the viewpoint of suppressing the increase in plasticity of the polyvinyl acetal resin and maintaining the strength of the ceramic molded article, the content of the cationic compound in the slurry composition is 0.2 with respect to 1.0 part by weight of the polyvinyl acetal resin. It is preferably no greater than 0.1 parts by weight, more preferably no greater than 0.18 parts by weight, even more preferably no greater than 0.15 parts by weight, and even more preferably no greater than 0.12 parts by weight. Summing up these viewpoints, the content of the cationic compound in the slurry composition is preferably 0.01 to 0.2 parts by weight, more preferably 0.015 to 0 parts by weight based on 1.0 part by weight of the polyvinyl acetal resin. .18 parts by weight, more preferably 0.02 to 0.15 parts by weight, even more preferably 0.03 to 0.12 parts by weight.

本発明のスラリー組成物中に、帯電防止剤として前記カチオン化合物以外の帯電防止剤を含有してもよい。帯電防止剤中の前記カチオン化合物の含有量は、帯電防止性、剥離性及び靭性向上の観点から、帯電防止剤に対し80重量%以上が好ましく90重量%以上がより好ましく、95%以上がさらに好ましく、実質的に100重量%であることがさらにより好ましい。   The slurry composition of the present invention may contain an antistatic agent other than the cationic compound as an antistatic agent. The content of the cationic compound in the antistatic agent is preferably 80% by weight or more, more preferably 90% by weight or more, and more preferably 95% or more with respect to the antistatic agent, from the viewpoint of improving antistatic properties, peelability and toughness. Even more preferably, it is substantially 100% by weight.

[高分子分散剤]
本発明のスラリー組成物は、高分子分散剤を含有する。前記高分子分散剤としては、例えばカチオン性高分子、ノニオン性高分子、アニオン性高分子が挙げられる。
[Polymer dispersant]
The slurry composition of the present invention contains a polymer dispersant. Examples of the polymer dispersant include a cationic polymer, a nonionic polymer, and an anionic polymer.

前記高分子分散剤の1つの態様としては、非水系溶媒に可溶なビニル共重合体であり、かかるビニル共重合体としては、1種又は2種以上の(メタ)アクリル酸エステル、アリルエーテル、オレフィン等を主成分とするラジカル性不飽和単量体のビニル共重合体が挙げられる。(メタ)アクリル酸エステルの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、iso−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素数1〜22のアルキル基を有する(メタ)アクリル酸エステル;及び、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、メトキシポリブチレングリコール(メタ)アクリレート等のポリオキシアルキレン基を有するポリオキシアルキレン(メタ)アクリレートが挙げられる。また、アリルエーテルとしては、(メトキシ−)ポリエチレングリコール−アリルエーテル、(ブトキシ−)ポリエチレングリコール−ポリプロピレングリコール−アリルエーテル等の(アルコキシ−)ポリオキシアルキレン−アリルエーテルが挙げられる。オレフィンとしては、ヘキサデセン、エイコセン等のα−オレフィンが挙げられる。   One aspect of the polymer dispersant is a vinyl copolymer that is soluble in a non-aqueous solvent. Examples of the vinyl copolymer include one or more (meth) acrylic acid esters and allyl ethers. And vinyl copolymers of radically unsaturated monomers mainly composed of olefins. Specific examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, t- Butyl (meth) acrylate, iso-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) (Meth) acrylic acid ester having an alkyl group having 1 to 22 carbon atoms such as acrylate, octyl (meth) acrylate, isobornyl (meth) acrylate; and methoxypolyethylene glycol (meth) acrylate, methoxy Polypropylene glycol (meth) acrylate, polyoxyalkylene (meth) acrylate having a polyoxyalkylene group such as methoxy polybutylene glycol (meth) acrylate. Examples of the allyl ether include (alkoxy-) polyoxyalkylene-allyl ethers such as (methoxy-) polyethylene glycol-allyl ether and (butoxy-) polyethylene glycol-polypropylene glycol-allyl ether. Examples of the olefin include α-olefins such as hexadecene and eicosene.

前記1種又は2種以上の(メタ)アクリル酸エステル、アリルエーテル又はオレフィンと、(メタ)アクリル酸、クロトン酸、(無水)マレイン酸、イタコン酸等の酸性モノマーとを共重合させることで、アニオン性高分子分散剤が得られる。市販品として、日油社製の「マリアリム AKM−0531」、「マリアリム AWS−0851」、「マリアリム AAB−0851」、「マリアリム AFB−1521」がある。   By copolymerizing the one or more (meth) acrylic acid ester, allyl ether or olefin and an acidic monomer such as (meth) acrylic acid, crotonic acid, (anhydrous) maleic acid, itaconic acid, An anionic polymer dispersant is obtained. Commercially available products include “Marialim AKM-053”, “Marialim AWS-0551”, “Marialim AAB-0551”, and “Marialim AFB-1521” manufactured by NOF Corporation.

また、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ブチルアミノエチル(メタ)アクリレート、2−ビニルピリジン、4−ビニルピリジン、2−メチル−5−ビニルピリジン、2−エチル−5−ビニルピリジン、N−ビニルイミダゾール、2−メチル−N−ビニルイミダゾール等の塩基性モノマーを共重合させることで、カチオン性高分子分散剤が得られる。市販品として、BASF社製の「Efca 4310」、「Efca 4320」などがある。また、(メタ)アクリルアミド、ビニルピロリドン、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート等の中性官能基を有するモノマーを共重合させることで、ノニオン性高分子分散剤が得られる。市販品として、アイエスピー・ジャパン社製の「アンタロン V−216(ビニルピロリドン/ヘキサデセンコポリマー)」、「アンタロン V−220(ビニルピロリドン/エイコセンコポリマー)」などがある。   Further, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, butylaminoethyl (meth) acrylate, 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, 2-ethyl-5- A cationic polymer dispersant is obtained by copolymerizing a basic monomer such as vinylpyridine, N-vinylimidazole, 2-methyl-N-vinylimidazole or the like. Commercially available products include “Efca 4310” and “Efca 4320” manufactured by BASF. In addition, a monomer having a neutral functional group such as (meth) acrylamide, vinylpyrrolidone, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxypropyl (meth) acrylate is copolymerized. Thus, a nonionic polymer dispersant can be obtained. Examples of commercially available products include “Antalon V-216 (vinyl pyrrolidone / hexadecene copolymer)” and “Antalon V-220 (vinyl pyrrolidone / eicosene copolymer)” manufactured by ISP Japan.

前記高分子分散剤は、前記ビニル共重合体に限定されず、変性ポリアミド系、変性ポリウレタン系、変性ポリエステル系、ポリビニルピロリドン系などの高分子分散剤も使用することができる。例えば、ポリエチレンイミンのようなポリアルキレンイミン又はポリアリルアミンと、ヒドロキシステアリン酸の重合体又は環状エステルの重合体のような遊離のカルボン酸基を有するポリエステルとを反応させることにより形成されたアミド又は塩よりなり、その中でそれぞれのポリアルキレンイミン主鎖又はポリアリルアミン主鎖に2つ以上のポリエステル鎖が結合されている分散剤が挙げられる。市販品として、ルブリゾール社製の「ソルスパース 26000」、「ソルスパース 28000」、「ソルスパース 32000」、「ソルスパース 33000」、「ソルスパース 36000」、「ソルスパース 39000」、味の素ファインテクノ社製の「アジスパー PB−711」、「アジスパー PB−821」、「アジスパー PB−822」、「アジスパー PB−814」、「アジスパー PB−824」などがある。また、ポリイソシアネート化合物のイソシアネート基に対し、遊離のカルボン酸を有するポリエステル、又は水酸基、アミノ基、トリアゾル基、ピリミジン基、イミダゾール基、ピリジン基、モルホリン基、ピロリジン基、ピペラジン基、ベンゾイミダゾリン基、ベンゾチアゾール基及びトリアジル基の中から選ばれる官能基を有する化合物を各々付加反応させて得られる分散剤が挙げられる。市販品として、ビックケミー・ジャパン社製の「DISPERBYK−161」、「DISPERBYK−162」、「DISPERBYK−167」、ルブリゾール社製の「ソルスパース 76500」などがある。さらには、スチレン若しくはその誘導体、(メタ)アクリル酸若しくはそのエステル又は水酸基を有する(メタ)アクリル酸エステルの共重合体に、ポリイソシアネートを付加反応させて得られる生成物に、さらにアミノ基又はイミダゾール基を有する化合物を付加反応させて得られる分散剤などが挙げられる。市販品として、BASF社製の「Efca 4046」、「Efca 4047」などがある。またさらには、ポリビニルピロリドン系の分散剤が挙げられ、市販品として、アイエスピー・ジャパン社製の「PVP K−15」、「PVP K−30」、「PVP K−60」、「PVP K−90」などがある。   The polymer dispersant is not limited to the vinyl copolymer, and polymer dispersants such as modified polyamide, modified polyurethane, modified polyester, and polyvinylpyrrolidone can also be used. For example, an amide or salt formed by reacting a polyalkyleneimine or polyallylamine such as polyethyleneimine with a polyester having a free carboxylic acid group such as a polymer of hydroxystearic acid or a polymer of cyclic esters. And a dispersant in which two or more polyester chains are bonded to each polyalkyleneimine main chain or polyallylamine main chain. As a commercial product, “Solsperse 26000”, “Solsparse 28000”, “Solspers 32000”, “Solspers 33000”, “Solspers 36000”, “Solspers 39000” manufactured by Lubrizol, “Ajispur PB-711” manufactured by Ajinomoto Fine Techno Co., Ltd. , “Ajisper PB-821”, “Azisper PB-822”, “Azisper PB-814”, “Azisper PB-824”, and the like. In addition, a polyester having a free carboxylic acid, or a hydroxyl group, an amino group, a triazole group, a pyrimidine group, an imidazole group, a pyridine group, a morpholine group, a pyrrolidine group, a piperazine group, a benzoimidazoline group, with respect to the isocyanate group of the polyisocyanate compound. Examples thereof include a dispersant obtained by subjecting a compound having a functional group selected from a benzothiazole group and a triazyl group to an addition reaction. Commercially available products include “DISPERBYK-161”, “DISPERBYK-162”, “DISPERBYK-167” manufactured by Big Chemie Japan, and “Solsperse 76500” manufactured by Lubrizol. Furthermore, a product obtained by addition reaction of polyisocyanate to a copolymer of styrene or a derivative thereof, (meth) acrylic acid or an ester thereof, or a (meth) acrylic acid ester having a hydroxyl group, and an amino group or imidazole. Examples thereof include a dispersant obtained by addition reaction of a group-containing compound. Commercially available products include “Efca 4046” and “Efca 4047” manufactured by BASF. Furthermore, a polyvinyl pyrrolidone type dispersing agent is mentioned, As a commercial item, "PVP K-15", "PVP K-30", "PVP K-60", "PVP K-" made by IS Japan Co., Ltd. 90 ".

本発明のスラリー組成物に使用する高分子分散剤としては、帯電防止性、剥離性及び靭性向上の観点並びに塩基性セラミックス材料の分散性向上の観点から、共重合体であることが好ましく、塩基性セラミックス材料に対する親和性の高い構成単位(吸着ユニット)と非水系溶媒に対する親和性の高い構成単位(分散ユニット)とを有する共重合体がより好ましい。吸着ユニットを有する共重合体は、セラミックス材料表面に効率よく吸着し、スラリー組成物中においてセラミックス材料を被覆しやすくなると考えられる。また、分散ユニットは非水系溶媒中において立体的に拡がり、スラリー組成物中の塩基性セラミックス材料と本発明のカチオン化合物との相互作用がより小さくなり、結果として、より優れた帯電防止能と良好な剥離性を発現し、セラミックシートの靭性がさらに向上すると考えられる。   The polymer dispersant used in the slurry composition of the present invention is preferably a copolymer from the viewpoint of improving antistatic properties, peelability and toughness, and improving the dispersibility of a basic ceramic material. A copolymer having a structural unit (adsorption unit) having a high affinity for the porous ceramic material and a structural unit (dispersion unit) having a high affinity for the non-aqueous solvent is more preferable. It is considered that the copolymer having the adsorption unit is efficiently adsorbed on the surface of the ceramic material and easily covers the ceramic material in the slurry composition. In addition, the dispersion unit spreads three-dimensionally in a non-aqueous solvent, and the interaction between the basic ceramic material in the slurry composition and the cation compound of the present invention becomes smaller, resulting in better antistatic ability and better It is considered that excellent peelability is exhibited and the toughness of the ceramic sheet is further improved.

共重合体の吸着ユニットとしては、カチオン性、ノニオン性及びアニオン性の構成単位が挙げられる。前記カチオン性の構成単位としては、帯電防止性、剥離性及び靭性向上の観点から、アルキレンイミン及びアリルアミン由来の構成単位が好ましい。また、前記ノニオン性の構成単位としては、同様の観点から、(メタ)アクリルアミド及びビニルピロリドン由来の構成単位が好ましい。また、前記アニオン性の構成単位としては、同様の観点から、(メタ)アクリル酸及び(無水)マレイン酸由来の構成単位が好ましく、帯電防止性向上の観点から、(メタ)アクリル酸由来の構成単位がより好ましい。   Examples of the copolymer adsorption unit include cationic, nonionic and anionic constituent units. The cationic structural unit is preferably a structural unit derived from alkyleneimine or allylamine from the viewpoint of improving antistatic properties, peelability and toughness. Moreover, as the nonionic structural unit, structural units derived from (meth) acrylamide and vinylpyrrolidone are preferable from the same viewpoint. The anionic structural unit is preferably a structural unit derived from (meth) acrylic acid and (anhydrous) maleic acid from the same viewpoint, and from the viewpoint of improving antistatic properties, a structure derived from (meth) acrylic acid. Units are more preferred.

