JP3952881B2 - Rolling bearing unit for wheel support with load measuring device - Google Patents

Rolling bearing unit for wheel support with load measuring device Download PDF

Info

Publication number
JP3952881B2
JP3952881B2 JP2002203071A JP2002203071A JP3952881B2 JP 3952881 B2 JP3952881 B2 JP 3952881B2 JP 2002203071 A JP2002203071 A JP 2002203071A JP 2002203071 A JP2002203071 A JP 2002203071A JP 3952881 B2 JP3952881 B2 JP 3952881B2
Authority
JP
Japan
Prior art keywords
ring
hub
detected
radial
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002203071A
Other languages
Japanese (ja)
Other versions
JP2004003918A (en
JP2004003918A5 (en
Inventor
潤是 坂本
寛朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002203071A priority Critical patent/JP3952881B2/en
Publication of JP2004003918A publication Critical patent/JP2004003918A/en
Publication of JP2004003918A5 publication Critical patent/JP2004003918A5/ja
Application granted granted Critical
Publication of JP3952881B2 publication Critical patent/JP3952881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係る荷重測定装置付車輪支持用転がり軸受ユニットは、車両(自動車)の車輪を懸架装置に対して回転自在に支持すると共に、この車輪に加わる力の方向及び大きさを測定して、車両の安定運行に寄与せしめるものである。
【0002】
【従来の技術】
車両の車輪を懸架装置に対して回転自在に支持するのに、転がり軸受ユニットを使用する。又、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を制御する為には、上記車輪の回転速度を検出する必要がある。この為、上記転がり軸受ユニットに回転速度検出装置を組み込んだ回転速度検出装置付転がり軸受ユニットにより、上記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、近年広く行なわれる様になっている。
【0003】
図34は、この様な目的で使用される従来構造の1例として、特開2001−21577号公報に記載された回転速度検出装置付の車輪支持用転がり軸受ユニットを示している。この回転速度検出装置付の車輪支持用転がり軸受ユニットは、懸架装置に支持された状態で使用時にも回転しない、請求項に記載した静止側軌道輪に相当する外輪1の内径側に、車輪を固定した状態で使用時に回転する、請求項に記載した回転側軌道輪に相当するハブ2を支持している。そして、このハブ2の一部に固定したセンサロータ3の回転速度を、上記外輪1に固定したカバー4に支持した回転速度検出センサ5により検出自在としている。図示の例では、この回転速度検出センサ5として、上記センサロータ3と全周に亙って対向する、円環状のものを使用している。又、上記ハブ2を回転自在に支持する為に、上記外輪1の内周面に、それぞれが請求項に記載した静止側軌道に相当する複列の外輪軌道6、6を設けている。又、上記ハブ2の外周面、及びこのハブ2に外嵌したナット7によりこのハブ2に対し結合固定した状態で上記ハブ2と共に上記回転側軌道輪を構成する内輪8の外周面に、それぞれが請求項に記載した回転側軌道に相当する内輪軌道9、9を設けている。そして、これら各内輪軌道9、9と上記各外輪軌道6、6との間にそれぞれ複数個ずつの転動体10、10を、それぞれ保持器11、11により保持した状態で転動自在に設け、上記外輪1の内側に上記ハブ2及び内輪8を、回転自在に支持している。
【0004】
又、上記ハブ2の外端部(車両への組み付け状態で幅方向外側となる端部を言い、図34の左端部)で上記外輪1の外端部から軸方向外方に突出した部分に、車輪を取り付ける為のフランジ12を設けている。又、上記外輪1の内端部(車両への組み付け状態で幅方向中央側となる端部を言い、図34の右端部)に、この外輪1を懸架装置に取り付ける為の取付部13を設けている。又、上記外輪1の外端開口部と上記ハブ2の中間部外周面との間の隙間は、シールリング14により塞いでいる。尚、重量の嵩む車両用の転がり軸受ユニットの場合には、上記複数個の転動体10、10として、図示の様な玉に代えて、テーパころを使用する場合もある。
【0005】
上述の様な転がり軸受ユニットに回転速度検出装置を組み込むべく、上記内輪8の内端部で上記内輪軌道9から外れた部分の外周面には、前記センサロータ3を外嵌固定している。このセンサロータ3は、軟鋼板等の磁性金属板に塑性加工を施す事により、全体を円環状に形成したもので、互いに同心の被検出用円筒部15と支持用円筒部16とを備え、このうちの支持用円筒部16を上記内輪8の内端部に締まり嵌めで外嵌する事により、この内輪8の内端部に固定している。又、上記被検出用円筒部15には、それぞれがこの被検出用円筒部15の軸方向に長いスリット状の透孔17、17を多数、円周方向に関して等間隔で形成する事により、上記被検出用円筒部15の磁気特性を、円周方向に亙って交互に且つ等間隔に変化させている。
【0006】
更に、上記外輪1の内端開口部には前記カバー4を、上記センサロータ3の被検出用円筒部15を覆う状態で嵌合固定して、上記外輪1の内端開口部を塞いでいる。金属板を塑性加工して成る、上記カバー4は、上記外輪1の内端開口部に内嵌固定自在な嵌合筒部18と、この内端開口部を塞ぐ塞ぎ板部19とを有する。そして、この塞ぎ板部19内に、前記回転速度検出センサ5を保持固定している。又、この塞ぎ板部19の外周寄り部分には通孔20を形成し、この通孔20を通じて上記回転速度検出センサ5の出力を取り出す為のコネクタ21を、上記カバー4外に取り出している。この様に回転速度検出センサ5をカバー4内に保持固定した状態で、この回転速度検出センサ5の外周面に設けた検知部は、上記センサロータ3を構成する被検出用円筒部15の内周面に、微小隙間を介して対向する。
【0007】
上述の様な回転速度検出装置付の車輪支持用転がり軸受ユニットの使用時には、上記外輪1の外周面に固設した取付部13を懸架装置に対して、図示しないボルトにより結合固定すると共に、前記ハブ2の外周面に固設したフランジ12に図示しない車輪を、このフランジ12に設けたスタッド22により固定する事で、上記懸架装置に対して上記車輪を回転自在に支持する。この状態で車輪が回転すると、上記回転速度検出センサ5の検知部の端面近傍を、上記被検出用円筒部15に形成した透孔17、17と、円周方向に隣り合う透孔17、17同士の間に存在する柱部とが交互に通過する。この結果、上記回転速度検出センサ5内を流れる磁束の密度が変化し、この回転速度検出センサ5の出力が変化する。この様にして回転速度検出センサ5の出力が変化する周波数は、上記車輪の回転数に比例する。従って、上記回転速度検出センサ5の出力を図示しない制御器に送れば、ABSやTCSを適切に制御できる。
【0008】
即ち、上記回転速度検出センサ5の出力と、別途車体側に設けた加速度センサの出力とを比較して、これら両センサの出力に整合性がない場合に、タイヤの外周面と路面との当接部に滑りが発生していると判断して、上記ABSやTCSを制御する。即ち、制動時に上記加速度センサが検出する車両の減速度に比べて回転速度検出センサ5の出力に基づいて求められる車輪の減速度が大きい場合には、上記滑りが発生していると判断して、ブレーキ装置のホイルシリンダ部分の油圧を制御し、車両が停止する以前に車輪の回転が止まる事を防止して、車両の走行姿勢の安定性確保を図る。又、加速時には、上記回転速度検出センサ5の出力に基づいて求められる車輪の加速度に比べて、上記加速度センサにより求められる車両の加速度が小さい場合(或は、従動輪の加速度に比べて駆動輪の加速度が大きい場合)には、上記滑りが発生していると判断して、上記車輪に制動を加えたり、或はエンジンの出力を絞る(低下させる)事により、タイヤの外周面と路面との滑りを防止して、車両の走行姿勢の安定化を図る。
【0009】
上述した様な従来から広く知られている回転速度検出装置付の車輪支持用転がり軸受ユニットによれば、制動時や加速時に於ける車両の走行姿勢の安定性確保を図れるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。これに対して、従来の回転速度検出装置付転がり軸受ユニットを利用したABSやTCSの場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている。この為、これらブレーキやエンジンの制御が一瞬とは言え遅れる為、厳しい条件下での性能向上の面からは改良が望まれる。即ち、従来構造の場合には、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。更には、トラック等で、積載状態が不良である事に基づいて走行安定性が不良になるのを防止する事もできない。
【0010】
この様な事情に鑑みて、前記特開2001−21577号公報には、図35に示す様な、転がり軸受ユニットに加わる荷重を測定自在とした構造が記載されている。この従来構造の第2例の場合には、外輪1の軸方向中間部で1対の外輪軌道6、6同士の間部分に、この外輪1を直径方向に貫通する取付孔23を、この外輪1の上端部にほぼ鉛直方向に形成している。そして、この取付孔23内に、円杆状(棒状)の変位センサ24を装着している。この変位センサ24の先端面(下端面)に設けた検出面は、ハブ2の軸方向中間部に外嵌固定したセンサリング25の外周面に近接対向させている。そして、上記変位センサ24は、上記検出面と上記センサリング25の外周面との距離が変化した場合に、その変化量に対応した信号を出力する。
【0011】
上述の様に構成する従来構造の第2例の場合には、上記変位センサ24の検出信号に基づいて、この変位センサ24を組み込んだ車輪支持用転がり軸受ユニットに加わる荷重を求める事ができる。即ち、車両の懸架装置に支持した上記外輪1は、この車両の重量により下方に押されるのに対して、車輪を支持固定したハブ2は、そのままの位置に止まろうとする。この為、上記重量が嵩む程、上記外輪1やハブ2、並びに転動体10、10の弾性変形に基づいて、これら外輪1の中心とハブ2の中心とのずれが大きくなる。そして、この外輪1の上端部に設けた、上記変位センサ24の検出面と上記センサリング25の外周面との距離は、上記重量が嵩む程短くなる。そこで、上記変位センサ24の検出信号を制御器に送れば、予め実験等により求めた関係式等から、当該変位センサ24を組み込んだ車輪支持用転がり軸受ユニットに加わる荷重を求める事ができる。この様にして求めた、各車輪支持用転がり軸受ユニットに加わる荷重に基づいて、ABSを適正に制御する他、積載状態の不良を運転者に知らせる。
【0012】
図35に示した従来構造の第2例の場合、車両の重量に基づいて鉛直方向に加わる荷重を測定できるが、例えば旋回走行時に遠心力等に基づいて加わるモーメント荷重を測定する事はできない。この為、車両のあらゆる走行状態に応じて、安定走行の為に適切な制御を行なう為の信号を得る面からは改良が望まれる。この様な場合に使用可能な構造として、特開平10−73501号公報に記載された構造が知られている。この公報に記載された構造によれば、上記モーメント荷重を含め、車両の走行時に車輪に加わる各方向の荷重を測定できる。
【0013】
【発明が解決しようとする課題】
上述した特開平10−73501号公報に記載された従来構造は、荷重測定の為に付加する部材が多く、しかも大型の部材を含む為、コスト並びに重量が嵩む事が避けられない。荷重測定装置を組み付ける部分は、懸架装置を構成するばねよりも車輪側であり、この荷重測定装置の構成部材は所謂ばね下荷重になり、少しの重量も乗り心地を中心とする走行性能の悪化に結び付く為、改良が望まれている。
本発明の荷重測定装置付車輪支持用転がり軸受ユニットは、この様な事情に鑑みて発明したものである。
【0014】
【課題を解決するための手段】
本発明の荷重測定装置付車輪支持用転がり軸受ユニットは、車輪支持用転がり軸受ユニットと荷重測定装置とを備える。
このうちの車輪支持用転がり軸受ユニットは、使用状態で懸架装置に支持固定される静止側軌道輪と、使用状態で車輪を支持固定する回転側軌道輪と、これら静止側軌道輪と回転側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えたものである。
又、上記荷重測定装置は、上記回転側軌道輪の回転中心と同心に設けられた円筒状のラジアル被検出面及びこの回転側軌道輪の回転中心に対し直角方向に設けられたスラスト被検出面と、上記静止側軌道輪に設けられた少なくとも1個の変位センサユニットとから成るものである。
そして、この変位センサユニットは、ラジアル検出部とスラスト検出部とを備え、このうちのラジアル検出部と上記ラジアル被検出面との距離、並びにスラスト検出部と上記スラスト被検出面との距離を測定自在なものとしている。
【0015】
【作用】
上述の様に構成する本発明の荷重測定装置付車輪支持用転がり軸受ユニットによれば、回転側軌道輪のラジアル方向の変位だけでなくスラスト方向の変位も測定できる。そして、変位センサユニットが検出するこれら各方向の変位に基づいて、車輪支持用転がり軸受ユニットに加わる、各方向の荷重を求める事ができる。
【0016】
【発明の実施の形態】
図1〜4は、請求項1〜3に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、ハブ2に固定した車輪(図示省略)に加わる荷重の方向及び大きさを求めて、ABSやTCSを適正に制御できる構造を得る点にある。この為に本例の場合には、上記ハブ2に加わる荷重だけでなく、このハブ2の回転速度を検出自在としている。但し、この回転速度を検出する部分の構造及び作用に就いては、前述の図34〜35に示した従来構造と同様であるから、同等部分には同一符号を付して重複する説明は省略し、以下、本発明の特徴部分を中心に説明する。
【0017】
本例の場合には、複列の外輪軌道6、6の間に位置する、外輪1の軸方向中間部分の、円周方向等間隔4個所位置に取付孔23a、23aを、それぞれ上記外輪1の内外両周面同士を連通させる状態で形成している。本例の場合、上記4個の取付孔23a、23aのうちの2個の取付孔23a、23aを鉛直方向に、残り2個の取付孔23a、23aを水平方向に、それぞれ形成している。そして、これら各取付孔23a、23a内に、それぞれ変位センサユニット26、26を挿入している。
【0018】
これら各変位センサユニット26、26はそれぞれ、上記ハブ2のラジアル方向の変位及びスラスト方向の変位を測定自在とするもので、それぞれが非接触式である、2個の変位測定素子27a、27bを有する。即ち、静電容量型の近接センサの如き、非接触式で微小変位量を測定自在な上記各変位測定素子27a、27bを、上記各変位センサユニット26、26を構成する合成樹脂製のホルダ28の先端面部分と先端部側面部分とに包埋支持している。上記各変位測定素子27a、27bのうち、上記ホルダ28の先端面部分に包埋支持された変位測定素子27aがラジアル検出部を構成し、先端部側面部分に包埋支持した変位測定素子27bがスラスト検出部を構成する。
【0019】
一方、複列の内輪軌道9、9の間に位置する、上記ハブ2の中間部に、被検出リング29を外嵌固定している。この被検出リング29は、金属板にプレス加工等の塑性加工を施す事により、断面L字形で全体を円環状としたもので、円筒部30と、この円筒部30の軸方向一端部(図1、3の右端部)から径方向外方に直角に折れ曲がった折れ曲がり部31とを備える。本例の場合、上記円筒部30の外周面をラジアル被検出面とし、上記折れ曲がり部31の片側面(図1、3の左側面)をスラスト被検出面としている。
【0020】
この様な被検出リング29に対して上記各変位センサユニット26、26の変位側測定素子27a、27bの検出部を、それぞれ近接対向させている。即ち、上記ラジアル検出部を構成する変位測定素子27aを、上記ラジアル被検出面である上記円筒部30の外周面に近接対向させている。そして、上記変位測定素子27aにより、前記外輪1に対する上記ハブ2のラジアル方向(径方向)の変位を測定自在としている。又、上記スラスト検出部を構成する変位測定素子27bを、上記スラスト被検出面である折れ曲がり部31の片側面に近接対向させている。そして、上記変位測定素子27bにより、上記外輪1に対する上記ハブ2の軸方向(スラスト方向)の変位を測定自在としている。
【0021】
本例の荷重測定装置付車輪支持用転がり軸受ユニットの場合には、前述の様に上記4個の変位センサユニット26、26により、円周方向4個所位置に於いて、上記外輪1に対する上記ハブ2の、径方向及び軸方向の変位を測定する様に構成している。上記各変位センサユニット26、26が測定した、これら各変位センサユニット26、26毎に2種類ずつ合計8種類の検出信号は、それぞれハーネス32、32により、図示しない制御器に入力している。そして、この制御器が、上記各変位センサユニット26、26から送り込まれる検出信号に基づき、車輪支持用転がり軸受ユニットに加わる、各方向の荷重を求める。
【0022】
例えば、上記各車輪支持用転がり軸受ユニットに、車重等に基づく鉛直方向の荷重が加わった場合には、鉛直方向に存在する2個の変位センサユニット26、26のうち、上側の変位センサユニット26で、上記ラジアル検出部を構成する変位測定出素子27aと、上記ラジアル被検出面である上記円筒部30の外周面との距離が狭まり、下側の変位センサユニット26でこの距離が広がる。この際の距離の変化量は、上記荷重が大きくなる程大きくなる。水平方向に存在する2個の変位センサユニット26、26に関しては、この距離は変化しない。
【0023】
これに対して、何らかの原因で水平方向(前後方向)の荷重が加わった場合には、水平方向に存在する2個の変位センサユニット26、26のうち、荷重の作用方向前側の変位センサユニット26で、上記ラジアル検出部を構成する変位測定素子27aと、上記ラジアル被検出面である上記円筒部30の外周面との距離が広がり、作用方向後側の変位センサユニット26でこの距離が狭まる。この際の距離の変化量も、上記荷重が大きくなる程大きくなる。鉛直方向に存在する2個の変位センサユニット26、26に関しては、この距離は変化しない。斜め方向の荷重によっては、総てのセンサユニット26、26に関して、上記距離が変化する。従って、円周方向に関して等間隔に配置された4個の変位センサユニット26、26のラジアル検出部を構成する変位測定素子27a、27aの検出信号を比較すれば、ラジアル荷重の作用する方向とその大きさとを知る事ができる。尚、上記各部の距離の変化量とラジアル荷重の大きさとは、予め実験、或はコンピュータ解析により求めておく。
