JP5884567B2 - Air battery - Google Patents

Air battery Download PDF

Info

Publication number
JP5884567B2
JP5884567B2 JP2012052771A JP2012052771A JP5884567B2 JP 5884567 B2 JP5884567 B2 JP 5884567B2 JP 2012052771 A JP2012052771 A JP 2012052771A JP 2012052771 A JP2012052771 A JP 2012052771A JP 5884567 B2 JP5884567 B2 JP 5884567B2
Authority
JP
Japan
Prior art keywords
air
electrode layer
positive electrode
flow path
air battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012052771A
Other languages
Japanese (ja)
Other versions
JP2013187115A (en
Inventor
佳子 塚田
佳子 塚田
宮澤 篤史
篤史 宮澤
長山 森
森 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012052771A priority Critical patent/JP5884567B2/en
Priority to CN201380012924.7A priority patent/CN104170158B/en
Priority to PCT/JP2013/054282 priority patent/WO2013133029A1/en
Priority to US14/383,840 priority patent/US9780423B2/en
Priority to EP13757388.7A priority patent/EP2824755B1/en
Priority to TW102108065A priority patent/TWI478419B/en
Publication of JP2013187115A publication Critical patent/JP2013187115A/en
Application granted granted Critical
Publication of JP5884567B2 publication Critical patent/JP5884567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、酸素を正極活物質として利用する空気電池に関し、とくに、複数個を接続して組電池を構成するのに好適な空気電池に関するものである。   The present invention relates to an air battery that uses oxygen as a positive electrode active material, and more particularly to an air battery suitable for connecting a plurality of air batteries to form an assembled battery.

従来における空気電池としては、例えば、特許文献1に記載されたものがあった。特許文献1に記載の空気電池は、非水電解質層を正極及び負極で挟んで電極群を構成し、この電池群を正極及び負極の各端子とともに収容ケースに収容した構造である。両端子は、収容ケースから互いに相反する方向に突出している。また、空気電池は、収容ケースの正極側の壁部に複数の空気孔を有すると共に、これらの空気孔をシールテープで閉塞し、使用時には、シールテープを剥がすことで空気孔を開放して、正極に空気(酸素)を供給するようになっている。   As a conventional air battery, for example, there is one described in Patent Document 1. The air battery described in Patent Document 1 has a structure in which a nonaqueous electrolyte layer is sandwiched between a positive electrode and a negative electrode to form an electrode group, and this battery group is housed in a housing case together with the positive electrode and negative electrode terminals. Both terminals protrude from the housing case in opposite directions. In addition, the air battery has a plurality of air holes on the positive wall of the housing case, closes these air holes with a seal tape, and when used, opens the air holes by peeling off the seal tape, Air (oxygen) is supplied to the positive electrode.

特許第3735518号公報Japanese Patent No. 3735518

ところで、近年では、自動車等の車両の電源又は補助電源として使用する空気電池の研究開発が進められている。車載用の空気電池は、車両に要求される出力及び容量や、狭いスペースへの搭載性などを考慮すると、構造を簡単にして薄型にし、複数個を直列に接続して組電池を構成し得るものにする必要がある。ところが、上記したような従来の空気電池は、互いに直接接続することができない構造であるから、車載用の電源に適用することは実質的に不可能であった。   By the way, in recent years, research and development of an air battery used as a power source or auxiliary power source of a vehicle such as an automobile has been advanced. An in-vehicle air battery can be configured to be simple and thin, and a plurality of batteries can be connected in series in consideration of the output and capacity required for vehicles, mountability in a narrow space, and the like. It needs to be a thing. However, since the conventional air batteries as described above cannot be directly connected to each other, it is practically impossible to apply to a vehicle-mounted power source.

また、この種の空気電池では、正極層を薄い通気性材料で形成するので、金属製の負極層に比べて正極層の機械的強度が低く、しかも、使用開始後には、発熱や酸化物の生成に伴って電解液が膨張し、正極層が外側に撓むことがある。このため、とくに薄型化を図る空気電池では、空気流路の断面積が減少して、出力の低下が生じることがあるという問題点があり、このような問題点を解決することが課題であった。   In addition, in this type of air battery, the positive electrode layer is formed of a thin air-permeable material, so that the mechanical strength of the positive electrode layer is lower than that of a metal negative electrode layer, and heat generation and oxide The electrolyte may expand with the generation, and the positive electrode layer may bend outward. For this reason, particularly in an air battery to be thinned, there is a problem in that the cross-sectional area of the air flow path is reduced and the output may be reduced, and it is a problem to solve such a problem. It was.

本発明は、上記従来の課題に着目して成されたもので、とくに積層時において正極層に対する空気流路の断面積を充分に確保することができ、車載用として好適な薄型の空気電池を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems. In particular, a thin air battery suitable for use in a vehicle can be obtained because the cross-sectional area of the air flow path with respect to the positive electrode layer can be sufficiently secured during lamination. It is intended to provide.