共重合体の分散ユニットとしては、ポリオキシアルキレン基、ポリエステル基、ポリ(ヒドロキシ)アルキル(メタ)アクリレート基、アルキル基、アルキレン基を有する構成単位等が挙げられる。これらの中でも、帯電防止性、剥離性及び靭性向上の観点からポリオキシアルキレン基、ポリエステル基、ポリヒドロキシエチルメタクリレート基、ポリメチルメタクリレート基、アルキル基及びアルキレン基から選ばれる基を有する構成単位が好ましく、ポリオキシアルキレン基、ポリカプロラクトン基及びアルキル基から選ばれる基を有する構成単位がより好ましく、ポリオキシアルキレン基を有する構成単位がさらに好ましく、ポリオキシエチレン基を有する構成単位がさらにより好ましい。また、同様の観点から(アルコキシ−)ポリオキシアルキレン(メタ)アクリレート、(アルコキシ−)ポリオキシアルキレン−アリルエーテル、カルボキシ基を有するポリエステル及びα−オレフィン由来の構成単位が好ましく、(アルコキシ−)ポリオキシアルキレン(メタ)アクリレート由来の構成単位がより好ましい。   Examples of the copolymer dispersion unit include structural units having a polyoxyalkylene group, a polyester group, a poly (hydroxy) alkyl (meth) acrylate group, an alkyl group, and an alkylene group. Among these, a structural unit having a group selected from a polyoxyalkylene group, a polyester group, a polyhydroxyethyl methacrylate group, a polymethyl methacrylate group, an alkyl group, and an alkylene group is preferable from the viewpoint of improving antistatic properties, peelability, and toughness. , A structural unit having a group selected from a polyoxyalkylene group, a polycaprolactone group and an alkyl group is more preferred, a structural unit having a polyoxyalkylene group is more preferred, and a structural unit having a polyoxyethylene group is even more preferred. From the same viewpoint, (alkoxy-) polyoxyalkylene (meth) acrylate, (alkoxy-) polyoxyalkylene-allyl ether, polyester having a carboxy group and α-olefin-derived structural units are preferred, and (alkoxy-) poly A structural unit derived from oxyalkylene (meth) acrylate is more preferred.

本発明のスラリー組成物に使用する高分子分散剤としては、帯電防止性向上の観点からは、カチオン性及びアニオン性であることが好ましく、剥離性向上の観点からは、ノニオン性及びアニオン性であることが好ましい。これらの観点を総合すると、高分子分散剤としては、アニオン性の高分子分散剤がより好ましい。前記カチオン性高分子分散剤としては、帯電防止性、剥離性及び靭性向上の観点から、ポリエチレンイミンとヒドロキシステアリン酸のポリエステルとの反応により形成されたアミド又は塩よりなり、その中でそれぞれのポリエチレンイミン主鎖に2つ以上のポリエステル鎖が結合されている共重合体が好ましい。また、前記ノニオン性高分子分散剤としては、帯電防止性、剥離性及び靭性の観点から、(メタ)アクリル酸エステル、(アルコキシ)ポリオキシアルキレン(メタ)アクリレート及び(メタ)アクリルアミドからなる群から選ばれる単量体の共重合体、並びにビニルピロリドンとα−オレフィンとの共重合体が好ましく、帯電防止性及び靭性の観点から、(メタ)アクリル酸エステル、(アルコキシ)ポリオキシアルキレン(メタ)アクリレート及び(メタ)アクリルアミドからなる群から選ばれる単量体の共重合体がさらに好ましい。さらに、前記アニオン性高分子分散剤としては、帯電防止性、剥離性及び靭性の観点から、単量体として、(メタ)アクリル酸又は(無水)マレイン酸と、(アルコキシ)ポリオキシアルキレン(メタ)アクリレート又は(アルコキシ)ポリオキシアルキレンアリルエーテルとを有してなる共重合体が好ましく、帯電防止性の観点から、単量体として、(メタ)アクリル酸と(アルコキシ)ポリオキシアルキレン(メタ)アクリレートとを有してなる共重合体がさらに好ましい。   The polymer dispersant used in the slurry composition of the present invention is preferably cationic and anionic from the viewpoint of improving antistatic properties, and nonionic and anionic from the viewpoint of improving peelability. Preferably there is. Taking these viewpoints together, an anionic polymer dispersant is more preferable as the polymer dispersant. The cationic polymer dispersant is composed of an amide or a salt formed by a reaction between polyethyleneimine and a polyester of hydroxystearic acid from the viewpoint of improving antistatic properties, peelability, and toughness. A copolymer in which two or more polyester chains are bonded to the imine main chain is preferred. The nonionic polymer dispersant is selected from the group consisting of (meth) acrylic acid esters, (alkoxy) polyoxyalkylene (meth) acrylates and (meth) acrylamides from the viewpoint of antistatic properties, peelability and toughness. Preferred are copolymers of monomers and copolymers of vinyl pyrrolidone and α-olefin. From the viewpoint of antistatic properties and toughness, (meth) acrylates, (alkoxy) polyoxyalkylenes (meth) More preferred is a copolymer of monomers selected from the group consisting of acrylates and (meth) acrylamides. Furthermore, as the anionic polymer dispersant, (meth) acrylic acid or (anhydrous) maleic acid and (alkoxy) polyoxyalkylene (meta) are used as monomers from the viewpoint of antistatic properties, peelability and toughness. ) Acrylate or a copolymer comprising (alkoxy) polyoxyalkylene allyl ether is preferred. From the viewpoint of antistatic properties, (meth) acrylic acid and (alkoxy) polyoxyalkylene (meth) are used as monomers. A copolymer comprising acrylate is more preferable.

前記高分子分散剤の重量平均分子量は、セラミックシートの帯電防止性及び塩基性セラミック材料の分散性の観点から、2000以上が好ましく、4000以上がより好ましく、6000以上がさらに好ましく、8000以上がさらにより好ましい。また、セラミックシートの剥離性及び塩基性セラミック材料の分散性の観点から、200000以下が好ましく、120000以下がより好ましく、60000以下がさらに好ましく、36000以下がさらにより好ましい。これらの観点を総合すると、前記高分子分散剤の重量平均分子量は、2000〜200000が好ましく、4000〜120000がより好ましく、6000〜60000がさらに好ましく、8000〜36000がさらにより好ましい。   The weight average molecular weight of the polymer dispersant is preferably 2000 or more, more preferably 4000 or more, further preferably 6000 or more, and further preferably 8000 or more from the viewpoint of antistatic property of the ceramic sheet and dispersibility of the basic ceramic material. More preferred. Moreover, from a viewpoint of the peelability of a ceramic sheet | seat and the dispersibility of a basic ceramic material, 200000 or less are preferable, 120,000 or less are more preferable, 60000 or less are more preferable, and 36000 or less are still more preferable. When these viewpoints are put together, the weight average molecular weight of the polymer dispersant is preferably 2000 to 200000, more preferably 4000 to 120,000, still more preferably 6000 to 60000, and even more preferably 8000 to 36000.

本発明のスラリー組成物中の前記高分子分散剤の含有量は、一般的に、塩基性セラミックス材料の比表面積によって調整され、標準的な含有量として、塩基性セラミックス材料100重量部に対する重量部として、BET比表面積[単位m2/g]を5で割った値を目安にできる。例えば、塩基性セラミックス材料として、チタン酸バリウムを用いる場合は、チタン酸バリウム100重量部に対する高分子分散剤の含有量は、粒径200nm(比表面積5m2/g)であれば1重量部、粒径100nm(比表面積10m2/g)であれば2重量部、粒径50nm(比表面積20m2/g)であれば4重量部を目安にできる。 The content of the polymer dispersant in the slurry composition of the present invention is generally adjusted by the specific surface area of the basic ceramic material, and the standard content is parts by weight with respect to 100 parts by weight of the basic ceramic material. As a guide, a value obtained by dividing the BET specific surface area [unit m 2 / g] by 5 can be used. For example, when barium titanate is used as the basic ceramic material, the content of the polymer dispersant with respect to 100 parts by weight of barium titanate is 1 part by weight if the particle size is 200 nm (specific surface area 5 m 2 / g), If the particle size is 100 nm (specific surface area 10 m 2 / g), 2 parts by weight, and if the particle size is 50 nm (specific surface area 20 m 2 / g), 4 parts by weight can be used as a guide.

高分子分散剤の含有量は、塩基性セラミックス材料100重量部に対する重量部として、塩基性セラミックス材料の分散性の観点から、塩基性セラミックス材料のBET比表面積[単位m2/g]を5で割った値の、0.3倍以上が好ましく、0.4倍以上がより好ましい。また、セラミックシートの剥離性の観点から、塩基性セラミックス材料のBET比表面積[単位m2/g]を5で割った値の、1.5倍以下が好ましく、1.2倍以下がより好ましい。これらの観点を総合すると、前記高分子分散剤の含有量は、塩基性セラミックス材料100重量部に対する重量部として、塩基性セラミックス材料のBET比表面積[単位m2/g]を5で割った値の、0.3〜1.5倍が好ましく、0.4〜1.2倍がより好ましい。 The content of the polymer dispersant is 5 parts by weight with respect to 100 parts by weight of the basic ceramic material. From the viewpoint of dispersibility of the basic ceramic material, the BET specific surface area [unit m 2 / g] of the basic ceramic material is 5 The divided value is preferably 0.3 times or more, and more preferably 0.4 times or more. Further, from the viewpoint of peelability of the ceramic sheet, the BET specific surface area [unit m 2 / g] of the basic ceramic material is preferably 1.5 times or less, more preferably 1.2 times or less the value obtained by dividing by 5. . Summing up these viewpoints, the content of the polymer dispersant is a value obtained by dividing the BET specific surface area [unit m 2 / g] of the basic ceramic material by 5 as parts by weight with respect to 100 parts by weight of the basic ceramic material. 0.3 to 1.5 times is preferable, and 0.4 to 1.2 times is more preferable.

塩基性セラミックス材料のBET比表面積が5m2/gであれば、高分子分散剤の含有量は、塩基性セラミックス材料の分散性の観点から、塩基性セラミックス材料100重量部に対して0.3重量部以上が好ましく、より好ましくは0.4重量部以上である。また、セラミックシートの剥離性の観点から、塩基性セラミックス材料100重量部に対して1.5重量部以下が好ましく、より好ましくは1.2重量部以下である。 If the BET specific surface area of the basic ceramic material is 5 m 2 / g, the content of the polymer dispersant is 0.3 from 100 parts by weight of the basic ceramic material from the viewpoint of dispersibility of the basic ceramic material. Part by weight or more is preferable, and more preferably 0.4 part by weight or more. Moreover, from a peelable viewpoint of a ceramic sheet, 1.5 weight part or less is preferable with respect to 100 weight part of basic ceramic materials, More preferably, it is 1.2 weight part or less.

塩基性セラミックス材料のBET比表面積が10m2/gであれば、高分子分散剤の含有量は、塩基性セラミックス材料の分散性の観点から、塩基性セラミックス材料100重量部に対して0.6重量部以上が好ましく、より好ましくは0.8重量部以上である。また、セラミックシートの剥離性の観点から塩基性セラミックス材料100重量部に対して3.0重量部以下が好ましく、より好ましくは2.4重量部以下である。 If the BET specific surface area of the basic ceramic material is 10 m 2 / g, the content of the polymer dispersant is 0.6 from 100 parts by weight of the basic ceramic material from the viewpoint of dispersibility of the basic ceramic material. Part by weight or more is preferable, and more preferably 0.8 part by weight or more. Further, from the viewpoint of peelability of the ceramic sheet, 3.0 parts by weight or less is preferable with respect to 100 parts by weight of the basic ceramic material, and more preferably 2.4 parts by weight or less.

塩基性セラミックス材料のBET比表面積が20m2/gであれば、高分子分散剤の含有量は、塩基性セラミックス材料の分散性の観点から、塩基性セラミックス材料100重量部に対して1.2重量部以上が好ましく、より好ましくは1.6重量部以上である。また、セラミックシートの剥離性の観点から塩基性セラミックス材料100重量部に対して6.0重量部以下が好ましく、より好ましくは4.8重量部以下である。塩基性セラミックス材料のBET比表面積がその他の値の場合には同様に計算して高分子分散剤の好ましい含有量を決定できる。 If the BET specific surface area of the basic ceramic material is 20 m 2 / g, the content of the polymer dispersant is 1.2 from 100 parts by weight of the basic ceramic material from the viewpoint of dispersibility of the basic ceramic material. Part by weight or more is preferable, and more preferably 1.6 parts by weight or more. Further, from the viewpoint of the peelability of the ceramic sheet, the amount is preferably 6.0 parts by weight or less, more preferably 4.8 parts by weight or less with respect to 100 parts by weight of the basic ceramic material. When the BET specific surface area of the basic ceramic material has other values, the preferable content of the polymer dispersant can be determined by calculating in the same manner.

[非水系溶媒]
本発明のスラリー組成物は、非水系溶媒を含有する。前記非水系溶媒としては非水系(有機溶剤)であれば特に限定されない。前記非水系溶媒としては、メタノール、エタノール、n−プロパノール、iso−プロパノール(IPA)、n−ブタノール、sec−ブタノール、n−オクタノール、ジアセトンアルコール、ターピネオール、ブチルカルビトール等のアルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、ジイソブチルケトン(DIBK)等のケトン類;N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミド類;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸−n−ブチル等のエステル類;エチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;ナフサ、n−ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン、ピリジン等の芳香族類が挙げられる。
[Non-aqueous solvent]
The slurry composition of the present invention contains a non-aqueous solvent. The non-aqueous solvent is not particularly limited as long as it is non-aqueous (organic solvent). Examples of the non-aqueous solvent include methanol, ethanol, n-propanol, iso-propanol (IPA), n-butanol, sec-butanol, n-octanol, diacetone alcohol, terpineol, butyl carbitol and other alcohols; methyl cellosolve Cellosolves such as ethyl cellosolve and butyl cellosolve; ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and diisobutyl ketone (DIBK); N, N-dimethylacetamide, N, N-dimethylformamide, N- Amides such as methyl-2-pyrrolidone; Esters such as methyl acetate, ethyl acetate, isopropyl acetate, and n-butyl acetate; Ethers such as ethyl ether, dioxane, and tetrahydrofuran; Naphtha, n-he Sun, hydrocarbons such as cyclohexane; toluene, xylene, aromatic compounds such as pyridine.