【0024】
次に、旋回走行等により前記ハブ2にモーメント荷重が加わり、このハブ2の中心軸と前記外輪1の中心軸とが不一致になった場合に就いて説明する。この場合には、上記各変位センサユニット26、26のスラスト検出部を構成する、前記変位測定素子27b、27bの検出信号に基づいて、上記モーメント荷重の方向及びその大きさを求める。例えば、旋回時に(旋回円の径方向に関して)外側の車輪を支持したハブ2には、遠心力により大きなモーメント荷重Mが、図4の時計方向に加わる。この結果、同図に誇張して示す様に、上記ハブ2の中心軸αが、上記外輪1の中心軸βに対し傾斜する。
【0025】
この状態では、鉛直方向に配置された1対の変位センサユニット26、26のうち、一方の変位センサユニット26に関するスラスト検出部とスラスト被検出面との距離が縮まり、他方の変位センサユニット26に関するスラスト検出部とスラスト被検出面との距離が広がる。例えば図示の例の場合には、上側の変位センサユニット26のスラスト検出部を構成する変位測定素子27bと、スラスト被検出面である前記折れ曲がり部31の片側面との距離が広がる。これに対して、下側の変位センサユニット26の変位測定素子27bと上記折れ曲がり部31の片側面との距離が縮まる。この場合に、各変位測定素子27b、27bと折れ曲がり部31の片側面との距離が変化する量は、上記モーメント荷重Mが大きくなる程大きくなる。従って、円周方向に関して等間隔に配置された4個の変位センサユニット26、26のスラスト検出部を構成する上記各変位測定素子27b、27bの検出信号を比較すれば、モーメント荷重の作用する方向とその大きさとを知る事ができる。
【0026】
又、モーメント荷重が水平方向に加わった場合には、水平方向に配置した2個の変位センサユニット26、26の検出信号に基づいて、上記モーメント荷重の方向と大きさとを求める。更に、モーメント荷重が斜め方向に加わった場合には、総て(4個)の変位センサユニット26、26の検出信号に基づいて、上記モーメント荷重の方向と大きさとを求める。尚、上記各部の距離の変化量とモーメント荷重の大きさとの関係、更には各変位センサユニット26、26の検出信号の差とモーメント荷重の作用方向との関係に関しても、予め実験、或はコンピュータ解析により求めておく。
【0027】
更に、何らかの原因で前記ハブ2にスラスト荷重が加わった場合には、総ての変位センサユニット26、26に関して、スラスト検出部を構成する上記各変位測定素子27b、27bと上記折れ曲がり部31の片側面との距離が変化する。そして、この変化の方向(広がるか縮まるか)により上記スラスト荷重の方向が分かり、変化量でその大きさが分かる。
【0028】
尚、実際の走行時には、上記ハブ2に対して純ラジアル荷重、純モーメント荷重、或は純スラスト荷重が加わる事は稀であり、これら各荷重が混ざり合った状態で、上記ハブ2に加わる。従って前記制御器は、上記各変位センサユニット26、26の変位測定素子27a、27bから送り込まれる、合計8種類の検出信号に基づいて、上記ハブ2に加わる荷重の種類、方向、大きさを求める。この様に、8種類の検出信号から荷重の種類、方向、大きさを求めるプログラムは、予め多数の実験、或はコンピュータシミュレーションにより決定して、上記制御器を構成するマイクロコンピュータ中にインストールしておく。
【0029】
又、ラジアル方向の変位検出精度を向上させる為には、上記ラジアル検出部を構成する変位測定素子27aの測定部の中心を次の様に規制する事が好ましい。即ち、前記ハブ2にモーメント荷重が加わった場合に、このハブ2の揺動変位の中心となる点Oでこのハブ2の中心軸に直交する仮想平面x上、又はこの仮想平面xを基準として軸方向に関するずれが1〜2mm以内の部分に位置させる。この理由は、上記ラジアル検出部の検出値に、上記モーメント荷重に基づく変位が影響しにくくして、各方向の荷重を求め易くする為である。但し、上記変位測定素子27aの測定部の中心が上記仮想平面αから2mm以上ずれても、制御器にインストールするソフトウェアにより変位量を計算する事は可能であるから、上記変位測定素子27aの測定部の中心位置は適宜決定できる。又、スラスト方向の検出精度を向上させる為には、スラスト被検出部を構成する上記折れ曲がり部31の片側面を、上記仮想平面x上、又はこの仮想平面xを基準として軸方向に関するずれが1〜2mm以内の部分に位置させる事が好ましい。この様に、ラジアル検出部或はスラスト被検出部の位置を規制する事で検出精度を向上させられる事は、本例に限らず、後述する実施の形態の第2〜8例にも共通する。
【0030】
次に、図5は、請求項1〜2、4に対応する、本発明の実施の形態の第2例を示している。本例の場合には、ハブ2の軸方向内端部に設けた小径段部33の外端部に存在する段差面34と、この小径段部33に外嵌固定した内輪8の外端面との間に、円輪状の被検出板35の内径寄り部分を挟持している。この被検出板35は、上記ハブ2の軸方向中間部で複列の内輪軌道9の間部分36の外径よりも大きな外径を有する平板状である。従って、上記被検出板35の外径側半部は、上記ハブ2の中間部外周面よりも径方向外方に突出している。尚、本例の場合には、この外径側半部と保持器11との干渉を防止すべく、上記段差面34の軸方向位置を、前述の第1例の場合よりも軸方向外側にずらせている。
【0031】
本例の場合には、上記間部分36の外周面をラジアル被検出面とし、上記被検出板35の外側面をスラスト被検出面としている。この様に構成する事により、ラジアル被検出面のラジアル方向の振れの低減、並びにスラスト被検出面の振れの低減を容易にしている。即ち、上記第1例の場合には、ハブ2の中間部に外嵌した被検出リング29の円筒部30の外周面をラジアル被検出面としている為、嵌合部が存在する分、寸法誤差等に起因して、上記ハブ2の回転に伴うこのラジアル被検出面の振れが大きくなり易い。これに対して本例の場合には、上記間部分36の外周面そのものをラジアル被検出面としている為、上記ラジアル方向の振れの低減を図れる。又、上記第1例の場合、上記円筒部30をハブ2に締り嵌めで外嵌するのに伴う被検出リング29の弾性変形が折れ曲がり部31にまで及び、この折れ曲がり部31の片側面が上記ハブ2の回転中心に対し直角でなくなる可能性がある。これに対して本例の場合には、上記被検出板35を上記ハブ2に固定するのに伴って、スラスト被検出面であるこの被検出板35の外径側半部片側面が変形する事はない為、上記スラスト振れの低減を図れる。
【0032】
次に、図6は、請求項1〜3に対応する、本発明の実施の形態の第3例を示している。本例の場合には、各変位センサユニット26a、26aを挿入する為に外輪1aに形成した取付孔23b、23bを、この外輪1aの外周面に近付く程軸方向内方に向かう方向に傾斜させている。上記各取付孔23b、23bをこの様に傾斜させる理由は、上記外輪1aの外周面軸方向中央部に形成した取付部13aを避ける為である。本例の場合、この様な理由で上記各取付孔23b、23bを傾斜させた事に伴い、ハブ2の中間部に外嵌した被検出リング29の折れ曲がり部31を軸方向外側に位置させている。又、上記各変位センサユニット26a、26aの先端部で各変位測定素子を設置すべき部分を、これら各変位センサユニット26a、26aの中心軸に対し傾斜させている。そして、中立状態に於いて、上記各変位測定素子と、上記被検出リング29の円筒部30の外周面及び上記折れ曲がり部31の片側面とを、凡そ平行にしている。その他の部分の構成及び作用は、前述した第1例の場合と同様である。
【0033】
次に、図7は、請求項1〜2、5に対応する、本発明の実施の形態の第4例を示している。本例の場合には、ハブ2の軸方向中間部で軸方向外側の内輪軌道9と小径段部33との間に位置する部分に凹溝37を、全周に亙って形成している。そして、この凹溝37の底面をラジアル被検出面とし、この凹溝37の側面をスラスト被検出面としている。この為に本例の場合には、変位センサユニット26bの先端部を、上記凹溝37内に進入させている。その他の部分の構成及び作用は、前述した第1例の場合と同様である。
【0034】
次に、図8は、請求項1〜2、7に対応する、本発明の実施の形態の第5例を示している。本例の場合には、ハブ2の軸方向中間部に形成した凹溝37の幅方向の外半部に円環状の被検出体38を、全周に亙って装着している。そして、この被検出体38の外周面をラジアル被検出面とし、同じく内側面をスラスト被検出面としている。この被検出体38は、非接触型変位センサによる変位測定を効果的に行なえる材質により半円弧状に形成した1対の素子を組み合わせて成る。そして、これら両素子を上記凹溝37内に接着等により固定した状態で、円環状の被検出体38とする。本例に使用する変位センサユニット26cは、先端部を段付形状とし、上記被検出体38の外周面と片側面とに、検出部を対向させている。その他の部分の構成及び作用は、前述した第1例の場合と同様である。尚、本例の様な円環状の被検出体38は、必ずしも凹溝37内に装着する必要はない。ハブ2の軸方向中間部で軸方向外側の内輪軌道9と小径段部33(図7参照)との間に位置する部分に直接円環状の被検出体38を外嵌する事もできる。但し、この場合には、この被検出体38を一体構造とし、外側の転動体10、10の組み付け後、内側の転動体の組み付け前に、上記被検出体を上記ハブ2の中間部に外嵌固定する。
【0035】
次に、図9〜11は、請求項1〜2、6、7に対応する、本発明の実施の形態の第6例を示している。本例の場合には、ハブ2の軸方向内端部に形成した小径段部33に外嵌固定した内輪8の軸方向外端面により、凹溝37aの軸方向内側の側面を構成している。そして、この凹溝37a内の幅方向の外半部に円環状の被検出体38を、全周に亙って装着している。この被検出体38の外径は上記ハブ2の中間部外周面の外径以下として、この被検出体38の存在が、予め外輪1の内径側に配置した転動体10、10の内径側に、更にハブ2を組み付ける事に対する妨げとはならない様にしている。その他の構成及び作用は、上述した第5例の場合と同様である。尚、本例を実施する場合に、ハブ2の軸方向内端部に形成した小径段部33の軸方向寸法、並びにこの小径段部33に外嵌固定した内輪8の軸方向寸法を図12に示す様に大きくして、この内輪8の外端面の位置を軸方向外方にずらせ、凹溝37bの幅寸法を小さくする事もできる。
【0036】
尚、以上の説明は、車輪支持用転がり軸受ユニットに加わる各方向の荷重の作用方向と大きさとを求める為、円周方向等間隔4個所位置に変位センサユニット26(26a、26b、26c)を設置した場合に就いて示した。上記荷重の作用方向と大きさとを高精度で求める為には、上述の様に4個の変位センサユニット26(26a、26b、26c)を設ける事が最も好ましい。但し、上記荷重の作用方向と大きさとを特に高精度で求める必要性がない場合には、変位センサユニット26(26a、26b、26c)の数を少なくしてコスト低減を図る事もできる。例えば、図13に示す実施の形態の第7例の様に、上端(或は下端)位置と水平方向片側位置との様に、円周方向に関する位相が90度ずれた2個所位置に変位センサユニット26(26a、26b、26c)を設けた場合でも、上記荷重の作用方向と大きさとを求める事は可能である。更に、図14に示す実施の形態の第8例の様に、鉛直方向(或は水平方向)から45度ずれた1個所位置に変位センサユニット26(26a、26b、26c)を設けた場合でも、上記荷重の作用方向と大きさとを求める事は可能である。
【0037】
尚、モーメント荷重が加わった場合に、ラジアル方向の変位とスラスト方向の変位とを独立して検出できない為、変位センサユニットのラジアル検出部の検出信号とスラスト検出部の検出信号との処理が多少面倒になるが、図15〜17に示す様な構造を採用すれば、転がり軸受ユニットへの変位センサユニットの取付作業を容易にできる。即ち、この図15〜17に示す、請求項1にのみ対応する、本発明の実施の形態の第9例の構造の場合には、ハブ2の中間部に、回転速度検出の為のセンサロータ3aを外嵌固定している。そして、外輪1の軸方向中間部で円周方向1個所位置に形成した取付孔23cに、回転速度センサ5aを挿入し、この回転速度検出センサ5aの検出面を、上記センサロータ3aの外周面に近接対向させている。
【0038】
一方、上記ハブ2の内端部に外嵌固定した内輪8の内端部に、上記ラジアル方向及びスラスト方向の変位を検出する為の被検出リング29aの基端部(図15〜16の左端部)を外嵌固定している。この被検出リング29aの形状は前述の図1に示した実施の形態の第1例に組み込んだセンサロータ3と同様であるが、透孔17は設けていない。又、上記外輪1の内端開口部を塞いだカバー4に、変位センサユニット26dを保持固定している。そして、この変位センサユニット26dの円周方向4個所位置にそれぞれ支持した変位測定素子27a、27bの検出面を、上記被検出リング29aの内周面或は内側面に、ラジアル方向或はスラスト方向に近接対向させている。
【0039】
上述の様な本例の構造の場合には、上記外輪1に設ける取付孔23cが1個で済む為、この取付孔23cの形成作業が容易になってコスト低減を図れる他、上記外輪1の肉厚を特に大きくしなくても、この外輪1の強度確保を図れる。又、各方向の荷重によって上記外輪1と上記ハブ2とが変位した場合には、上記各変位測定素子27a、27bと上記被検出リング29aの内周面或は内側面との距離が変化するので、この変化の大きさと変化の方向とにより、上記荷重の方向と大きさとを求める事ができる。
【0040】
尚、上述した実施の形態の各例で、ラジアル方向或はスラスト方向の変位を検出する為の変位測定素子27a、27bは、従来から知られている各種構造のものを使用できる。例えば、図18に示す様な磁気誘導式のもの、或は、図19に示す様な渦電流式のものが、好ましく利用できる。このうち、図18に示した磁気誘導式のものを使用する場合には、被検出リング29、29aの材質は、鋼等の磁性材とする。そして、鉄芯39に巻回した第一のコイル40に励磁電流を流す事により、この鉄芯39に巻回した第二のコイル41に、この鉄芯39と上記被検出リング29、29aとの距離に応じた測定値信号を流す。又、図19に示した渦電流式のものを使用する場合には、被検出リング29、29aの材質として鋼等の磁性材でも良いが、好ましくは、アルミニウム、銅、黄銅、亜鉛等の、非磁性金属とする。そして、フェライト芯42に巻回したコイル43に励磁電流を流し、このフェライト芯42と上記被検出リング29、29aとの距離に応じて変化する上記コイル43のインピーダンスを検出する。
【0041】
尚、この様にコイル43のインピーダンスを検出する為に、このインピーダンスの変化を電圧又は周波数変化に変換する。この様な電圧又は周波数変化に変換する方法として、発振法や同調法、ブリッジ法、正帰還法が知られている。例えばこのうちのブリッジ法は、図20に示す様に、検出コイルである上記コイル43と、基準コイル44と、抵抗45、45と水晶発振器46とによりブリッジ回路47を構成し、このブリッジ回路47の不平衡電圧を計測する事により、上記距離に応じて変化する上記インピーダンスの変化を検出する。又、この様な渦電流式のものを使用する場合、上述の様に被検出リング29、29aの材質を、アルミニウム、銅、黄銅、亜鉛等の、非磁性金属とする他、鋼等の磁性材も使用可能である。要は、所望の性能やコスト等に応じて最適のものを選択する。
【0042】
又、上述の様な渦電流式の場合、例えば40000回/Sでサンプリングを行なえ、且つ、0.4μmの分解能を有し、測定可能距離が0〜2mm程度のものが、一般に市販されている。本発明の場合、ラジアル方向或はスラスト方向の変位を図る為の変位測定素子27a、27bと被検出リング29、29aとの距離を、0.5、〜1.5mm程度とする為、上記市販されているものをそのまま使用できる。
【0043】
又、軸方向に隣り合う上記変位測定素子27a、27bにこの様な渦電流式のものを使用する場合、これら各変位測定素子27a、27b同士が互いの渦電流の影響を受ける事により、測定誤差が生じる可能性がある。この様な渦電流の影響を避ける為に、図21に示す様に、被検出リング29aの一部で上記各変位測定素子27a、27bと近接対向する部分の間部分、即ち、この被検出リング29aのラジアル被検出面とスラスト被検出面との間部分に、全周に亙り絶縁材48を設ける。そして、これら被検出面同士を絶縁する事により、上記各変位測定素子27a、27b同士が互いの渦電流の影響を受ける事を防止する。
【0044】
尚、この様な渦電流の影響を防止する為に、上記各変位測定素子27a、27bに流れる電流をスイッチングにより切り換えて測定しても良い。即ち、軸方向に隣り合う上記変位測定素子27a、27bのうちの何れか一方の変位測定素子27a(27b)が測定を行なう際は、他方の変位測定素子27b(27a)が測定を行なわない様に(渦電流が発生しない様に)、これら各変位測定素子27a(27b)を流れる電流を交互に切り換えて使用しても良い。更には、円周方向4個所位置にそれぞれ設けられた上記各変位測定素子27a、27b同士が、上下左右各方向に生じる渦電流による影響を受ける事を防止すべく、それぞれの位置の変位測定素子27a、27b毎にスイッチングを行ない、これら各変位測定素子27a、27bを流れる電流を交互に切り換えて測定しても良い。
【0045】
又、上記被検出リング29aに惹起される渦電流が、この被検出リング29aを固定した内輪8に、この被検出リング29aを通じて放出(電播)するのを防止する為に、この被検出リング29aを前記非磁性金属とすると共に、上記内輪8を磁性金属である鋼製としたり、或は、この内輪8に上記被検出リング29aを、絶縁材48aを介して固定したりしても良い。更には、上記内輪8や上記被検出リング29aの表面に、絶縁処理を施しても良い。
【0046】
次に、図22〜23は、請求項1にのみ対応する、本発明の実施の形態の第10例を示している。本例の場合は、ラジアル方向並びにスラスト方向の変位を検出する為の各変位測定素子27a、27bのうちの、ラジアル方向の変位を検出する変位測定素子27aにより、このラジアル方向の変位と共に回転速度も検出自在としている。即ち、本例の場合は、被検出リング29bを構成する円筒部49の一部で上記ラジアル方向の変位を検出する変位測定素子27aに近接対向する部分に、除肉部として機能する多数の透孔50、50を、円周方向に関して等間隔に形成している。これら各透孔50、50は、軸方向に長いスリット状である。又、円周方向に隣り合うこれら各透孔50、50同士の間部分は、充実部として機能する柱部としている。
【0047】
この様な透孔50、50を有する上記被検出リング29bが回転すると、上記変位測定素子27aの(波形成形処理後の)出力は、図24の実線αに示す様に変化する。即ち、上記円筒部49の各透孔50、50と上記変位測定素子27aとが対向する際に、この変位測定素子27aの出力が低下し、同じく上記各透孔50、50同士の間部分である各柱部と対向する際に、上記変位測定素子27aの出力が増大する。この様な変位測定素子27aの出力が変化する周波数は、車輪の回転速度に比例する為、出力信号を上記ハーネスを通じて図示しない制御器に入力すれば、上記車輪の回転速度を求める事ができる。又、上記ラジアル方向の変位を検出する変位測定素子27aと上記被検出リング29bの内周面との距離は、上記円筒部49のうちの上記各透孔50、50同士の間部分である各柱部と上記変位測定素子27aとが対向した際の、この変位測定素子27aの出力の大きさから求める事ができる。
【0048】