本発明の空気電池は、電解質層を間にして正極層及び負極層を備えている。そして、空気電池は、正極層側及び負極層側の少なくとも一方側に、複数の空気電池を積層した際に隣接する空気電池との間に空気流路を形成する凸部を備えており、前記凸部は、正極層が外側に撓んだ状態でも前記空気流路の断面積を確保する突出高さを有している構成としており、上記構成をもって従来の課題を解決するための手段としている。上記構成の場合、凸部は、空気流路の確保や積層時の安定性を考慮すると、空気電池同士の間に対して、少なくとも二箇所以上に設けることがより望ましく、また、発電効率を考慮すると、正極層の表面を避けて配置するのがより望ましい。 The air battery of the present invention includes a positive electrode layer and a negative electrode layer with an electrolyte layer interposed therebetween. The air battery includes a convex portion that forms an air flow path between adjacent air cells when a plurality of air batteries are stacked on at least one side of the positive electrode layer side and the negative electrode layer side , The convex portion has a protruding height that secures the cross-sectional area of the air flow path even when the positive electrode layer is bent outward, and the above configuration is a means for solving the conventional problems. . In the case of the above configuration, it is more desirable that the convex portions are provided at least at two or more locations between the air cells in consideration of securing the air flow path and stability at the time of stacking, and considering the power generation efficiency. Then, it is more desirable to arrange the positive electrode layer so as to avoid the surface.

本発明の空気電池によれば、上記構成を採用したことから、とくに積層時において正極層に対する空気流路の断面積を充分に確保することができる。これにより、断面積の減少による出力低下を防止することができると共に、車載用として好適な薄型化に貢献することができる。   According to the air battery of the present invention, since the above-described configuration is adopted, a sufficient cross-sectional area of the air flow path with respect to the positive electrode layer can be ensured particularly during lamination. Thereby, while being able to prevent the output fall by the reduction | decrease of a cross-sectional area, it can contribute to thickness reduction suitable for vehicle-mounted use.

本発明の空気電池の一実施形態を説明する平面図(A)及び側面図(B)である。It is the top view (A) and side view (B) explaining one Embodiment of the air battery of this invention. 図1に示す空気電池の断面図である。It is sectional drawing of the air battery shown in FIG. 図1に示す空気電池を分解した状態で説明する断面図である。It is sectional drawing demonstrated in the state which decomposed | disassembled the air battery shown in FIG. 図1に示す空気電池を積層した組電池を説明する断面図である。It is sectional drawing explaining the assembled battery which laminated | stacked the air battery shown in FIG. 本発明の空気電池の他の実施形態を説明する側面図である。It is a side view explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する側面図である。It is a side view explaining other embodiment of the air battery of this invention. 図6に示す空気電池を積層した組電池を説明する側面図である。It is a side view explaining the assembled battery which laminated | stacked the air battery shown in FIG. 流路形成部材のさらに他の例を示す各々側面図(A)〜(E)である。It is each side view (A)-(E) which shows the other example of a flow-path formation member. 本発明の空気電池のさらに他の実施形態を説明する平面図(A)及び側面図(B)である。It is the top view (A) and side view (B) explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する平面図(A)及び側面図(B)である。It is the top view (A) and side view (B) explaining other embodiment of the air battery of this invention.

以下、図面に基づいて、本発明の空気電池の実施形態を説明する。
図1及び図2に示す空気電池A1は、矩形板状を成すものであって、電解質層3を間にして正極層1及び負極層2を備えている。そして、空気電池A1は、基本構成として、絵正極層1側及び負極層2側の少なくとも一方側に、複数の空気電池A1を積層した際に隣接する空気電池A1との間に空気流路Fを形成する凸部5を備えている。
Hereinafter, embodiments of an air battery of the present invention will be described based on the drawings.
An air battery A1 shown in FIGS. 1 and 2 has a rectangular plate shape, and includes a positive electrode layer 1 and a negative electrode layer 2 with an electrolyte layer 3 interposed therebetween. The air battery A1 has, as a basic configuration, an air flow path F between the adjacent air batteries A1 when a plurality of air batteries A1 are stacked on at least one side of the picture positive electrode layer 1 side and the negative electrode layer 2 side. The convex part 5 which forms is provided.

図示例の空気電池A1は、正極層1側に凸部5を備えている。また、空気電池A1は、電気絶縁性を有し且つ正極層1及び負極層2の外周を包囲する外枠部材4を備えており、この外枠部材4に、前記凸部5が設けてある。   The air battery A1 in the illustrated example includes a convex portion 5 on the positive electrode layer 1 side. In addition, the air battery A1 includes an outer frame member 4 that has electrical insulation and surrounds the outer periphery of the positive electrode layer 1 and the negative electrode layer 2, and the outer frame member 4 is provided with the convex portion 5. .