前記非水系溶媒としては本発明のスラリー組成物に含有されるポリビニルアセタール樹脂の溶解性の観点から、アルコール類及びセロソルブ類が好ましく、アルコール類がより好ましく、メタノール、エタノール及びiso−プロパノールがさらに好ましく、エタノールがさらにより好ましい。さらに、スラリー組成物から非水系溶媒を穏やかに除去して均一なセラミックシートを成形する観点から、沸点の異なる2種以上の有機溶剤の混合物が好ましく、アルコール類及びセロソルブ類と共沸しにくい他の有機溶剤と、アルコール類及びセロソルブ類との混合物がより好ましい。前記アルコール類及びセロソルブ類と共沸しにくい他の有機溶剤としては、炭化水素類及び芳香族類が好ましく、芳香族類がより好ましく、トルエンがさらに好ましい。これらの観点を総合すると、非水系溶媒としては芳香族類とアルコール類の混合物が好ましく、トルエンとエタノールとの混合物がより好ましい。非水系溶媒におけるトルエンとエタノールの容積比(トルエン/エタノール)は、同様の観点から、10/90〜75/25が好ましく、25/75〜65/35がより好ましく、40/60〜55/45がさらに好ましい。   From the viewpoint of solubility of the polyvinyl acetal resin contained in the slurry composition of the present invention, the non-aqueous solvent is preferably alcohols and cellosolves, more preferably alcohols, and more preferably methanol, ethanol, and iso-propanol. Even more preferred is ethanol. Furthermore, from the viewpoint of gently removing the non-aqueous solvent from the slurry composition to form a uniform ceramic sheet, a mixture of two or more organic solvents having different boiling points is preferable, and it is difficult to azeotrope with alcohols and cellosolves. A mixture of the above organic solvent with alcohols and cellosolves is more preferred. Other organic solvents that are difficult to azeotrope with the alcohols and cellosolves are preferably hydrocarbons and aromatics, more preferably aromatics, and even more preferably toluene. Taking these viewpoints together, the non-aqueous solvent is preferably a mixture of aromatics and alcohols, more preferably a mixture of toluene and ethanol. From the same viewpoint, the volume ratio of toluene and ethanol (toluene / ethanol) in the non-aqueous solvent is preferably 10/90 to 75/25, more preferably 25/75 to 65/35, and 40/60 to 55/45. Is more preferable.

[塩基性セラミックス材料]
本発明のスラリー組成物は、塩基性セラミックス材料を含有する。本明細書において「塩基性セラミックス材料」とは、塩基量が酸量よりも大きな値をもつ無機化合物であり、例えば、金属酸化物、金属炭酸塩、複合酸化物などが含まれる。具体的には、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウムなどの金属酸化物、炭酸マグネシウム、炭酸バリウムなどの金属炭酸塩、及び、ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウムなどの複合酸化物等が挙げられる。それらの中でも積層セラミック電子部品性能向上の観点から、ジルコン酸の複合酸化物及びチタン酸の複合酸化物が好ましく、チタン酸の複合酸化物がより好ましく、チタン酸バリウムがさらに好ましい。
[Basic ceramic materials]
The slurry composition of the present invention contains a basic ceramic material. In the present specification, the “basic ceramic material” is an inorganic compound having a base amount larger than the acid amount, and includes, for example, metal oxides, metal carbonates, composite oxides, and the like. Specifically, metal oxides such as titanium oxide, magnesium oxide, barium oxide and aluminum oxide, metal carbonates such as magnesium carbonate and barium carbonate, and barium zirconate, calcium zirconate, calcium titanate and barium titanate And composite oxides such as strontium titanate. Among these, from the viewpoint of improving the performance of the multilayer ceramic electronic component, a complex oxide of zirconic acid and a complex oxide of titanic acid are preferable, a complex oxide of titanic acid is more preferable, and barium titanate is more preferable.

一般に、セラミックス材料の表面は酸点、塩基点の両方をもっている。前記酸点の量(酸量)及び前記塩基点の量(塩基量)はそれぞれ逆滴定法で求めることが可能であり、それによりセラミックス材料が酸性であるか塩基性であるか同定することができる。逆滴定法とは、あらかじめ濃度が既知である塩基性試薬(又は酸性試薬)を一定の割合でセラミックス材料と混合し、十分に中和させた後、遠心分離機などで、固液分離させ、その上澄み液を滴定し、減少した塩基性試薬の量(又は酸性試薬の量)から酸量(又は塩基量)を求める方法である。本明細書において、塩基量及び酸量は下記により求められる。   In general, the surface of a ceramic material has both an acid point and a base point. The amount of acid points (acid amount) and the amount of base points (base amount) can each be determined by back titration, thereby identifying whether the ceramic material is acidic or basic. it can. The reverse titration method is a method in which a basic reagent (or acidic reagent) whose concentration is known in advance is mixed with a ceramic material at a certain ratio, sufficiently neutralized, and then solid-liquid separated with a centrifuge, The supernatant is titrated, and the acid amount (or base amount) is determined from the reduced amount of basic reagent (or acid reagent). In the present specification, the amount of base and the amount of acid are determined as follows.

1)塩基量の求め方
セラミックス材料2gを精秤(サンプル量)し、1/100N 酢酸−トルエン/エタノール(容量比48/52)溶液30mLに入れ、超音波洗浄器(Branson社製、型式1510J−MT)で1時間分散処理する。24時間静置後、セラミックス材料分散液の一部を、遠心分離機(日立社製型式CP−56G)を用いて、25,000rpm、60分の条件で固液分離する。分離した液体部10mLを、フェノールフタレイン指示薬が添加されているトルエン/エタノール(容量比2/1)溶液20mLに加えた後、1/100N 水酸化カリウム−エタノール溶液にて中和滴定する。この時の滴定量をXmL、1/100N 酢酸−トルエン/エタノール(容量比48/52)溶液10mLを中和するのに必要な滴定量をBmL、サンプル量をSgとすると、以下の式で、塩基量が求められる。
塩基量(μmol/g)=30×(B−X)/S
1) How to determine the amount of base 2 g of ceramic material is precisely weighed (sample amount), put into 30 mL of a 1 / 100N acetic acid-toluene / ethanol (volume ratio 48/52) solution, and an ultrasonic cleaner (Branson, model 1510J). -MT) for 1 hour. After leaving still for 24 hours, a part of the ceramic material dispersion is subjected to solid-liquid separation using a centrifuge (model CP-56G manufactured by Hitachi, Ltd.) at 25,000 rpm for 60 minutes. 10 mL of the separated liquid part is added to 20 mL of a toluene / ethanol (volume ratio 2/1) solution to which a phenolphthalein indicator is added, and then neutralized with a 1 / 100N potassium hydroxide-ethanol solution. Assuming that the titer at this time is XmL, the titer required to neutralize 10 mL of 1 / 100N acetic acid-toluene / ethanol (volume ratio 48/52) solution is BmL, and the sample amount is Sg, The amount of base is determined.
Base amount (μmol / g) = 30 × (BX) / S

2)酸量の求め方
セラミックス材料2gを精秤(サンプル量)し、1/100N n−ブチルアミン−トルエン/エタノール(容量比48/52)溶液30mLに入れ、超音波洗浄器(Branson社製、型式1510J−MT)で1時間分散処理する。24時間静置後、セラミックス材料分散液の一部を、遠心分離機(日立社製型式CP−56G)を用いて、25,000rpm、60分の条件で固液分離する。分離した液体部10mLを、ブロムクレゾールグリーン指示薬が添加されているトルエン/エタノール(容量比2/1)溶液20mLに加えた後、1/100N 塩酸−エタノール溶液にて中和滴定する。この時の滴定量をXmL、1/100N n−ブチルアミン−トルエン/エタノール(容量比48/52)溶液10mLを中和するのに必要な滴定量をBmL、サンプル量をSgとすると、以下の式で、酸量が求められる。
酸量(μmol/g)=30×(B−X)/S
2) Determination of acid amount Weighing 2 g of ceramic material (sample amount), put it in 30 mL of 1 / 100N n-butylamine-toluene / ethanol (volume ratio 48/52) solution, ultrasonic cleaner (Branson, For 1 hour with a model 1510J-MT). After leaving still for 24 hours, a part of the ceramic material dispersion is subjected to solid-liquid separation using a centrifuge (model CP-56G manufactured by Hitachi, Ltd.) at 25,000 rpm for 60 minutes. 10 mL of the separated liquid part is added to 20 mL of a toluene / ethanol (volume ratio 2/1) solution to which bromocresol green indicator is added, and then neutralized with a 1/100 N hydrochloric acid-ethanol solution. Assuming that the titer at this time is XmL, the titer required to neutralize 10 mL of 1 / 100N n-butylamine-toluene / ethanol (volume ratio 48/52) solution is BmL, and the sample amount is Sg, the following formula Thus, the acid amount is determined.
Acid amount (μmol / g) = 30 × (BX) / S

本発明のスラリー組成物中の塩基性セラミックス材料の含有量(固形分の含有量)は、シート成形に適するという観点から、スラリー組成物に対して10〜50重量%が好ましく、より好ましくは15〜45重量%、さらに好ましくは20〜40重量%である。   The content (solid content) of the basic ceramic material in the slurry composition of the present invention is preferably 10 to 50% by weight, more preferably 15%, based on the slurry composition, from the viewpoint of being suitable for sheet molding. It is -45 weight%, More preferably, it is 20-40 weight%.

本発明における塩基性セラミックス材料のBET比表面積に基づく平均粒径は、セラミックシートの薄膜化の観点から500nm以下が好ましく、より好ましくは200nm以下、さらに好ましくは120nm以下である。また、スラリー組成物の取扱い及び塩基性セラミックス材料の微分散性とセラミックシートの帯電防止性の両立の観点から、5nm以上が好ましく、より好ましくは10nm以上、さらに好ましくは20nm以上である。これらの観点を総合すると、塩基性セラミックス材料の平均粒径としては、5〜500nmが好ましく、より好ましくは10〜200nm、さらに好ましくは20〜120nmである。   The average particle diameter based on the BET specific surface area of the basic ceramic material in the present invention is preferably 500 nm or less, more preferably 200 nm or less, and further preferably 120 nm or less from the viewpoint of thinning the ceramic sheet. Moreover, 5 nm or more is preferable from a viewpoint of handling of a slurry composition, and the coexistence of the fine dispersibility of a basic ceramic material, and the antistatic property of a ceramic sheet, More preferably, it is 10 nm or more, More preferably, it is 20 nm or more. Taking these viewpoints together, the average particle size of the basic ceramic material is preferably 5 to 500 nm, more preferably 10 to 200 nm, and still more preferably 20 to 120 nm.

なお、本明細書において、塩基性セラミックス材料の平均粒径(BET比表面積に基づく平均粒径)は、好ましくは粉末状の塩基性セラミックス材料の平均粒径をいい、粒子径R(m)の球と仮定して、窒素吸着法により測定されたBET比表面積S(m2/g)及び塩基性セラミックス材料の比重ρ(g/cm3)を用いて、求めることができる。すなわち、BET比表面積は単位重量当たりの表面積であるので、表面積をA(m2)、粒子の重量をW(g)とすると、
S(m2/g)=A(m2)/W(g)
=[4×π×(R/2)2]/[4/3×π×(R/2)3×ρ×106
=6/(R×ρ×106
の関係式が求められる。粒子径の単位を変換すると、
R(nm)=6000/(S×ρ)
の式となり、平均粒径(BET比表面積に基づく平均粒径)求めることができる。例えば、チタン酸バリウム(比重6.0)のBET比表面積が5.0(m2/g)であれば、その平均粒径(BET比表面積に基づく平均粒径)は、200nmとなる。
In the present specification, the average particle diameter of the basic ceramic material (average particle diameter based on the BET specific surface area) is preferably the average particle diameter of the powdered basic ceramic material, and the particle diameter R (m) Assuming a sphere, it can be obtained using the BET specific surface area S (m 2 / g) measured by the nitrogen adsorption method and the specific gravity ρ (g / cm 3 ) of the basic ceramic material. That is, since the BET specific surface area is a surface area per unit weight, assuming that the surface area is A (m 2 ) and the weight of the particles is W (g),
S (m 2 / g) = A (m 2 ) / W (g)
= [4 × π × (R / 2) 2 ] / [4/3 × π × (R / 2) 3 × ρ × 10 6 ]
= 6 / (R × ρ × 10 6 )
Is obtained. When the unit of particle size is converted,
R (nm) = 6000 / (S × ρ)
The average particle diameter (average particle diameter based on BET specific surface area) can be obtained. For example, if the BET specific surface area of barium titanate (specific gravity 6.0) is 5.0 (m 2 / g), the average particle diameter (average particle diameter based on the BET specific surface area) is 200 nm.

[ポリビニルアセタール樹脂]
本発明のスラリー組成物はポリビニルアセタール樹脂を含有する。前記ポリビニルアセタール樹脂は、ポリビニルアルコールをアセタール化して得られる。アセタール化の方法は特に限定されるものではなく、例えば、ポリビニルアルコールを温水に溶解し、このポリビニルアルコール水溶液を所定温度に保持し、アルデヒド及び酸触媒を加え、撹拌しながらアセタール化反応を進行させ、次いで、反応温度を上げて熟成し、反応を完結させた後、中和、洗浄、乾燥を行う方法等が挙げられる。
[Polyvinyl acetal resin]
The slurry composition of the present invention contains a polyvinyl acetal resin. The polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol. The method of acetalization is not particularly limited. For example, polyvinyl alcohol is dissolved in warm water, this aqueous polyvinyl alcohol solution is maintained at a predetermined temperature, an aldehyde and an acid catalyst are added, and the acetalization reaction is allowed to proceed while stirring. Then, after aging by raising the reaction temperature to complete the reaction, there may be mentioned a method of neutralizing, washing and drying.

前記アセタール化反応に用いられるアルデヒドは、特に限定されるものではなく、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、n−バレルアルデヒド、n−ヘキシルアルデヒド、2−エチルブチルアルデヒド、2−エチルヘキシルアルデヒド、n−ヘプチルアルデヒド、n−オクテルアルデヒド、n−ノニルアルデヒド、n−デシルアルデヒド、アミルアルデヒド、等の脂肪族アルデヒド、ベンズアルデヒド、シンナムアルデヒド、2−メチルベンズアルデヒド、3−メチルベンズアルデヒド、4−メチルベンズアルデヒド、p−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β−フェニルプロピオンアルデヒド等の芳香族アルデヒド等が挙げられる。これらのアルデヒドは、1種を単独で使用してもよく、2種以上を併用してもよい。アルデヒドとしては、なかでも、アセタール化反応に優れ、かつセラミックシート積層時の圧着性等の優れた諸特性を付与し得るブチルアルデヒド及びアセトアルデヒドが好ましく、セラミックシートの柔軟性の観点から、ブチルアルデヒドがより好ましい。   The aldehyde used in the acetalization reaction is not particularly limited. For example, formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, n-hexylaldehyde, 2-ethylbutyraldehyde Aliphatic aldehydes such as 2-ethylhexylaldehyde, n-heptylaldehyde, n-octaldehyde, n-nonylaldehyde, n-decylaldehyde, amylaldehyde, benzaldehyde, cinnamaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, β-phenylpropionaldehyde, etc. Aromatic aldehydes, and the like. These aldehydes may be used alone or in combination of two or more. As the aldehyde, butyraldehyde and acetaldehyde, which are excellent in acetalization reaction and can impart various properties such as pressure-bonding properties when laminating ceramic sheets, are preferable. More preferred.