上述の様に構成する本例の場合には、外輪1に回転速度検出センサ5a(図15参照)を取り付ける為の取付孔23cを設ける必要がない。この為、この外輪1の加工作業が容易になってコスト低減を図れる他、この外輪1の肉厚を特に大きくしなくても、この外輪1の強度確保を図れる。しかも、上記外輪1に設けた回転速度検出センサ5aと制御器との間のハーネスも省略できる為、ハーネスの取り回しも容易になって、荷重測定装置付車輪支持用転がり軸受ユニットを懸架装置に組み付ける作業の容易化を図れる。その他の部分の構成及び作用は、前述した第9例の場合と同様である。
【0049】
次に、図25〜26は、請求項1にのみ対応する、本発明の実施の形態の第11例を示している。本例の場合は、外輪1に対するハブ2のラジアル方向及びスラスト方向の変位を測定する変位センサユニット26e内に、上記ハブ2の回転速度を測定する回転速度検出センサ5bを設けている。即ち、上記外輪1の内端開口部を塞いだカバー4に固定した、合成樹脂中に変位測定素子27a、27bを包理して成る上記変位センサユニット26e内に、上記回転速度検出センサ5bを構成する回転速度検出素子51も包理支持している。
【0050】
この回転速度検出素子51は、図25に示す様に、上記変位センサユニット26e内で、上記各変位測定素子27a、27bから軸方向に外れた部分、若しくは、図26に示す様に、円周方向に隣り合う変位測定素子27a、27b同士の間部分に位置させる。この様な回転速度検出素子51としては、上記各変位測定素子27a、27bと同様に、各種構造のものを使用できるが、本例の場合は、上記変位測定素子27a、27bと同様の渦電流式のものとしている。一方、被検出リング29cを構成する円筒部49の軸方向内端寄り部分で、上記回転速度検出素子51と近接対向する部分に多数の透孔50を、円周方向に関して等間隔に形成している。そして、前述した実施の形態の第10例の場合と同様に、上記回転速度検出素子51の出力の変化から、回転速度を検出する。
【0051】
尚、上記被検出リング29cとして鋼板等の磁性金属板のものを使用する場合には、上記回転速度検出素子51として、ホール素子、MR素子等の通過磁束量に応じて特性を変化させる磁気検出素子を使用する事もできる。この様な磁気検出素子を使用する場合には、被検出リング29cを構成する円筒部49の軸方向内端寄り部分で、上記回転速度検出素子51と近接対向する部分の磁気特性を、円周方向に関して交互に(一般的には等間隔に)変化させる。
【0052】
この様に円周方向に関して磁気特性を交互に変化させる為には、円周方向に亙り多数の除肉部と充実部とを交互に形成したり、或はS極とN極とを交互に配置した永久磁石を添着したりする。前者の場合には、上記被検出リング29cを構成する円筒部49の軸方向内端寄り部分で上記回転速度検出素子51と近接対向する部分に多数の透孔50を、円周方向に関して等間隔に形成する。この場合には、前記回転速度検出センサ5bに、上記被検出リング29cの径方向に着磁した永久磁石を組み込む。或は、この様な透孔50を形成する事に代えて、上記円筒部49の軸方向内端寄り部分の内周面に、S極とN極とを円周方向に関して交互に且つ等間隔で配置した(着磁した)永久磁石を添着する。この場合には、上記回転速度検出センサ5b側の永久磁石は不要である。
【0053】
上述の様な、磁気特性を円周方向に亙って交互に且つ等間隔で変化させた被検出リング29cが回転すると、上記磁気検出素子である回転速度検出素子51の近傍部分を、上記透孔50とこれら各透孔50同士の間に存在する柱部とが、或はS極とN極とが、交互に通過する。この結果、上記回転速度検出素子51内を流れる磁束量(或は磁束の方向)が変化し、この回転速度検出素子51を組み込んだ上記回転速度検出センサ5bの出力が変化する。この出力が変化する周波数は、車輪の回転速度に比例する為、出力信号を上記ハーネスを通じて制御器に入力すれば、上記車輪の回転速度を求める事ができる。その他の部分の構成及び作用は、前述した第1例及び第9〜10例の場合と同様である。
【0054】
次に、図27は、請求項1にのみ対応する、本発明の実施の形態の第12例を示している。本例の場合は、被検出リング29dを、断面L字形で全体を円環状としたものとしている。即ち、この被検出リング29dは、円筒部52と、この円筒部52の軸方向内端部から径方向内方に直角に折れ曲がった折れ曲がり部53とを備える。そして、上記円筒部52の外周面をラジアル被検出面とし、上記折れ曲がり部53の片側面(図27の右側面)をスラスト被検出面としている。又、上記折れ曲がり部53の内径寄り部分に、それぞれがこの折れ曲がり部53の径方向に長いスリット状の透孔50を多数、円周方向に関して等間隔で形成し、当該部分に回転速度検出素子51を近接対向させている。又、本例の場合は、ハブ2の内端部を径方向外方に塑性変形させて成るかしめ部54により内輪8の内端面を抑え付けて、この内輪8を上記ハブ2に固定している。その他の部分の構成及び作用は、前述した第11例の場合と同様である。
【0055】
次に、図28は、請求項1にのみ対応する、本発明の実施の形態の第13例を示している。本例の場合は、前述の図6に示した実施の形態の第3例と同様に、駆動輪を構成する車輪支持用転がり軸受ユニットに、本発明を適用した場合を示している。但し、本例の場合は、ハブ2の内端部を径方向外方に塑性変形させて成るかしめ部54により内輪8の内端面を抑え付けて、この内輪8を上記ハブ2に固定している。又、本例の場合は、前述した実施の形態の各例の様な被検出リング29〜29d或は被検出板35や被検出体38を省略する代りに、ラジアル方向並びにスラスト方向の変位を検出する為の各変位測定素子27a、27bを、上記内輪8の内端部に直接近接対向させている。
【0056】
即ち、上記ラジアル方向の変位を検出する為の変位測定素子27aを、上記内輪8の軸方向内端部に設けた段部55の外周面に近接対向させると共に、上記スラスト方向の変位を検出する為の変位測定素子27bを、上記内輪8の内端面に近接対向させている。又、ハブ2の中間部に回転速度検出の為のセンサロータ3aを外嵌固定すると共に、外輪1の軸方向中間部で円周方向1個所位置に形成した取付孔23cに回転速度検出センサ5aを挿入し、この回転速度検出センサ5aの検出面を、上記センサロータ3aの外周面に近接対向させている。その他の部分の構成及び作用は、前述した第6例及び第9例の場合と同様である。
【0057】
次に、図29は、請求項1にのみ対応する、本発明の実施の形態の第14例を示している。本例の場合は、外輪1の軸方向中間部に回転速度検出センサ5a(図28参照)を設けずに、変位センサユニット26f内に、回転速度検出素子51を組み込んだ回転速度検出センサ5cを設けている。又、これと共に、上記外輪1の内端部内周面と内輪8の内端寄り部(肩部)外周面との間に設けた組み合わせシールリング56を構成するスリンガ57の内側面に、エンコーダ58を固定している。
【0058】
このエンコーダ58は、円周方向に関して磁気特性を交互に(一般的には等間隔に)変化させたもので、本例の場合には、S極とN極とを円周方向に関して交互に且つ等間隔で配置した(着磁した)、フェライト粉末や希土類磁石粉末等を混入したゴム磁石、プラスチック磁石等の永久磁石としている。尚、この永久磁石の着磁パターンは、S極とN極とを交互に且つ等間隔に配置する事が一般的ではあるが、必ずしもそうする必要はない。例えば、特開2000−346673号公報に記載されている様に、S極とN極と無着磁領域とを交互に繰り返す様な着磁パターンを採用すれば、回転速度だけでなく回転方向の検出も可能になる。要は、必要とする機能に合わせて所望の着磁パターンを採用する。
【0059】
上述の様に構成する本例の場合は、車輪の回転に伴って上記内輪8の肩部に外嵌固定した上記スリンガ57と共に上記エンコーダ58が回転すると、上記回転速度検出素子51の近傍部分を、このエンコーダ58を構成する永久磁石のN極とS極とが交互に通過する。この結果、上記回転速度検出素子51内を流れる磁束の方向が変化し、この回転速度検出素子51の出力が変化する。この出力が変化する周波数は、車輪の回転速度に比例する為、出力信号をハーネスを通じて制御器に入力すれば、上記車輪の回転速度を求められる。その他の部分の構成及び作用は、前述した第11例及び第14例の場合と同様である。
【0060】
次に、図30は、請求項1にのみ対応する、本発明の実施の形態の第15例を示している。本例の場合は、前述した実施の形態の第13例や上述した実施の形態の第14とは異なり、ハブ2の内端部にかしめ部54(図28、29参照)を設けてはいない。即ち、本例の場合は、ハブ2の内端部に設けた小径段部33に外嵌した内輪8の内端面を、このハブ2の内端面よりも内方に突出させている。そして、車両への組み付け状態で上記内輪8の内端面に、図示しない等速ジョイントの外端面を突き当て、この内輪8が上記小径段部33から抜け落ちる事を防止する用に構成している。
【0061】
又、本例の場合は、ラジアル方向並びにスラスト方向の変位を検出する為の各変位測定素子27a、27bのうち、ラジアル方向の変位を検出する為の変位測定素子27aを、上記内輪8の軸方向内端部に設けた段部55の外周面に近接対向させると共に、上記スラスト方向の変位を検出する為の変位測定素子27bを、上記段部55を構成する段差面59に近接対向させている。又、これと共に、回転速度検出センサ5cを構成する回転速度検出素子51を、外輪1の内端部内周面と上記内輪8の内端寄り部(肩部)外周面との間に設けた組み合わせシールリング56を構成するスリンガ57の内側面に設けたエンコーダ58に対向させている。その他の部分の構成及び作用は、前述した第14例の場合と同様である。
【0062】
次に、図31は、請求項1にのみ対応する、本発明の実施の形態の第16例を示している。本例の場合は、内輪8の内端部外周面に、断面クランク形の被検出リング29eを支持している。この被検出リング29eは、円輪部60と、この円輪部60の外周縁から軸方向外側に直角に折れ曲がった外側円筒部61と、同じく円輪部60の内周縁から軸方向内側に直角に折れ曲がった内側円筒部62とを備える。そして、このうちの外側円輪部61を上記内輪8の内端部に外嵌固定すると共に、上記円輪部60の内側面をスラスト被検出面とし、上記内側円筒部62の外周面をラジアル被検出面としている。
【0063】
即ち、この内側円筒部62の外周面にラジアル方向の変位を検出する為の変位測定素子27aを、上記円輪部60の内側面にスラスト方向の変位を検出する為の変位測定素子27bを、それぞれ近接対向させている。又、これと共に、回転速度検出センサ5cを構成する回転速度検出素子51を、外輪1の内端部内周面と上記内輪8の内端寄り部(肩部)外周面との間に設けた組み合わせシールリング56を構成するスリンガ57の内側面に設けたエンコーダ58に対向させている。その他の部分の構成及び作用は、前述した第12例及び第15例の場合と同様である。
【0064】
次に、図32は、請求項1にのみ対応する、本発明の実施の形態の第17例を示している。前述した実施の形態の各例は何れも、各転動体10、10よりも径方向に関して外側に存在する外輪1( 例えば図31参照) を、使用状態で懸架装置に支持固定される静止側軌道輪とすると共に、同じく径方向に関して内側に存在するハブ2(例えば図31参照)を、使用状態で車輪を支持固定する回転側軌道輪としている。これに対して本例の場合には、使用状態で図示しない支持軸に外嵌固定する、静止側軌道輪である1対の内輪8、8の径方向外側に、使用状態で車輪を支持固定するハブ2aを、複数個の転動体10、10を介して回転自在に支持している。
【0065】
又、上記1対の内輪8、8のうちの軸方向内側に位置する内輪8の内端部外周面に、合成樹脂中に変位測定素子27a、27bを包理して成る変位センサユニット26fを支持している。そして、上記各変位測定素子27a、27bのうちの、ラジアル方向の変位を検出する為の変位測定素子27aを、上記ハブ2aの内端部外周面に近接対向させると共に、同じくスラスト方向の変位を検出する為の変位測定素子27bを、上記ハブ2aの内端面に近接対向させている。その他の部分の構成及び作用は、前述した第13、16例の場合と同様である。
【0066】
次に、図33は、請求項1にのみ対応する、本発明の実施の形態の第18例を示している。本例の場合は、1対の内輪8、8を外嵌固定する支持軸63の中間部で、これら内輪8、8から軸方向に外れた部分に、変位センサユニット26gを支持している。その他の部分の構成及び作用は、上述した第17例の場合と同様である。
【0067】
【発明の効果】
本発明の荷重測定装置付車輪支持用転がり軸受ユニットは、以上に述べた通り構成され作用する為、走行時に車輪に加わる荷重の方向及び大きさを測定できて、車両の走行安定性を損なう要因を予め検出し、これに対応する事を可能にでき、車両の安全運行に寄与できる。又、構成部品が少なく、しかも重量の嵩む構成部品を使用する必要がない為、ばね下荷重を抑えて、乗り心地を中心とする走行性能を悪化させる事なく、上記測定を行なえる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す断面図。
【図2】変位センサユニットの設置状態を、一部を省略して示す、図1の略A−A断面図。
【図3】ラジアル、スラスト両検出部と上記ラジアル、スラスト両被検出面との対向状態を示す、図1のB部に相当する図。
【図4】モーメント荷重に基づいてハブの回転中心が傾斜した状態を誇張して示す断面図。
【図5】本発明の実施の形態の第2例を示す、図1のC部に相当する断面図。
【図6】同第3例を示す断面図。
【図7】同第4例を示す断面図。
【図8】同第5例を示す、図7のD部に相当する図。
【図9】同第6例を示す断面図。
【図10】ハブ、内輪、被検出体、転動体のみを取り出して示す、図9のE部拡大図。
【図11】ハブ、被検出体、変位センサユニットのみを取り出して示す、図9のE部拡大図。
【図12】本発明の実施の形態の第6例の変形例を示す断面図。
【図13】同第7例を示す、図2と同様の断面図。
【図14】同第8例を示す、図2と同様の断面図。
【図15】同第9例を示す断面図。
【図16】図15のF部拡大図。
【図17】被検出リングと変位センサユニットの変位測定素子とを取り出して図15の右方から見た図。
【図18】磁気誘導式の変位測定素子の原理を示す斜視図。
【図19】渦電流式の変位測定素子の原理を示す斜視図。
【図20】渦電流式の変位測定素子を構成するコイルのインピーダンスを変換する回路(ブリッジ法)を示す図。
【図21】本発明の実施の形態の第9例の変形例を示す、図16と同様の断面図。
【図22】同第10例を示す断面図。
【図23】図22のG部拡大図。
【図24】変位測定素子の出力変化を示す線図。
【図25】本発明の実施の形態の第11例を示す部分断面図。
【図26】変位センサユニットの設置状態を、一部を省略して示す、図17と同様の図。
【図27】本発明の実施の形態の第12例を示す、図25と同様の図。
【図28】同13例を示す半部断面図。
【図29】同14例を示す半部断面図。
【図30】同15例を示す部分断面図。
【図31】同16例を示す部分断面図。
【図32】同17例を示す半部断面図。
【図33】同18例を示す半部断面図。
【図34】従来構造の第1例を示す断面図。
【図35】同第2例を示す断面図。
【符号の説明】
1、1a 外輪
2、2a ハブ
3、3a センサロータ
4 カバー
5、5a、5b 回転速度検出センサ
6 外輪軌道
7 ナット
8 内輪
9 内輪軌道
10 転動体
11 保持器
12 フランジ
13、13a 取付部
14 シールリング
15 被検出用円筒部
16 支持用円筒部
17 透孔
18 嵌合筒部
19 塞ぎ板部
20 通孔
21 コネクタ
22 スタッド
23、23a、23b、23c 取付孔
24 変位センサ
25 センサリング
26、26a、26b、26c、26d、26e、26f、26g 変位センサユニット
27a、27b 変位測定素子
28 ホルダ
29、29a、29b、29c、29d、29e 被検出リング
30 円筒部
31 折れ曲がり部
32 ハーネス
33 小径段部
34 段差面
35 被検出板
36 間部分
37、37a、37b 凹溝
38 被検出体
39 鉄芯
40 第一のコイル
41 第二のコイル
42 フェライト芯
43 コイル
44 基準コイル
45 抵抗
46 水晶発振器
47 ブリッジ回路
48、48a 絶縁材
49 円筒部
50 透孔
51 回転速度検出素子
52 円筒部
53 折れ曲がり部
54 かしめ部
55 段部
56 組み合わせシールリング
57 スリンガ
58 エンコーダ
59 段差面
60 円輪部
61 外側円筒部
62 内側円筒部
63 支持軸
[0001]
BACKGROUND OF THE INVENTION
The wheel support rolling bearing unit with a load measuring device according to the present invention supports the wheel of a vehicle (automobile) so as to be rotatable with respect to the suspension device, and measures the direction and magnitude of the force applied to the wheel, This contributes to the stable operation of the vehicle.
[0002]
[Prior art]
A rolling bearing unit is used to rotatably support the vehicle wheel with respect to the suspension system. Further, in order to control the anti-lock brake system (ABS) and the traction control system (TCS), it is necessary to detect the rotational speed of the wheel. For this reason, the rolling bearing unit with a rotational speed detection device incorporating the rotational speed detection device in the rolling bearing unit can support the wheel rotatably with respect to the suspension device and detect the rotational speed of the wheel. In recent years, it has been widely performed.
[0003]