正極層1は、図3に示すように、ガス拡散層を含む触媒層11と、正極表面(図中で電池上面)に配置した撥水層12と、金属メッシュ等から成る正極集電層13を備えている。触媒層11は、導電性多孔質材料で形成してあり、例えば、カーボン材料とバインダー樹脂とで形成した導電性多孔体の内部に、二酸化マンガンなどの触媒を担持させたものである。   As shown in FIG. 3, the positive electrode layer 1 includes a catalyst layer 11 including a gas diffusion layer, a water repellent layer 12 disposed on the positive electrode surface (battery upper surface in the figure), and a positive electrode current collecting layer 13 made of a metal mesh or the like. It has. The catalyst layer 11 is formed of a conductive porous material. For example, a catalyst such as manganese dioxide is supported inside a conductive porous body formed of a carbon material and a binder resin.

撥水層12は、電解液に対して液密性を有し、且つ酸素に対して通気性を有する部材である。この撥水層12は、電解液が外部へ漏出するのを阻止し得るように、フッ素樹脂などの撥水膜を用いており、一方、触媒層11に酸素を供給し得るように多数の微細孔を有している。また、撥水層12には、導電性材料を用いることができ、これにより、組電池Cにおいて、配線類を使用せずに直接的な電気接続が可能になる。   The water repellent layer 12 is a member having liquid tightness with respect to the electrolytic solution and air permeability with respect to oxygen. The water repellent layer 12 uses a water repellent film such as a fluororesin so as to prevent the electrolyte from leaking to the outside. On the other hand, a large number of fine water repellent layers 12 can supply oxygen to the catalyst layer 11. It has a hole. In addition, a conductive material can be used for the water repellent layer 12, thereby enabling direct electrical connection in the assembled battery C without using wirings.

負極層2は、同じく図3に示すように、負極金属層21と、負極表面(図中で電池下面)に配置した負極集電層22を備えている。負極金属層21は、リチウム(Li)、アルミニウム(Al)、鉄(Fe)、亜鉛(Zn)、及びマグネシウム(Mg)等の純金属、もしくは合金などの材料から成るものである。   Similarly, as shown in FIG. 3, the negative electrode layer 2 includes a negative electrode metal layer 21 and a negative electrode current collecting layer 22 disposed on the negative electrode surface (battery lower surface in the drawing). The negative electrode metal layer 21 is made of a pure metal such as lithium (Li), aluminum (Al), iron (Fe), zinc (Zn), and magnesium (Mg), or a material such as an alloy.

負極集電層22は、電解液が外部に漏出するのを阻止し得る材質から成る導電部材であって、例えば、ステンレス、及び銅(合金)や、金属材料の表面に耐食性を有する金属をメッキしたものなどである。この負極集電層22は、より好ましくは、負極金属層21よりも耐電解液性の高い材料から成るものである。   The negative electrode current collecting layer 22 is a conductive member made of a material that can prevent the electrolyte from leaking to the outside. For example, stainless steel, copper (alloy), or a metal having a corrosion resistance is plated on the surface of the metal material. Etc. More preferably, the negative electrode current collecting layer 22 is made of a material having higher electrolytic solution resistance than the negative electrode metal layer 21.

電解質層3は、水酸化カリウム(KOH)や塩化物を主成分とした水溶液(電解液)もしくは非水溶液をセパレータ内に含浸させたものであり、その水溶液や非水溶液を貯留させるために、セパレータには微細な孔が所定の割合で形成されている。なお、電解質層3そのものを、固体あるいはゲル状の電解質としても良い。   The electrolyte layer 3 is obtained by impregnating a separator with an aqueous solution (electrolytic solution) or non-aqueous solution containing potassium hydroxide (KOH) or chloride as a main component, and in order to store the aqueous solution or non-aqueous solution, the separator Have fine holes formed at a predetermined ratio. The electrolyte layer 3 itself may be a solid or gel electrolyte.

外枠部材4は、矩形枠状を成し、ポリプロピレン(PP)やエンジニアリングプラスチックなどの耐電解液性を有する樹脂製であることが好ましく、これにより軽量化も図ることができる。また、外枠部材4は、機械的強度を持たせるために、樹脂をカーボン繊維やガラス繊維などの強化繊維によって複合化した繊維強化プラスチック(FRP)を使用することもできる。   The outer frame member 4 preferably has a rectangular frame shape and is preferably made of a resin having an electrolytic solution resistance such as polypropylene (PP) or engineering plastic, which can also reduce the weight. The outer frame member 4 can also be made of fiber reinforced plastic (FRP) in which a resin is compounded with reinforcing fibers such as carbon fibers and glass fibers in order to give mechanical strength.