前記ポリビニルアセタール樹脂は、アセタール化度が55〜80モル%であることが好ましく、より好ましくは65〜75モル%である。アセタール化度が55モル%以上であると、非極性溶剤への溶解性が向上し、セラミックシートの可撓性が向上する。一方、アセタール化度が80モル%以下であると、得られるセラミックシートの塗膜強度が向上する。ここで、アセタール化度とは、ポリビニルアルコールの水酸基のうちアセタール化された水酸基の割合をいい、例えば、ポリビニルブチラール樹脂の場合、JIS K 6728に準拠して測定することができる。   The polyvinyl acetal resin preferably has an acetalization degree of 55 to 80 mol%, more preferably 65 to 75 mol%. When the degree of acetalization is 55 mol% or more, the solubility in a nonpolar solvent is improved, and the flexibility of the ceramic sheet is improved. On the other hand, when the degree of acetalization is 80 mol% or less, the coating film strength of the resulting ceramic sheet is improved. Here, the degree of acetalization refers to the proportion of hydroxyl groups acetalized among the hydroxyl groups of polyvinyl alcohol. For example, in the case of polyvinyl butyral resin, it can be measured in accordance with JIS K 6728.

また、前記ポリビニルアセタール樹脂は、残存水酸基量が10〜45モル%であることが好ましく、15〜40モル%であることがより好ましい。残存水酸基量が10モル%以上では、ポリビニルアセタール樹脂の靭性が向上し、塩基性セラミック材料の分散性が向上する。一方、残存水酸基量が45モル%以下であると、有機溶剤に溶けやすくなる。ポリビニルアセタール樹脂の残存水酸基量は、例えば、ポリビニルブチラール樹脂の場合、JIS K 6728に準拠して測定することができる。   The polyvinyl acetal resin preferably has a residual hydroxyl group content of 10 to 45 mol%, more preferably 15 to 40 mol%. When the residual hydroxyl group amount is 10 mol% or more, the toughness of the polyvinyl acetal resin is improved and the dispersibility of the basic ceramic material is improved. On the other hand, when the residual hydroxyl group amount is 45 mol% or less, it becomes easily soluble in an organic solvent. For example, in the case of a polyvinyl butyral resin, the amount of residual hydroxyl groups of the polyvinyl acetal resin can be measured according to JIS K 6728.

前記ポリビニルアセタール樹脂は、適宜製造したものであってもよいし、市販品であってもよい。ポリビニルアセタール樹脂としては、セラミックシートの柔軟性及びセラミックシート積層時の圧着性の観点から、ポリビニルブチラール樹脂が好ましい。ポリビニルブチラール樹脂の市販品としては、積水化学工業社製エスレックBシリーズの「BL−1」、「BL−2」、「BL−5」、「BM−1」、「BM−2」、「BM−5」、「BH−3」、「BX−1」、「BX−3」及び「BX−5」、電気化学工業社製デンカブチラールシリーズの「#3000−1」、「#3000−2」、「#3000−4」及び「#3000−K」並びにクラレ社製モビタールシリーズの「B30T」、「B30H」、「B45M」、「B45H」、「B60T」及び「B60H」などが挙げられる。   The polyvinyl acetal resin may be appropriately manufactured or may be a commercially available product. The polyvinyl acetal resin is preferably a polyvinyl butyral resin from the viewpoint of the flexibility of the ceramic sheet and the pressure-bonding property when the ceramic sheet is laminated. As commercially available products of polyvinyl butyral resin, “BL-1”, “BL-2”, “BL-5”, “BM-1”, “BM-2”, “BM” of S-LEC B series manufactured by Sekisui Chemical Co., Ltd. -5 "," BH-3 "," BX-1 "," BX-3 "and" BX-5 ", Denkabuthirar series" # 3000-1 "," # 3000-2 "manufactured by Denki Kagaku Kogyo Co., Ltd. , “# 3000-4” and “# 3000-K” and “B30T”, “B30H”, “B45M”, “B45H”, “B60T”, “B60H” and the like of the Kuraray Mobital series.

本発明のスラリー組成物中におけるポリビニルアセタール樹脂の含有量は、セラミックシートの帯電防止性、剥離性及び靭性向上の観点並びにバインダー機能発揮の観点から、塩基性セラミックス材料100重量部に対して2重量部以上が好ましく、より好ましくは4重量部以上、さらに好ましくは6重量部以上である。また、セラミックシートの帯電防止性、剥離性及び靭性向上の観点並びにスラリー組成物の粘度を低下させてシートを形成しやすくする観点から、塩基性セラミックス材料100重量部に対して20重量部以下が好ましく、より好ましくは18重量部以下、さらに好ましくは16重量部以下である。これらの観点を総合すると、本発明のスラリー組成物中におけるポリビニルアセタール樹脂の含有量は、塩基性セラミックス材料100重量部に対して2〜20重量部が好ましく、より好ましくは4〜18重量部、さらに好ましくは6〜16重量部である。   The content of the polyvinyl acetal resin in the slurry composition of the present invention is 2% with respect to 100 parts by weight of the basic ceramic material from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet and exhibiting the binder function. Part or more, preferably 4 parts by weight or more, and more preferably 6 parts by weight or more. Further, from the viewpoint of improving the antistatic property, peelability and toughness of the ceramic sheet and reducing the viscosity of the slurry composition to facilitate the formation of the sheet, the amount is 20 parts by weight or less with respect to 100 parts by weight of the basic ceramic material. Preferably, it is 18 parts by weight or less, more preferably 16 parts by weight or less. Taking these viewpoints together, the content of the polyvinyl acetal resin in the slurry composition of the present invention is preferably 2 to 20 parts by weight, more preferably 4 to 18 parts by weight, based on 100 parts by weight of the basic ceramic material. More preferably, it is 6 to 16 parts by weight.

[その他の成分]
本発明のスラリー組成物は、本発明の効果を損なわない範囲で、アクリル系樹脂、セルロース系樹脂等のバインダー樹脂、可塑剤、潤滑剤、分散助剤等の低分子化合物等の従来公知の添加剤を含有してもよい。上記可塑剤としては特に限定されないが、例えば、ジオクチルフタレート(DOP)、ジブチルフタレート(DBP)等のフタル酸ジエステル、ジオクチルアジペート等のアジピン酸ジエステル、トリエチレングリコール2−エチルヘキシル等のアルキレングリコールジエステル等が挙げられる。なかでも、揮発性が低く、シートの柔軟性を保ちやすいことから、DOPが好適である。本発明のスラリー組成物における前記可塑剤の含有量は、セラミックシートの柔軟性の観点から、ポリビニルアセタール樹脂100重量部に対して5重量部以上が好ましく、10重量部以上がより好ましく、15重量部以上がさらに好ましい。また、セラミックシートの剥離性の観点から、ポリビニルアセタール樹脂100重量部に対して40重量部以下が好ましく、30重量部以下がより好ましく、25重量部以下がさらに好ましい。これらの観点を総合すると、スラリー組成物における前記可塑剤の含有量は、ポリビニルアセタール樹脂100重量部に対して5〜40重量部が好ましく、10〜30重量部がより好ましく、15〜25重量部がさらに好ましい。
[Other ingredients]
The slurry composition of the present invention is a conventionally known addition of a low molecular weight compound such as a binder resin such as an acrylic resin or a cellulose resin, a plasticizer, a lubricant, or a dispersion aid, as long as the effects of the present invention are not impaired. An agent may be contained. The plasticizer is not particularly limited, and examples thereof include phthalic acid diesters such as dioctyl phthalate (DOP) and dibutyl phthalate (DBP), adipic acid diesters such as dioctyl adipate, and alkylene glycol diesters such as triethylene glycol 2-ethylhexyl. Can be mentioned. Among these, DOP is preferable because it is low in volatility and easily maintains the flexibility of the sheet. The content of the plasticizer in the slurry composition of the present invention is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and more preferably 15 parts by weight with respect to 100 parts by weight of the polyvinyl acetal resin from the viewpoint of the flexibility of the ceramic sheet. Part or more is more preferable. Moreover, from a peelable viewpoint of a ceramic sheet, 40 weight part or less is preferable with respect to 100 weight part of polyvinyl acetal resin, 30 weight part or less is more preferable, and 25 weight part or less is further more preferable. When these viewpoints are put together, the content of the plasticizer in the slurry composition is preferably 5 to 40 parts by weight, more preferably 10 to 30 parts by weight, with respect to 100 parts by weight of the polyvinyl acetal resin. Is more preferable.

[スラリー組成物]
本発明のスラリー組成物は、例えば、前記高分子分散剤、前記塩基性セラミックス材料及び前記非水系溶媒を混合する工程を含む製造方法によって製造できる。前記の混合工程は、例えば、前記高分子分散剤、前記塩基性セラミックス材料及び前記非水系溶媒を、ジルコニアビーズ等と共に混合することを含む。その後、前記カチオン化合物及び前記ポリビニルアセタール樹脂を含む残りの成分を含有させて本発明のスラリー組成物を得ることができる。各成分の含有量は上述を参照して決定できる。
[Slurry composition]
The slurry composition of the present invention can be produced, for example, by a production method including a step of mixing the polymer dispersant, the basic ceramic material, and the non-aqueous solvent. The mixing step includes, for example, mixing the polymer dispersant, the basic ceramic material, and the non-aqueous solvent together with zirconia beads and the like. Then, the remaining component containing the said cation compound and the said polyvinyl acetal resin can be contained, and the slurry composition of this invention can be obtained. The content of each component can be determined with reference to the above description.

本発明のスラリー組成物は、電子機器分野に用いられるセラミックス成形品に用いることができる。例えば、塩基性セラミックス含有スラリー組成物を用いてシート、鋳込み、プレス、押出し、射出などの成形法により薄いセラミックシートを成形した場合、本発明のスラリー組成物であれば、またその成形品の帯電防止性と剥離性を向上でき、さらにシートの靭性(破断応力及び伸び)を向上することができる。なお、本明細書において「薄層化セラミックシート」又は「薄いセラミックシート」とは、厚みが好ましくは15μm未満、より好ましくは10μm以下、さらに好ましくは8μm以下であるセラミックシートをいう。厚みの下限は特に制限されないが0μmを超え、例えば0.02μm以上である。   The slurry composition of this invention can be used for the ceramic molded product used for the electronic device field | area. For example, when a thin ceramic sheet is formed using a basic ceramic-containing slurry composition by a molding method such as sheet, casting, pressing, extrusion, or injection, the slurry composition of the present invention can be charged. The prevention and peelability can be improved, and the toughness (breaking stress and elongation) of the sheet can be improved. In the present specification, the “thinned ceramic sheet” or “thin ceramic sheet” refers to a ceramic sheet having a thickness of preferably less than 15 μm, more preferably 10 μm or less, and even more preferably 8 μm or less. The lower limit of the thickness is not particularly limited, but exceeds 0 μm, for example, 0.02 μm or more.

本開示はさらに以下の一又は複数の実施形態に関する。   The present disclosure further relates to one or more of the following embodiments.

<1> 含窒素複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物、高分子分散剤、非水系溶媒、塩基性セラミックス材料及びポリビニルアセタール樹脂を含有する、スラリー組成物。   <1> A slurry composition containing a cationic compound containing a nitrogen-containing heteroaromatic quaternary ammonium cation group, a polymer dispersant, a non-aqueous solvent, a basic ceramic material, and a polyvinyl acetal resin.

<2> 前記カチオン基が、芳香環中に第4級アンモニウムを有するカチオン基である、<1>記載のスラリー組成物。
<3> 前記カチオン基が、ピリジニウム、ピラゾリウム、イミダゾリウム、ピリミジニウム、ピラジニウム、ピリダジニウム及びピロリウム構造からなる群より選ばれる1種以上の構造を有するカチオン基である、<1>又は<2>記載のスラリー組成物。
<4> 前記カチオン基が、下記一般式(1)、(2)及び(3)で表されるカチオン基からなる群より選ばれるカチオン基である、<1>から<3>のいずれかに記載のスラリー組成物。