FIG. 34 shows, as an example of a conventional structure used for such a purpose, a wheel-supporting rolling bearing unit with a rotational speed detector described in Japanese Patent Laid-Open No. 2001-21577. This rolling bearing unit for supporting a wheel with a rotational speed detecting device is not rotated even when in use in a state of being supported by a suspension device, and the wheel is mounted on the inner diameter side of the outer ring 1 corresponding to the stationary side bearing ring according to claim. The hub 2 corresponding to the rotating side race ring described in the claims, which rotates in use in a fixed state, is supported. The rotational speed of the sensor rotor 3 fixed to a part of the hub 2 can be detected by the rotational speed detection sensor 5 supported by the cover 4 fixed to the outer ring 1. In the illustrated example, an annular sensor that is opposed to the sensor rotor 3 over the entire circumference is used as the rotational speed detection sensor 5. Further, in order to rotatably support the hub 2, double-row outer ring raceways 6, 6 each corresponding to a stationary side raceway are provided on the inner peripheral surface of the outer ring 1. In addition, the outer peripheral surface of the hub 2 and the hub 2 Fitted The inner ring raceways 9 and 9 corresponding to the rotation side raceways described in the claims are respectively formed on the outer peripheral surface of the inner race 8 constituting the rotation side raceway ring together with the hub 2 in a state of being coupled and fixed to the hub 2 by the nut 7. Is provided. A plurality of rolling elements 10 and 10 are provided between the inner ring raceways 9 and 9 and the outer ring raceways 6 and 6, respectively, so as to be freely rollable while being held by the cages 11 and 11, respectively. The hub 2 and the inner ring 8 are rotatably supported inside the outer ring 1.
[0004]
Further, at the outer end of the hub 2 (the end that is the outer side in the width direction in the assembled state in the vehicle, the left end in FIG. 34), the portion that protrudes axially outward from the outer end of the outer ring 1 The flange 12 for attaching the wheel is provided. Further, an attachment portion 13 for attaching the outer ring 1 to a suspension device is provided at the inner end portion of the outer ring 1 (the end portion on the center side in the width direction when assembled to the vehicle, which is the right end portion in FIG. 34). ing. Further, a gap between the outer end opening of the outer ring 1 and the outer peripheral surface of the intermediate part of the hub 2 is closed by a seal ring 14. In the case of a rolling bearing unit for a heavy vehicle, tapered rollers may be used as the plurality of rolling elements 10 and 10 instead of balls as shown.
[0005]
In order to incorporate a rotational speed detection device into the rolling bearing unit as described above, the sensor rotor 3 is fitted and fixed to the outer peripheral surface of the inner end portion of the inner ring 8 that is separated from the inner ring raceway 9. The sensor rotor 3 is formed in a circular shape by plastically processing a magnetic metal plate such as a mild steel plate, and includes a cylindrical portion 15 to be detected and a supporting cylindrical portion 16 that are concentric with each other. Of these, the supporting cylindrical portion 16 is fixed to the inner end portion of the inner ring 8 by being externally fitted to the inner end portion of the inner ring 8 with an interference fit. In addition, the above-described cylindrical portion 15 to be detected is formed with a plurality of slit-like through holes 17 and 17 that are long in the axial direction of the cylindrical portion 15 to be detected at regular intervals in the circumferential direction. The magnetic characteristics of the cylindrical portion 15 to be detected are changed alternately at equal intervals over the circumferential direction.
[0006]
Further, the cover 4 is fitted and fixed to the inner end opening of the outer ring 1 so as to cover the cylindrical portion 15 to be detected of the sensor rotor 3, thereby closing the inner end opening of the outer ring 1. . The cover 4 formed by plastic processing of a metal plate has a fitting tube portion 18 that can be fitted and fixed to the inner end opening of the outer ring 1 and a closing plate portion 19 that closes the inner end opening. The rotation speed detection sensor 5 is held and fixed in the closing plate portion 19. Further, a through hole 20 is formed near the outer periphery of the closing plate portion 19, and a connector 21 for taking out the output of the rotational speed detection sensor 5 is taken out from the cover 4 through the through hole 20. With the rotational speed detection sensor 5 held and fixed in the cover 4 in this way, the detection unit provided on the outer peripheral surface of the rotational speed detection sensor 5 is the inner part of the cylinder part 15 to be detected that constitutes the sensor rotor 3. It faces the circumferential surface through a minute gap.
[0007]
When using the wheel support rolling bearing unit with the rotational speed detection device as described above, the attachment portion 13 fixed to the outer peripheral surface of the outer ring 1 is coupled and fixed to the suspension device with a bolt (not shown), and By fixing a wheel (not shown) to a flange 12 fixed on the outer peripheral surface of the hub 2 by a stud 22 provided on the flange 12, the wheel is rotatably supported with respect to the suspension device. When the wheel rotates in this state, the vicinity of the end face of the detection portion of the rotational speed detection sensor 5 is close to the through holes 17 and 17 formed in the cylindrical portion for detection 15 and the through holes 17 and 17 adjacent in the circumferential direction. The pillars existing between them pass alternately. As a result, the density of the magnetic flux flowing through the rotation speed detection sensor 5 changes, and the output of the rotation speed detection sensor 5 changes. The frequency at which the output of the rotational speed detection sensor 5 changes in this way is proportional to the rotational speed of the wheel. Therefore, if the output of the rotational speed detection sensor 5 is sent to a controller (not shown), ABS and TCS can be controlled appropriately.
[0008]
That is, the output of the rotational speed detection sensor 5 is compared with the output of an acceleration sensor separately provided on the vehicle body side. The ABS and TCS are controlled by determining that slippage has occurred at the contact portion. That is, if the wheel deceleration obtained based on the output of the rotational speed detection sensor 5 is larger than the vehicle deceleration detected by the acceleration sensor during braking, it is determined that the slip has occurred. By controlling the hydraulic pressure of the wheel cylinder part of the brake device, the rotation of the wheel is prevented from stopping before the vehicle stops, and the stability of the running posture of the vehicle is ensured. Further, when accelerating, when the acceleration of the vehicle required by the acceleration sensor is smaller than the acceleration of the wheel determined based on the output of the rotational speed detection sensor 5, the driving wheel is compared with the acceleration of the driven wheel. When the acceleration of the tire is large), it is determined that the slip has occurred, and the outer peripheral surface of the tire and the road surface are adjusted by applying braking to the wheel or reducing (decreasing) the engine output. To prevent the vehicle from slipping and stabilize the running posture of the vehicle.
[0009]
According to the wheel bearing rolling bearing unit with a conventionally known rotation speed detection device as described above, it is possible to ensure the stability of the running posture of the vehicle during braking or acceleration, but even under more severe conditions. In order to ensure this stability, it is necessary to take in more information that affects the running stability of the vehicle and control the brake and engine. On the other hand, in the case of ABS and TCS using a conventional rolling bearing unit with a rotational speed detection device, so-called feedback control is performed in which a slip between a tire and a road surface is detected to control a brake and an engine. . For this reason, since control of these brakes and engines is delayed even for a moment, an improvement is desired in terms of performance improvement under severe conditions. That is, in the case of the conventional structure, it is possible to prevent slippage between the tire and the road surface by so-called feedforward control, or to prevent the so-called single effect of the brake in which the braking forces of the left and right wheels are extremely different. Can not. Furthermore, it is impossible to prevent the running stability of a truck or the like from being deteriorated based on the poor loading state.