さらに、外枠部材4は、上記したように樹脂製である場合、例えば射出形成によって凸部5を一体成形することができる。さらに、外枠部材4は、上記の如く矩形枠状である場合には、少なくとも対向する二辺に凸部5を備えており、この実施形態では、対向する二つの短辺に、その長さ方向にわたる凸部5,5を備えている。これにより、図4に示すように空気電池A1を複数個積層して組電池Cを構成した際に、正極層1の表面側に隙間を形成してこれを空気流路Fとし、図1中の矢印で示す面内方向(面に沿う方向)に空気を流通させる。したがって、上記の凸部5は、正極層に対する空気の流通方向に沿って設けてある。   Furthermore, when the outer frame member 4 is made of resin as described above, the convex portion 5 can be integrally formed by, for example, injection molding. Further, when the outer frame member 4 has a rectangular frame shape as described above, the outer frame member 4 is provided with convex portions 5 on at least two opposite sides, and in this embodiment, the length is provided on two opposite short sides. Protrusions 5 and 5 extending in the direction are provided. As a result, when a plurality of air batteries A1 are stacked to form a battery pack C as shown in FIG. 4, a gap is formed on the surface side of the positive electrode layer 1 to form an air flow path F. In FIG. The air is circulated in the in-plane direction (direction along the surface) indicated by the arrow. Therefore, the convex portion 5 is provided along the air flow direction with respect to the positive electrode layer.

なお、外枠部材4には、電解質層3に対して、バルブ類を備えた電解液の注入部を設けることも可能である。これにより、空気電池A1は注液式電池となる。   The outer frame member 4 may be provided with an electrolyte solution injection portion including valves for the electrolyte layer 3. Thereby, air battery A1 turns into a pouring type battery.

上記構成を備えた空気電池A1は、図4に示すように、複数個を積層して組電池Cを構成する。このとき、空気電池A1は、凸部5により、上段に隣接する空気電池A1との間に、正極層1に対する空気流路Fを形成する。   As shown in FIG. 4, the air battery A <b> 1 having the above configuration forms a battery pack C by stacking a plurality of air batteries. At this time, the air battery A <b> 1 forms an air flow path F with respect to the positive electrode layer 1 between the air battery A <b> 1 adjacent to the upper stage by the convex portion 5.

上記の空気電池A1並びに組電池Cは、使用開始後には、発熱や酸化物の生成に伴って電解質層3の電解液が膨張し、正極層1が外側に撓むことがあるが、凸部5によって空気流路Fの断面積を充分に確保することができる。これにより、空気電池A1は、断面積の減少による出力低下を防止し得ると共に、車載用として好適な薄型化に貢献することができる。また、上記の空気電池A1は、構造が極めて簡単であって、これによっても薄型化を実現していると共に、配線類を一切用いずに直接的に直列接続することが可能である。したがって、車載用として非常に好適である。   In the air battery A1 and the assembled battery C, the electrolyte solution of the electrolyte layer 3 expands with the generation of heat and oxide after the start of use, and the positive electrode layer 1 may be bent outward. 5 can secure a sufficient cross-sectional area of the air flow path F. As a result, the air battery A1 can prevent a decrease in output due to a decrease in cross-sectional area, and can contribute to a reduction in thickness suitable for in-vehicle use. In addition, the air battery A1 has a very simple structure, which realizes a reduction in thickness and can be directly connected in series without using any wiring. Therefore, it is very suitable for in-vehicle use.

さらに、上記の空気電池A1は、外枠部材4を備えると共に、この外枠部材4に凸部5を設けたことから、正極層1や負極層2で構成される反応エリアの面積を減少させずに空気流路Fを確保することができる。   Further, the air battery A1 includes the outer frame member 4 and the convex portion 5 provided on the outer frame member 4, thereby reducing the area of the reaction area formed by the positive electrode layer 1 and the negative electrode layer 2. The air flow path F can be ensured.

さらに、上記の空気電池A1は、凸部5を外枠部材4に一体成形したので、部品点数の節減を実現すると共に、シール性の低下をもたらす継目を解消することができ、生産性にも優れたものとなる。   Further, since the air battery A1 has the convex portion 5 formed integrally with the outer frame member 4, it is possible to reduce the number of parts and eliminate a seam that causes a decrease in sealing performance, and to improve productivity. It will be excellent.

さらに、上記の空気電池A1は、正極層1に対する空気の流通方向に沿って凸部5を設けたので、空気流通の圧損を増大させる心配がなく、低圧損を維持することで空気流路Fの高さを小さく抑えることができ、さらなる薄型化を図ることができる。   Further, since the air cell A1 is provided with the convex portion 5 along the air flow direction with respect to the positive electrode layer 1, there is no fear of increasing the air flow pressure loss, and the air flow path F can be maintained by maintaining the low pressure loss. Can be kept small, and further thinning can be achieved.

さらに、上記の空気電池A1は、矩形枠状の外枠部材4において、少なくとも対向する二辺に凸部5,5を設けたので、方向性がある空気流路Fを形成し得ると共に、積層した際の安定性を確保することができる。   Further, the air cell A1 has the rectangular frame-shaped outer frame member 4 provided with the projections 5 and 5 on at least two opposite sides, so that the directional air flow path F can be formed and laminated. It is possible to ensure stability when

なお、上記実施形態では、外枠部材4の正極層1側に凸部5を設けた構成を例示したが、それ以外の箇所に凸部を設けることができ、負極層2側や正極両方側に設けることも可能である。この際、発電効率などを考慮すると、正極層1の表面を避けて配置するのがより望ましく、空気流路Fの確保や積層時の安定性を考慮すると、空気電池A1同士の間に対して、少なくとも二箇所以上に設けることがより望ましい。   In the above-described embodiment, the configuration in which the convex portion 5 is provided on the positive electrode layer 1 side of the outer frame member 4 is exemplified, but the convex portion can be provided in other locations, and the negative electrode layer 2 side and both positive electrode sides can be provided. It is also possible to provide it. At this time, in consideration of power generation efficiency and the like, it is more desirable to dispose the surface of the positive electrode layer 1, and in consideration of securing the air flow path F and stability at the time of stacking, between the air cells A <b> 1. It is more desirable to provide at least two places.

図5に示す空気電池A1は、正極層1側において、外枠部材4の二つの短辺に沿って凸部5,5が設けてあると共に、二つの長辺の中間部にも凸部5が設けてある。この空気電池A1にあっても、先の実施形態と同様の効果を得ることができると共に、とくに大面積化を図った場合に、撓みを防止するとともに積層時の安定性が向上して、空気流路Fの断面積を充分に確保することができる。   The air battery A1 shown in FIG. 5 is provided with convex portions 5 and 5 along the two short sides of the outer frame member 4 on the positive electrode layer 1 side, and also at the intermediate portion between the two long sides. Is provided. Even in this air battery A1, the same effects as those of the previous embodiment can be obtained, and particularly when the area is increased, bending is prevented and stability at the time of stacking is improved. A sufficient cross-sectional area of the flow path F can be secured.

図6に示す空気電池A1は、正極層1及び負極層2の少なくとも一方が、複数の空気電池A1を積層した際に隣接する空気電池A1との間に介在し且つ厚さ方向の弾性変形機能を有する流路形成部材6を備えている。この実施形態の空気電池A1では、正極層1に流路形成部材6が設けてある。流路形成部材6は、金属製又は樹脂製であると共に、断面波形状を成しており、電解質層3の膨張に対応した厚さ方向の弾性変形機能を有する。   The air battery A1 shown in FIG. 6 has an elastic deformation function in the thickness direction in which at least one of the positive electrode layer 1 and the negative electrode layer 2 is interposed between adjacent air batteries A1 when a plurality of air batteries A1 are stacked. The flow path forming member 6 having In the air battery A <b> 1 of this embodiment, the flow path forming member 6 is provided in the positive electrode layer 1. The flow path forming member 6 is made of metal or resin, has a cross-sectional wave shape, and has an elastic deformation function in the thickness direction corresponding to the expansion of the electrolyte layer 3.

また、空気電池A1は、凸部5が、流路形成部材6の厚さよりも小さい突出高さを有していて、自然状態では、図6中に示す如く流路形成部材6が凸部5との差S分だけ高くなっている。この実施形態の場合、空気流路Fは、波形状を成す流路形成部材6の下側の谷部である。   Further, in the air battery A1, the convex portion 5 has a protruding height smaller than the thickness of the flow path forming member 6, and in the natural state, the flow path forming member 6 has the convex portion 5 as shown in FIG. The difference is higher by S. In this embodiment, the air flow path F is a trough on the lower side of the flow path forming member 6 having a wave shape.

上記の空気電池A1は、図7に示すように複数個を積層して組電池Cを構成し、先の実施形態と同様に、凸部5によって空気流路Fの断面積を充分に確保することができる。また、上記の空気電池A1は、積層時に流路形成部材6が厚さ方向に圧縮変形した状態となり、発熱や酸化物の生成に伴って電解質層3の電解液が膨張しても、流路形成部材6が正極層1をフラットに押さえて電解質層3の変位量を平準化し、空気流路Fを維持する。   As shown in FIG. 7, the air battery A1 is formed by stacking a plurality of batteries to form the assembled battery C, and as in the previous embodiment, the convex portion 5 ensures a sufficient cross-sectional area of the air flow path F. be able to. In the air battery A1, the flow path forming member 6 is compressed and deformed in the thickness direction at the time of stacking, and the flow path even if the electrolyte solution of the electrolyte layer 3 expands due to heat generation or oxide generation. The forming member 6 holds the positive electrode layer 1 flat to level the displacement amount of the electrolyte layer 3 and maintains the air flow path F.

図8は、本発明に係る空気電池に使用可能な流路形成部材のさらに他の実施形態を説明する図である。   FIG. 8 is a view for explaining still another embodiment of the flow path forming member that can be used in the air battery according to the present invention.

図8(A)に示す流路形成部材16は、線状素材を不織布状に形成したものであり、厚さ方向の弾性変形機能を有している。図8(B)に示す流路形成部材26は、面ファスナーのフック側部材に相当するものであって、シート26Aに多数の弾性フック26Bを備えており、厚さ方向の弾性変形機能を有している。この流路形成部材26は、弾性フック26Bを正極層1に接触させる。なお、面ファスナーのループ側部材に対応した構造にすることもできる。   A flow path forming member 16 shown in FIG. 8A is formed by forming a linear material into a nonwoven fabric and has an elastic deformation function in the thickness direction. A flow path forming member 26 shown in FIG. 8B corresponds to a hook-side member of a hook-and-loop fastener, and includes a large number of elastic hooks 26B on a sheet 26A and has an elastic deformation function in the thickness direction. doing. The flow path forming member 26 brings the elastic hook 26 </ b> B into contact with the positive electrode layer 1. In addition, it can also be set as the structure corresponding to the loop side member of a hook_and_loop | surface fastener.

図8(C)に示す流路形成部材36は、シート36Aに、片持ち梁形の弾性突起36Bを備えており、厚さ方向の弾性変形機能を有している。この流路形成部材36は、弾性突起36Bを正極層1に接触させる。また、弾性突起36Bは、舌片状にして縦横に配置したり、図示の断面が連続する長尺片状にして並列に配置したりすることができる。   A flow path forming member 36 shown in FIG. 8C includes a cantilever-shaped elastic protrusion 36B on a sheet 36A, and has an elastic deformation function in the thickness direction. The flow path forming member 36 brings the elastic protrusion 36 </ b> B into contact with the positive electrode layer 1. Further, the elastic protrusions 36B can be formed in a tongue-like shape and arranged vertically or horizontally, or in the form of a long piece having a continuous cross section as shown in the figure.

図8(D)に示す流路形成部材46は、断面波形状を成して厚さ方向の弾性変形機能を有すると共に、多数の孔を形成したものである。図8(E)に示す流路形成部材56は、メッシュ素材を断面波形状に成形したものであり、厚さ方向の弾性変形機能を有している。   The flow path forming member 46 shown in FIG. 8 (D) has a cross-sectional wave shape, has an elastic deformation function in the thickness direction, and has a large number of holes. A flow path forming member 56 shown in FIG. 8E is formed by forming a mesh material into a cross-sectional wave shape, and has an elastic deformation function in the thickness direction.

流路形成部材は、図8(A)〜(E)7に示す如く様々な形状にすることができ、いずれの場合も空気流路Fの所定の断面積を確保して、空気電池A1の出力低下を防止する。また、流路形成部材は、導電性金属、若しくは導電性金属を被覆した樹脂で形成することができる。この場合、流路形成部材は、空気電池A1同士を電気的に接続するコネクタとしても機能し、電解質層3の膨張に伴って、正極層1をフラットに押さえて電解質層3の変位量を平準化し、空気流路Fを維持すると同時に、部品同士の面圧を高める。これにより、流路形成部材は、酸化物生成による内部抵抗の増加を、接触抵抗の低減で相殺することができ、空気電池A1の安定した発電(放電)に貢献する。   The flow path forming member can have various shapes as shown in FIGS. 8 (A) to (E) 7. In any case, a predetermined cross-sectional area of the air flow path F is ensured, and the air cell A 1. Prevent output drop. The flow path forming member can be formed of a conductive metal or a resin coated with a conductive metal. In this case, the flow path forming member also functions as a connector for electrically connecting the air cells A1 to each other, and as the electrolyte layer 3 expands, the positive electrode layer 1 is held flat and the displacement amount of the electrolyte layer 3 is leveled. To maintain the air flow path F and at the same time increase the surface pressure between components. Thereby, the flow path forming member can offset the increase in internal resistance due to oxide generation by reducing the contact resistance, and contributes to stable power generation (discharge) of the air battery A1.

また、図7中の(A)及び(D)に示す流路形成部材16,46は、通気性を有するものであるから、空気流路Fの断面積がより大きく得られ、高出力化に貢献し得ると共に、さらなる軽量化も実現する。なお、図7中の(B)及び(C)に示す流路形成部材26及び36にあっても、シート26A,36Aに多数の孔を形成することで、通気性をもたせることができる。   Further, since the flow path forming members 16 and 46 shown in FIGS. 7A and 7D have air permeability, a larger cross-sectional area of the air flow path F can be obtained, and high output can be achieved. It can contribute and realize further weight reduction. Even in the flow path forming members 26 and 36 shown in FIGS. 7B and 7C, air permeability can be provided by forming a large number of holes in the sheets 26A and 36A.

図9に示す空気電池A1は、正極層1や負極層2で構成される二つの反応エリアを並列に配置したものである。この場合、外枠部材4は、両反応エリアを区画する中央桟部4Aを短辺と平行に有している。そして、外枠部材4は、両側の短辺及び中央桟部4Aに、複数の空気電池A1を積層した際に隣接する空気電池A1との間に空気流路Fを形成する凸部5を備えている。   The air battery A1 shown in FIG. 9 has two reaction areas composed of a positive electrode layer 1 and a negative electrode layer 2 arranged in parallel. In this case, the outer frame member 4 has a central crosspiece 4A that divides both reaction areas in parallel with the short side. And the outer frame member 4 is provided with the convex part 5 which forms the air flow path F between air cells A1 adjacent when the several air battery A1 is laminated | stacked on the short side of both sides, and the center crosspiece part 4A. ing.

図10に示す空気電池A2は、円板形状を成している。この場合、外枠部材14は、同じくリング状であって、図示例の場合は、正極層1側において90度間隔で四個の凸部15を備えている。   Air battery A2 shown in FIG. 10 has a disk shape. In this case, the outer frame member 14 is also ring-shaped, and in the case of the illustrated example, the outer frame member 14 includes four convex portions 15 at intervals of 90 degrees on the positive electrode layer 1 side.

図9及び図10に示す空気電池A1,A2にあっても、複数個積層して組電池Cを構成し、先の実施形態と同様に構造が簡単であると共に、凸部5,15によって空気流路Fの断面積を充分に確保することができる。これにより、空気電池A1,A2は、断面積の減少による出力低下を防止し得ると共に、車載用として好適な薄型化に貢献することができる。   Even in the air batteries A1 and A2 shown in FIGS. 9 and 10, the assembled battery C is formed by stacking a plurality of pieces, and the structure is simple as in the previous embodiment. A sufficient cross-sectional area of the flow path F can be secured. Thereby, air battery A1, A2 can contribute to the thickness reduction suitable for vehicle-mounted use while being able to prevent the output fall by reduction of a cross-sectional area.

本発明に係る空気電池及び組電池は、その構成が上記の各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することができる。   The configuration of the air battery and the assembled battery according to the present invention is not limited to the above-described embodiments, and details of the configuration can be changed as appropriate without departing from the gist of the present invention.

A1 A2 空気電池
C 組電池
F 空気流路
1 正極層
2 負極層
3 電解質層
4 14 外枠部材
5 15 凸部
6 流路形成部材
16,26,36,46,56…流路形成部材
A1 A2 Air battery C Assembly battery F Air flow path 1 Positive electrode layer 2 Negative electrode layer 3 Electrolyte layer 4 14 Outer frame member 5 15 Protrusion part 6 Flow path formation member 16, 26, 36, 46, 56 ... Flow path formation member

Claims (7)