Figure 0005885622
[式(1)中、R1は、炭素数1〜4のアルキル基を示し、R2、R3及びR4は、同一又は異なり、水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。式(2)中、R5及びR6は、同一又は異なり、炭素数1〜4のアルキル基を示し、R7及びR8は、同一又は異なり、水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。式(3)中、R9及びR10は、同一又は異なり、炭素数1〜4のアルキル基を示し、R11は水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。]
<5> 前記カチオン基が、前記一般式(3)で表されるカチオン基である、<1>から<4>のいずれかに記載のスラリー組成物。
<6> 前記カチオン基が、前記一般式(3)で表されるカチオン基であり、前記一般式(3)におけるR9及びR10の炭素数の合計が、2〜5である、<1>から<5>のいずれかに記載のスラリー組成物。
<7> 前記カチオン基の分子量が、300以下、好ましくは200以下、より好ましくは150以下、さらに好ましくは120以下であり、又は、90以上、好ましくは95以上、より好ましくは100以上であり、又は、90〜300、好ましくは95〜300、より好ましくは95〜200、さらに好ましくは100〜150、さらにより好ましくは100〜120である、<1>から<6>のいずれかに記載のスラリー組成物。
<8> 前記カチオン化合物が、前記カチオン基と、アニオン基との塩であり、前記アニオン基が、有機アニオン基である、<1>から<7>のいずれかに記載のスラリー組成物。
<9> 前記アニオン基が、アルキル硫酸及び脂肪族カルボン酸からなる群から選ばれる1種以上の酸のアニオン基である、<1>から<8>のいずれかに記載のスラリー組成物。
<10> 前記カチオン化合物の含有量が、前記塩基性セラミックス材料100重量部に対して0.05重量部以上、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、さらに好ましくは0.3重量部以上であり、又は、塩基性セラミックス材料100重量部に対して2.0重量部以下、好ましくは1.8重量部以下、より好ましくは1.5重量部以下、さらに好ましくは1.2重量部以下であり、又は、塩基性セラミックス材料100重量部に対して0.05〜2.0重量部好ましくは0.1〜1.8重量部、さらに好ましくは0.2〜1.5重量部、よりさらに好ましくは0.3〜1.2重量部である、<1>から<9>のいずれかに記載のスラリー組成物。
<11> スラリー組成物中の前記カチオン化合物の含有量が、ポリビニルアセタール樹脂1.0重量部に対し0.01重量部以上、好ましくは0.015重量部以上、より好ましくは0.02重量部以上、さらに好ましくは0.03重量部以上であり、又は、ポリビニルアセタール樹脂1.0重量部に対し0.2重量部以下、好ましくは0.18重量部以下、より好ましくは0.15重量部以下、さらに好ましくは0.12重量部以下であり、又は、ポリビニルアセタール樹脂1.0重量部に対し0.01〜0.2重量部、好ましくは0.015〜0.18重量部、より好ましくは0.02〜0.15重量部、さらに好ましくは0.03〜0.12重量部である、<1>から<10>のいずれかに記載のスラリー組成物。
<12> 前記高分子分散剤の重量平均分子量が、2000以上、好ましくは4000以上、より好ましくは6000以上、さらに好ましくは8000以上であり、又は、200000以下、好ましくは120000以下、より好ましくは60000以下、さらに好ましくは36000以下であり、又は、2000〜200000、好ましくは4000〜120000、より好ましくは6000〜60000であり、さらに好ましくは8000〜36000である、<1>から<11>のいずれかに記載のスラリー組成物。
<13> スラリー組成物中の前記高分子分散剤の含有量が、塩基性セラミックス材料100重量部に対する重量部として、塩基性セラミックス材料のBET比表面積[単位m2/g]を5で割った値の0.3倍以上、好ましくは0.4倍以上であり、又は、塩基性セラミックス材料のBET比表面積[単位m2/g]を5で割った値の1.5倍以下、好ましくは1.2倍以下であり、又は塩基性セラミックス材料のBET比表面積[単位m2/g]を5で割った値の0.3〜1.5倍、好ましくは0.4〜1.2倍である、<1>から<12>のいずれかに記載のスラリー組成物。
<14> 前記高分子分散剤が、アニオン性高分子分散剤である、<1>から<13>のいずれかに記載のスラリー組成物。
<15> 前記スラリー組成物がさらに、フタル酸ジエステル、アジピン酸ジエステル、及びアルキレングリコールジエステルからなる群から選択される可塑剤を含み、好ましくはフタル酸ジエステルを含み、より好ましくはジオクチルフタレートを含む、<1>から<14>のいずれかに記載のスラリー組成物。
<16> 前記可塑剤の含有量が、ポリビニルアセタール樹脂100重量部に対して5重量部以上、好ましくは10重量部以上、より好ましく15重量部以上であり、又は、ポリビニルアセタール樹脂100重量部に対して40重量部以下、好ましくは30重量部以下、より好ましくは25重量部以下であり、又は、ポリビニルアセタール樹脂100重量部に対して5〜40重量部、好ましくは10〜30重量部、より好ましくは15〜25重量部である、<15>記載のスラリー組成物。
<17> 前記塩基性セラミックス材料が、ジルコン酸の複合酸化物及びチタン酸の複合酸化物からなる群から選択される1種以上であり、好ましくはチタン酸の複合酸化物であり、より好ましくはチタン酸バリウムである、<1>から<16>のいずれかに記載のスラリー組成物。
<18> 前記塩基性セラミックス材料のBET比表面積に基づく平均粒径が、500nm以下、好ましくは200nm以下、より好ましくは120nm以下であり、又は、5nm以上、好ましくは10nm以上、より好ましくは20nm以上であり、又は、5〜500nm、好ましくは10〜200nm、より好ましくは20〜120nmである、<1>から<17>のいずれかに記載のスラリー組成物。
<19> 前記ポリビニルアセタール樹脂が、ポリビニルブチラール樹脂である、<1>から<18>のいずれかに記載のスラリー組成物。
<20> 前記高分子分散剤が、共重合体、好ましくは塩基性セラミックス材料に対する親和性の高い構成単位と非水系溶媒に対する親和性の高い構成単位とを有する共重合体、より好ましくは(メタ)アクリル酸由来の構成単位とポリオキシエチレン基を有する構成単位とを有する項重合体である、<1>から<19>のいずれかに記載のスラリー組成物。
<21> 前記非水系溶媒が、アルコール類及びセロソルブ類から選ばれる非水系溶媒を有し、好ましくはアルコール類を有し、より好ましくはエタノールを有する、<1>から<20>のいずれかに記載のスラリー組成物。
<22> 前記非水系溶媒が、炭化水素類及び芳香族類から選ばれる非水系溶媒を有し、好ましくは芳香族類を有し、より好ましくはトルエンを有する、<1>から<21>のいずれかに記載のスラリー組成物。
<23> <1>から<22>のいずれかに記載のスラリー組成物を用いてセラミックシートを形成することを含む、セラミックシートの製造方法。 <2> The slurry composition according to <1>, wherein the cationic group is a cationic group having a quaternary ammonium in an aromatic ring.
<3> The <1> or <2> description, wherein the cationic group is a cationic group having at least one structure selected from the group consisting of pyridinium, pyrazolium, imidazolium, pyrimidinium, pyrazinium, pyridazinium and pyrrolium structures. Slurry composition.
<4> The above cationic group is any one of <1> to <3>, which is a cationic group selected from the group consisting of cationic groups represented by the following general formulas (1), (2) and (3) The slurry composition described.
Figure 0005885622
[In formula (1), R 1 represents an alkyl group having 1 to 4 carbon atoms, and R 2 , R 3 and R 4 are the same or different and may have a hydrogen atom or a hydroxyl group. 1-4 alkyl groups are shown. In formula (2), R 5 and R 6 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, and R 7 and R 8 are the same or different and may have a hydrogen atom or a hydroxyl group. A good alkyl group having 1 to 4 carbon atoms is shown. In formula (3), R 9 and R 10 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, and R 11 is a hydrogen atom or an alkyl having 1 to 4 carbon atoms which may have a hydroxyl group. Indicates a group. ]
<5> The slurry composition according to any one of <1> to <4>, wherein the cationic group is a cationic group represented by the general formula (3).
<6> The cationic group is a cationic group represented by the general formula (3), and the total number of carbon atoms of R 9 and R 10 in the general formula (3) is 2 to 5, <1 The slurry composition according to any one of <5> to <5>.
<7> The molecular weight of the cationic group is 300 or less, preferably 200 or less, more preferably 150 or less, still more preferably 120 or less, or 90 or more, preferably 95 or more, more preferably 100 or more, Alternatively, the slurry according to any one of <1> to <6>, which is 90 to 300, preferably 95 to 300, more preferably 95 to 200, still more preferably 100 to 150, and even more preferably 100 to 120. Composition.
<8> The slurry composition according to any one of <1> to <7>, wherein the cationic compound is a salt of the cationic group and an anionic group, and the anionic group is an organic anionic group.
<9> The slurry composition according to any one of <1> to <8>, wherein the anionic group is an anionic group of one or more acids selected from the group consisting of alkylsulfuric acid and aliphatic carboxylic acid.
<10> The content of the cationic compound is 0.05 parts by weight or more, preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, further preferably 100 parts by weight of the basic ceramic material. Is 0.3 parts by weight or more, or 2.0 parts by weight or less, preferably 1.8 parts by weight or less, more preferably 1.5 parts by weight or less, even more preferably 100 parts by weight of the basic ceramic material. Is 1.2 parts by weight or less, or 0.05 to 2.0 parts by weight, preferably 0.1 to 1.8 parts by weight, more preferably 0.2 to 0.2 parts by weight with respect to 100 parts by weight of the basic ceramic material. The slurry composition according to any one of <1> to <9>, which is 1.5 parts by weight, more preferably 0.3 to 1.2 parts by weight.
<11> The content of the cationic compound in the slurry composition is 0.01 parts by weight or more, preferably 0.015 parts by weight or more, more preferably 0.02 parts by weight with respect to 1.0 part by weight of the polyvinyl acetal resin. Or more, more preferably 0.03 parts by weight or more, or 0.2 parts by weight or less, preferably 0.18 parts by weight or less, more preferably 0.15 parts by weight with respect to 1.0 part by weight of the polyvinyl acetal resin. In the following, it is more preferably 0.12 parts by weight or less, or 0.01 to 0.2 parts by weight, preferably 0.015 to 0.18 parts by weight, more preferably 1.0 parts by weight of polyvinyl acetal resin. Is a slurry composition according to any one of <1> to <10>, wherein 0.02 to 0.15 parts by weight, more preferably 0.03 to 0.12 parts by weight.
<12> The polymer dispersant has a weight average molecular weight of 2000 or more, preferably 4000 or more, more preferably 6000 or more, further preferably 8000 or more, or 200000 or less, preferably 120,000 or less, more preferably 60000. Or less, more preferably 36000 or less, or 2000 to 200000, preferably 4000 to 120,000, more preferably 6000 to 60000, and further preferably 8000 to 36000, any one of <1> to <11> The slurry composition according to 1.
<13> The BET specific surface area [unit m 2 / g] of the basic ceramic material is divided by 5 as the content of the polymer dispersant in the slurry composition is based on 100 parts by weight of the basic ceramic material. 0.3 times or more, preferably 0.4 times or more of the value, or 1.5 times or less of the value obtained by dividing the BET specific surface area [unit m 2 / g] of the basic ceramic material by 5, preferably 1.2 times or less, or 0.3 to 1.5 times, preferably 0.4 to 1.2 times the value obtained by dividing the BET specific surface area [unit m 2 / g] of the basic ceramic material by 5 The slurry composition according to any one of <1> to <12>, wherein
<14> The slurry composition according to any one of <1> to <13>, wherein the polymer dispersant is an anionic polymer dispersant.
<15> The slurry composition further includes a plasticizer selected from the group consisting of a phthalic acid diester, an adipic acid diester, and an alkylene glycol diester, preferably includes a phthalic acid diester, and more preferably includes dioctyl phthalate. <1> to the slurry composition according to any one of <14>.
<16> The plasticizer content is 5 parts by weight or more with respect to 100 parts by weight of the polyvinyl acetal resin, preferably 10 parts by weight or more, more preferably 15 parts by weight or more, or 100 parts by weight of the polyvinyl acetal resin. 40 parts by weight or less, preferably 30 parts by weight or less, more preferably 25 parts by weight or less, or 5 to 40 parts by weight, preferably 10 to 30 parts by weight, based on 100 parts by weight of the polyvinyl acetal resin. The slurry composition according to <15>, preferably 15 to 25 parts by weight.
<17> The basic ceramic material is at least one selected from the group consisting of a complex oxide of zirconic acid and a complex oxide of titanic acid, preferably a complex oxide of titanic acid, more preferably The slurry composition according to any one of <1> to <16>, which is barium titanate.
<18> The average particle diameter based on the BET specific surface area of the basic ceramic material is 500 nm or less, preferably 200 nm or less, more preferably 120 nm or less, or 5 nm or more, preferably 10 nm or more, more preferably 20 nm or more. Or a slurry composition according to any one of <1> to <17>, which is 5 to 500 nm, preferably 10 to 200 nm, more preferably 20 to 120 nm.
<19> The slurry composition according to any one of <1> to <18>, wherein the polyvinyl acetal resin is a polyvinyl butyral resin.
<20> The polymer dispersant is a copolymer, preferably a copolymer having a structural unit having high affinity for a basic ceramic material and a structural unit having high affinity for a non-aqueous solvent, more preferably (meta The slurry composition according to any one of <1> to <19>, which is a term polymer having a structural unit derived from acrylic acid and a structural unit having a polyoxyethylene group.
<21> The nonaqueous solvent has a nonaqueous solvent selected from alcohols and cellosolves, preferably has alcohols, and more preferably has ethanol, <1> to <20> The slurry composition described.
<22> The nonaqueous solvent has a nonaqueous solvent selected from hydrocarbons and aromatics, preferably has aromatics, more preferably has toluene, <1> to <21> The slurry composition in any one.
<23> A method for producing a ceramic sheet, comprising forming a ceramic sheet using the slurry composition according to any one of <1> to <22>.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

1.スラリー組成物(実施例1〜11、13〜17、参考例12及び比較例1〜9)の調製
下記表1に示すカチオン化合物A1〜A13、下記表2に示す高分子分散剤B1〜B7、塩基性セラミックス材料及びポリビニルアセタール樹脂を用い、実施例1〜11、13〜17、参考例12及び比較例1〜9のスラリー組成物を調製した。
1. Preparation of slurry compositions (Examples 1 to 11 , 13 to 17, Reference Example 12 and Comparative Examples 1 to 9) Cationic compounds A1 to A13 shown in Table 1 below, polymer dispersants B1 to B7 shown in Table 2 below, Slurry compositions of Examples 1 to 11 , 13 to 17 , Reference Example 12 and Comparative Examples 1 to 9 were prepared using a basic ceramic material and a polyvinyl acetal resin.

[カチオン化合物]
実施例1〜11、13〜17、参考例12及び比較例7のスラリー組成物では下記A1〜A8のカチオン化合物を使用した。一方、比較例2〜6及び比較例9ではA1〜A8のカチオン化合物に換えて下記A9〜A13のカチオン化合物を使用した。使用したカチオン化合物A1〜A13を、カチオン部の分子量とともに、下記表1にまとめる。
[Cationic compound]
In the slurry compositions of Examples 1 to 11 , 13 to 17 , Reference Example 12 and Comparative Example 7, the following cation compounds A1 to A8 were used. On the other hand, in Comparative Examples 2 to 6 and Comparative Example 9, the following cation compounds A9 to A13 were used instead of the cation compounds A1 to A8. The used cation compounds A1 to A13 are summarized in Table 1 below together with the molecular weight of the cation moiety.

A1:1−エチル−3−メチルイミダゾリウム エチルサルフェート(シグマアルドリッチ社製)
A2:1−エチル−3−メチルイミダゾリウム アセテート(シグマアルドリッチ社製)
A3:1−エチル−2,3−ジメチルイミダゾリウム エチルサルフェート(シグマアルドリッチ社製)
A4:1−ブチル−3−メチルイミダゾリウム エチルサルフェート(シグマアルドリッチ社製)
A5:1−ブチル−3−メチルイミダゾリウム アセテート(シグマアルドリッチ社製)
A6:1,2,4−トリメチルピラゾリウム メチルサルフェート(シグマアルドリッチ社製)
A7:1−エチル−3−メチルピリジニウム エチルサルフェート(東京化成社製)
A8:1−エチル−3−ヒドロキシメチルピリジニウム エチルサルフェート(東京化成社製)
A9:1−メチルイミダゾリウム ハイドロジェンサルフェート(シグマアルドリッチ社製)
A10:トリス(2−ヒドロキシエチル)メチルアンモニウム メチルサルフェート(シグマアルドリッチ社製)
A11:トリブチルメチルアンモニウム メチルサルフェート(シグマアルドリッチ社製)
A12:オクチル−2−ヒドロキシエチルイミダゾリニウム エチルサルフェート(シグマアルドリッチ社製)
A13:ラウリルエチルビス(2−ヒドロキシエチル)アンモニウム エチルサルフェート(ラウリルアミンのエチレンオキシド2モル付加物を硫酸ジエチルと反応させることで合成した4級アンモニウム塩)
A1: 1-ethyl-3-methylimidazolium ethyl sulfate (manufactured by Sigma-Aldrich)
A2: 1-ethyl-3-methylimidazolium acetate (manufactured by Sigma-Aldrich)
A3: 1-ethyl-2,3-dimethylimidazolium ethyl sulfate (manufactured by Sigma-Aldrich)
A4: 1-butyl-3-methylimidazolium ethyl sulfate (manufactured by Sigma-Aldrich)
A5: 1-butyl-3-methylimidazolium acetate (manufactured by Sigma-Aldrich)
A6: 1,2,4-trimethylpyrazolium methyl sulfate (manufactured by Sigma-Aldrich)
A7: 1-ethyl-3-methylpyridinium ethyl sulfate (manufactured by Tokyo Chemical Industry Co., Ltd.)
A8: 1-ethyl-3-hydroxymethylpyridinium ethyl sulfate (manufactured by Tokyo Chemical Industry Co., Ltd.)
A9: 1-methylimidazolium hydrogen sulfate (manufactured by Sigma-Aldrich)
A10: Tris (2-hydroxyethyl) methylammonium methyl sulfate (manufactured by Sigma-Aldrich)
A11: Tributylmethylammonium methyl sulfate (manufactured by Sigma-Aldrich)
A12: Octyl-2-hydroxyethylimidazolinium ethyl sulfate (manufactured by Sigma-Aldrich)
A13: Laurylethylbis (2-hydroxyethyl) ammonium ethyl sulfate (a quaternary ammonium salt synthesized by reacting a laurylamine ethylene oxide 2-mole adduct with diethyl sulfate)

Figure 0005885622
Figure 0005885622

[高分子分散剤]
実施例1〜11、13〜17、参考例12、比較例1〜6、8及び9のスラリー組成物では下記表2の高分子分散剤B1〜B7を使用した。なお、高分子分散剤B3、B5及びB6は、下記の条件で合成した。また、各高分子分散剤の不揮発分の測定及び重量平均分子量の測定は、下記条件で行った。
[Polymer dispersant]
In the slurry compositions of Examples 1 to 11 , 13 to 17, Reference Example 12, Comparative Examples 1 to 6 , 8, and 9, polymer dispersants B1 to B7 shown in Table 2 below were used. The polymer dispersants B3, B5, and B6 were synthesized under the following conditions. Moreover, the measurement of the non volatile matter of each polymer dispersing agent and the weight average molecular weight were performed on the following conditions.

Figure 0005885622
Figure 0005885622

〔高分子分散剤の製造例1〕
還流管、攪拌装置、温度計、窒素導入管を取り付けたセパラブルフラスコにメタクリル酸メチル(和光純薬工業社製) 1.5g、メトキシポリエチレングリコール(23)メタクリレート(PEGMA23:新中村化学社製 NK−エステル M−230G、エチレンオキサイドの平均付加モル数 23) 5.5g、メタクリルアミド(和光純薬工業社製) 3.0g、エタノール(和光純薬工業製) 12.25gを仕込み、窒素置換し、65℃に加熱した。槽内温度が65℃に到達後、2,2'−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製 V−65) 0.3g、エタノール 2.5gの混合物を添加した。その後、メタクリル酸メチル 13.5g、PEGMA23 49.5g、メタクリルアミド 27.0g、エタノール 110.25g、V−65 2.7gの混合液を3時間かけて滴下した。65℃で3時間熟成した後、室温まで冷却した。濃度調整のためにエタノールを添加し、高分子分散剤B3のエタノール溶液を得た。高分子分散剤B3溶液の不揮発分は33.6重量%で、高分子分散剤B3の重量平均分子量は32900であった。
[Production Example 1 of Polymer Dispersant]
In a separable flask equipped with a reflux tube, a stirrer, a thermometer, and a nitrogen introduction tube, 1.5 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries), methoxypolyethylene glycol (23) methacrylate (PEGMA23: manufactured by Shin-Nakamura Chemical Co., Ltd.) NK -Ester M-230G, average added mole number of ethylene oxide 23) 5.5 g, methacrylamide (manufactured by Wako Pure Chemical Industries) 3.0 g, ethanol (manufactured by Wako Pure Chemical Industries) 12.25 g were charged, and the atmosphere was replaced with nitrogen. , Heated to 65 ° C. After the tank temperature reached 65 ° C., a mixture of 0.3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) and 2.5 g of ethanol was added. Thereafter, a mixture of 13.5 g of methyl methacrylate, 49.5 g of PEGMA23, 27.0 g of methacrylamide, 110.25 g of ethanol, and 2.7 g of V-65 was added dropwise over 3 hours. After aging at 65 ° C. for 3 hours, the mixture was cooled to room temperature. Ethanol was added to adjust the concentration to obtain an ethanol solution of the polymer dispersant B3. The nonvolatile content of the polymer dispersant B3 solution was 33.6% by weight, and the weight average molecular weight of the polymer dispersant B3 was 32900.

〔高分子分散剤の製造例2〕
還流管、攪拌装置、温度計、窒素導入管を取り付けたセパラブルフラスコにメトキシポリエチレングリコール(23)メタクリレート(PEGMA23:新中村化学社製 NK−エステル M−230G、エチレンオキサイドの平均付加モル数 23) 8.5g、メタクリル酸(和光純薬工業社製) 1.5g、エタノール(和光純薬工業製) 10g、3−メルカプト−1,2−プロパンジオール(和光純薬工業社製) 0.1gを仕込み、窒素置換し、65℃に加熱した。槽内温度が65℃に到達後、2,2'−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製 V−65) 0.3g、エタノール 2.5gの混合物を添加した。その後、PEGMA23 76.5g、メタクリル酸 13.5g、エタノール 90g、V−65 2.7g、3−メルカプト−1,2−プロパンジオール 0.9gの混合液を3時間かけて滴下した。65℃で3時間熟成した後、室温まで冷却した。濃度調整のためにエタノールを添加し、高分子分散剤B5のエタノール溶液を得た。高分子分散剤B5溶液の不揮発分は53.2重量%で、高分子分散剤B5の重量平均分子量は17400であった。
[Production Example 2 of Polymer Dispersant]
To a separable flask equipped with a reflux tube, a stirrer, a thermometer, and a nitrogen introduction tube, methoxypolyethylene glycol (23) methacrylate (PEGMA23: NK-ester M-230G, Shin-Nakamura Chemical Co., Ltd., average addition mole number of ethylene oxide 23) 8.5 g, 1.5 g of methacrylic acid (manufactured by Wako Pure Chemical Industries), 10 g of ethanol (manufactured by Wako Pure Chemical Industries), 0.1 g of 3-mercapto-1,2-propanediol (manufactured by Wako Pure Chemical Industries) Charge, purge with nitrogen, and heat to 65 ° C. After the tank temperature reached 65 ° C., a mixture of 0.3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) (V-65 manufactured by Wako Pure Chemical Industries, Ltd.) and 2.5 g of ethanol was added. Thereafter, a mixture of 76.5 g of PEGMA23, 13.5 g of methacrylic acid, 90 g of ethanol, 2.7 g of V-65, and 0.9 g of 3-mercapto-1,2-propanediol was added dropwise over 3 hours. After aging at 65 ° C. for 3 hours, the mixture was cooled to room temperature. Ethanol was added to adjust the concentration to obtain an ethanol solution of the polymer dispersant B5. The nonvolatile content of the polymer dispersant B5 solution was 53.2% by weight, and the weight average molecular weight of the polymer dispersant B5 was 17,400.

〔高分子分散剤の製造例3〕
還流管、攪拌装置、温度計、窒素導入管を取り付けたセパラブルフラスコにメタクリル酸メチル(和光純薬工業社製) 1.5g、メトキシポリエチレングリコール(23)メタクリレート(PEGMA23:新中村化学社製 NK−エステル M−230G、エチレンオキサイドの平均付加モル数 23) 7.0g、メタクリル酸(和光純薬工業社製) 1.5g、エタノール(和光純薬工業製) 15g、3−メルカプト−1,2−プロパンジオール(和光純薬工業社製) 0.3gを仕込み、窒素置換し、65℃に加熱した。槽内温度が65℃に到達後、2,2'−アゾビス(2,4−ジメチルバレロニトリル)(V−65:和光純薬工業社製) 0.3g、エタノール 2.5gの混合物を添加した。その後、メタクリル酸メチル 13.5g、PEGMA23 63.0g、メタクリル酸 13.5g、エタノール 135g、V−65 2.7g、3−メルカプト−1,2−プロパンジオール 2.7gの混合液を3時間かけて滴下した。65℃で3時間熟成した後、室温まで冷却した。濃度調整のためにエタノールを添加し、高分子分散剤B6のエタノール溶液を得た。高分子分散剤B6溶液の不揮発分は52.0重量%で、高分子分散剤B6の重量平均分子量は8300であった。
[Production Example 3 of Polymer Dispersant]
In a separable flask equipped with a reflux tube, a stirrer, a thermometer, and a nitrogen introduction tube, 1.5 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries), methoxypolyethylene glycol (23) methacrylate (PEGMA23: manufactured by Shin-Nakamura Chemical Co., Ltd.) NK -Ester M-230G, average added mole number of ethylene oxide 23) 7.0 g, methacrylic acid (manufactured by Wako Pure Chemical Industries) 1.5 g, ethanol (manufactured by Wako Pure Chemical Industries) 15 g, 3-mercapto-1,2 -Propanediol (manufactured by Wako Pure Chemical Industries, Ltd.) 0.3 g was charged, purged with nitrogen, and heated to 65 ° C. After the temperature in the tank reached 65 ° C., a mixture of 0.3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) (V-65: manufactured by Wako Pure Chemical Industries, Ltd.) and 2.5 g of ethanol was added. . Then, a mixture of methyl methacrylate 13.5 g, PEGMA23 63.0 g, methacrylic acid 13.5 g, ethanol 135 g, V-65 2.7 g, 3-mercapto-1,2-propanediol 2.7 g was taken over 3 hours. And dripped. After aging at 65 ° C. for 3 hours, the mixture was cooled to room temperature. Ethanol was added to adjust the concentration to obtain an ethanol solution of the polymer dispersant B6. The nonvolatile content of the polymer dispersant B6 solution was 52.0% by weight, and the weight average molecular weight of the polymer dispersant B6 was 8300.

〔不揮発分の測定〕
高分子分散剤溶液の不揮発分は、以下のようにして測定した。すなわち、シャーレにガラス棒と乾燥無水硫酸ナトリウム10gを量り取り、そこにポリマー溶液2gを入れ、ガラス棒で混合し、105℃の減圧乾燥機(圧力8kPa)で2時間乾燥する。乾燥後の重さを量り、次式より得られた値を不揮発分とした。
不揮発分={[サンプル量−(乾燥後の重さ−(シャーレの重さ+ガラス棒の重さ+無水硫酸ナトリウムの重さ))]/サンプル量}×100
[Measurement of non-volatile content]
The nonvolatile content of the polymer dispersant solution was measured as follows. That is, a glass rod and 10 g of dry anhydrous sodium sulfate are weighed into a petri dish, and 2 g of the polymer solution is added thereto, mixed with the glass rod, and dried for 2 hours with a 105 ° C. vacuum dryer (pressure 8 kPa). The weight after drying was measured, and the value obtained from the following formula was defined as the nonvolatile content.
Nonvolatile content = {[sample amount− (weight after drying− (weight of petri dish + weight of glass rod + weight of anhydrous sodium sulfate)]] / sample amount} × 100

〔重量平均分子量の測定〕
高分子分散剤の重量平均分子量は、以下のようにして測定した。すなわち、溶離液を毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させた。そこに試料溶液100μLを注入して測定を行った。試料の分子量は、予め作成した検量線に基づき算出した。検量線の作成には、以下の単分散ポリスチレンを標準試料として用いた。
測定装置:HLC−8120GPC(東ソー社製)
測定条件
試料溶液:0.5wt% N,N−ジメチルホルムアミド溶液
溶離液:H3PO4:60mmol/L 及び LiBr:50mmol/L を加えたN,N−ジメチルホルムアミド溶液
カラム:α−M + α−M(東ソー社製)
検出器:示差屈折率
検量線:東ソー社製ポリスチレン 5.26×102、1.02×105、8.42×106;西尾工業社製ポリスチレン 4.0×103、3.0×104、9.0×105(数字はそれぞれ分子量)
(Measurement of weight average molecular weight)
The weight average molecular weight of the polymer dispersant was measured as follows. That is, the eluent was flowed at a flow rate of 1 mL per minute, and the column was stabilized in a constant temperature bath at 40 ° C. Measurement was performed by injecting 100 μL of the sample solution. The molecular weight of the sample was calculated based on a calibration curve prepared in advance. For the preparation of the calibration curve, the following monodisperse polystyrene was used as a standard sample.
Measuring device: HLC-8120GPC (manufactured by Tosoh Corporation)
Measurement conditions Sample solution: 0.5 wt% N, N-dimethylformamide solution Eluent: N, N-dimethylformamide solution column with H 3 PO 4 : 60 mmol / L and LiBr: 50 mmol / L: α-M + α -M (Tosoh Corporation)
Detector: Differential refractive index calibration curve: Polystyrene 5.26 × 10 2 , 1.02 × 10 5 , 8.42 × 10 6 manufactured by Tosoh Corporation; Polystyrene 4.0 × 10 3 , 3.0 × manufactured by Nishio Kogyo Co., Ltd. 10 4 , 9.0 × 10 5 (numbers are molecular weights)

[スラリー組成物の調製]
〔実施例1のスラリー組成物の調製〕
実施例1のスラリー組成物は、次のようにして調製した。チタン酸バリウム(BET比表面積20m2/g、BET比表面積より計算した平均粒径50nm、塩基量90μmol/g、酸量10μmol/g) 20g、及び高分子分散剤B6 0.8g(有効分(不揮発分))を、直径1mmのジルコニアビーズ 50gと一緒に100mLの容器に入れ、トルエン/エタノール=48/52(容積比)の混合溶媒を加え、チタン酸バリウムの固形分濃度が50重量%になるように調整し、卓上型ボールミルにて分散処理を96時間おこなった。次いで、ポリビニルブチラール樹脂(アセタール化度68モル%、残存水酸基量31モル%) 2.8g、ジオクチルフタレート 0.56g、カチオン化合物A1 0.2g、及びトルエン/エタノール=48/52(容積比)の混合溶媒を加えて、チタン酸バリウムの固形分濃度がスラリー組成物に対して35重量%になるように調整し、卓上型ボールミルにて2時間混合した後、ジルコニアビーズを濾過で取り除き、実施例1のスラリー組成物を得た(下記表3)。
[Preparation of slurry composition]
[Preparation of slurry composition of Example 1]
The slurry composition of Example 1 was prepared as follows. Barium titanate (BET specific surface area 20 m 2 / g, average particle size 50 nm calculated from BET specific surface area, base amount 90 μmol / g, acid amount 10 μmol / g) 20 g, and polymer dispersant B6 0.8 g (effective amount ( Nonvolatile content)) is placed in a 100 mL container together with 50 g of zirconia beads having a diameter of 1 mm, and a mixed solvent of toluene / ethanol = 48/52 (volume ratio) is added, so that the solid content concentration of barium titanate is 50% by weight. The dispersion treatment was performed for 96 hours using a desktop ball mill. Next, polyvinyl butyral resin (acetalization degree 68 mol%, residual hydroxyl group amount 31 mol%) 2.8 g, dioctyl phthalate 0.56 g, cationic compound A1 0.2 g, and toluene / ethanol = 48/52 (volume ratio) A mixed solvent was added to adjust the solid content concentration of barium titanate to 35% by weight with respect to the slurry composition. After mixing for 2 hours in a desktop ball mill, the zirconia beads were removed by filtration. 1 was obtained (Table 3 below).

〔実施例2〜8、比較例1〜6のスラリー組成物の調製〕
カチオン化合物A1に換えて下記表3のカチオン化合物を用いること以外は実施例1と同様の方法で実施例2〜8、比較例2〜6のスラリー組成物を調製した。なお、比較例1として、カチオン化合物A1を使用しないこと以外は実施例1と同様にスラリー組成物を調製した。
[Preparation of slurry compositions of Examples 2 to 8 and Comparative Examples 1 to 6]
Slurry compositions of Examples 2 to 8 and Comparative Examples 2 to 6 were prepared in the same manner as in Example 1 except that the cationic compounds shown in Table 3 below were used instead of the cationic compound A1. As Comparative Example 1, a slurry composition was prepared in the same manner as in Example 1 except that the cation compound A1 was not used.

〔実施例9のスラリー組成物の調製〕
実施例9のスラリー組成物は、次のようにして調製した。チタン酸バリウム(BET比表面積20m2/g、BET比表面積より計算した平均粒径50nm、塩基量90μmol/g、酸量10μmol/g) 20g、及び高分子分散剤B1 0.8g(有効分(不揮発分))を、直径1mmのジルコニアビーズ 50gと一緒に100mLの容器に入れ、トルエン/エタノール=48/52(容積比)の混合溶媒を加え、チタン酸バリウムの固形分濃度が50重量%になるように調整し、卓上型ボールミルにて分散処理を96時間おこなった。次いで、ポリビニルブチラール樹脂(アセタール化度68モル%、残存水酸基量31モル%) 1.6g、ジオクチルフタレート 0.32g、カチオン化合物A1 0.16g、及びトルエン/エタノール=48/52(容積比)の混合溶媒を加えて、チタン酸バリウムの固形分濃度がスラリー組成物に対して35重量%になるように調整し、卓上型ボールミルにて2時間混合した後、ジルコニアビーズを濾過で取り除き、実施例9のスラリー組成物を得た(下記表3)。
[Preparation of slurry composition of Example 9]
The slurry composition of Example 9 was prepared as follows. Barium titanate (BET specific surface area 20 m 2 / g, average particle size 50 nm calculated from BET specific surface area, base amount 90 μmol / g, acid amount 10 μmol / g) 20 g, and polymer dispersant B1 0.8 g (effective portion ( Nonvolatile content)) is placed in a 100 mL container together with 50 g of zirconia beads having a diameter of 1 mm, and a mixed solvent of toluene / ethanol = 48/52 (volume ratio) is added, so that the solid content concentration of barium titanate is 50% by weight. The dispersion treatment was performed for 96 hours using a desktop ball mill. Subsequently, polyvinyl butyral resin (degree of acetalization 68 mol%, residual hydroxyl group amount 31 mol%) 1.6 g, dioctyl phthalate 0.32 g, cationic compound A1 0.16 g, and toluene / ethanol = 48/52 (volume ratio) A mixed solvent was added to adjust the solid content concentration of barium titanate to 35% by weight with respect to the slurry composition. After mixing for 2 hours in a desktop ball mill, the zirconia beads were removed by filtration. 9 slurry compositions were obtained (Table 3 below).

〔実施例10〜11、13〜15、参考例12及び比較例7のスラリー組成物の調製〕
高分子分散剤B1に換えて下記表3の高分子分散剤を用いること以外は実施例9と同様の方法で実施例10〜11、13〜15及び参考例12のスラリー組成物を調製した。なお、比較例7として、高分子分散剤B1を使用しないこと以外は実施例9と同様にスラリー組成物を調製した。
[Preparation of slurry compositions of Examples 10 to 11 , 13 to 15, Reference Example 12 and Comparative Example 7]
Slurry compositions of Examples 10 to 11, 13 to 15 and Reference Example 12 were prepared in the same manner as in Example 9, except that the polymer dispersant in Table 3 below was used instead of the polymer dispersant B1. As Comparative Example 7, a slurry composition was prepared in the same manner as in Example 9 except that the polymer dispersant B1 was not used.

〔実施例16のスラリー組成物の調製〕
実施例16のスラリー組成物は、次のようにして調製した。チタン酸バリウム(BET比表面積10m2/g、BET比表面積より計算した平均粒径100nm、塩基量90μmol/g、酸量10μmol/g) 20g、及び高分子分散剤B5 0.32g(有効分(不揮発分))を、直径1mmのジルコニアビーズ 50gと一緒に100mLの容器に入れ、トルエン/エタノール=48/52(容積比)の混合溶媒を加え、チタン酸バリウムの固形分濃度が50重量%になるように調整し、卓上型ボールミルにて分散処理を96時間おこなった。次いで、ポリビニルブチラール樹脂(アセタール化度68モル%、残存水酸基量31モル%) 2.8g、ジオクチルフタレート 0.56g、カチオン化合物A1 0.1g、及びトルエン/エタノール=48/52(容積比)の混合溶媒を加えて、チタン酸バリウムの固形分濃度がスラリー組成物に対して35重量%になるように調整し、卓上型ボールミルにて2時間混合した後、ジルコニアビーズを濾過で取り除き、実施例16のスラリー組成物を得た(下記表3)。
[Preparation of slurry composition of Example 16]
The slurry composition of Example 16 was prepared as follows. Barium titanate (BET specific surface area 10 m 2 / g, average particle size 100 nm calculated from BET specific surface area, base amount 90 μmol / g, acid amount 10 μmol / g) 20 g, and polymer dispersant B5 0.32 g (effective portion ( Nonvolatile content)) is placed in a 100 mL container together with 50 g of zirconia beads having a diameter of 1 mm, and a mixed solvent of toluene / ethanol = 48/52 (volume ratio) is added, so that the solid content concentration of barium titanate is 50% by weight. The dispersion treatment was performed for 96 hours using a desktop ball mill. Next, polyvinyl butyral resin (acetalization degree 68 mol%, residual hydroxyl group amount 31 mol%) 2.8 g, dioctyl phthalate 0.56 g, cation compound A1 0.1 g, and toluene / ethanol = 48/52 (volume ratio) A mixed solvent was added to adjust the solid content concentration of barium titanate to 35% by weight with respect to the slurry composition. After mixing for 2 hours in a desktop ball mill, the zirconia beads were removed by filtration. Sixteen slurry compositions were obtained (Table 3 below).

〔実施例17、比較例8〜9のスラリー組成物の調製〕
カチオン化合物A1に換えて下記表3のカチオン化合物を用いること以外は実施例16と同様の方法で実施例17、比較例9のスラリー組成物を調製した。なお、比較例8として、カチオン化合物A1を使用しないこと以外は実施例16と同様にスラリー組成物を調製した。
[Preparation of slurry compositions of Example 17 and Comparative Examples 8 to 9]
A slurry composition of Example 17 and Comparative Example 9 was prepared in the same manner as in Example 16 except that the cationic compound shown in Table 3 below was used instead of the cationic compound A1. As Comparative Example 8, a slurry composition was prepared in the same manner as in Example 16 except that the cation compound A1 was not used.

2.セラミックスシートの成形と評価
実施例1〜11、13〜17、参考例12及び比較例1〜9のスラリー組成物を用いてセラミックスシートを成形し、該セラミックスシートの剥離帯電量、剥離力、破断強度及び伸びの測定を行った。
2. Molding and Evaluation of Ceramic Sheet A ceramic sheet was molded using the slurry compositions of Examples 1 to 11 , 13 to 17 , Reference Example 12 and Comparative Examples 1 to 9, and the amount of peel charge, peel force, and breakage of the ceramic sheet Measurements of strength and elongation were made.

[セラミックスシートの成形]
実施例1〜11、13〜17、参考例12及び比較例1〜9のスラリー組成物をフィルムアプリケーター(ギャップ50μm)を用いて、シリコーン処理された離型フィルム(帝人デュポン社製ピューレックス)に塗工し、60℃にて16時間乾燥し、セラミックスシートを成形した。なお、乾燥後のセラミックシートの厚みは5〜8μmであった。
[Ceramic sheet forming]
Using the slurry applicators of Examples 1-11 , 13-17 , Reference Example 12 and Comparative Examples 1-9 using a film applicator (gap 50 μm), a silicone-treated release film (Purex manufactured by Teijin DuPont) was used. It was coated and dried at 60 ° C. for 16 hours to form a ceramic sheet. In addition, the thickness of the ceramic sheet after drying was 5 to 8 μm.

[剥離帯電量の測定]
成形したセラミックシートを用い、下記の方法で剥離帯電量を測定した。すなわち、離型フィルムとともに、セラミックシートを短辺4cm、長辺10cmの寸法の試験片に裁断し、塗工面と反対側(フィルム側)を下にして、90度剥離試験用治具を装着した卓上型精密試験機(島津製作所社製オートグラフAGS−X)の台座に両面テープを用いて固定した。次に、セラミックシート試験片の短辺側の片端を離型フィルムから1cm剥離した後、クリップで挟み、クリップをロードセルに固定した。その後ロードセルを1cm/秒の速度で上昇させて90度剥離を行い、セラミックシートの剥離面側の帯電量(剥離帯電量)の最大値を、前記剥離面から3cmの距離に設置した静電気センサー(キーエンス社製SK−200)にて測定した。この結果を下記表3に示す。この剥離帯電量の絶対値が小さいほど、帯電防止性が良好である。
[Measurement of peeling charge amount]
Using the molded ceramic sheet, the peel charge amount was measured by the following method. That is, together with the release film, the ceramic sheet was cut into test pieces having a short side of 4 cm and a long side of 10 cm, and the 90 ° peel test jig was mounted with the side opposite to the coating surface (film side) facing down. It fixed using the double-sided tape to the base of the desktop type | mold precision testing machine (Shimadzu Corporation autograph AGS-X). Next, one end of the short side of the ceramic sheet test piece was peeled from the release film by 1 cm, and then sandwiched with clips to fix the clips to the load cell. Thereafter, the load cell is raised at a rate of 1 cm / sec to perform 90-degree peeling, and the electrostatic charge sensor (peeling charge amount) on the peeling surface side of the ceramic sheet is set at a distance of 3 cm from the peeling surface ( Measured with SK-200 manufactured by Keyence Corporation. The results are shown in Table 3 below. The smaller the absolute value of the peel charge amount, the better the antistatic property.

[剥離力の測定]
前記剥離帯電量の測定において、セラミックシートを1cm/秒の速度にて90度剥離する際にロードセルにかかる荷重を測定した。具体的には、ロードセルが3cm上昇してから6cm上昇するまでの間にロードセルにかかる荷重の平均値を剥離力とした。この結果を下記表3に示す。この剥離力が小さいほど、剥離性が良好である。
[Measurement of peel force]
In the measurement of the peel charge amount, the load applied to the load cell when the ceramic sheet was peeled 90 degrees at a speed of 1 cm / second was measured. Specifically, the average value of the load applied to the load cell from the time when the load cell was raised by 3 cm to the time when it was raised by 6 cm was defined as the peeling force. The results are shown in Table 3 below. The smaller the peel force, the better the peelability.

[破断応力及び伸びの測定]
セラミックスシートをJIS K6251に規定されたダンベル状1号形に裁断する。セラミックシートを離型フィルムから剥離する前に、厚みを計測し、離型フィルム自身の厚みとの差分より、セラミックシートの厚みを求める。次に、剥離したセラミックシートを卓上型精密試験機(島津製作所社製オートグラフEZ−TEST)に装着されたロードセルに取り付け、6cm/分の試験速度で引っ張り、試験片の破断時の応力、及び、破断歪(伸び)を測定する。この結果を下記表3に示す。破断応力が大きく伸びが大きいほど、靭性が良好である。
[Measurement of breaking stress and elongation]
The ceramic sheet is cut into dumbbell-shaped No. 1 defined in JIS K6251. Before peeling the ceramic sheet from the release film, the thickness is measured, and the thickness of the ceramic sheet is determined from the difference from the thickness of the release film itself. Next, the peeled ceramic sheet is attached to a load cell attached to a desktop precision tester (Autograph EZ-TEST manufactured by Shimadzu Corporation), pulled at a test speed of 6 cm / min, The breaking strain (elongation) is measured. The results are shown in Table 3 below. The greater the breaking stress and the greater the elongation, the better the toughness.