[0010]
In view of such circumstances, Japanese Patent Laid-Open No. 2001-21577 describes a structure in which a load applied to a rolling bearing unit can be measured as shown in FIG. In the case of the second example of the conventional structure, a mounting hole 23 that penetrates the outer ring 1 in the diametrical direction is formed in a portion between the pair of outer ring raceways 6 and 6 at an axially intermediate portion of the outer ring 1. 1 is formed substantially vertically in the upper end portion. A circular (rod-shaped) displacement sensor 24 is mounted in the mounting hole 23. The detection surface provided on the distal end surface (lower end surface) of the displacement sensor 24 is opposed to the outer peripheral surface of the sensor ring 25 that is externally fitted and fixed to the axially intermediate portion of the hub 2. When the distance between the detection surface and the outer peripheral surface of the sensor ring 25 changes, the displacement sensor 24 outputs a signal corresponding to the amount of change.
[0011]
In the case of the second example of the conventional structure configured as described above, based on the detection signal of the displacement sensor 24, the load applied to the wheel supporting rolling bearing unit incorporating the displacement sensor 24 can be obtained. That is, the outer ring 1 supported by the vehicle suspension device is pushed downward by the weight of the vehicle, whereas the hub 2 supporting and fixing the wheel tends to stop at the same position. For this reason, the greater the weight, the greater the deviation between the center of the outer ring 1 and the center of the hub 2 based on the elastic deformation of the outer ring 1 and the hub 2 and the rolling elements 10 and 10. The distance between the detection surface of the displacement sensor 24 and the outer peripheral surface of the sensor ring 25 provided at the upper end of the outer ring 1 becomes shorter as the weight increases. Therefore, if the detection signal of the displacement sensor 24 is sent to the controller, the load applied to the wheel-supporting rolling bearing unit incorporating the displacement sensor 24 can be obtained from a relational expression obtained in advance through experiments or the like. Based on the load applied to each wheel-supporting rolling bearing unit obtained in this way, the ABS is properly controlled and the driver is informed of a defective loading state.
[0012]
In the case of the second example of the conventional structure shown in FIG. 35, the load applied in the vertical direction can be measured based on the weight of the vehicle, but the moment load applied based on, for example, centrifugal force during turning can not be measured. For this reason, improvement is desired from the aspect of obtaining a signal for performing appropriate control for stable running in accordance with every running state of the vehicle. As a structure that can be used in such a case, a structure described in JP-A-10-73501 is known. According to the structure described in this publication, it is possible to measure the load in each direction applied to the wheel during traveling of the vehicle, including the moment load.
[0013]
[Problems to be solved by the invention]
The conventional structure described in Japanese Patent Application Laid-Open No. 10-73501 mentioned above has many members added for load measurement and includes large-sized members, so that it is inevitable that the cost and weight increase. The part where the load measuring device is assembled is on the wheel side of the spring constituting the suspension device, and the component of this load measuring device becomes a so-called unsprung load, and even a little weight deteriorates the running performance centering on the ride comfort. Therefore, improvement is desired.
The wheel bearing rolling bearing unit with load measuring device of the present invention has been invented in view of such circumstances.
[0014]
[Means for Solving the Problems]
The wheel support rolling bearing unit with load measuring device of the present invention includes a wheel supporting rolling bearing unit and a load measuring device.
Among them, the rolling bearing unit for supporting a wheel includes a stationary bearing ring that is supported and fixed to a suspension device in a used state, a rotating bearing ring that supports and fixes a wheel in a used state, and the stationary bearing ring and the rotating track. A plurality of rolling elements are provided between a stationary side track and a rotating side track that exist on circumferential surfaces facing each other.
The load measuring device includes a cylindrical radial detection surface provided concentrically with the rotation center of the rotation side raceway and a thrust detection surface provided in a direction perpendicular to the rotation center of the rotation side raceway. And at least one displacement sensor unit provided on the stationary ring.
The displacement sensor unit includes a radial detection unit and a thrust detection unit, and measures the distance between the radial detection unit and the radial detection surface, and the distance between the thrust detection unit and the thrust detection surface. It is assumed to be free.
[0015]
[Action]
According to the wheel bearing rolling bearing unit with a load measuring device of the present invention configured as described above, it is possible to measure not only the radial displacement of the rotating side raceway but also the displacement in the thrust direction. And the load of each direction added to the wheel bearing rolling bearing unit can be calculated | required based on the displacement of these each direction which a displacement sensor unit detects.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1-4 show a first example of an embodiment of the present invention corresponding to claims 1 to 3. The feature of this example is that a direction and magnitude of a load applied to a wheel (not shown) fixed to the hub 2 is obtained to obtain a structure capable of appropriately controlling ABS and TCS. Therefore, in this example, not only the load applied to the hub 2 but also the rotational speed of the hub 2 can be detected. However, since the structure and operation of the part for detecting the rotational speed are the same as those of the conventional structure shown in FIGS. 34 to 35 described above, the same parts are denoted by the same reference numerals, and redundant description is omitted. The following description will focus on the features of the present invention.
[0017]
In the case of this example, mounting holes 23a and 23a are provided at four circumferentially equidistant positions in the axially intermediate portion of the outer ring 1 located between the double row outer ring raceways 6 and 6, respectively. The inner and outer peripheral surfaces are connected to each other. In the case of this example, of the four mounting holes 23a, 23a, two mounting holes 23a, 23a are formed in the vertical direction, and the remaining two mounting holes 23a, 23a are formed in the horizontal direction. Displacement sensor units 26 and 26 are inserted into the mounting holes 23a and 23a, respectively.
[0018]
Each of the displacement sensor units 26 and 26 can measure the displacement in the radial direction and the displacement in the thrust direction of the hub 2, and includes two displacement measuring elements 27 a and 27 b each of which is a non-contact type. Have. That is, the displacement measuring elements 27a and 27b that can measure a minute displacement amount in a non-contact manner, such as a capacitance type proximity sensor, are replaced with a holder 28 made of a synthetic resin that constitutes each of the displacement sensor units 26 and 26. Embedded and supported at the tip surface portion and the tip portion side surface portion. Of the displacement measuring elements 27a and 27b, the displacement measuring element 27a embedded and supported on the tip surface portion of the holder 28 constitutes a radial detection unit, and the displacement measuring element 27b embedded and supported on the side surface portion of the tip portion. A thrust detector is configured.
[0019]
On the other hand, a ring 29 to be detected is fitted and fixed to an intermediate portion of the hub 2 positioned between the double row inner ring raceways 9 and 9. The ring 29 to be detected is formed by subjecting a metal plate to plastic working such as press working so as to have an L-shaped cross section and an annular shape as a whole. The cylindrical portion 30 and one axial end portion of the cylindrical portion 30 (see FIG. 1 and 3), and a bent portion 31 that is bent at a right angle outward in the radial direction. In this example, the outer peripheral surface of the cylindrical portion 30 is a radial detected surface, and one side surface (the left side surface in FIGS. 1 and 3) of the bent portion 31 is a thrust detected surface.
[0020]
The detection portions of the displacement-side measuring elements 27a and 27b of the displacement sensor units 26 and 26 are made to face each other in proximity to the ring 29 to be detected. That is, the displacement measuring element 27a constituting the radial detection unit is made to face and oppose the outer peripheral surface of the cylindrical portion 30 which is the radial detection surface. The displacement measuring element 27a can measure the radial displacement (radial direction) of the hub 2 relative to the outer ring 1. Further, the displacement measuring element 27b constituting the thrust detecting unit is made to face and oppose one side surface of the bent portion 31 which is the thrust detection surface. The displacement measuring element 27b can measure the axial displacement (thrust direction) of the hub 2 with respect to the outer ring 1.
[0021]
In the case of the rolling bearing unit for supporting a wheel with a load measuring device of this example, the hub with respect to the outer ring 1 is positioned at four positions in the circumferential direction by the four displacement sensor units 26 and 26 as described above. 2 is configured to measure displacement in the radial direction and the axial direction. A total of eight types of detection signals measured by each of the displacement sensor units 26 and 26 for each of the displacement sensor units 26 and 26 are input to a controller (not shown) through harnesses 32 and 32, respectively. And this controller calculates | requires the load of each direction applied to the wheel bearing rolling bearing unit based on the detection signal sent from each said displacement sensor unit 26,26.
[0022]
For example, when a vertical load based on the vehicle weight or the like is applied to each wheel support rolling bearing unit, the upper displacement sensor unit of the two displacement sensor units 26, 26 existing in the vertical direction. 26, the distance between the displacement measuring element 27a constituting the radial detection portion and the outer peripheral surface of the cylindrical portion 30 which is the radial detection surface is narrowed, and this distance is widened by the lower displacement sensor unit 26. The amount of change in distance at this time increases as the load increases. For the two displacement sensor units 26, 26 present in the horizontal direction, this distance does not change.
[0023]
On the other hand, when a load in the horizontal direction (front-rear direction) is applied for some reason, of the two displacement sensor units 26, 26 existing in the horizontal direction, the displacement sensor unit 26 on the front side in the load application direction. Thus, the distance between the displacement measuring element 27a constituting the radial detection portion and the outer peripheral surface of the cylindrical portion 30 which is the radial detection surface is widened, and this distance is narrowed by the displacement sensor unit 26 on the rear side in the action direction. The amount of change in distance at this time also increases as the load increases. This distance does not change for the two displacement sensor units 26, 26 existing in the vertical direction. Depending on the load in the oblique direction, the distance changes with respect to all the sensor units 26 and 26. Therefore, if the detection signals of the displacement measuring elements 27a, 27a constituting the radial detection unit of the four displacement sensor units 26, 26 arranged at equal intervals in the circumferential direction are compared, the direction in which the radial load acts and You can know the size. Note that the amount of change in the distance between the above parts and the magnitude of the radial load are obtained in advance by experiments or computer analysis.
[0024]
Next, a case where a moment load is applied to the hub 2 by turning or the like, and the center axis of the hub 2 and the center axis of the outer ring 1 become inconsistent will be described. In this case, the direction and the magnitude of the moment load are obtained based on the detection signals of the displacement measuring elements 27b and 27b that constitute the thrust detectors of the displacement sensor units 26 and 26, respectively. For example, a large moment load M is applied in the clockwise direction in FIG. 4 to the hub 2 that supports the outer wheel during turning (with respect to the radial direction of the turning circle) due to centrifugal force. As a result, as exaggeratedly shown in the figure, the central axis α of the hub 2 is inclined with respect to the central axis β of the outer ring 1.
[0025]
In this state, of the pair of displacement sensor units 26, 26 arranged in the vertical direction, the distance between the thrust detection unit and the thrust detection surface relating to one displacement sensor unit 26 is reduced, and the other displacement sensor unit 26 is concerned. The distance between the thrust detector and the thrust detection surface increases. For example, in the case of the illustrated example, the distance between the displacement measuring element 27b constituting the thrust detecting portion of the upper displacement sensor unit 26 and one side surface of the bent portion 31 which is a thrust detected surface is increased. On the other hand, the distance between the displacement measuring element 27b of the lower displacement sensor unit 26 and one side surface of the bent portion 31 is reduced. In this case, the amount by which the distance between each displacement measuring element 27b, 27b and one side surface of the bent portion 31 changes increases as the moment load M increases. Therefore, if the detection signals of the displacement measuring elements 27b and 27b constituting the thrust detectors of the four displacement sensor units 26 and 26 arranged at equal intervals in the circumferential direction are compared, the direction in which the moment load acts is obtained. And its size.
[0026]
When a moment load is applied in the horizontal direction, the direction and magnitude of the moment load are obtained based on detection signals from the two displacement sensor units 26 and 26 arranged in the horizontal direction. Further, when a moment load is applied in an oblique direction, the direction and magnitude of the moment load are obtained based on detection signals of all (four) displacement sensor units 26 and 26. It should be noted that the relationship between the amount of change in the distance between each part and the magnitude of the moment load, as well as the relationship between the difference between the detection signals of the displacement sensor units 26 and 26 and the direction of action of the moment load, have been previously tested or computerized. Find it by analysis.
[0027]
Further, when a thrust load is applied to the hub 2 for some reason, the displacement measuring elements 27b and 27b constituting the thrust detecting unit and the bent portions 31 of all the displacement sensor units 26 and 26 are separated. The distance to the side changes. The direction of the thrust load can be determined from the direction of the change (whether it expands or contracts), and the magnitude can be determined from the amount of change.
[0028]
During actual running, it is rare that a pure radial load, a pure moment load, or a pure thrust load is applied to the hub 2, and these loads are applied to the hub 2 in a mixed state. Therefore, the controller determines the type, direction, and magnitude of the load applied to the hub 2 based on a total of eight types of detection signals sent from the displacement measuring elements 27a, 27b of the displacement sensor units 26, 26. . In this way, a program for determining the type, direction, and magnitude of a load from eight types of detection signals is determined in advance by a number of experiments or computer simulations, and installed in a microcomputer that constitutes the controller. deep.
[0029]
Further, in order to improve the displacement detection accuracy in the radial direction, it is preferable to restrict the center of the measurement part of the displacement measurement element 27a constituting the radial detection part as follows. That is, when a moment load is applied to the hub 2, the virtual plane x perpendicular to the central axis of the hub 2 at the point O that becomes the center of the swing displacement of the hub 2 or the virtual plane x as a reference. A shift in the axial direction is located within a portion of 1 to 2 mm. This is because the displacement based on the moment load is less likely to affect the detection value of the radial detection unit, and the load in each direction can be easily obtained. However, even if the center of the measuring part of the displacement measuring element 27a is displaced by 2 mm or more from the virtual plane α, the displacement amount can be calculated by software installed in the controller. The center position of the part can be determined as appropriate. Further, in order to improve the detection accuracy in the thrust direction, the one side surface of the bent portion 31 constituting the thrust detected portion is shifted on the virtual plane x or in the axial direction with reference to the virtual plane x. It is preferable to be located in a portion within ˜2 mm. In this manner, the fact that the detection accuracy can be improved by restricting the position of the radial detection unit or the thrust detected unit is not limited to this example, and is common to the second to eighth examples of embodiments described later. .
[0030]
Next, FIG. 5 shows a second example of an embodiment of the present invention corresponding to claims 1 to 2 and 4. In the case of this example, a step surface 34 present at the outer end portion of the small diameter step portion 33 provided at the inner end portion in the axial direction of the hub 2, and an outer end surface of the inner ring 8 fitted and fixed to the small diameter step portion 33 A portion closer to the inner diameter of the annular detection plate 35 is sandwiched between the two. The detected plate 35 has a flat plate shape having an outer diameter larger than the outer diameter of the portion 36 between the inner ring raceways 9 in the double row at the intermediate portion in the axial direction of the hub 2. Therefore, the outer diameter side half of the detected plate 35 protrudes radially outward from the outer peripheral surface of the intermediate portion of the hub 2. In the case of this example, in order to prevent the interference between the outer diameter side half and the retainer 11, the axial position of the stepped surface 34 is set to the axially outer side than in the case of the first example. It is shifted.
