JP5884859B2 - Rolling bearing unit with encoder and method for manufacturing the same - Google Patents

Rolling bearing unit with encoder and method for manufacturing the same Download PDF

Info

Publication number
JP5884859B2
JP5884859B2 JP2014146412A JP2014146412A JP5884859B2 JP 5884859 B2 JP5884859 B2 JP 5884859B2 JP 2014146412 A JP2014146412 A JP 2014146412A JP 2014146412 A JP2014146412 A JP 2014146412A JP 5884859 B2 JP5884859 B2 JP 5884859B2
Authority
JP
Japan
Prior art keywords
inner ring
encoder
axial direction
rolling bearing
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014146412A
Other languages
Japanese (ja)
Other versions
JP2014196830A (en
Inventor
順也 猪八重
順也 猪八重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014146412A priority Critical patent/JP5884859B2/en
Publication of JP2014196830A publication Critical patent/JP2014196830A/en
Application granted granted Critical
Publication of JP5884859B2 publication Critical patent/JP5884859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/30Electric properties; Magnetic properties
    • F16C2202/40Magnetic
    • F16C2202/42Magnetic soft-magnetic, ferromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、例えば、自動車の車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出可能とするエンコーダ付転がり軸受ユニットの改良に関する。   The present invention relates to, for example, an improvement in a rolling bearing unit with an encoder that supports a wheel of an automobile so as to be rotatable with respect to a suspension device and can detect the rotational speed of the wheel.

自動車の車輪を懸架装置に対して回転自在に支持する為に、転がり軸受ユニットを使用する。又、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を制御する為には、前記車輪の回転速度を検出する必要がある。この為、前記転がり軸受ユニットに回転速度検出装置を構成するエンコーダを組み付けたエンコーダ付転がり軸受ユニットにより、前記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、一般的に行われている。   A rolling bearing unit is used to rotatably support the wheels of the automobile with respect to the suspension system. In order to control the anti-lock brake system (ABS) and the traction control system (TCS), it is necessary to detect the rotational speed of the wheel. For this reason, the rolling bearing unit with an encoder in which the encoder constituting the rotational speed detecting device is assembled to the rolling bearing unit is supported rotatably with respect to the suspension device, and the rotational speed of the wheel is detected. Is generally done.

図4は、この様な目的で使用されるエンコーダ付転がり軸受ユニットの従来構造の1例を示している。このエンコーダ付転がり軸受ユニットは、軸部材であるハブ1と、内輪2と、外輪3と、複数個の転動体4、4と、エンコーダ5とを備える。このうちのハブ1の外周面の軸方向外端(軸方向に関して「外」とは、自動車への組み付け状態で車両の幅方向外側を言い、図1、4の左側。反対に、軸方向に関して「内」とは、車両の幅方向中央側を言い、図1、4の右側。)寄り部分には、車輪を支持する為の回転側フランジ6を、同じく軸方向中間部に第一の内輪軌道7aを、同じく軸方向内端部に、この第一の内輪軌道7aを形成した部分よりも外径寸法が小さくなった小径段部8を、それぞれ形成している。又、前記内輪2は、外周面に第二の内輪軌道7bを形成したもので、前記小径段部8に締り嵌めで外嵌している。   FIG. 4 shows an example of a conventional structure of a rolling bearing unit with an encoder used for such a purpose. This encoder-equipped rolling bearing unit includes a hub 1 that is a shaft member, an inner ring 2, an outer ring 3, a plurality of rolling elements 4 and 4, and an encoder 5. Of these, the outer end in the axial direction of the outer peripheral surface of the hub 1 ("outer" with respect to the axial direction means the outer side in the width direction of the vehicle when assembled to the automobile, and the left side in Figs. “Inner” means the center side in the width direction of the vehicle, and on the right side of FIGS. 1 and 4) A rotating side flange 6 for supporting the wheel is provided on the side portion, and the first inner ring is also provided in the middle in the axial direction. The track 7a is formed with a small-diameter step portion 8 having an outer diameter smaller than that of the portion where the first inner ring raceway 7a is formed. The inner ring 2 is formed with a second inner ring raceway 7b on the outer peripheral surface, and is fitted on the small-diameter step portion 8 with an interference fit.

又、前記外輪3は、外周面に懸架装置に結合固定する為の静止側フランジ9を、内周面に第一、第二の外輪軌道10a、10bを、それぞれ形成している。そして、これら第一、第二の両外輪軌道10a、10bと、前記第一、第二の両内輪軌道7a、7bとの間に、それぞれ複数個ずつの転動体4、4を設けている。又、この状態で、前記ハブ1の軸方向内端部に設けた円筒部11のうち、前記内輪2の軸方向内端面から突出した部分を径方向外方に向け塑性変形させる事で、かしめ部12を形成している。そして、このかしめ部12により、前記内輪2の軸方向内端面を抑え付ける事で、この内輪2を前記ハブ1に結合固定すると共に、前記各転動体4、4に適正な予圧を付与している。尚、図示の例では、これら各転動体4、4として玉を使用しているが、重量の嵩む自動車用の車輪支持用軸受ユニットの場合には、円すいころを使用する場合もある。   The outer ring 3 is formed with a stationary flange 9 on the outer peripheral surface for coupling and fixing to the suspension device, and first and second outer ring raceways 10a and 10b on the inner peripheral surface. A plurality of rolling elements 4, 4 are provided between the first and second outer ring raceways 10a, 10b and the first and second inner ring raceways 7a, 7b. Further, in this state, the cylindrical portion 11 provided at the inner end portion in the axial direction of the hub 1 is caulked by plastically deforming a portion protruding from the inner end surface in the axial direction of the inner ring 2 radially outward. Part 12 is formed. The caulking portion 12 suppresses the inner end surface of the inner ring 2 in the axial direction so that the inner ring 2 is coupled and fixed to the hub 1 and an appropriate preload is applied to the rolling elements 4 and 4. Yes. In the illustrated example, balls are used as the rolling elements 4 and 4. However, in the case of a wheel support bearing unit for automobiles that is heavy in weight, a tapered roller may be used.

又、前記エンコーダ5は、前記内輪2の軸方向内端部に外嵌固定している。このエンコーダ5は、芯金13と、エンコーダ本体14とから成る。このうちの芯金13は、軟鋼板、磁性ステンレス鋼板等の磁性金属板により、断面L字形で全体を円環状に形成したもので、前記内輪2の軸方向内端部に締り嵌めで外嵌している。又、前記エンコーダ本体14は、円輪状の多極磁石であり、前記芯金13の軸方向内側面に全周に亙り添着固定されている。被検出面である、前記エンコーダ本体14の軸方向内側面には、S極とN極とが円周方向に関して交互に且つ等ピッチで配置されている。又、前記外輪3の軸方向内端開口部には、非磁性ステンレス鋼板、アルミニウム合金板等の非磁性金属板製、或いは、高機能樹脂等の非磁性材製で、全体をシャーレ状に形成したカバー15を装着する事により、前記開口部を塞いでいる。この状態で、前記エンコーダ5の被検出面は、前記カバー15の底板部に近接対向している。 The encoder 5 is externally fitted and fixed to the inner end of the inner ring 2 in the axial direction. The encoder 5 includes a core bar 13 and an encoder body 14. Of these, the core 13 is made of a magnetic metal plate such as a mild steel plate or a magnetic stainless steel plate and is formed into an annular shape with an L-shaped cross section, and is fitted on the inner end in the axial direction of the inner ring 2 by an interference fit. doing. The encoder body 14 is a ring-shaped multipolar magnet, and is fixed to the inner side surface in the axial direction of the metal core 13 over the entire circumference. S poles and N poles are alternately arranged at equal pitches in the circumferential direction on the inner side surface in the axial direction of the encoder body 14 which is a detected surface. In addition, the inner end opening of the outer ring 3 in the axial direction is made of a nonmagnetic metal plate such as a nonmagnetic stainless steel plate or an aluminum alloy plate, or a nonmagnetic material such as a high-functional resin, and is formed in a petri dish as a whole. By attaching the cover 15 which has been made, the opening is closed. In this state, the detected surface of the encoder 5 is in close proximity to the bottom plate portion of the cover 15.