Figure 0005885622
Figure 0005885622

前記表3に示すとおり、実施例1〜8のスラリー組成物から形成したセラミックシートでは、比較例1〜6のセラミックシートと比較して、剥離帯電量が低減して帯電防止性が向上し、剥離力が小さく剥離性に優れ、かつ、破断応力と伸びの測定値が大きく靭性も向上した。また、実施例16〜17のスラリー組成物から成形したセラミックシートでも同様に、比較例8〜9のセラミックシートと比較して、帯電防止性、剥離力及び靭性が向上した。帯電防止性向上の観点からは、前記一般式(1)及び(3)で表されるカチオン基を有するカチオン化合物を含有するスラリー組成物が好ましく、剥離性向上の観点からは、前記一般式(3)で表わされるカチオン基を有するカチオン化合物を含有するスラリー組成物が好ましく、靭性の観点からは、前記一般式(2)及び(3)で表されるカチオン基を有するカチオン化合物を含有するスラリー組成物が好ましいことが示された。これらの観点を総合すると、本発明におけるカチオン基としては、一般式(3)で表されるカチオン基がさらにより好ましいことが示された。   As shown in Table 3, in the ceramic sheet formed from the slurry composition of Examples 1-8, compared with the ceramic sheets of Comparative Examples 1-6, the peel charge amount is reduced and the antistatic property is improved, The peel strength was small, the peelability was excellent, the measured values of breaking stress and elongation were large, and the toughness was improved. Similarly, the ceramic sheets formed from the slurry compositions of Examples 16 to 17 were improved in antistatic properties, peel strength and toughness as compared with the ceramic sheets of Comparative Examples 8 to 9. From the viewpoint of improving antistatic properties, a slurry composition containing a cationic compound having a cationic group represented by the general formulas (1) and (3) is preferable. From the viewpoint of improving peelability, the general formula ( A slurry composition containing a cationic compound having a cationic group represented by 3) is preferred, and from the viewpoint of toughness, a slurry containing a cationic compound having a cationic group represented by the general formulas (2) and (3). Compositions have been shown to be preferred. When these viewpoints are put together, it was shown that the cationic group represented by the general formula (3) is even more preferable as the cationic group in the present invention.

また、前記表3に示す通り、実施例9〜11、13〜15及び参考例12において、カチオン性、ノニオン性及びアニオン性のすべての高分子分散剤が、高分子分散剤を用いない場合(比較例7)と比べて、剥離帯電量及び剥離力が低減するとともに破断応力及び伸びが向上し、帯電防止性、剥離性及び靭性に優れることが示された。また、本発明のスラリー組成物に使用する高分子分散剤としては、帯電防止性向上の観点からは、カチオン性及びアニオン性であることが好ましいことが示され、剥離性向上の観点からは、ノニオン性及びアニオン性であることが好ましいことが示された。そして、帯電防止性向上と剥離性向上の両立の観点からは、アニオン性の高分子分散剤がより好ましいことが示された。 Moreover, as shown in the said Table 3, in Examples 9-11, 13-15, and the reference example 12 , all the polymer dispersing agents of cationic, nonionic, and anionic do not use a polymer dispersing agent ( Compared with Comparative Example 7), the peel charge amount and peel force were reduced and the breaking stress and elongation were improved, indicating that the antistatic property, peelability and toughness were excellent. Further, as the polymer dispersant used in the slurry composition of the present invention, it is shown that it is preferable to be cationic and anionic from the viewpoint of improving antistatic properties, and from the viewpoint of improving peelability, It has been shown that it is preferably nonionic and anionic. And it was shown that an anionic polymer dispersing agent is more preferable from the viewpoint of achieving both improvement of antistatic property and improvement of peelability.

本発明は、セラミックス成形を行う分野、例えば、セラミックス製電子部品の製造に関する分野に有用である。   The present invention is useful in the field of forming ceramics, for example, in the field of manufacturing ceramic electronic parts.

Claims (14)

含窒素五員環又は六員環複素芳香族第4級アンモニウムカチオン基を含むカチオン化合物、重量平均分子量が6000以上200000以下である高分子分散剤、非水系溶媒、塩基性セラミックス材料及びポリビニルアセタール樹脂を含有する、スラリー組成物。 Cationic compounds containing a nitrogen-containing five-membered ring or six-membered heterocyclic aromatic quaternary ammonium cation group, a polymer dispersant weight average molecular weight of 6000 to 200,000, a non-aqueous solvent, a basic ceramic material and polyvinyl acetal resin A slurry composition comprising: 前記カチオン基が、芳香環中に第4級アンモニウムを有するカチオン基である、請求項1記載のスラリー組成物。   The slurry composition according to claim 1, wherein the cationic group is a cationic group having quaternary ammonium in an aromatic ring. 前記カチオン基が、ピリジニウム、ピラゾリウム、イミダゾリウム、ピリミジニウム、ピラジニウム、ピリダジニウム及びピロリウム構造からなる群より選ばれる1種以上の構造を有するカチオン基である、請求項1又は2記載のスラリー組成物。   The slurry composition according to claim 1 or 2, wherein the cationic group is a cationic group having at least one structure selected from the group consisting of pyridinium, pyrazolium, imidazolium, pyrimidinium, pyrazinium, pyridazinium and pyrrolium structures. 前記カチオン基が、下記一般式(1)、(2)及び(3)で表されるカチオン基からなる群より選ばれるカチオン基である、請求項1から3のいずれかに記載のスラリー組成物。
Figure 0005885622
[式(1)中、R1は、炭素数1〜4のアルキル基を示し、R2、R3及びR4は、同一又は異なり、水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。式(2)中、R5及びR6は、同一又は異なり、炭素数1〜4のアルキル基を示し、R7及びR8は、同一又は異なり、水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。式(3)中、R9及びR10は、同一又は異なり、炭素数1〜4のアルキル基を示し、R11は水素原子、又は水酸基を有していてもよい炭素数1〜4のアルキル基を示す。]
The slurry composition according to any one of claims 1 to 3, wherein the cationic group is a cationic group selected from the group consisting of cationic groups represented by the following general formulas (1), (2), and (3). .
Figure 0005885622
[In formula (1), R 1 represents an alkyl group having 1 to 4 carbon atoms, and R 2 , R 3 and R 4 are the same or different and may have a hydrogen atom or a hydroxyl group. 1-4 alkyl groups are shown. In formula (2), R 5 and R 6 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, and R 7 and R 8 are the same or different and may have a hydrogen atom or a hydroxyl group. A good alkyl group having 1 to 4 carbon atoms is shown. In formula (3), R 9 and R 10 are the same or different and represent an alkyl group having 1 to 4 carbon atoms, and R 11 is a hydrogen atom or an alkyl having 1 to 4 carbon atoms which may have a hydroxyl group. Indicates a group. ]
前記カチオン基が、前記一般式(3)で表されるカチオン基である、請求項1から4のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 4, wherein the cationic group is a cationic group represented by the general formula (3). 前記カチオン基が、前記一般式(3)で表されるカチオン基であり、前記一般式(3)におけるR9及びR10の炭素数の合計が、2〜5である、請求項1から5のいずれかに記載のスラリー組成物。 The cationic group is a cationic group represented by the general formula (3), and the total number of carbon atoms of R 9 and R 10 in the general formula (3) is 2 to 5. The slurry composition according to any one of the above. 前記カチオン基の分子量が、90〜300である、請求項1から6のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 6, wherein the molecular weight of the cationic group is 90 to 300. 前記カチオン化合物が、前記カチオン基と、アニオン基との塩であり、前記アニオン基が、有機アニオン基である、請求項1から7のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 7, wherein the cationic compound is a salt of the cationic group and an anionic group, and the anionic group is an organic anionic group. 前記アニオン基が、アルキル硫酸及び脂肪族カルボン酸からなる群から選ばれる1種以上の酸のアニオン基である、請求項1から8のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 8, wherein the anionic group is an anionic group of one or more acids selected from the group consisting of an alkyl sulfuric acid and an aliphatic carboxylic acid. 前記カチオン化合物の含有量が、前記塩基性セラミックス材料100重量部に対し、0.05重量部以上2.0重量部以下である、請求項1から9のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 9, wherein a content of the cationic compound is 0.05 parts by weight or more and 2.0 parts by weight or less with respect to 100 parts by weight of the basic ceramic material. 前記高分子分散剤が、アニオン性高分子分散剤である、請求項1から10のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 10, wherein the polymer dispersant is an anionic polymer dispersant. 前記塩基性セラミックス材料が、チタン酸バリウムである、請求項1から11のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 11, wherein the basic ceramic material is barium titanate. 前記ポリビニルアセタール樹脂が、ポリビニルブチラール樹脂である、請求項1から12のいずれかに記載のスラリー組成物。   The slurry composition according to any one of claims 1 to 12, wherein the polyvinyl acetal resin is a polyvinyl butyral resin. スラリー組成物中の前記高分子分散剤の含有量が、塩基性セラミックス材料100重量部に対する重量部として、塩基性セラミックス材料のBET比表面積[単位m2/g]を5で割った値の0.3倍以上1.5倍以下である、請求項1から13のいずれかに記載のスラリー組成物。 The content of the polymer dispersant in the slurry composition is 0, which is a value obtained by dividing the BET specific surface area [unit m 2 / g] of the basic ceramic material by 5 as part by weight with respect to 100 parts by weight of the basic ceramic material. The slurry composition according to any one of claims 1 to 13, which is 3 times or more and 1.5 times or less.
JP2012185618A 2011-09-07 2012-08-24 Slurry composition containing basic ceramics Active JP5885622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185618A JP5885622B2 (en) 2011-09-07 2012-08-24 Slurry composition containing basic ceramics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011194752 2011-09-07
JP2011194752 2011-09-07
JP2012185618A JP5885622B2 (en) 2011-09-07 2012-08-24 Slurry composition containing basic ceramics

Publications (3)

Publication Number Publication Date
JP2013067552A JP2013067552A (en) 2013-04-18
JP2013067552A5 JP2013067552A5 (en) 2015-04-02
JP5885622B2 true JP5885622B2 (en) 2016-03-15

Family

ID=47832023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185618A Active JP5885622B2 (en) 2011-09-07 2012-08-24 Slurry composition containing basic ceramics

Country Status (6)

Country Link
JP (1) JP5885622B2 (en)
KR (1) KR101705954B1 (en)
CN (1) CN103781743B (en)
SG (1) SG11201400393XA (en)
TW (1) TWI625161B (en)
WO (1) WO2013035573A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5951522B2 (en) * 2012-03-28 2016-07-13 日本碍子株式会社 Ceramic paste and laminate
JP6545961B2 (en) * 2015-01-15 2019-07-17 花王株式会社 Polymeric dispersant for inorganic pigments
US11466156B2 (en) 2016-08-23 2022-10-11 Kao Corporation Asphalt composition
WO2019168065A1 (en) * 2018-03-02 2019-09-06 味の素株式会社 Dispersant for producing ceramics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155582A (en) * 1993-12-09 1995-06-20 Sanyo Chem Ind Ltd Surfactant for molding ceramic and its production
JPH07267739A (en) * 1994-03-29 1995-10-17 Matsushita Electric Works Ltd Production of aluminum nitride green sheet
JP2002321981A (en) * 2001-04-23 2002-11-08 Sanyo Chem Ind Ltd Dispersant for ceramic material
JP2006083060A (en) * 2003-01-29 2006-03-30 Tdk Corp Coating for green sheet, its manufacturing method, green sheet, its manufacturing method and method for manufacturing electronic component
JP4562180B2 (en) * 2004-03-08 2010-10-13 日東電工株式会社 Adhesive composition, adhesive sheet and surface protective film
JP4876491B2 (en) * 2005-09-02 2012-02-15 株式会社村田製作所 Dielectric antenna
WO2008150867A2 (en) * 2007-05-29 2008-12-11 Innova Materials, Llc Surfaces having particles and related methods
JP5214490B2 (en) * 2008-03-31 2013-06-19 三洋化成工業株式会社 Active energy ray-curable antistatic resin composition
JP5666941B2 (en) * 2010-02-26 2015-02-12 花王株式会社 Slurry composition containing basic ceramics

Also Published As

Publication number Publication date
SG11201400393XA (en) 2014-08-28
KR20140072079A (en) 2014-06-12
WO2013035573A1 (en) 2013-03-14
JP2013067552A (en) 2013-04-18
TWI625161B (en) 2018-06-01
TW201318693A (en) 2013-05-16
KR101705954B1 (en) 2017-02-10
CN103781743B (en) 2016-02-03
CN103781743A (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5885622B2 (en) Slurry composition containing basic ceramics
US9550909B2 (en) Polyvinyl acetal resin, slurry composition prepared therefrom, ceramic green sheet, and multilayer ceramic capacitor
US9512310B2 (en) Polyvinyl acetal-based resin composition
JP7112568B2 (en) Lithium-ion battery separator
JP5316615B2 (en) Multilayer ceramic electronic components
JP3823759B2 (en) Method for producing ceramic slurry composition
JP2013193912A (en) Slurry composition for molding ceramic sheet
JP6262976B2 (en) Polyvinyl acetal resin composition
CN110168021A (en) Paste compound, ceramic green sheet and coated sheet
JP6239841B2 (en) Slurry composition for ceramic green sheet
KR20070109908A (en) Process for the production of ceramic green films with acetalated polyvinyl alcohols
WO2016066173A1 (en) Dual-role plasticizer and dispersant for ceramic layers
CN109563001A (en) Ceramic green sheet and coated sheet
TW201513930A (en) Polymer dispersant for inorganic pigment
JP5666941B2 (en) Slurry composition containing basic ceramics
TW201518250A (en) Ceramic molded body, and method for producing stacked ceramic electronic component
JP6200231B2 (en) Aqueous dispersion for forming ceramic green sheets
US20230084330A1 (en) Slurry composition
JP2012092002A (en) Method for manufacturing slurry composition
WO2022265080A1 (en) Resin and resin composition
KR20220083880A (en) A method for manufacturing a separator coated with inorganic materials
JP2013035694A (en) Method for producing slurry composition
Nagata Effect of Adding Methods of Neutralizer on Rheological Behavior of Alumina Water-base Suspension and Properties of Green Sheets Using Acrylic Polymer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150213

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20150414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R151 Written notification of patent or utility model registration

Ref document number: 5885622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250