[0031]
In the case of this example, the outer peripheral surface of the intermediate portion 36 is a radial detected surface, and the outer surface of the detected plate 35 is a thrust detected surface. By configuring in this way, it is possible to easily reduce the radial shake of the radial detection surface and the shake of the thrust detection surface. That is, in the case of the first example, since the outer peripheral surface of the cylindrical portion 30 of the ring to be detected 29 fitted on the intermediate portion of the hub 2 is a radial detected surface, there is a dimension error due to the presence of the fitting portion. As a result, the vibration of the radial detection surface accompanying the rotation of the hub 2 tends to increase. On the other hand, in the case of the present example, since the outer peripheral surface itself of the intermediate portion 36 is a radial detection surface, it is possible to reduce the shake in the radial direction. Further, in the case of the first example, the elastic deformation of the ring 29 to be detected accompanying the external fitting of the cylindrical portion 30 to the hub 2 extends to the bent portion 31, and one side surface of the bent portion 31 is the above-described one side. There is a possibility that it is not perpendicular to the center of rotation of the hub 2. On the other hand, in the case of this example, as the detected plate 35 is fixed to the hub 2, the outer surface side half portion side surface of the detected plate 35 which is a thrust detected surface is deformed. Since this is not the case, the thrust runout can be reduced.
[0032]
Next, FIG. 6 shows a third example of an embodiment of the present invention corresponding to claims 1 to 3. In the case of this example, the mounting holes 23b, 23b formed in the outer ring 1a for inserting the displacement sensor units 26a, 26a are inclined in the axially inward direction as they approach the outer peripheral surface of the outer ring 1a. ing. The reason why the mounting holes 23b and 23b are inclined in this manner is to avoid the mounting portion 13a formed at the central portion in the axial direction of the outer peripheral surface of the outer ring 1a. In the case of this example, as the mounting holes 23b and 23b are inclined for such a reason, the bent portion 31 of the detection ring 29 fitted on the intermediate portion of the hub 2 is positioned outside in the axial direction. Yes. Further, the portion where each displacement measuring element is to be installed at the tip of each displacement sensor unit 26a, 26a is inclined with respect to the central axis of each displacement sensor unit 26a, 26a. In the neutral state, the displacement measuring elements, the outer peripheral surface of the cylindrical portion 30 of the ring to be detected 29, and one side surface of the bent portion 31 are substantially parallel. The configuration and operation of the other parts are the same as in the case of the first example described above.
[0033]
Next, FIG. 7 shows a fourth example of an embodiment of the present invention corresponding to claims 1 to 2 and 5. In the case of this example, a groove 37 is formed over the entire circumference in a portion located between the inner ring raceway 9 and the small-diameter step portion 33 at the axially intermediate portion of the hub 2. . The bottom surface of the groove 37 is a radial detected surface, and the side surface of the groove 37 is a thrust detected surface. Therefore, in the case of this example, the distal end portion of the displacement sensor unit 26 b is made to enter the concave groove 37. The configuration and operation of the other parts are the same as in the case of the first example described above.
[0034]
Next, FIG. 8 shows a fifth example of the embodiment of the invention corresponding to claims 1 to 2 and 7. In the case of this example, a to-be-detected body 38 is mounted over the entire circumference of the outer half in the width direction of the concave groove 37 formed in the intermediate portion in the axial direction of the hub 2. And the outer peripheral surface of this to-be-detected body 38 is made into the radial to-be-detected surface, and the inner surface is made into the thrust to-be-detected surface. This detected body 38 is formed by combining a pair of elements formed in a semicircular arc shape by a material capable of effectively performing displacement measurement by a non-contact type displacement sensor. Then, in a state where these two elements are fixed in the concave groove 37 by adhesion or the like, an annular detection object 38 is obtained. The displacement sensor unit 26c used in this example has a stepped end portion, and the detection portion is opposed to the outer peripheral surface and one side surface of the detected body 38. The configuration and operation of the other parts are the same as in the case of the first example described above. Note that the annular detection object 38 as in this example is not necessarily mounted in the concave groove 37. An annular detection target 38 can be directly fitted on a portion located between the inner ring raceway 9 on the axially outer side and the small-diameter step portion 33 (see FIG. 7) in the axially intermediate portion of the hub 2. However, in this case, the detected body 38 is integrated, and after the outer rolling elements 10 and 10 are assembled, the detected body is attached to the intermediate portion of the hub 2 before the inner rolling elements are assembled. Fit and fix.
[0035]
Next, FIGS. 9 to 11 show a sixth example of an embodiment of the present invention corresponding to claims 1 to 2, 6 and 7. In the case of this example, the axially inner side surface of the groove 37a is constituted by the axially outer end surface of the inner ring 8 fitted and fixed to the small-diameter step portion 33 formed at the axially inner end portion of the hub 2. . And the to-be-detected body 38 is attached to the outer half part of the width direction in this concave groove 37a over the perimeter. The outer diameter of the detected body 38 is set to be equal to or smaller than the outer diameter of the outer peripheral surface of the intermediate portion of the hub 2, and the presence of the detected body 38 is on the inner diameter side of the rolling elements 10 and 10 previously disposed on the inner diameter side of the outer ring 1. In addition, the hub 2 is not hindered. Other configurations and operations are the same as those of the fifth example described above. When this example is carried out, the axial dimension of the small diameter step 33 formed at the inner end of the hub 2 in the axial direction, and the axial dimension of the inner ring 8 fitted and fixed to the small diameter step 33 are shown in FIG. The position of the outer end surface of the inner ring 8 can be shifted outward in the axial direction, and the width dimension of the groove 37b can be reduced.
[0036]
In the above description, the displacement sensor units 26 (26a, 26b, 26c) are arranged at four positions at equal intervals in the circumferential direction in order to obtain the action direction and magnitude of the load applied to the wheel bearing rolling bearing unit. Shown for installation. In order to obtain the direction and magnitude of the load with high accuracy, it is most preferable to provide the four displacement sensor units 26 (26a, 26b, 26c) as described above. However, if it is not necessary to obtain the direction and magnitude of the load with high accuracy, the number of displacement sensor units 26 (26a, 26b, 26c) can be reduced to reduce the cost. For example, as in the seventh example of the embodiment shown in FIG. 13, the displacement sensor is located at two positions where the phase in the circumferential direction is shifted by 90 degrees, such as the upper end (or lower end) position and the horizontal one side position. Even when the unit 26 (26a, 26b, 26c) is provided, it is possible to obtain the direction and magnitude of the load. Furthermore, even when the displacement sensor unit 26 (26a, 26b, 26c) is provided at one position shifted by 45 degrees from the vertical direction (or horizontal direction) as in the eighth example of the embodiment shown in FIG. It is possible to determine the direction and magnitude of the load.
[0037]
When a moment load is applied, the radial displacement and the thrust displacement cannot be detected independently. Therefore, the processing of the detection signal of the displacement detection unit and the detection signal of the thrust detection unit is somewhat Although it becomes troublesome, if a structure as shown in FIGS. 15 to 17 is adopted, the mounting operation of the displacement sensor unit to the rolling bearing unit can be facilitated. That is, in the case of the structure of the ninth example of the embodiment of the present invention corresponding only to claim 1 shown in FIGS. 15 to 17, a sensor rotor for detecting the rotational speed is provided at the intermediate portion of the hub 2. 3a is externally fixed. Then, the rotational speed sensor 5a is inserted into the mounting hole 23c formed at one position in the circumferential direction at the axial intermediate portion of the outer ring 1, and the detection surface of the rotational speed detection sensor 5a is used as the outer peripheral surface of the sensor rotor 3a. Is in close proximity to each other.
[0038]
On the other hand, on the inner end of the inner ring 8 that is externally fitted and fixed to the inner end of the hub 2, the base end of the ring to be detected 29a for detecting displacement in the radial direction and the thrust direction (the left end of FIGS. 15 to 16). Part). The shape of the ring to be detected 29a is the same as that of the sensor rotor 3 incorporated in the first example of the embodiment shown in FIG. 1, but the through hole 17 is not provided. The displacement sensor unit 26d is held and fixed to the cover 4 that covers the inner end opening of the outer ring 1. Then, the detection surfaces of the displacement measuring elements 27a and 27b respectively supported at the four positions in the circumferential direction of the displacement sensor unit 26d are arranged in the radial direction or the thrust direction on the inner peripheral surface or the inner side surface of the detected ring 29a. Is in close proximity to each other.
[0039]
In the case of the structure of the present example as described above, since only one mounting hole 23c is provided in the outer ring 1, the work for forming the mounting hole 23c can be facilitated and the cost can be reduced. Even if the thickness is not particularly increased, the strength of the outer ring 1 can be ensured. Further, when the outer ring 1 and the hub 2 are displaced by the load in each direction, the distance between each of the displacement measuring elements 27a, 27b and the inner peripheral surface or inner surface of the detected ring 29a changes. Therefore, the direction and magnitude of the load can be obtained from the magnitude and direction of the change.
[0040]
In each example of the above-described embodiment, the displacement measuring elements 27a and 27b for detecting the displacement in the radial direction or the thrust direction can be of various structures conventionally known. For example, a magnetic induction type as shown in FIG. 18 or an eddy current type as shown in FIG. 19 can be preferably used. Among these, when the magnetic induction type shown in FIG. 18 is used, the material of the detected rings 29 and 29a is a magnetic material such as steel. Then, by passing an exciting current through the first coil 40 wound around the iron core 39, the second coil 41 wound around the iron core 39 is caused to pass through the iron core 39 and the detected rings 29, 29a. A measured value signal corresponding to the distance of is sent. Further, when using the eddy current type shown in FIG. 19, the material of the detected rings 29 and 29a may be a magnetic material such as steel, but preferably aluminum, copper, brass, zinc, etc. Non-magnetic metal. Then, an exciting current is passed through the coil 43 wound around the ferrite core 42, and the impedance of the coil 43 that changes according to the distance between the ferrite core 42 and the detected rings 29 and 29a is detected.
[0041]
In order to detect the impedance of the coil 43 in this way, the change in impedance is converted into a change in voltage or frequency. As a method for converting into such a voltage or frequency change, an oscillation method, a tuning method, a bridge method, and a positive feedback method are known. For example, in the bridge method, as shown in FIG. 20, a bridge circuit 47 is constituted by the coil 43 serving as a detection coil, a reference coil 44, resistors 45 and 45, and a crystal oscillator 46. By measuring the unbalanced voltage, a change in the impedance that changes according to the distance is detected. In addition, when such an eddy current type is used, the material of the detected rings 29 and 29a is made of a nonmagnetic metal such as aluminum, copper, brass, or zinc, as well as magnetic such as steel. Materials can also be used. In short, the optimum one is selected according to the desired performance and cost.
[0042]
In the case of the eddy current type as described above, for example, a sample that can be sampled at 40000 times / s, has a resolution of 0.4 μm, and a measurable distance of about 0 to 2 mm is generally commercially available. . In the case of the present invention, since the distance between the displacement measuring elements 27a, 27b for detecting displacement in the radial direction or the thrust direction and the detected rings 29, 29a is about 0.5 to 1.5 mm, Can be used as is.
[0043]
Further, when such an eddy current type element is used for the displacement measuring elements 27a and 27b adjacent in the axial direction, the displacement measuring elements 27a and 27b are affected by each other's eddy currents. An error may occur. In order to avoid the influence of such an eddy current, as shown in FIG. 21, a part of the detected ring 29a is a part between the parts that are in close proximity to the displacement measuring elements 27a and 27b, that is, the detected ring. An insulating material 48 is provided over the entire circumference between the radial detected surface 29a and the thrust detected surface 29a. Insulating the surfaces to be detected prevents the displacement measuring elements 27a and 27b from being affected by eddy currents.
[0044]
In order to prevent the influence of such eddy currents, the currents flowing through the displacement measuring elements 27a and 27b may be switched and measured. That is, when any one of the displacement measuring elements 27a and 27b adjacent in the axial direction performs measurement, the other displacement measuring element 27b (27a) does not perform measurement. The currents flowing through these displacement measuring elements 27a (27b) may be alternately switched and used (so that no eddy current is generated). Furthermore, in order to prevent the displacement measuring elements 27a and 27b provided at four positions in the circumferential direction from being affected by eddy currents generated in the vertical and horizontal directions, the displacement measuring elements at the respective positions. Switching may be performed for each of 27a and 27b, and the currents flowing through these displacement measuring elements 27a and 27b may be alternately switched for measurement.
[0045]
Further, in order to prevent eddy currents induced in the detected ring 29a from being discharged (electroplated) through the detected ring 29a to the inner ring 8 to which the detected ring 29a is fixed, this detected ring 29a may be the nonmagnetic metal, and the inner ring 8 may be made of steel, which is a magnetic metal, or the detected ring 29a may be fixed to the inner ring 8 via an insulating material 48a. . Further, the surface of the inner ring 8 or the detected ring 29a may be subjected to insulation treatment.
[0046]
Next, FIGS. 22 to 23 show a tenth example of the embodiment of the present invention, which corresponds only to the first aspect. In the case of this example, of the displacement measuring elements 27a and 27b for detecting the displacement in the radial direction and the thrust direction, the rotational speed is detected together with the displacement in the radial direction by the displacement measuring element 27a that detects the displacement in the radial direction. Can also be detected. In other words, in the case of this example, a part of the cylindrical part 49 constituting the detection ring 29b has a large number of transparent parts functioning as a thinning part at a part close to and opposed to the displacement measuring element 27a for detecting the radial displacement. The holes 50 are formed at equal intervals in the circumferential direction. Each of these through-holes 50 and 50 is a slit shape long in the axial direction. Moreover, the part between these through-holes 50 and 50 adjacent to each other in the circumferential direction is a column part that functions as a solid part.
[0047]
When the detected ring 29b having such through-holes 50 and 50 rotates, the output of the displacement measuring element 27a (after the waveform shaping process) changes as shown by a solid line α in FIG. That is, when the through holes 50, 50 of the cylindrical portion 49 and the displacement measuring element 27a are opposed to each other, the output of the displacement measuring element 27a is reduced, and similarly between the through holes 50, 50. When facing each column, the output of the displacement measuring element 27a increases. Since the frequency at which the output of the displacement measuring element 27a changes is proportional to the rotational speed of the wheel, the rotational speed of the wheel can be obtained by inputting an output signal to a controller (not shown) through the harness. Further, the distance between the displacement measuring element 27a for detecting the displacement in the radial direction and the inner peripheral surface of the detected ring 29b is a portion between the through holes 50, 50 in the cylindrical portion 49. It can be obtained from the magnitude of the output of the displacement measuring element 27a when the column portion and the displacement measuring element 27a face each other.
[0048]
In the case of this example configured as described above, it is not necessary to provide the mounting hole 23c for mounting the rotational speed detection sensor 5a (see FIG. 15) on the outer ring 1. For this reason, the working of the outer ring 1 can be facilitated to reduce the cost, and the strength of the outer ring 1 can be secured without particularly increasing the thickness of the outer ring 1. In addition, since the harness between the rotational speed detection sensor 5a provided on the outer ring 1 and the controller can be omitted, the harness can be easily handled, and the wheel bearing rolling bearing unit with a load measuring device is assembled to the suspension device. Work can be facilitated. The configuration and operation of the other parts are the same as in the case of the ninth example described above.
[0049]
Next, FIGS. 25 to 26 show an eleventh example of the embodiment of the present invention, which corresponds only to the first aspect. In the case of this example, a rotational speed detection sensor 5b for measuring the rotational speed of the hub 2 is provided in a displacement sensor unit 26e that measures the displacement of the hub 2 in the radial direction and the thrust direction with respect to the outer ring 1. That is, the rotational speed detection sensor 5b is placed in the displacement sensor unit 26e, which is fixed to the cover 4 that covers the inner end opening of the outer ring 1 and includes the displacement measuring elements 27a and 27b in synthetic resin. The rotational speed detecting element 51 which constitutes is also supported by embedding.