上述の様なエンコーダ付転がり軸受ユニットの使用時には、前記外輪3を構成する静止側フランジ9を懸架装置に結合固定すると共に、前記ハブ1を構成する回転側フランジ6に車輪を支持固定する。又、車体の一部に対して支持固定したセンサ16の検出部24を、前記エンコーダ5の被検出面に、前記カバー15の底板部を介して近接対向させる。尚、前記センサ16の検出部24は、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子により構成している。この状態で前記車輪が回転すると、前記センサ16の検出部24の近傍を、前記エンコーダ5の被検出面に設けたS極とN極とが交互に通過する。この結果、前記センサ16の検出部24内を通過する磁束の向きが交互に変化し、このセンサ16の出力が変化する。この様にしてセンサ16の出力が変化する周波数は、前記車輪の回転速度に比例する。従って、前記センサ16の出力を図示しない制御器に送れば、ABSやTCSを適切に制御できる。   When the rolling bearing unit with an encoder as described above is used, the stationary side flange 9 constituting the outer ring 3 is coupled and fixed to a suspension device, and the wheel is supported and fixed to the rotating side flange 6 constituting the hub 1. Further, the detection unit 24 of the sensor 16 supported and fixed to a part of the vehicle body is brought close to and opposed to the detection surface of the encoder 5 through the bottom plate portion of the cover 15. The detection unit 24 of the sensor 16 is constituted by a magnetic detection element such as a Hall IC, a Hall element, an MR element, or a GMR element. When the wheel rotates in this state, the S pole and the N pole provided on the detection surface of the encoder 5 alternately pass through the vicinity of the detection unit 24 of the sensor 16. As a result, the direction of the magnetic flux passing through the detection unit 24 of the sensor 16 changes alternately, and the output of the sensor 16 changes. The frequency at which the output of the sensor 16 changes in this way is proportional to the rotational speed of the wheel. Therefore, if the output of the sensor 16 is sent to a controller (not shown), the ABS and TCS can be appropriately controlled.

ところで、上述した様なエンコーダ付転がり軸受ユニットを構成する各軌道輪部材(前記ハブ1、前記内輪2、前記外輪3)を造る場合、これら各軌道輪部材(1〜3)の表面のうち、前記各軌道7a、7b、10a、10b、前記小径段部8、前記カバー15の嵌合面等の所定箇所には、面精度や表面粗さを向上させる為の研削加工を施す。この際の研削加工は、通常、図5に示す様に行う。即ち、対象となる軌道輪部材(図示の例では、前記ハブ1)を、図示しない回転駆動軸の先端部に固定したバッキングプレート17の端面に磁気吸着させる。これと共に、前記軌道輪部材(1)の外周面にシュー18を摺接させる事により、この軌道輪部材(1)の径方向の位置決めを図る。そして、この状態で、前記回転駆動軸と共に前記軌道輪部材(1)を回転させつつ、この軌道輪部材(1)の表面の所定箇所を、回転する砥石19で研削する。対象となる軌道輪部材が、前記内輪2や前記外輪3である場合に就いても同様である。   By the way, when making each bearing ring member (the hub 1, the inner ring 2, the outer ring 3) constituting the rolling bearing unit with an encoder as described above, among the surfaces of these bearing ring members (1 to 3), A predetermined portion such as the fitting surface of each of the tracks 7a, 7b, 10a, 10b, the small-diameter step portion 8, and the cover 15 is subjected to grinding for improving surface accuracy and surface roughness. The grinding process at this time is usually performed as shown in FIG. That is, the target ring member (in the illustrated example, the hub 1) is magnetically attracted to the end surface of the backing plate 17 fixed to the tip of the rotational drive shaft (not shown). At the same time, the race 18 is positioned in the radial direction by bringing the shoe 18 into sliding contact with the outer peripheral surface of the race member 1. In this state, a predetermined portion of the surface of the bearing ring member (1) is ground with the rotating grindstone 19 while rotating the bearing ring member (1) together with the rotation drive shaft. The same applies to the case where the target ring member is the inner ring 2 or the outer ring 3.

上述した様な研削加工を行う際に、前記各軌道輪部材(1〜3)は、前記バッキングプレート17への磁気吸着に基づいて軸方向に着磁され、軸方向の残留磁気を帯びた状態となる。この為、特許文献1にも記載されている様に、これら各軌道輪部材(1〜3)をそのまま使用して、上述したエンコーダ付転がり軸受ユニットを組み立てると、前記各軌道輪部材(1〜3)の残留磁気によって周囲に発生した磁束が、前記エンコーダ5の被検出面から出入りして前記センサ16の検出部24を通過する磁束に悪影響(密度や分布を変化させる様な影響)を与え、回転速度検出の信頼性を低下させる可能性がある。尚、前記各軌道輪部材(1〜3)の研削後は、通常、これら各軌道輪部材(1〜3)を前記バッキングプレート17から取り外す前に、このバッキングプレート17から前記各軌道輪部材(1〜3)に逆励磁をかける事により、これら各軌道輪部材(1〜3)の減磁を行う。但し、この様な作業を行っても、前記各軌道輪部材(1〜3)の残留磁気を十分に減少させる事は難しい。   When the grinding process as described above is performed, each of the track ring members (1 to 3) is magnetized in the axial direction based on the magnetic attraction to the backing plate 17, and has a residual magnetism in the axial direction. It becomes. For this reason, as described in Patent Document 1, when each of the bearing ring members (1 to 3) is used as it is and the above-described rolling bearing unit with an encoder is assembled, each of the bearing ring members (1 to 1) is assembled. The magnetic flux generated in the surroundings by the residual magnetism of 3) adversely affects the magnetic flux that enters and exits the detection surface of the encoder 5 and passes through the detection unit 24 of the sensor 16 (an effect that changes the density and distribution). There is a possibility that the reliability of rotation speed detection is lowered. In addition, after grinding each said bearing ring member (1-3), before removing these each bearing ring member (1-3) from the said backing plate 17, normally, each said bearing ring member ( 1 to 3) are demagnetized by applying reverse excitation to the bearing members (1 to 3). However, even if such an operation is performed, it is difficult to sufficiently reduce the residual magnetism of each of the track ring members (1 to 3).

この様な事情に鑑みて従来から、特許文献1にも記載されている様に、前記バッキングプレート17から取り外した前記各軌道輪部材(1〜3)に、脱磁処理を施す事が行われている。この脱磁処理は、通常、図6に示す様にして行う。即ち、対象となる軌道輪部材(図示の例では、前記ハブ1)を、連続走行する搬送コンベア20に載せて、脱磁ヨーク21の上方に発生させた交番磁界中を、水平方向に一定速度で通過させる。この際に、前記軌道輪部材(1)の軸方向と、前記交番磁界の振動方向とは、互いに同じ方向(図示の例では上下方向)としておく。これにより、前記通過に伴って、前記軌道輪部材(1)に前記交番磁界を軸方向に印加する事で、この軌道輪部材(1)の脱磁を行う。対象となる軌道輪部材が、前記内輪2や前記外輪3である場合に就いても同様である。   In view of such circumstances, conventionally, as described in Patent Document 1, the raceway members (1 to 3) removed from the backing plate 17 have been subjected to demagnetization treatment. ing. This demagnetization process is usually performed as shown in FIG. That is, a target race ring member (the hub 1 in the illustrated example) is placed on the conveyor 20 that continuously travels, and the alternating magnetic field generated above the demagnetizing yoke 21 has a constant speed in the horizontal direction. Pass through. At this time, the axial direction of the raceway ring member (1) and the vibration direction of the alternating magnetic field are set to be the same direction (vertical direction in the illustrated example). Thereby, the said magnetic ring member (1) is demagnetized by applying the said alternating magnetic field to the said ring member (1) to an axial direction with the said passage. The same applies to the case where the target ring member is the inner ring 2 or the outer ring 3.