電解質層を間にして正極層及び負極層を備えると共に、
正極層側及び負極層側の少なくとも一方側に、複数の空気電池を積層した際に隣接する空気電池との間に空気流路を形成する凸部を備えており、
前記凸部は、正極層が外側に撓んだ状態でも前記空気流路の断面積を確保する突出高さを有していることを特徴とする空気電池。
While having a positive electrode layer and a negative electrode layer with an electrolyte layer in between,
On at least one side of the positive electrode layer side and the negative electrode layer side, provided with a convex portion that forms an air flow path between adjacent air cells when a plurality of air cells are stacked ,
The air battery according to claim 1, wherein the protrusion has a protruding height that ensures a cross-sectional area of the air flow path even when the positive electrode layer is bent outward .
電気絶縁性を有し且つ正極層及び負極層の外周を包囲する外枠部材を備え、
外枠部材に、前記凸部を設けたことを特徴とする請求項1に記載の空気電池。
An outer frame member having electrical insulation and surrounding the outer periphery of the positive electrode layer and the negative electrode layer;
The air battery according to claim 1, wherein the convex portion is provided on an outer frame member.
前記凸部が、外枠部材に一体成形してあることを特徴とする請求項2に記載の空気電池。   The air battery according to claim 2, wherein the convex portion is integrally formed with the outer frame member. 前記凸部が、正極層に対する空気の流通方向に沿って設けてあることを特徴とする請求項1〜3のいずれか1項に記載の空気電池。   The air battery according to any one of claims 1 to 3, wherein the convex portion is provided along a flow direction of air with respect to the positive electrode layer. 前記外枠部材が、矩形枠状であって、
前記凸部が、外枠部材の少なくとも対向する二辺に設けてあることを特徴とする請求項2に記載の空気電池。
The outer frame member has a rectangular frame shape,
The air battery according to claim 2 , wherein the convex portions are provided on at least two opposite sides of the outer frame member.
正極層及び負極層の少なくとも一方が、複数の空気電池を積層した際に隣接する空気電池との間に介在し且つ厚さ方向の弾性変形機能を有する流路形成部材を備え、
前記凸部が、流路形成部材の厚さよりも小さい突出高さであることを特徴とする請求項1〜4のいずれか1項に記載の空気電池。
At least one of the positive electrode layer and the negative electrode layer is provided with a flow path forming member that is interposed between adjacent air cells when a plurality of air cells are stacked and has an elastic deformation function in the thickness direction,
The air battery according to any one of claims 1 to 4, wherein the convex portion has a protrusion height smaller than a thickness of the flow path forming member.
請求項1〜6のいずれか1項に記載の空気電池を複数個積層して成ることを特徴とする組電池。   A battery pack comprising a plurality of the air batteries according to any one of claims 1 to 6 stacked together.
JP2012052771A 2012-03-09 2012-03-09 Air battery Active JP5884567B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012052771A JP5884567B2 (en) 2012-03-09 2012-03-09 Air battery
CN201380012924.7A CN104170158B (en) 2012-03-09 2013-02-21 Air cell
PCT/JP2013/054282 WO2013133029A1 (en) 2012-03-09 2013-02-21 Air cell
US14/383,840 US9780423B2 (en) 2012-03-09 2013-02-21 Air battery
EP13757388.7A EP2824755B1 (en) 2012-03-09 2013-02-21 Air battery
TW102108065A TWI478419B (en) 2012-03-09 2013-03-07 Air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052771A JP5884567B2 (en) 2012-03-09 2012-03-09 Air battery

Publications (2)

Publication Number Publication Date
JP2013187115A JP2013187115A (en) 2013-09-19
JP5884567B2 true JP5884567B2 (en) 2016-03-15

Family

ID=49388376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052771A Active JP5884567B2 (en) 2012-03-09 2012-03-09 Air battery

Country Status (1)

Country Link
JP (1) JP5884567B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206714B2 (en) * 2013-10-01 2017-10-04 日産自動車株式会社 Metal air battery
EP3220468A4 (en) * 2014-11-13 2018-08-01 NGK Insulators, Ltd. Secondary battery using hydroxide ion-conductive ceramic separator
JP6180063B2 (en) * 2015-03-19 2017-08-16 日本碍子株式会社 Battery and its assembly method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2125954A1 (en) * 1991-12-16 1993-06-24 Glenn Woodruff Merry Collapsing foam anode backing for zinc-air battery
US7618739B2 (en) * 2007-04-11 2009-11-17 Eveready Battery Co., Inc. Battery and fluid regulating system having chassis with molded electronics
JP5721329B2 (en) * 2010-01-18 2015-05-20 住友化学株式会社 Air battery, air battery stack

Also Published As

Publication number Publication date
JP2013187115A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
WO2013133029A1 (en) Air cell
JP5850403B2 (en) Air battery
JP6070239B2 (en) Air battery
KR101150247B1 (en) Battery module having flexibility in designing structure of module and battery pack employed with the same
JP5397436B2 (en) Secondary battery
CN101834305A (en) Rechargeable battery
JP6332777B2 (en) Battery and device provided with the battery
JP2018530879A (en) Battery module, battery pack including the same, and automobile
JP2018028977A (en) Bipolar battery
JP2019514186A (en) Multi-cavity battery module
JP2019114423A (en) Battery pack
WO2019031457A1 (en) Electricity storage module and electricity storage element
CN105849940A (en) Rectangular secondary battery
JP5884567B2 (en) Air battery
JP5975854B2 (en) Prismatic secondary battery
JP2015159068A (en) Battery module and battery cell
US20230246313A1 (en) Secondary battery
JP2018056017A (en) Power storage element
JP2014212032A (en) Battery pack
JP2019125564A (en) Power storage module
JP6344028B2 (en) Air battery stack
CN108701867B (en) Laminated nonaqueous electrolyte secondary battery
KR101890014B1 (en) Electrode lead and battery module for high capacity comprising the same
CN221596532U (en) Battery monomer, battery and power consumption device
US20240097179A1 (en) Energy storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R151 Written notification of patent or utility model registration

Ref document number: 5884567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151