[0050]
As shown in FIG. 25, the rotational speed detecting element 51 is a part of the displacement sensor unit 26e that is axially deviated from the displacement measuring elements 27a and 27b, or a circumference as shown in FIG. It is located at a portion between the displacement measuring elements 27a and 27b adjacent in the direction. As such a rotational speed detecting element 51, elements having various structures can be used as in the case of the displacement measuring elements 27a and 27b. In this example, the same eddy current as in the displacement measuring elements 27a and 27b is used. It is of the formula. On the other hand, a large number of through holes 50 are formed at equal intervals in the circumferential direction in the portion near the inner end in the axial direction of the cylindrical portion 49 constituting the detected ring 29c and in the portion that is close to and opposed to the rotational speed detecting element 51. Yes. Then, as in the case of the tenth example of the embodiment described above, the rotational speed is detected from the change in the output of the rotational speed detecting element 51.
[0051]
When a magnetic metal plate such as a steel plate is used as the detected ring 29c, the rotational speed detecting element 51 is a magnetic sensor that changes its characteristics in accordance with the amount of magnetic flux passing through the Hall element, MR element, or the like. Elements can also be used. When such a magnetic detection element is used, the magnetic characteristics of the portion close to and opposed to the rotational speed detection element 51 at the axially inner end portion of the cylindrical portion 49 constituting the ring 29c to be detected are The direction is changed alternately (generally at regular intervals).
[0052]
In this way, in order to alternately change the magnetic characteristics in the circumferential direction, a number of thinned portions and solid portions are alternately formed in the circumferential direction, or S poles and N poles are alternately formed. Attaching the arranged permanent magnets. In the former case, a large number of through-holes 50 are provided at equal intervals in the circumferential direction in the portion close to the rotational speed detecting element 51 in the portion near the inner end in the axial direction of the cylindrical portion 49 constituting the detected ring 29c. To form. In this case, a permanent magnet magnetized in the radial direction of the detected ring 29c is incorporated in the rotational speed detection sensor 5b. Alternatively, instead of forming such a through hole 50, the S pole and the N pole are alternately arranged at equal intervals in the circumferential direction on the inner peripheral surface of the cylindrical portion 49 near the inner end in the axial direction. Attach a permanent magnet (magnetized) placed in step 1. In this case, the permanent magnet on the rotational speed detection sensor 5b side is not necessary.
[0053]
As described above, when the detected ring 29c whose magnetic characteristics are changed alternately and at equal intervals in the circumferential direction rotates, the vicinity of the rotational speed detecting element 51, which is the magnetic detecting element, is passed through the transparent portion. The holes 50 and the pillars existing between the through holes 50, or the S poles and the N poles pass alternately. As a result, the amount of magnetic flux (or the direction of magnetic flux) flowing through the rotational speed detecting element 51 changes, and the output of the rotational speed detecting sensor 5b incorporating the rotational speed detecting element 51 changes. Since the frequency at which the output changes is proportional to the rotational speed of the wheel, the rotational speed of the wheel can be obtained by inputting an output signal to the controller through the harness. The configuration and operation of the other parts are the same as those in the first example and the ninth to tenth examples.
[0054]
Next, FIG. 27 shows a twelfth example of the embodiment of the present invention corresponding to only the first aspect. In the case of this example, the ring to be detected 29d is L-shaped in cross section and has an annular shape as a whole. That is, the ring to be detected 29d includes a cylindrical portion 52 and a bent portion 53 that is bent at a right angle inward in the radial direction from the inner end portion in the axial direction of the cylindrical portion 52. And the outer peripheral surface of the said cylindrical part 52 is made into the radial to-be-detected surface, and the one side surface (right side surface of FIG. 27) of the said bending part 53 is made into the to-be-detected surface. Further, a large number of slit-like through holes 50 that are long in the radial direction of the bent portion 53 are formed at equal intervals in the circumferential direction in the portion closer to the inner diameter of the bent portion 53, and the rotational speed detecting element 51 is formed in that portion. Are close to each other. In the case of this example, the inner end surface of the inner ring 8 is held down by a caulking portion 54 formed by plastically deforming the inner end portion of the hub 2 radially outward, and the inner ring 8 is fixed to the hub 2. Yes. The configuration and operation of the other parts are the same as in the case of the eleventh example described above.
[0055]
Next, FIG. 28 shows a thirteenth example of the embodiment of the present invention, corresponding to claim 1 only. In the case of this example, as in the third example of the embodiment shown in FIG. 6 described above, the case where the present invention is applied to a wheel support rolling bearing unit constituting a drive wheel is shown. However, in the case of this example, the inner end surface of the inner ring 8 is suppressed by a caulking portion 54 formed by plastically deforming the inner end portion of the hub 2 radially outward, and the inner ring 8 is fixed to the hub 2. Yes. In the case of this example, instead of omitting the detected rings 29 to 29d or the detected plate 35 and the detected body 38 as in each example of the above-described embodiment, the displacement in the radial direction and the thrust direction is changed. The displacement measuring elements 27a and 27b for detection are directly close to and opposed to the inner end portion of the inner ring 8.
[0056]
That is, the displacement measuring element 27a for detecting the displacement in the radial direction is brought close to and opposed to the outer peripheral surface of the step portion 55 provided at the inner end in the axial direction of the inner ring 8, and the displacement in the thrust direction is detected. The displacement measuring element 27b for this purpose is placed close to and opposed to the inner end face of the inner ring 8. Further, a sensor rotor 3a for detecting the rotational speed is fitted and fixed to an intermediate portion of the hub 2, and an attachment hole 23c formed at one position in the circumferential direction at the axial intermediate portion of the outer ring 1 is provided. Rotation speed detection sensor 5a is inserted, and the detection surface of the rotational speed detection sensor 5a is placed close to and opposed to the outer peripheral surface of the sensor rotor 3a. The configuration and operation of the other parts are the same as those in the sixth and ninth examples described above.
[0057]
Next, FIG. 29 shows a fourteenth example of the embodiment of the present invention corresponding to only the first aspect. In the case of this example, in the axial direction intermediate part of the outer ring 1 Rotation speed detection sensor Without providing 5a (see FIG. 28), the rotational speed detection sensor 5c incorporating the rotational speed detection element 51 is provided in the displacement sensor unit 26f. At the same time, an encoder 58 is provided on the inner surface of the slinger 57 constituting the combined seal ring 56 provided between the inner peripheral surface of the inner end portion of the outer ring 1 and the outer peripheral surface of the inner ring 8 (shoulder portion). Is fixed.
[0058]
This encoder 58 is one in which the magnetic characteristics are changed alternately (generally at regular intervals) in the circumferential direction. In this example, the S pole and the N pole are alternately changed in the circumferential direction and Permanent magnets such as rubber magnets and plastic magnets that are arranged at equal intervals (magnetized), mixed with ferrite powder, rare earth magnet powder, and the like. In general, the permanent magnet has a magnetized pattern in which the S poles and the N poles are alternately arranged at equal intervals, but it is not always necessary to do so. For example, as described in Japanese Patent Laid-Open No. 2000-346673, if a magnetization pattern that alternately repeats an S pole, an N pole, and a non-magnetized region is employed, not only the rotation speed but also the rotation direction Detection is also possible. In short, a desired magnetizing pattern is adopted in accordance with a required function.
[0059]
In the case of this example configured as described above, when the encoder 58 rotates together with the slinger 57 fitted and fixed to the shoulder portion of the inner ring 8 as the wheel rotates, the vicinity of the rotational speed detecting element 51 is changed. The N and S poles of the permanent magnets constituting this encoder 58 pass alternately. As a result, the direction of the magnetic flux flowing through the rotation speed detection element 51 changes, and the output of the rotation speed detection element 51 changes. Since the frequency at which the output changes is proportional to the rotational speed of the wheel, the rotational speed of the wheel can be obtained by inputting an output signal to the controller through the harness. The configuration and operation of the other parts are the same as in the case of the eleventh example and the fourteenth example described above.
[0060]
Next, FIG. 30 shows a fifteenth example of the embodiment of the present invention, which corresponds only to the first aspect. In the case of this example, unlike the thirteenth example of the embodiment described above and the fourteenth embodiment described above, the caulking portion 54 (see FIGS. 28 and 29) is not provided at the inner end portion of the hub 2. . That is, in this example, the inner end surface of the inner ring 8 that is externally fitted to the small-diameter step portion 33 provided at the inner end portion of the hub 2 is protruded inward from the inner end surface of the hub 2. Then, the outer end surface of the constant velocity joint (not shown) is abutted against the inner end surface of the inner ring 8 in the assembled state to the vehicle, and the inner ring 8 is configured to prevent the inner ring 8 from falling off the small diameter step portion 33.
[0061]
In this example, of the displacement measuring elements 27a and 27b for detecting the displacement in the radial direction and the thrust direction, the displacement measuring element 27a for detecting the displacement in the radial direction is used as the shaft of the inner ring 8. The displacement measuring element 27b for detecting the displacement in the thrust direction is brought close to and opposed to the stepped surface 59 constituting the stepped portion 55 while being opposed to the outer peripheral surface of the stepped portion 55 provided at the inner end portion in the direction. Yes. In addition, a combination of the rotational speed detecting element 51 constituting the rotational speed detecting sensor 5c provided between the inner peripheral surface of the inner end of the outer ring 1 and the outer peripheral surface of the inner ring 8 near the inner end (shoulder). It is made to oppose the encoder 58 provided in the inner surface of the slinger 57 which comprises the seal ring 56. FIG. The configuration and operation of the other parts are the same as in the case of the 14th example described above.
[0062]
Next, FIG. 31 shows a sixteenth example of the embodiment of the present invention, corresponding to claim 1 only. In the case of this example, a detected ring 29e having a crank-shaped cross section is supported on the outer peripheral surface of the inner end portion of the inner ring 8. The detected ring 29e includes an annular portion 60, an outer cylindrical portion 61 bent at a right angle from the outer peripheral edge of the annular portion 60 to the axially outer side, and a right angle from the inner peripheral edge of the annular portion 60 to the axially inner side. And an inner cylindrical portion 62 that is bent. Of these, the outer ring portion 61 is externally fitted and fixed to the inner end portion of the inner ring 8, the inner surface of the ring portion 60 is used as a thrust detected surface, and the outer peripheral surface of the inner cylindrical portion 62 is radial. The surface to be detected.
[0063]
That is, the displacement measuring element 27a for detecting the displacement in the radial direction on the outer peripheral surface of the inner cylindrical portion 62 is connected to the annular portion. 60 Displacement measuring elements 27b for detecting displacement in the thrust direction are made to face each other in close proximity. In addition, a combination of the rotational speed detecting element 51 constituting the rotational speed detecting sensor 5c provided between the inner peripheral surface of the inner end of the outer ring 1 and the outer peripheral surface of the inner ring 8 near the inner end (shoulder). It is made to oppose the encoder 58 provided in the inner surface of the slinger 57 which comprises the seal ring 56. FIG. The configuration and operation of the other parts are the same as those in the twelfth and fifteenth examples.
[0064]
Next, FIG. 32 shows a seventeenth example of the embodiment of the present invention, corresponding to claim 1 only. In each of the above-described embodiments, the stationary raceway in which the outer ring 1 (see, for example, FIG. 31) existing outside in the radial direction from the rolling elements 10 and 10 is supported and fixed to the suspension device in use. A hub 2 (see, for example, FIG. 31) that exists on the inner side in the radial direction is also used as a rotation-side track ring that supports and fixes the wheel in use. On the other hand, in the case of this example, the wheel is supported and fixed in the used state on the radially outer side of the pair of inner rings 8 and 8 which are stationary-side track rings that are fitted and fixed to a support shaft (not shown) in the used state. The hub 2a to be rotated is rotatably supported via a plurality of rolling elements 10 and 10.
[0065]
Further, a displacement sensor unit 26f formed by embedding the displacement measuring elements 27a and 27b in a synthetic resin on the outer peripheral surface of the inner end portion of the inner ring 8 positioned on the inner side in the axial direction of the pair of inner rings 8 and 8 is provided. I support it. Of the displacement measuring elements 27a and 27b, the displacement measuring element 27a for detecting the displacement in the radial direction is brought close to and opposed to the outer peripheral surface of the inner end portion of the hub 2a. A displacement measuring element 27b for detection is placed in close proximity to the inner end face of the hub 2a. The configuration and operation of the other parts are the same as those in the thirteenth and sixteenth examples.
[0066]
Next, FIG. 33 shows an eighteenth example of the embodiment of the present invention, which corresponds only to the first aspect. In the case of this example, the displacement sensor unit 26g is supported at a portion of the support shaft 63 that externally fixes and fixes the pair of inner rings 8, 8 at a portion that is axially removed from the inner rings 8, 8. The configuration and operation of the other parts are the same as in the case of the 17th example described above.
[0067]
【The invention's effect】
Since the rolling bearing unit for supporting a wheel with a load measuring device of the present invention is configured and operates as described above, the direction and magnitude of the load applied to the wheel during traveling can be measured, and the factors that impair the traveling stability of the vehicle Can be detected in advance, and this can be dealt with and contribute to the safe operation of the vehicle. In addition, since it is not necessary to use a component with a small number of components and a heavy weight, the above measurement can be performed without suppressing unsprung load and without deteriorating the running performance centering on the ride comfort.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first example of an embodiment of the present invention.
2 is a schematic cross-sectional view taken along the line AA in FIG. 1, showing a state where the displacement sensor unit is installed with a part thereof omitted.
FIG. 3 is a view corresponding to the portion B in FIG. 1, showing a state in which both the radial and thrust detection units and the radial and thrust detection surfaces are opposed to each other.
FIG. 4 is a cross-sectional view exaggeratingly showing a state in which the center of rotation of the hub is inclined based on a moment load.
FIG. 5 is a cross-sectional view corresponding to a portion C in FIG. 1, showing a second example of an embodiment of the present invention.
FIG. 6 is a sectional view showing the third example.
FIG. 7 is a sectional view showing a fourth example.
FIG. 8 is a view corresponding to the D portion of FIG. 7 showing the fifth example.
FIG. 9 is a sectional view showing the sixth example.
10 is an enlarged view of a portion E in FIG. 9, showing only the hub, inner ring, detected body, and rolling element.
11 is an enlarged view of a portion E in FIG. 9, showing only the hub, the detection target, and the displacement sensor unit.
FIG. 12 is a sectional view showing a modification of the sixth example of the embodiment of the present invention.
FIG. 13 is a sectional view similar to FIG. 2, showing the seventh example.
14 is a sectional view similar to FIG. 2, showing the eighth example. FIG.
FIG. 15 is a sectional view showing the ninth example.
16 is an enlarged view of a portion F in FIG.
17 is a view of the detected ring and the displacement measuring element of the displacement sensor unit taken out and viewed from the right side of FIG.
FIG. 18 is a perspective view showing the principle of a magnetic induction type displacement measuring element.
FIG. 19 is a perspective view showing the principle of an eddy current type displacement measuring element;
FIG. 20 is a diagram showing a circuit (bridge method) for converting the impedance of a coil constituting an eddy current type displacement measuring element;
FIG. 21 is a cross-sectional view similar to FIG. 16, showing a modification of the ninth example of the embodiment of the present invention.
FIG. 22 is a sectional view showing the tenth example.