ところが、上述した様な脱磁処理によっても、前記各軌道輪部材(1〜3)の残留磁気を完全に除去する事はできない。即ち、これら各軌道輪部材(1〜3)の大きさや形状等の影響により、これら各軌道輪部材(1〜3)に或る程度の磁気が残った状態となる。又、図6に示した脱磁機のタクトタイム(処理時間/個)は、例えば図5に示した研削機のタクトタイムに比べて十分に短い為、実際の生産ラインに於いて、前記脱磁機は、前記各軌道輪部材(1〜3)に就いて共用される事が多い。即ち、これら各軌道輪部材(1〜3)の脱磁処理は、通常、体積が大きい前記ハブ1や前記外輪3も、体積が小さい前記内輪2も、総て同一の脱磁機により同一の条件で行われる。この為、脱磁処理後の残留磁気は、体積が大きい前記ハブ1や前記外輪3で、体積が小さい前記内輪2よりも大きくなる。何れにしても、前記各軌道輪部材(1〜3)の残留磁気のうち、前記外輪3の残留磁気は、使用時の状態で、前記エンコーダ5の被検出面から出入りして前記センサ16の検出部24を通過する磁束に悪影響を及ぼしにくい。この理由は、前記外輪3の残留磁気が、上述した脱磁処理により或る程度小さくなっている事に加えて、この外輪3が、前記エンコーダ5に直接接触しておらず、且つ、前記センサ16の検出部24から比較的離れた位置に存在する為である。これに対して、前記ハブ1と前記内輪2との結合体の残留磁気は、使用時の状態で、前記エンコーダ5の被検出面から出入りして前記センサ16の検出部24を通過する磁束に悪影響を及ぼし易い。この理由は、前記ハブ1及び前記内輪2の残留磁気が、上述した脱磁処理により或る程度小さくなってはいるものの、前記内輪2が、前記エンコーダ5に直接接触しており、且つ、前記センサ16の検出部24に近接した位置に存在する為である。即ち、この状態では、前記内輪2の軸方向内端部表面から出る(又はこの表面に入る)磁束が、前記センサ16の検出部24側を流れ易く、結果として、このセンサ16の検出部24を通過する磁束に悪影響を及ぼし易い。   However, the residual magnetism of each of the bearing ring members (1 to 3) cannot be completely removed even by the demagnetization process as described above. That is, due to the influence of the size and shape of each of the raceway members (1 to 3), some degree of magnetism remains in each of the raceway members (1 to 3). Further, since the takt time (processing time / piece) of the demagnetizer shown in FIG. 6 is sufficiently shorter than the takt time of the grinding machine shown in FIG. 5, for example, in the actual production line, The porcelain machine is often shared by the raceway members (1 to 3). That is, the demagnetization treatment of each of the bearing ring members (1 to 3) is usually performed by the same demagnetizer for the hub 1 and the outer ring 3 having a large volume and the inner ring 2 having a small volume. Done on condition. For this reason, the residual magnetism after the demagnetization process is larger in the hub 1 and the outer ring 3 having a large volume than in the inner ring 2 having a small volume. In any case, the residual magnetism of the outer ring 3 out of the residual magnetism of each of the track ring members (1 to 3) enters and exits from the detection surface of the encoder 5 in the state of use, and the sensor 16 It is difficult to adversely affect the magnetic flux passing through the detection unit 24. This is because, in addition to the fact that the residual magnetism of the outer ring 3 is reduced to some extent by the demagnetization process described above, the outer ring 3 is not in direct contact with the encoder 5 and the sensor This is because it exists at a position relatively distant from the 16 detection units 24. On the other hand, the residual magnetism of the combined body of the hub 1 and the inner ring 2 is a magnetic flux that enters and exits the detection surface of the encoder 5 and passes through the detection unit 24 of the sensor 16 in use. Prone to adverse effects. The reason for this is that although the residual magnetism of the hub 1 and the inner ring 2 is reduced to some extent by the demagnetization process described above, the inner ring 2 is in direct contact with the encoder 5 and the This is because the sensor 16 exists at a position close to the detection unit 24. That is, in this state, the magnetic flux that exits (or enters this surface) in the axially inner end surface of the inner ring 2 easily flows on the detection unit 24 side of the sensor 16, and as a result, the detection unit 24 of the sensor 16. It is easy to adversely affect the magnetic flux passing through.

従って、このセンサ16の検出部24を通過する磁束に悪影響が及びにくくして、回転速度検出の信頼性を向上させるべく、前記内輪2の軸方向内端部表面から出て前記センサ16の検出部24側に流れる(又は、このセンサ16の検出部24側から流れてきて前記内輪2の軸方向内端部表面に入る)磁束の量を抑えられる構造を実現する事が望まれる。   Therefore, the magnetic flux passing through the detection unit 24 of the sensor 16 is hardly adversely affected, and the detection of the sensor 16 is performed from the surface of the inner end of the inner ring 2 in the axial direction so as to improve the reliability of rotation speed detection. It is desirable to realize a structure that can suppress the amount of magnetic flux that flows to the portion 24 side (or flows from the detection portion 24 side of the sensor 16 and enters the inner end surface of the inner ring 2 in the axial direction).

特開2005−16569号公報JP 2005-16569 A

本発明は、上述の様な事情に鑑み、軸部材及び内輪に或る程度の磁気が残留している場合でも、エンコーダの被検出面から出入りしてセンサの検出部を通過する磁束に悪影響が及びにくくする為、前記内輪の軸方向内端部表面から出てセンサの検出部側に流れる(又は、このセンサの検出部側から流れてきて前記内輪の軸方向内端部表面に入る)磁束の量を抑えられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has an adverse effect on the magnetic flux that enters and exits the detection surface of the encoder and passes through the detection portion of the sensor even when a certain amount of magnetism remains in the shaft member and the inner ring. In order to make it difficult, the magnetic flux exits from the inner surface of the inner ring in the axial direction and flows to the sensor side of the sensor (or flows from the sensor side of the sensor and enters the inner surface of the inner ring in the axial direction). It was invented to realize a structure that can suppress the amount of the above.

本発明のエンコーダ付転がり軸受ユニットは、転がり軸受ユニットと、エンコーダとを備える。
特に、本発明のエンコーダ付転がり軸受ユニットに於いては、それぞれが前記転がり軸受ユニットを構成する、比較的体積の大きい軸部材と、比較的体積の小さい内輪とが、それぞれ軸方向の残留磁気を帯びており、このうちの軸部材の単体の状態での軸方向一端部表面の残留磁気の極性と、前記内輪の単体の状態での軸方向一端部表面の残留磁気の極性とを、互いに異ならせると共に、それぞれ全周に亙り等しくしている。
これにより組み立て後の状態で、前記内輪の軸方向一端部表面と前記軸部材の軸方向一端部表面との間で磁束を出入りさせている。
The rolling bearing unit with an encoder of the present invention includes a rolling bearing unit and an encoder.
In particular, in the rolling bearing unit with an encoder according to the present invention, the shaft member having a relatively large volume and the inner ring having a relatively small volume, which respectively constitute the rolling bearing unit, each have a residual magnetism in the axial direction. The polarity of the residual magnetism on the surface of the one axial end in the state of the shaft member alone and the polarity of the residual magnetism on the surface of the one end in the axial direction in the state of the inner ring alone are different from each other. And equalize over the entire circumference.
Thereby , the magnetic flux is made to go in and out between the axial direction one end part surface of the said inner ring | wheel and the axial direction one end part surface of the said shaft member in the state after an assembly .

本発明のエンコーダ付転がり軸受ユニットを製造する場合に、前記転がり軸受ユニットは、例えば、前記軸部材の軸方向一端部に前記内輪を単に締り嵌めで外嵌固定して造っても良いし、或いは、請求項2に記載した発明の様に、前記内輪を外嵌した軸部材の軸方向一端部を径方向外方に向け塑性変形させる事でかしめ部を形成し、このかしめ部により、前記内輪の軸方向一端面を抑え付けて、この内輪を前記軸部材に結合固定して造っても良い。 When manufacturing the encoder rolling bearing unit of the present invention, the rolling bearing unit, for example, the to inner ring it may simply be made by externally secured by interference fit in the axial end portion of the shaft member, or , like the invention described in claim 2, big caulking portion that is plastically deformed to form direct the one axial end of the outer fitting the shaft member said inner ring radially outwards, this crimped portion, wherein The inner ring may be formed by pressing and fixing one end surface of the inner ring in the axial direction and coupling and fixing the inner ring to the shaft member.

又、上述の様なエンコーダ付転がり軸受ユニットを造る場合には、例えば、前記軸部材の単体の状態での軸方向一端部表面の残留磁気の極性と、前記内輪の単体の状態での軸方向一端部表面の残留磁気の極性とを、互いに異ならせる処理を行う。その後、これら軸部材と内輪とを互いに結合すると共に、この内輪に前記エンコーダを組み付ける。   In the case of making a rolling bearing unit with an encoder as described above, for example, the polarity of the residual magnetism on the surface of one end in the axial direction in the state of the shaft member alone and the axial direction in the state of the inner ring alone. A process of making the polarities of the remanent magnetism on the one end surface different from each other is performed. Thereafter, the shaft member and the inner ring are coupled to each other, and the encoder is assembled to the inner ring.

又、上述の様な製造方法を実施する場合には、例えば、対象部材の静止状態で、この対象部材に対し、時間の経過と共に振幅が減少する交番磁界を軸方向に印加した後、この交番磁界の印加を所定の位相で停止する処理を、前記軸部材と前記内輪とのそれぞれを対象として実施する。これに基づき、この軸部材の単体の状態での軸方向一端部表面の残留磁気の極性と、前記内輪の単体の状態での軸方向一端部表面の残留磁気の極性とを、互いに異ならせる。   In addition, when the manufacturing method as described above is performed, for example, in a stationary state of the target member, an alternating magnetic field whose amplitude decreases with the passage of time is applied to the target member in the axial direction. The process of stopping the application of the magnetic field at a predetermined phase is performed for each of the shaft member and the inner ring. Based on this, the polarity of the residual magnetism on the surface of the one end in the axial direction in the state of the single shaft member is made different from the polarity of the residual magnetism on the surface of the one end in the axial direction in the state of the single inner ring.

上述の様に構成する本発明のエンコーダ付転がり軸受ユニットによれば、前記内輪の軸方向一端部表面から出て、前記エンコーダの被検出面に対向させるセンサの検出部側に流れる(又は、このセンサの検出部側から流れてきて、前記内輪の軸方向一端部表面に入る)磁束の量を抑えられる。即ち、本発明の場合には、前記内輪の単体の状態での軸方向一端部表面の残留磁気の極性と、前記軸部材の単体の状態での軸方向一端部表面の残留磁気の極性とを、互いに異ならせている。この為、前記内輪の軸方向一端部表面から出る(又はこの表面に入る)磁束を、前記軸部材の軸方向一端部表面側に誘導する事ができる。そして、その分だけ、前記内輪の軸方向一端部表面から出て、前記エンコーダの被検出面に対向させるセンサの検出部側に流れる(又は、このセンサの検出部側から流れてきて、前記内輪の軸方向一端部表面に入る)磁束の量を抑えられる(低減又は実質的に零にできる)。従って、前記エンコーダの被検出面から出入りして前記センサの検出部を通過する磁束に及ぶ悪影響(密度や分布を変化させる様な影響)を低減できる。この結果、前記エンコーダの被検出面から出入りする磁束を、前記センサの検出部により検出する事に基づいて行われる、回転速度等の物理量の測定に関する信頼性を向上させる事ができる。 According to the rolling bearing unit with an encoder of the present invention configured as described above, it flows out from the surface of one end of the inner ring in the axial direction and flows to the detection unit side of the sensor facing the detection surface of the encoder (or this The amount of magnetic flux that flows from the detection part side of the sensor and enters the surface of one end part in the axial direction of the inner ring can be suppressed. That is, in the case of the present invention, the polarity of the residual magnetism on the surface of the one end in the axial direction in the state of the single inner ring and the polarity of the residual magnetism on the surface of the one end in the axial direction in the state of the single shaft member. Are different from each other. For this reason, the magnetic flux which comes out from the axial direction one end part surface of the said inner ring | wheel (or enters this surface) can be induced | guided | derived to the axial direction one end part surface side of the said shaft member. And by that amount, the inner ring exits from the surface of one end in the axial direction and flows to the detection unit side of the sensor facing the detection surface of the encoder (or the inner ring flows from the detection unit side of the sensor). The amount of magnetic flux (entering the surface of one end of the axis) can be suppressed (can be reduced or substantially zero). Accordingly, it is possible to reduce an adverse effect (an influence that changes the density and distribution) on the magnetic flux that enters and exits the detection surface of the encoder and passes through the detection unit of the sensor. As a result, it is possible to improve the reliability related to the measurement of the physical quantity such as the rotation speed, which is performed based on the detection of the magnetic flux entering and exiting the detection surface of the encoder by the detection unit of the sensor.

又、上述した様な製造方法によれば、上述した様な本発明のエンコーダ付転がり軸受ユニットを的確に製造する事ができる。
又、上述した製造方法を実施する場合に、対象部材の静止状態で、この対象部材に対し、時間の経過と共に振幅が減少する交番磁界を軸方向に印加した後、この交番磁界の印加を所定の位相で停止する処理を、前記軸部材と前記内輪とのそれぞれを対象として実施すれば、前記軸部材の単体の状態での軸方向一端部表面の残留磁気の極性と、前記内輪の単体の状態での軸方向一端部表面の残留磁気の極性とを互いに異ならせる作業を、容易且つ的確に行える。又、対象部材(前記軸部材、前記内輪)に交番磁界を印加する作業を、この対象部材の静止状態で行う為、この対象部材の単体の状態での軸方向一端部表面の残留磁気の極性を、全周に亙り等しくする事ができる。即ち、当該極性が、円周方向に関して異なった状態になる事を防止できる。
Moreover, according to the manufacturing method as described above, the rolling bearing unit with an encoder of the present invention as described above can be manufactured accurately.
In addition, when the above-described manufacturing method is performed, an alternating magnetic field whose amplitude decreases with the passage of time is applied to the target member in the axial direction in a stationary state of the target member. If the process of stopping at the phase is performed for each of the shaft member and the inner ring, the polarity of the residual magnetism on the surface of one end in the axial direction in the state of the shaft member alone, In this state, it is possible to easily and accurately perform the operation of making the polarities of the residual magnetism on the surface of the one end portion in the axial direction different from each other. In addition, since the work of applying an alternating magnetic field to the target member (the shaft member, the inner ring) is performed in a stationary state of the target member, the polarity of the residual magnetism on the surface of one end in the axial direction in the state of the target member alone Can be made equal over the entire circumference. That is, it is possible to prevent the polarity from being different in the circumferential direction.

本発明の実施の形態の1例に関する、エンコーダ付転がり軸受ユニットの断面図。Sectional drawing of the rolling bearing unit with an encoder regarding one example of embodiment of this invention. 同じく、軌道輪部材の脱磁処理工程を示す模式図。Similarly, the schematic diagram which shows the demagnetization process process of a bearing ring member. 本発明の効果を確認する為に行った実験の測定結果を示す図。The figure which shows the measurement result of the experiment conducted in order to confirm the effect of this invention. 従来から知られているエンコーダ付転がり軸受ユニットの1例を示す断面図。Sectional drawing which shows an example of the rolling bearing unit with an encoder known conventionally. 軌道輪部材の表面に研削加工を施す状況を示す部分断面図。The fragmentary sectional view which shows the condition which grinds the surface of a bearing ring member. 従来から行われている軌道輪部材の脱磁処理工程を示す模式図。The schematic diagram which shows the demagnetization process process of the bearing ring member conventionally performed.

図1〜2を参照しつつ、本発明の実施の形態の1例に就いて説明する。尚、本例の特徴は、エンコーダ付転がり軸受ユニットを構成する、軸部材であるハブ1と、内輪2との、それぞれの軸方向内端部表面の残留磁気の極性を調整した点、若しくは、調整する点にある。その他の部分の構造、作用、及び製造方法に就いては、前述の図4に示した従来構造の場合と同様である。この為、同等部分には同一符号を付して、重複する説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   One example of an embodiment of the present invention will be described with reference to FIGS. The feature of this example is that the polarities of the residual magnetism of the axially inner end surfaces of the hub 1 and the inner ring 2 constituting the rolling bearing unit with encoder are adjusted, or The point is to adjust. The structure, operation, and manufacturing method of the other parts are the same as those of the conventional structure shown in FIG. For this reason, the same parts are denoted by the same reference numerals, and redundant description is omitted or simplified. Hereinafter, the characteristic parts of this example will be mainly described.

本例のエンコーダ付転がり軸受ユニットは、図1に示す様に、前記ハブ1の軸方向内端部表面の残留磁気の極性をS極とし、前記内輪2の軸方向内端部表面の残留磁気の極性をN極としている。
この様な構成を有するエンコーダ付転がり軸受ユニットを製造する為に、本例の場合には、前記ハブ1と前記内輪2との製造工程で、前述した研削加工(図5参照)の終了後、これらハブ1と内輪2とをバッキングプレート17(図5参照)から取り外した後、これらハブ1と内輪2とに対して、それぞれ図2に示す様な脱磁処理を施す。
As shown in FIG. 1, the rolling bearing unit with an encoder of this example has a residual magnetic polarity on the surface of the inner end portion in the axial direction of the hub 1 as the S pole, and a residual magnetism on the surface of the inner end portion in the axial direction of the inner ring 2. The polarity is N pole.
In order to manufacture a rolling bearing unit with an encoder having such a configuration, in the case of this example, in the manufacturing process of the hub 1 and the inner ring 2, after the above-described grinding process (see FIG. 5) is completed, After removing the hub 1 and the inner ring 2 from the backing plate 17 (see FIG. 5), the hub 1 and the inner ring 2 are each subjected to demagnetization processing as shown in FIG.

即ち、対象となる軌道輪部材(図示の例では、前記ハブ1)を、間欠送りで走行する搬送コンベア20aに載せて、(a)の位置から(b)の位置(脱磁ヨーク21aの上方の位置)まで移動させ、その位置で静止させる。そして、この状態で、この脱磁ヨーク21aを構成するコイル22に、(b)の下方に例示する様な波形を持った、時間の経過と共に振幅が減少する交流電圧を印加する。これにより、前記脱磁ヨーク21aの上方に、この交流電圧と相似する波形を持った、時間の経過と共に振幅が減少する交番磁界を発生させる。そして、この交番磁界を前記軌道輪部材(1)に対し、軸方向に印加する。この為に、(b)の位置で、前記交番磁界の振動方向と、前記軌道輪部材(1)の軸方向とが、互いに同じ方向(図示の例では上下方向)になる様にしておく。そして、この様に前記交番磁界を前記軌道輪部材(1)に軸方向に印加するにより、この軌道輪部材(1)の残留磁気を減少させる。   That is, the target ring member (in the example shown, the hub 1) is placed on the transport conveyor 20a that travels intermittently, from the position (a) to the position (b) (above the demagnetizing yoke 21a). Move to the position of) and stop at that position. In this state, an AC voltage having a waveform as illustrated below (b) and whose amplitude decreases with the passage of time is applied to the coil 22 constituting the demagnetizing yoke 21a. As a result, an alternating magnetic field having a waveform similar to the AC voltage and having an amplitude that decreases with the passage of time is generated above the demagnetizing yoke 21a. And this alternating magnetic field is applied to an axial direction with respect to the said ring member (1). For this purpose, at the position (b), the vibration direction of the alternating magnetic field and the axial direction of the bearing ring member (1) are set in the same direction (vertical direction in the illustrated example). Then, by applying the alternating magnetic field to the bearing ring member (1) in the axial direction in this way, the residual magnetism of the bearing ring member (1) is reduced.

その後、前記軌道輪部材(1)に対する前記交番磁界の印加(前記コイル22に対する前記交流電圧の印加)を、所定の位相で停止する。これにより、前記軌道輪部材(1)の軸方向内端部表面の残留磁気の極性を、所望の極性(図示の例では、この軌道輪部材が前記ハブ1なのでS極。図示の例とは異なり、この軌道輪部材が前記内輪2であればN極。)とする。逆に言えば、この軌道輪部材(1)の軸方向内端部表面の残留磁気の極性が、所望の極性となる位相で、前記交番磁界の印加を停止する。この交番磁界の印加を停止した後は、前記搬送コンベア20aを間欠送りで走行させる事により、前記軌道輪部材(1)を、(b)の位置から(c)の位置(前記脱磁ヨーク21aの上方から水平方向に外れた位置)まで移動させる。これと同時に、次の軌道輪部材(1)を、(a)の位置から(b)の位置に移動させて、同様の脱磁処理を行う。尚、(c)の位置に移動させた脱磁処理後の軌道輪部材(1)に、(b)の位置で発生させる交番磁界の影響が及ばない様にする為に、(b)の位置と(c)の位置との間隔を十分に大きくしたり、(b)の位置と(c)の位置との間に磁気遮蔽板23を設けたりする等の措置を施す。対象となる軌道輪部材が、前記内輪2である場合に就いても同様である。   Thereafter, the application of the alternating magnetic field to the ring member (1) (the application of the AC voltage to the coil 22) is stopped at a predetermined phase. Thus, the polarity of the remanent magnetism on the surface of the inner end portion in the axial direction of the bearing ring member (1) is changed to a desired polarity (in the example shown in the figure, since the bearing ring member is the hub 1, the S pole. Unlike this, if this race ring member is the inner ring 2, it is N pole.) In other words, the application of the alternating magnetic field is stopped at a phase where the polarity of the residual magnetism on the surface of the inner end portion in the axial direction of the ring member (1) becomes a desired polarity. After the application of the alternating magnetic field is stopped, the raceway member (1) is moved from the position (b) to the position (c) (the demagnetizing yoke 21a) by running the conveyor 20a by intermittent feeding. To a position deviated horizontally from above. At the same time, the next race ring member (1) is moved from the position (a) to the position (b), and the same demagnetization process is performed. In order to prevent the influence of the alternating magnetic field generated at the position (b) on the bearing ring member (1) after the demagnetization process moved to the position (c), the position (b) Measures such as sufficiently increasing the distance between the position (c) and the position (c), or providing a magnetic shielding plate 23 between the position (b) and the position (c). The same applies to the case where the target ring member is the inner ring 2.

そして、上述した様な脱磁処理を施したハブ1及び内輪2と、その他の構成部材とを互いに組み合わせる事により、前記ハブ1の軸方向内端部表面の残留磁気の極性がS極となり、前記内輪2の軸方向内端部表面の残留磁気の極性がN極となる構成を備えた、本例のエンコーダ付転がり軸受ユニットを完成させる。
尚、前記ハブ1と前記内輪2との体積の比は、8〜10:1程度である事が多いが、特に、玉列間距離の長い転がり軸受ユニットの場合には、20:1程度になる事もある。即ち、それぞれが軸方向の残留磁気を帯びた、前記ハブ1と前記内輪2とは、大小の磁石であると見る事ができる。そして、一般に、大小の磁石を結合したとき、結合後の全体の磁気極性は、大きな磁石に倣う事が知られている。但し、前記ハブ1と前記内輪2との関係では、この内輪2の軸方向内端面の総てが前記ハブ1のかしめ部12で覆われる訳ではないし、この内輪2の軸方向内端面にこのかしめ部12が全面的に密着している訳でもない。この為、前記内輪2の軸方向内端面のうち、特に、前記かしめ部12に覆われていない径方向外半部(エンコーダ5を外嵌固定する内輪2の肩部近傍部分)の残留磁気の極性は、必ずしも、前記ハブ1の軸方向内端部表面の残留磁気の極性に倣う訳ではない。即ち、上述の様に、脱磁処理後のハブ1及び内輪2と、その他の構成部材とを互いに組み合わせて、エンコーダ付転がり軸受ユニットを完成させれば、前記ハブ1の軸方向内端部表面の残留磁気の極性がS極となり、前記内輪2の軸方向内端部表面の残留磁気の極性がN極となる構成を実現できる。
Then, by combining the hub 1 and the inner ring 2 subjected to the demagnetization treatment as described above with other constituent members, the polarity of the residual magnetism on the axially inner end surface of the hub 1 becomes the S pole, The rolling bearing unit with an encoder of this example, which has a configuration in which the polarity of the remanent magnetism on the inner end surface of the inner ring 2 in the axial direction is N pole, is completed.
The volume ratio between the hub 1 and the inner ring 2 is often about 8 to 10: 1. In particular, in the case of a rolling bearing unit having a long distance between the ball rows, the ratio is about 20: 1. Sometimes it becomes. That is, it can be considered that the hub 1 and the inner ring 2 each having an axial residual magnetism are large and small magnets. In general, it is known that when large and small magnets are coupled, the overall magnetic polarity after the coupling follows a large magnet. However, in the relationship between the hub 1 and the inner ring 2, not all of the inner end surface in the axial direction of the inner ring 2 is covered by the caulking portion 12 of the hub 1. The caulking portion 12 is not in close contact with the entire surface. For this reason, among the inner end surfaces in the axial direction of the inner ring 2, in particular, the residual magnetism of the radially outer half part (the vicinity of the shoulder part of the inner ring 2 to which the encoder 5 is fitted and fixed) that is not covered by the caulking part 12. The polarity does not necessarily follow the polarity of the remanent magnetism on the axially inner end surface of the hub 1. That is, as described above, if the hub 1 and the inner ring 2 after the demagnetization treatment are combined with other components to complete the rolling bearing unit with an encoder, the surface of the inner end portion in the axial direction of the hub 1 is obtained. Thus, a configuration can be realized in which the polarity of the residual magnetism becomes the S pole, and the polarity of the residual magnetism on the inner end surface in the axial direction of the inner ring 2 becomes the N pole.

上述した様な本例のエンコーダ付転がり軸受ユニット及びその製造方法によれば、前記内輪2の軸方向内端部表面(N極)から出た磁束が、エンコーダ5の被検出面に近接対向するセンサ16の検出部24側に流れる量を抑えられる。即ち、本例の場合には、前記内輪2の軸方向一端部表面の残留磁気の極性(N極)と、前記ハブ1の軸方向一端部表面の残留磁気の極性(S極)とを、互いに異ならせている。この為、前記内輪2の軸方向一端部表面(N極)から出た磁束を、前記ハブ1の軸方向一端部表面(S極)側に誘導する事ができる。そして、その分だけ、前記内輪2の軸方向一端部表面(N極)から出た磁束が、前記センサ16の検出部24側に流れる量を抑えられる(低減又は実質的に零にできる)。従って、前記エンコーダ5の被検出面から出入りして前記センサ16の検出部24を通過する磁束に及ぶ悪影響(密度や分布を変化させる様な影響)を低減できる。この結果、前記エンコーダ5の被検出面から出入りする磁束を、前記センサ16により検出する事に基づいて行われる、回転速度の測定に関する信頼性を向上させる事ができる。   According to the rolling bearing unit with an encoder of this example and the manufacturing method thereof as described above, the magnetic flux generated from the axially inner end surface (N pole) of the inner ring 2 is closely opposed to the detected surface of the encoder 5. The amount flowing to the detection unit 24 side of the sensor 16 can be suppressed. That is, in the case of this example, the polarity of the residual magnetism (N pole) on the surface of one end in the axial direction of the inner ring 2 and the polarity of the residual magnetism (S pole) on the surface of one end in the axial direction of the hub 1 are They are different from each other. For this reason, the magnetic flux emitted from the axial end surface (N pole) of the inner ring 2 can be guided to the axial end surface (S pole) side of the hub 1. Accordingly, the amount of magnetic flux emitted from the surface (N pole) in the axial direction of the inner ring 2 can be reduced by that amount (reduced or substantially reduced to zero). Accordingly, it is possible to reduce adverse effects (such as changes in density and distribution) on the magnetic flux that enters and exits the detection surface of the encoder 5 and passes through the detection unit 24 of the sensor 16. As a result, it is possible to improve the reliability related to the measurement of the rotational speed, which is performed based on the detection of the magnetic flux entering and exiting from the detection surface of the encoder 5 by the sensor 16.

尚、本例の場合、前記エンコーダ5の被検出面から出入りして前記センサ16の検出部24を通過する磁束に対しては、前記内輪2の残留磁気により周囲に発生する磁束だけでなく、前記ハブ1の残留磁気により周囲に発生する磁束も、悪影響を及ぼす要因となる。即ち、前述した様に、前記ハブ1と前記内輪2との体積差は、比で表して8〜20:1程度と、かなり大きい。この為、前述した脱磁処理を互いに同じ条件で行うと、脱磁処理後の残留磁気は、体積が大きいハブ1の方が、体積が小さい内輪2よりも、かなり大きい状態となる。従って、この場合には、前記内輪2の軸方向一端部表面(N極)から出る磁束のほぼ総てが、前記ハブ1の軸方向一端部表面(S極)側に誘導される様になる。そして、前記内輪2の軸方向一端部表面(N極)から出て、前記センサ16の検出部24側に流れる磁束の量が、実質的に零となる。但し、この場合にも、前記ハブ1の軸方向内端部表面に入る磁束の一部は、前記センサ16の検出部24側から流れ込む状態となる。従って、回転速度の測定に関する信頼性をより十分に向上させる観点より、当該センサ16の検出部24側から流れ込む磁束を減らす事が好ましい。言い換えれば、本例を実施する場合には、前記ハブ1と前記内輪2との残留磁気によって周囲に発生する磁束の密度が、前記センサ16の検出部24で極力低くなる様に、前記ハブ1と前記内輪2との脱磁処理後の残留磁気の大きさを調整する事が好ましい。この為に、例えば、これらハブ1と内輪2との脱磁処理を行う際の、前記交番磁界の印加停止直前の振幅値を十分に小さくしたり、或いは、この交番磁界の印加停止直前の振幅値を、前記ハブ1で前記内輪2よりも小さく(逆に言えば、この内輪2でこのハブ1よりも大きく)したりする事が好ましい。   In the case of this example, not only the magnetic flux generated from the detected surface of the encoder 5 and passing through the detection unit 24 of the sensor 16, but also the magnetic flux generated around by the residual magnetism of the inner ring 2, Magnetic flux generated around the hub 1 due to the residual magnetism also causes adverse effects. That is, as described above, the volume difference between the hub 1 and the inner ring 2 is considerably large, expressed as a ratio of about 8 to 20: 1. For this reason, if the demagnetization process described above is performed under the same conditions, the residual magnetism after the demagnetization process is considerably larger in the hub 1 having a larger volume than in the inner ring 2 having a smaller volume. Accordingly, in this case, almost all of the magnetic flux emitted from the surface (N pole) in the axial direction of the inner ring 2 is guided to the surface (S pole) side of the hub 1 in the axial direction. . And the quantity of the magnetic flux which goes out from the axial direction one end surface (N pole) of the said inner ring | wheel 2 and flows into the detection part 24 side of the said sensor 16 becomes substantially zero. However, also in this case, a part of the magnetic flux entering the surface of the inner end portion in the axial direction of the hub 1 flows from the detection unit 24 side of the sensor 16. Therefore, it is preferable to reduce the magnetic flux flowing from the detection unit 24 side of the sensor 16 from the viewpoint of sufficiently improving the reliability related to the measurement of the rotational speed. In other words, when the present embodiment is carried out, the hub 1 is designed so that the density of magnetic flux generated around the residual magnetism between the hub 1 and the inner ring 2 is as low as possible at the detection unit 24 of the sensor 16. It is preferable to adjust the magnitude of the residual magnetism after the demagnetization treatment with the inner ring 2. For this purpose, for example, when performing demagnetization processing between the hub 1 and the inner ring 2, the amplitude value immediately before the application of the alternating magnetic field is sufficiently reduced, or the amplitude immediately before the application of the alternating magnetic field is stopped. It is preferable to make the value smaller than the inner ring 2 with the hub 1 (in other words, larger with the inner ring 2 than the hub 1).

又、本例の場合、前記ハブ1の単体の状態での軸方向内端部表面の残留磁気の極性と、前記内輪2の単体の状態での軸方向内端部表面の残留磁気の極性とを互いに異ならせる作業は、これらハブ1と内輪2とに対する交番磁界の印加(前記コイル22に対する交流電圧の印加)を所定の位相で停止する事により、容易且つ的確に行える。又、対象部材(前記ハブ1、前記内輪2)に交番磁界を印加する作業を、この対象部材の静止状態で行う為、この対象部材の単体の状態での軸方向内端部表面の残留磁気の極性を、全周に亙り等しくする事ができる。即ち、当該極性が、円周方向に関して異なった状態になる事を防止できる。   In the case of this example, the polarity of the residual magnetism on the axial inner end surface of the hub 1 alone and the polarity of the residual magnetism of the axial inner end surface of the inner ring 2 alone The operation of making the two different from each other can be performed easily and accurately by stopping the application of the alternating magnetic field to the hub 1 and the inner ring 2 (application of the alternating voltage to the coil 22) at a predetermined phase. In addition, since the work of applying an alternating magnetic field to the target member (the hub 1 and the inner ring 2) is performed in a stationary state of the target member, the residual magnetism on the surface in the axial direction at the end of the target member alone. Can be made the same polarity over the entire circumference. That is, it is possible to prevent the polarity from being different in the circumferential direction.

本発明の効果を確認する為に行った実験に就いて説明する。実験は、8種類の試料(実施例1〜4、比較例1〜4)に就いて行った。これら各試料は何れも、前述の図1、4に示した様な、ハブ1と内輪2とを互いに結合して成る結合体である。又、このうちの実施例1〜4は、本発明の特徴を備えた試料であり、前記ハブ1と前記内輪2との軸方向内端部表面の残留磁気の極性を、互いに異ならせている。これに対し、比較例1〜4は、本発明の特徴を備えていない試料であり、前記ハブ1と前記内輪2との軸方向内端部表面の残留磁気の極性を、互いに同じにしている。又、実施例と比較例とは双方とも、試料番号が異なるもの同士で、軌道輪部材(前記ハブ1、前記内輪2)の残留磁気の絶対値を異ならせているが、試料番号が共通するものに関しては、実施例と比較例とで、軌道輪部材(前記ハブ1、前記内輪2)の残留磁気の絶対値をほぼ同等としている。   An experiment conducted for confirming the effect of the present invention will be described. The experiment was conducted on eight types of samples (Examples 1 to 4 and Comparative Examples 1 to 4). Each of these samples is a combined body in which the hub 1 and the inner ring 2 are connected to each other as shown in FIGS. In addition, Examples 1 to 4 of these are samples having the characteristics of the present invention, and the polarities of the remanent magnetism on the axially inner end surfaces of the hub 1 and the inner ring 2 are different from each other. . On the other hand, Comparative Examples 1 to 4 are samples that do not have the characteristics of the present invention, and the polarities of the residual magnetisms on the axially inner end surfaces of the hub 1 and the inner ring 2 are the same. . Further, both the example and the comparative example have different sample numbers, and the absolute values of the residual magnetism of the race ring members (the hub 1 and the inner ring 2) are different, but the sample numbers are common. Regarding the thing, the absolute value of the remanent magnetism of the bearing ring member (the hub 1 and the inner ring 2) is almost equal between the example and the comparative example.

上述した様な各試料に就いて、前記ハブ1の残留磁気の指標となる、このハブ1の軸方向内端面での磁束密度と、前記内輪2の残留磁気の指標となる、この内輪2の軸方向内端面での磁束密度と、センサ16(図4参照)の検出部24を配置する位置{前記内輪2の軸方向内端面と同じ仮想平面内に配置されるエンコーダ5(図4参照)の被検出面の径方向中央部から軸方向内側に3mm離れた位置}である、検出位置での磁束密度とを、それぞれ測定した。測定結果を図3に示す。   For each sample as described above, the magnetic flux density at the inner end surface in the axial direction of the hub 1 and the index of the residual magnetism of the inner ring 2 are used as an index of the residual magnetism of the hub 1. The magnetic flux density on the inner end surface in the axial direction and the position where the detector 24 of the sensor 16 (see FIG. 4) is disposed {the encoder 5 disposed in the same virtual plane as the inner end surface in the axial direction of the inner ring 2 (see FIG. 4) The magnetic flux density at the detection position, which is a position 3 mm away from the center in the radial direction of the surface to be detected in the axial direction, was measured. The measurement results are shown in FIG.

この図3に示した測定結果のうち、互いに同じ番号の実施例と比較例との測定結果を見比べれば分かる様に、脱磁処理後に於ける軌道輪部材(前記ハブ1、前記内輪2)の残留磁気の大きさが同等である場合には、実施例の方が比較例よりも、前記検出位置での磁束密度が十分に小さくなる。この為、本発明によれば、前記エンコーダ5の被検出面から出入りする磁束を、前記センサ16の検出部24により検出する事に基づいて行われる、回転速度等の物理量の測定に関する信頼性の向上を図れる事が分かる。又、この物理量の測定誤差を抑える為には、前記検出位置での磁束密度を、前記センサ16の検出閾値(スレッシュホールド)以下に抑えるのが好ましい。例えば、このスレッシュホールドが0.1mTである場合、図3の測定結果によれば、比較例の構造に関しては、比較例2、3の程度まで軌道輪部材(前記ハブ1、前記内輪2)の残留磁気を下げる必要があるが、実施例の構造に関しては、実施例1の程度まで軌道輪部材(前記ハブ1、前記内輪2)の残留磁気を下げるだけで良い。従って、本発明によれば、前記検出位置での磁束密度を抑えるのが容易である事が分かる。   Among the measurement results shown in FIG. 3, the bearing ring members (the hub 1 and the inner ring 2) after the demagnetization treatment are understood as compared with the measurement results of the example and the comparative example having the same numbers. When the magnitudes of the residual magnetism are equal, the magnetic flux density at the detection position is sufficiently smaller in the example than in the comparative example. For this reason, according to the present invention, the reliability related to the measurement of physical quantities such as the rotational speed, which is performed based on the detection of the magnetic flux entering and exiting the detection surface of the encoder 5 by the detection unit 24 of the sensor 16. You can see improvement. In order to suppress the measurement error of the physical quantity, it is preferable to suppress the magnetic flux density at the detection position to be equal to or lower than the detection threshold (threshold) of the sensor 16. For example, when this threshold is 0.1 mT, according to the measurement result of FIG. 3, with respect to the structure of the comparative example, the bearing ring members (the hub 1 and the inner ring 2) are compared with those of the comparative examples 2 and 3. Although it is necessary to lower the residual magnetism, it is only necessary to lower the residual magnetism of the bearing ring member (the hub 1 and the inner ring 2) to the extent of the first embodiment with respect to the structure of the embodiment. Therefore, according to the present invention, it is easy to suppress the magnetic flux density at the detection position.

1 ハブ
2 内輪
3 外輪
4 転動体
5 エンコーダ
6 回転側フランジ
7a、7b 内輪軌道
8 小径段部
9 静止側フランジ
10a、10b 外輪軌道
11 円筒部
12 かしめ部
13 芯金
14 エンコーダ本体
15 カバー
16 センサ
17 バッキングプレート
18 シュー
19 砥石
20、20a 搬送コンベア
21、21a 脱磁ヨーク
22 コイル
23 磁気遮蔽板
24 検出部
DESCRIPTION OF SYMBOLS 1 Hub 2 Inner ring 3 Outer ring 4 Rolling element 5 Encoder 6 Rotation side flange 7a, 7b Inner ring raceway 8 Small diameter step part 9 Stationary side flange 10a, 10b Outer ring raceway 11 Cylindrical part 12 Caulking part 13 Core metal 14 Encoder main body 15 Cover 16 Sensor 17 Backing plate 18 Shoe 19 Grinding stone 20, 20a Conveyor 21, 21a Demagnetizing yoke 22 Coil 23 Magnetic shielding plate 24 Detector

Claims (2)

転がり軸受ユニットと、エンコーダとを備え、
このうちの転がり軸受ユニットは、軸部材と、この軸部材よりも体積が小さい内輪とを備え、この軸部材の軸方向一端部にこの内輪を外嵌固定しており、
前記エンコーダは、円周方向に関してS極とN極とを交互に配置した円環状の多極磁石を備えており、この多極磁石を前記内輪と同心に配置した状態で、この内輪の軸方向一端部に支持固定されている
エンコーダ付転がり軸受ユニットに於いて、
前記軸部材と前記内輪とがそれぞれ軸方向の残留磁気を帯びており、
この軸部材の単体の状態での軸方向一端部表面の残留磁気の極性と、前記内輪の単体の状態での軸方向一端部表面の残留磁気の極性と、互いに異なっていると共に、それぞれ全周に亙り等しくなっており、前記内輪の軸方向一端部表面と前記軸部材の軸方向一端部表面との間で磁束を出入りさせている事を特徴とするエンコーダ付転がり軸受ユニット。
A rolling bearing unit and an encoder;
Of these, the rolling bearing unit includes a shaft member and an inner ring having a volume smaller than that of the shaft member, and the inner ring is externally fitted and fixed to one axial end portion of the shaft member.
The encoder includes an annular multipolar magnet in which S poles and N poles are alternately arranged with respect to the circumferential direction, and the axial direction of the inner ring in a state where the multipolar magnet is arranged concentrically with the inner ring. In a rolling bearing unit with an encoder supported and fixed at one end,
Each of the shaft member and the inner ring has axial residual magnetism,
And remanence polarity one axial end surface of a single unit state of the shaft member, and the residual magnetism of the polarity of the axial end surface of a single unit state of said inner ring, with are I different from each other, respectively A rolling bearing unit with an encoder, characterized in that the magnetic flux is allowed to enter and exit between the surface of one end portion in the axial direction of the inner ring and the surface of one end portion in the axial direction of the shaft member.
請求項1に記載したエンコーダ付転がり軸受ユニットの製造方法であって、
前記軸部材の軸方向一端寄り部分に前記内輪を外嵌すると共に、この軸部材の軸方向一端部に設けた円筒部のうち前記内輪の軸方向一端面から突出した部分を径方向外方に向け塑性変形させる事でかしめ部を形成し、このかしめ部により、前記内輪の軸方向一端面を抑え付ける事で、この内輪を前記軸部材に結合固定する、請求項1に記載したエンコーダ付転がり軸受ユニットの製造方法
It is a manufacturing method of the rolling bearing unit with an encoder according to claim 1,
The inner ring is fitted on a portion near one axial end of the shaft member, and a portion of the cylindrical portion provided at one axial end portion of the shaft member that protrudes from one axial end surface of the inner ring is radially outward. directed to form a big caulking portion that is plastically deformed by the caulking portion, by attaching suppress the axial end face of the inner ring, the inner ring is fixedly coupled to the shaft member, with an encoder according to claim 1 A method for manufacturing a rolling bearing unit.
JP2014146412A 2014-07-17 2014-07-17 Rolling bearing unit with encoder and method for manufacturing the same Active JP5884859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146412A JP5884859B2 (en) 2014-07-17 2014-07-17 Rolling bearing unit with encoder and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146412A JP5884859B2 (en) 2014-07-17 2014-07-17 Rolling bearing unit with encoder and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011055567A Division JP5686000B2 (en) 2011-03-14 2011-03-14 Manufacturing method of rolling bearing unit with encoder

Publications (2)

Publication Number Publication Date
JP2014196830A JP2014196830A (en) 2014-10-16
JP5884859B2 true JP5884859B2 (en) 2016-03-15

Family

ID=52357741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146412A Active JP5884859B2 (en) 2014-07-17 2014-07-17 Rolling bearing unit with encoder and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5884859B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318239A (en) * 2001-04-24 2002-10-31 Ntn Corp Method and apparatus for magnetizing magnetic encoder for wheel bearing
JP4114438B2 (en) * 2002-08-27 2008-07-09 株式会社ジェイテクト Rolling bearing device
JP2004158076A (en) * 2002-11-05 2004-06-03 Soode Nagano Co Ltd Clamp mechanism of magnetic disk
US20070172164A1 (en) * 2006-01-20 2007-07-26 Jtekt Corporation Rolling bearing system for vehicles

Also Published As

Publication number Publication date
JP2014196830A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP3952881B2 (en) Rolling bearing unit for wheel support with load measuring device
EP1130362B1 (en) Method of manufacturing a magnetic encoder
JP3900031B2 (en) Rolling bearing unit for wheel support with load measuring device
JP2007218426A (en) Rolling bearing system for vehicles
CN111095748B (en) Hollow shaft motor
JP2018194433A (en) Rotating body supporting device, and diagnosis system and diagnosis method thereof
JP5686000B2 (en) Manufacturing method of rolling bearing unit with encoder
JP4311091B2 (en) Rolling bearing unit for wheel support with rotational speed detector
JP5884859B2 (en) Rolling bearing unit with encoder and method for manufacturing the same
JP6937128B2 (en) Magnetic encoder and its manufacturing method
JP7203485B2 (en) Detection device and manufacturing method thereof
KR20050085616A (en) Roller bearing with encoder and its manufacturing method
JP2004333436A (en) Rotational speed detecting device and roller bearing with rotational speed detecting sensor
JPH10332427A (en) Roller bearing unit with encoder
JP2015218855A (en) Bearing unit with rotation speed detector
JP2006058256A (en) Rotation detector
JP2007101357A (en) Rolling bearing unit with rotation detector
JP2001255336A (en) Encoder for detecting rotational state, and rolling bearing unit with encoder for detecting rotational state
JP2004293622A (en) Rolling bearing unit having encoder and its manufacturing method
JP6417701B2 (en) Rolling bearing unit with rotational speed detector
JP2012093193A (en) Magnetization method of multi-pole magnetic encoder
JP5867101B2 (en) Method for assembling wheel bearing rolling bearing unit with encoder and method for assembling wheel bearing rolling bearing unit with rotational speed detection device
JP4622185B2 (en) Encoder and rolling bearing unit with encoder
JP2005164253A (en) Load measuring instrument for rolling bearing unit
JP4029785B2 (en) Rolling bearing unit with sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350