FIG. 23 is an enlarged view of a G part in FIG. 22;
FIG. 24 is a diagram showing an output change of a displacement measuring element.
FIG. 25 is a partial sectional view showing an eleventh example of the embodiment of the present invention.
FIG. 26 is a view similar to FIG. 17 showing the installation state of the displacement sensor unit with a part omitted.
FIG. 27 is a view similar to FIG. 25, showing a twelfth example of the embodiment of the present invention.
FIG. 28 is a half sectional view showing the 13 example.
FIG. 29 is a half sectional view showing the 14th example.
FIG. 30 is a partial sectional view showing the 15 example.
FIG. 31 is a partial sectional view showing the 16 examples.
FIG. 32 is a half sectional view showing the 17th example.
FIG. 33 is a half sectional view showing the eighteenth example.
FIG. 34 is a cross-sectional view showing a first example of a conventional structure.
FIG. 35 is a sectional view showing the second example.
[Explanation of symbols]
1, 1a Outer ring
2, 2a hub
3, 3a Sensor rotor
4 Cover
5, 5a, 5b Rotation speed detection sensor
6 Outer ring raceway
7 Nut
8 inner ring
9 Inner ring raceway
10 Rolling elements
11 Cage
12 Flange
13, 13a Mounting part
14 Seal ring
15 Cylindrical part for detection
16 Supporting cylinder
17 Through hole
18 Fitting cylinder
19 Blocking plate
20 through holes
21 Connector
22 Stud
23, 23a, 23b, 23c Mounting hole
24 Displacement sensor
25 Sensoring
26, 26a, 26b, 26c, 26d, 26e, 26f, 26g Displacement sensor unit
27a, 27b Displacement measuring element
28 Holder
29, 29a, 29b, 29c, 29d, 29e Ring to be detected
30 Cylindrical part
31 Bent part
32 Harness
33 Small diameter step
34 Stepped surface
35 Detected plate
36 part
37, 37a, 37b Groove
38 Object to be detected
39 Iron core
40 First coil
41 Second coil
42 Ferrite core
43 coils
44 Reference coil
45 resistance
46 Crystal Oscillator
47 Bridge circuit
48, 48a Insulating material
49 Cylindrical part
50 through holes
51 Rotational speed detection element
52 Cylindrical part
53 Bent part
54 Caulking part
55 steps
56 combination seal ring
57 Slinger
58 Encoder
59 Stepped surface
60 torus
61 Outer cylindrical part
62 Inner cylindrical part
63 Support shaft

Claims (7)

車輪支持用転がり軸受ユニットと荷重測定装置とを備え、
このうちの車輪支持用転がり軸受ユニットは、使用状態で懸架装置に支持固定される静止側軌道輪と、使用状態で車輪を支持固定する回転側軌道輪と、これら静止側軌道輪と回転側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えたものであり、
上記荷重測定装置は、上記回転側軌道輪の回転中心と同心に設けられた円筒状のラジアル被検出面及びこの回転側軌道輪の回転中心に対し直角方向に設けられたスラスト被検出面と、上記静止側軌道輪に設けられた少なくとも1個の変位センサユニットとから成り、この変位センサユニットはラジアル検出部とスラスト検出部とを備え、このうちのラジアル検出部と上記ラジアル被検出面との距離、並びにスラスト検出部と上記スラスト被検出面との距離を測定自在なものである
荷重測定装置付車輪支持用転がり軸受ユニット。
A wheel bearing rolling bearing unit and a load measuring device;
Among them, the rolling bearing unit for supporting a wheel includes a stationary bearing ring that is supported and fixed to a suspension device in a used state, a rotating bearing ring that supports and fixes a wheel in a used state, and the stationary bearing ring and the rotating track. A plurality of rolling elements provided between a stationary-side track and a rotating-side track existing on circumferential surfaces facing each other with a ring;
The load measuring device includes a cylindrical radial detected surface provided concentrically with the rotation center of the rotation side raceway, and a thrust detection surface provided in a direction perpendicular to the rotation center of the rotation side raceway, The displacement sensor unit includes at least one displacement sensor unit provided on the stationary side ring, and the displacement sensor unit includes a radial detection unit and a thrust detection unit, and the radial detection unit and the radial detected surface of the radial detection unit A wheel bearing rolling bearing unit with a load measuring device capable of measuring a distance and a distance between a thrust detecting unit and the thrust detected surface.
静止側軌道輪が、内周面に複列の外輪軌道を設けた外輪であり、回転側軌道輪が、外周面に複列の内輪軌道を設けたハブであり、荷重測定装置が、これら複列の内輪軌道の間部分でこのハブの回転中心と同心に設けられた円筒状のラジアル被検出面及びこのハブの回転中心に対し直角方向に設けられたスラスト被検出面と、上記外輪の内周面で上記複列の外輪軌道の間部分から径方向内方に突出する状態で設けられた少なくとも1個の変位センサユニットとから成るものである、請求項1に記載した荷重測定装置付車輪支持用転がり軸受ユニット。The stationary side race ring is an outer ring with a double row outer ring raceway on the inner peripheral surface, the rotation side race ring is a hub with a double row inner ring raceway on the outer peripheral surface, and the load measuring device A cylindrical radial detected surface provided concentrically with the center of rotation of the hub at a portion between the inner ring raceways of the row, a thrust detected surface provided perpendicular to the center of rotation of the hub, and the inner ring of the outer ring The wheel with a load measuring device according to claim 1, comprising at least one displacement sensor unit provided in a state of projecting radially inward from a portion between the outer ring raceways of the double row on the circumferential surface. Rolling bearing unit for support. ハブの軸方向中間部で複列の内輪軌道の間部分に、円筒部と、この円筒部の軸方向一端部から径方向外方に直角に折れ曲がった折れ曲がり部とを備えた、断面L字形で全体が円環状の被検出リングを外嵌し、上記円筒部の外周面をラジアル被検出面とし、上記折れ曲がり部の片側面をスラスト被検出面とした、請求項2に記載した荷重測定装置付車輪支持用転がり軸受ユニット。In the middle part of the hub in the axial direction, a cylindrical part and a bent part that is bent at right angles outward in the radial direction from one axial end part of the cylindrical part at a portion between the double-row inner ring raceways in an L-shaped cross section 3. With a load measuring device according to claim 2, wherein a ring-shaped detection ring is externally fitted, the outer peripheral surface of the cylindrical portion is a radial detection surface, and one side surface of the bent portion is a thrust detection surface. Rolling bearing unit for wheel support. ハブの軸方向内端部に設けた小径段部に、外周面に内輪軌道を形成した内輪が外嵌固定されており、この小径段部の外端部に存在する段差面とこの内輪の外端面との間に、上記ハブの軸方向中間部で複列の内輪軌道の間部分の外径よりも大きな外径を有する円輪状の被検出板の内径寄り部分を挟持しており、上記ハブの軸方向中間部で複列の内輪軌道の間部分の外周面をラジアル被検出面とし、上記被検出板の片側面をスラスト被検出面とした、請求項2に記載した荷重測定装置付車輪支持用転がり軸受ユニット。An inner ring having an inner ring raceway formed on the outer peripheral surface is fitted and fixed to a small diameter step provided at the inner end of the hub in the axial direction. The step surface existing at the outer end of the small diameter step and the outer ring of the inner ring are fixed. Between the end faces, an annular portion of the annular detection plate having an outer diameter larger than the outer diameter of the portion between the double row inner ring raceways is sandwiched at the axially intermediate portion of the hub, and the hub The wheel with a load measuring device according to claim 2, wherein an outer peripheral surface of a portion between the double row inner ring raceways in the axial direction intermediate portion is a radial detected surface, and one side surface of the detected plate is a thrust detected surface. Rolling bearing unit for support. ハブの軸方向中間部に凹溝が全周に亙って形成されており、この凹溝の底面をラジアル被検出面とし、この凹溝の側面をスラスト被検出面とした、請求項2に記載した荷重測定装置付車輪支持用転がり軸受ユニット。A concave groove is formed over the entire circumference in an axially intermediate portion of the hub, and the bottom surface of the concave groove is a radial detected surface, and the side surface of the concave groove is a thrust detected surface. Rolling bearing unit for wheel support with load measuring device described. ハブの軸方向内端部に形成した小径段部に内輪が外嵌固定されており、凹溝の軸方向内側の側面がこの内輪の外端面により構成されている、請求項5に記載した荷重測定装置付車輪支持用転がり軸受ユニット。The load according to claim 5, wherein the inner ring is fitted and fixed to a small-diameter step formed at the axially inner end of the hub, and the axially inner side surface of the groove is formed by the outer end surface of the inner ring. Rolling bearing unit for wheel support with measuring device. ハブの軸方向中間部に凹溝が全周に亙って形成されており、この凹溝の幅方向の一部に環状の被検出体を、全周に亙って装着しており、この被検出体の外周面をラジアル被検出面とし、同じく片側面をスラスト被検出面とした、請求項5〜6の何れかに記載した荷重測定装置付車輪支持用転がり軸受ユニット。A concave groove is formed on the entire center of the hub in the axial direction, and an annular detection object is attached to a part of the width of the concave groove along the entire circumference. The wheel bearing rolling bearing unit with a load measuring device according to any one of claims 5 to 6, wherein an outer peripheral surface of the detected body is a radial detected surface and one side surface is a thrust detected surface.
JP2002203071A 2002-03-28 2002-07-11 Rolling bearing unit for wheel support with load measuring device Expired - Fee Related JP3952881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203071A JP3952881B2 (en) 2002-03-28 2002-07-11 Rolling bearing unit for wheel support with load measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002090364 2002-03-28
JP2002203071A JP3952881B2 (en) 2002-03-28 2002-07-11 Rolling bearing unit for wheel support with load measuring device

Publications (3)

Publication Number Publication Date
JP2004003918A JP2004003918A (en) 2004-01-08
JP2004003918A5 JP2004003918A5 (en) 2005-09-08
JP3952881B2 true JP3952881B2 (en) 2007-08-01

Family

ID=30446191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203071A Expired - Fee Related JP3952881B2 (en) 2002-03-28 2002-07-11 Rolling bearing unit for wheel support with load measuring device

Country Status (1)

Country Link
JP (1) JP3952881B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988640B2 (en) 2002-12-26 2007-10-10 株式会社ジェイテクト Hub unit with sensor
CN100394189C (en) 2003-02-07 2008-06-11 株式会社捷太格特 Rolling bearing unit with sensor
JP4844010B2 (en) * 2004-05-26 2011-12-21 日本精工株式会社 Rolling bearing unit with load measuring device
WO2005116602A1 (en) 2004-05-26 2005-12-08 Nsk Ltd. Rolling bearing unit with load measuring unit
JP5099245B2 (en) * 2004-05-26 2012-12-19 日本精工株式会社 Rolling bearing unit with load measuring device
JP2006057814A (en) 2004-08-24 2006-03-02 Ntn Corp Bearing device for wheel
JP4752483B2 (en) * 2004-12-15 2011-08-17 日本精工株式会社 Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP4899311B2 (en) * 2004-12-22 2012-03-21 日本精工株式会社 Rolling bearing unit with load measuring device
JP2006177834A (en) * 2004-12-24 2006-07-06 Jtekt Corp Rolling bearing unit having sensor
JP4821331B2 (en) * 2005-01-24 2011-11-24 日本精工株式会社 Displacement measuring device for rolling bearing unit and load measuring device for rolling bearing unit
WO2006100881A1 (en) * 2005-03-18 2006-09-28 Ntn Corporation Bearing for wheel with sensor
JP4525423B2 (en) * 2005-03-30 2010-08-18 株式会社ジェイテクト Rolling bearing device with sensor
JP4706306B2 (en) * 2005-04-04 2011-06-22 日本精工株式会社 Bearing unit with rotation detector
JP4946177B2 (en) * 2005-05-24 2012-06-06 日本精工株式会社 Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP4862440B2 (en) * 2005-10-11 2012-01-25 日本精工株式会社 Preload measuring device for double row rolling bearing unit
JP4894277B2 (en) * 2006-01-30 2012-03-14 日本精工株式会社 Load measuring device for rolling bearing units
JP4887816B2 (en) * 2006-02-13 2012-02-29 日本精工株式会社 Load measuring device for rolling bearing units
EP1995580A4 (en) * 2006-03-10 2011-10-05 Nsk Ltd Preload measuring device for double row rolling bearing unit
JP4840153B2 (en) * 2007-01-22 2011-12-21 株式会社ジェイテクト Rolling bearing device with sensor
JP4840083B2 (en) * 2006-11-01 2011-12-21 株式会社ジェイテクト Rolling bearing device with sensor
WO2008053933A1 (en) * 2006-11-01 2008-05-08 Jtekt Corporation Rolling bearing device with sensor
JP2008128812A (en) * 2006-11-21 2008-06-05 Jtekt Corp Roller bearing device equipped with sensor
US7501811B2 (en) 2007-03-26 2009-03-10 Nsk Ltd. Displacement measuring apparatus and load measuring apparatus of rotating member
JP4962126B2 (en) * 2007-05-01 2012-06-27 株式会社ジェイテクト Rolling bearing device with sensor
EP1988376B1 (en) 2007-05-01 2017-06-07 JTEKT Corporation Rolling bearing device with sensor
JP2008275508A (en) * 2007-05-01 2008-11-13 Jtekt Corp Rolling bearing device with sensor
JP2008275509A (en) * 2007-05-01 2008-11-13 Jtekt Corp Sensor-equipped roller bearing device
JP2010002195A (en) * 2008-06-18 2010-01-07 Jtekt Corp Rolling bearing device with sensor
JP2011043181A (en) * 2009-08-19 2011-03-03 Jtekt Corp Rolling bearing device for wheel
FR3047802B1 (en) * 2016-02-12 2018-03-23 Ntn-Snr Roulements METHOD FOR DETECTING A TANGENTIAL DISPLACEMENT OF A MECHANICAL ASSEMBLY COMPRISING A ROTATING ORGAN
JP6827231B2 (en) * 2016-02-12 2021-02-10 エヌティーツール株式会社 Smart tool holder
CN109990939A (en) * 2019-05-10 2019-07-09 南京工程学院 A kind of device of roller bolt stress in triangulation feed screw nut

Also Published As

Publication number Publication date
JP2004003918A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP3952881B2 (en) Rolling bearing unit for wheel support with load measuring device
JP3900031B2 (en) Rolling bearing unit for wheel support with load measuring device
JP4844010B2 (en) Rolling bearing unit with load measuring device
US7212927B2 (en) Load-measuring device for rolling bearing unit and rolling bearing unit for load measurement
US7270016B2 (en) Sensor-equipped rolling bearing unit
JPH08285879A (en) Rolling bearing unit with rotational speed detector
JP3843577B2 (en) Rolling bearing unit with load detection device
US7282907B2 (en) Antifriction bearing unit having a sensor and a resolver
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP2004084848A (en) Roller bearing device
JPH11118816A (en) Rolling bearing unit with rotating speed detector
JP4114438B2 (en) Rolling bearing device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2005016569A (en) Rolling bearing unit with encoder, and manufacturing method for the same
JP2004076752A (en) Rolling bearing device
JP2003294560A (en) Rotation detection device for wheel
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP2005180985A (en) Load measuring device for rolling bearing unit
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2005164253A (en) Load measuring instrument for rolling bearing unit
JP4622185B2 (en) Encoder and rolling bearing unit with encoder
JP3635700B2 (en) Rolling bearing unit with rotational speed detector
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP3530682B2 (en) Rotation detecting device and hub unit having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Ref document number: 3952881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees