JP5877804B2 - Magnetic layer of building member and method for manufacturing magnetic layer of building member - Google Patents
Magnetic layer of building member and method for manufacturing magnetic layer of building member Download PDFInfo
- Publication number
- JP5877804B2 JP5877804B2 JP2013016476A JP2013016476A JP5877804B2 JP 5877804 B2 JP5877804 B2 JP 5877804B2 JP 2013016476 A JP2013016476 A JP 2013016476A JP 2013016476 A JP2013016476 A JP 2013016476A JP 5877804 B2 JP5877804 B2 JP 5877804B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layer
- powder
- building member
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 230000004888 barrier function Effects 0.000 claims description 77
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 68
- 238000000576 coating method Methods 0.000 claims description 65
- 239000011248 coating agent Substances 0.000 claims description 64
- 239000000843 powder Substances 0.000 claims description 63
- 239000006247 magnetic powder Substances 0.000 claims description 58
- 239000003973 paint Substances 0.000 claims description 53
- 239000011230 binding agent Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 20
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 17
- 229910001047 Hard ferrite Inorganic materials 0.000 claims description 16
- 229910001035 Soft ferrite Inorganic materials 0.000 claims description 12
- 229910000859 α-Fe Inorganic materials 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 230000005389 magnetism Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 144
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 26
- 239000002245 particle Substances 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000004576 sand Substances 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 241000221535 Pucciniales Species 0.000 description 3
- 238000007872 degassing Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- WJZHMLNIAZSFDO-UHFFFAOYSA-N manganese zinc Chemical compound [Mn].[Zn] WJZHMLNIAZSFDO-UHFFFAOYSA-N 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 2
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 244000137852 Petrea volubilis Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005002 finish coating Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004347 surface barrier Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Finishing Walls (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Description
本発明は、既存の壁や柱、戸、ボード、及びパーテーション等の建装部材の表面に、永久磁石が磁気吸着可能な磁性層を塗装によって形成するものであって、詳しくは、磁気吸着力(磁着力)を確保しつつ錆の発生を抑えた建装部材の磁性層に関するものである。 In the present invention, a magnetic layer capable of magnetically attracting a permanent magnet is formed on a surface of a building member such as an existing wall, pillar, door, board, or partition by coating. The present invention relates to a magnetic layer of a building member that suppresses generation of rust while ensuring (magnetic adhesion).
鉄粉を混ぜ込んだ塗料を壁面や板に数回塗布して、磁石が吸着する面を形成し(特許文献1)、或は鉄粉を混ぜ込む樹脂を接着剤とした提案(特許文献2)等が古くから数多くあった。
しかし、単に鉄粉等の磁性粉を混ぜ込むだけであり、同一塗料を数回塗布するのみで、その後も今日に至るまで技術的な進歩は無かった。
A paint mixed with iron powder is applied to a wall or a plate several times to form a surface on which a magnet is adsorbed (Patent Document 1), or a resin mixed with iron powder is used as an adhesive (Patent Document 2) ) Etc. have been many since ancient times.
However, magnetic powder such as iron powder is simply mixed, and the same paint is applied several times, and there has been no technical progress until today.
特許文献3は、平均粒径が10〜60μm(ミクロン)の還元鉄粉を塗料に混入して塗膜を形成し、被磁着面を形成するというものである。 In Patent Document 3, reduced iron powder having an average particle size of 10 to 60 μm (microns) is mixed into a paint to form a coating film, thereby forming a magnetized surface.
しかしながらこれらの先行技術に拠る各塗装面は、大気中で水分と接触して錆が発生してしまう。室外は論外だが、室内においても、結露や汚れを濡れ雑巾で拭くことや子供が水を掛けてしまうことなどが多く、遅かれ早かれ、錆が発生してしまう。
錆の発生は、表面に近い鉄粉が先ず錆び始め、内部へと広がる。
However, each painted surface according to these prior arts comes into contact with moisture in the atmosphere and rust is generated. Outdoors are out of the question, but even indoors, condensation and dirt are often wiped with a rag or children are exposed to water, and sooner or later rust is generated.
As for the generation of rust, the iron powder near the surface starts to rust first and spreads to the inside.
他方、使用される鉄粉は、コストや磁着力向上の目的で比較的粒子径が大きいものが使用される。平均粒子径が100ミクロンを越えるとその粗さが塗装面の粗さとなって次第に見栄えが悪くなると共に、150〜160ミクロンに達すると、粗い表面は磁性体が疎になるので永久磁石に拠る磁着力が低下してしまう。
そこで、見栄えを良くし磁着力を高める目的で、鉄粉の平均粒子径が100ミクロン程度であっても、粗い磁性塗装表面を研磨して平坦としその上に非磁性の仕上げ塗装を行うことがある。
On the other hand, the iron powder used has a relatively large particle size for the purpose of improving cost and magnetizing force. When the average particle size exceeds 100 microns, the roughness becomes rougher due to the roughness of the painted surface, and when it reaches 150 to 160 microns, the magnetic material on the rough surface becomes sparse so that the magnetic field due to the permanent magnet is reduced. Wearing power will decrease.
Therefore, for the purpose of improving the appearance and increasing the magnetizing force, even if the average particle diameter of the iron powder is about 100 microns, it is possible to polish the rough magnetic coating surface to be flat and to apply a non-magnetic finish coating thereon. is there.
上記の非磁性塗装の厚さを大きくとれば錆の発生を遅らせることが出来るものの磁着力が大きく低下してしまう。他方で磁着力を確保するために塗装の厚さを小さくすると、その結果水分や大気の浸透が早く錆の発生が早まってしまうという不具合があった。 If the thickness of the nonmagnetic coating is increased, the occurrence of rust can be delayed, but the magnetizing force is greatly reduced. On the other hand, if the thickness of the coating is reduced in order to ensure the magnetizing force, there is a problem that as a result, the penetration of moisture and air is quick and the generation of rust is accelerated.
塗装工程上は、建装部材表面に下塗りを行う事がある。該表面を保護しつつ塗料が部材表面に十分に密着且つ接着させるためであるが、該下塗り材の樹脂組成は、本塗装の樹脂とは異なるか又は同じ場合がある。
従来、該下塗り材は磁性材を含まない塗料を採用していた。従い、下塗り材の厚み相当部は磁性材を含まないので、全体の塗装厚さで比較すると磁着力が劣ることになる。
鉄粉を含む下塗り材を採用すれば磁着力は確保し易くなるが、建装部材表面に近い層に鉄粉が多く存在するので、該部材を通して水分や大気が供給されて鉄粉の錆が進行してしまうので好ましく無い。
In the painting process, the surface of the building member may be undercoated. This is in order to allow the paint to sufficiently adhere and adhere to the surface of the member while protecting the surface, but the resin composition of the undercoat material may be different from or the same as that of the resin of the present coating.
Conventionally, the undercoat has adopted a paint that does not contain a magnetic material. Accordingly, since the portion corresponding to the thickness of the undercoat material does not include a magnetic material, the magnetizing force is inferior when compared with the overall coating thickness.
Adopting an undercoat containing iron powder makes it easier to secure the magnetic adhesion force, but since there is a lot of iron powder in the layer near the building member surface, moisture and air are supplied through the member, and iron powder rusts. Since it progresses, it is not preferable.
そこで本発明は、鉄粉を塗料に混ぜて得られる高い磁着力の低下を極力防ぎつつ、鉄粉が錆びる不具合を防止する建装部材の磁性層及び建装部材の磁性層の製造方法を提供することを課題とする。
Therefore, the present invention provides a magnetic layer for a building member and a method for producing a magnetic layer for a building member that prevent a problem that the iron powder rusts while preventing a decrease in the high magnetic adhesion force obtained by mixing the iron powder with the paint as much as possible. The task is to do.
本課題を解決するために本発明に係る建装部材の磁性層は、壁や柱、戸、ボード或はパーテーション等の建装部材の表面に施す磁性を有する磁性層であって、該建装部材の表面に対して、塗料バインダーに鉄粉を主成分とする磁性粉を混合した磁性主層用磁性塗料によって形成された磁性主層と、塗料バインダーにソフトフェライト粉、磁鉄鉱粉、ハードフェライト粉の群から選ばれる1種又は複数の磁性粉を混合した表磁性バリアー層用磁性塗料によって形成された表磁性バリアー層とが積層されていることを特徴としている。
In order to solve this problem, a magnetic layer of a building member according to the present invention is a magnetic layer having magnetism applied to the surface of a building member such as a wall, a pillar, a door, a board, or a partition. A magnetic main layer formed of a magnetic coating for a magnetic main layer in which a magnetic powder mainly composed of iron powder is mixed with a coating binder on the surface of the member, and soft ferrite powder, magnetite powder, hard ferrite powder in the coating binder and Table magnetic barrier layer formed by one or more tables magnetic barrier layer for magnetic coating material obtained by mixing a magnetic powder selected from the group consisting of is characterized in that it is laminated.
上記建装部材の磁性層において、建装部材の表面と磁性主層との間に、塗料バインダーにソフトフェライト粉、磁鉄鉱粉、ハードフェライト粉の群から選ばれる1種又は複数の混合物からなる磁性粉を混合した裏磁性バリアー層用磁性塗料によって形成された裏磁性バリアー層が介在していても良い。
In the magnetic layer of the building member, a magnetic material composed of one or more mixtures selected from the group consisting of soft ferrite powder, magnetite powder, and hard ferrite powder as a coating binder between the surface of the building member and the main magnetic layer. A back magnetic barrier layer formed of a magnetic coating material for the back magnetic barrier layer mixed with powder may be interposed.
本発明に係る建装部材の磁性層の製造方法は、前記本発明に係る建装部材の磁性層の製造方法であって、磁性主層の上面を研磨した後に該研磨面に表磁性バリアー層を積層することを特徴としている。
The manufacturing method of the magnetic layer of the building member according to the present invention is a method of manufacturing the magnetic layer of the building member according to the present invention, wherein the surface magnetic barrier layer is formed on the polished surface after polishing the upper surface of the magnetic main layer. It is characterized by laminating .
前記表磁性バリアー層は、乾燥させたソフトフェライト粉、磁鉄鉱粉、ハードフェライト粉の群から選ばれる1種又は複数の磁性粉を、予め脱気・減圧した容器内で初めて塗料バインダーと接触させ、その後圧力を大気圧に戻す工程を経た表磁性バリアー層用磁性塗料を、塗装後乾燥させて積層しても良い。
The surface magnetic barrier layer is contacted with a paint binder for the first time in a container that has been degassed and decompressed in advance, with one or more magnetic powders selected from the group of dried soft ferrite powder, magnetite powder, and hard ferrite powder, Thereafter, the magnetic coating material for the surface magnetic barrier layer that has been subjected to the step of returning the pressure to atmospheric pressure may be dried after being coated and laminated .
前記裏磁性バリアー層は、乾燥させた、ソフトフェライト粉、磁鉄鉱粉、ハードフェライト粉の群から選ばれる1種又は複数の磁性粉を、予め脱気・減圧した容器内で初めて塗料バインダーと接触させ、その後圧力を大気圧に戻す工程を経た裏磁性バリアー層用磁性塗料を、塗装後乾燥させて積層することが好ましい。
The back magnetic barrier layer is contacted with a coating binder for the first time in a container that has been deaerated and decompressed in advance, with one or more magnetic powders selected from the group consisting of dried soft ferrite powder, magnetite powder, and hard ferrite powder. Then, it is preferable to laminate the magnetic coating material for the back magnetic barrier layer that has been subjected to the step of returning the pressure to atmospheric pressure after the coating and then drying.
前記磁性主層は、乾燥させた鉄粉を主成分とする磁性粉を、予め脱気・減圧した容器内で初めて塗料バインダーと接触させ、その後圧力を大気圧に戻す工程を経た磁性主層用磁性塗料を、塗装後乾燥させて積層することが好ましい。
The magnetic main layer is a magnetic main layer that has been subjected to a process of bringing a magnetic powder mainly composed of dried iron powder into contact with a paint binder for the first time in a previously deaerated and depressurized container and then returning the pressure to atmospheric pressure. It is preferable to laminate the magnetic paint after drying it.
本発明によれば、鉄粉を塗料に混ぜて得られる高い磁着力の低下を極力防ぎつつ必要な磁着力を確保すると共に、鉄粉が錆びる不具合を防止する磁性層を、任意の建装部材の表面に形成することが出来る。 According to the present invention, a magnetic layer for securing a necessary magnetic adhesion force while preventing a decrease in high magnetic adhesion force obtained by mixing iron powder into a paint as much as possible and preventing a problem that iron powder rusts can be used as an arbitrary building member. Can be formed on the surface.
すなわち本発明は、磁性層の大部分を高い磁着力を持つ鉄粉を主成分とする磁性主層とする一方で、該磁性主層を覆う形で表磁性バリアー層を配置した。さらに磁性主層の裏面には、裏磁性バリアー層を設けることが出来る。該2つのバリアー層は化学的に酸化が進行しない磁性粉を成分とした。これによって磁性主層の持つ高い磁着力を活かすと共に、水分や酸素が磁性主層へ浸透することを防ぐバリアーとしての役割を果たして、磁性主層中の鉄粉の錆を防いだ。 That is, according to the present invention, the major part of the magnetic layer is a magnetic main layer mainly composed of iron powder having a high magnetic adhesion force, and the surface magnetic barrier layer is disposed so as to cover the magnetic main layer. Further, a back magnetic barrier layer can be provided on the back surface of the magnetic main layer. The two barrier layers were composed of magnetic powder that does not proceed with oxidation chemically. As a result, the high magnetic adhesion of the magnetic main layer was utilized, and it acted as a barrier to prevent moisture and oxygen from penetrating into the magnetic main layer, thereby preventing iron powder from rusting in the magnetic main layer.
また、磁性主層の表面を研磨して平滑にした後、その表面を錆無い磁性粉を主成分とする表磁性バリアー層で被覆するので、磁性層表面を滑らかにして見栄えを良くするとともに磁着力を確保・向上させ、且つ錆の発生を抑えることが出来た。 In addition, the surface of the magnetic main layer is polished and smoothed, and then the surface is covered with a surface magnetic barrier layer mainly composed of magnetic powder that does not rust, so that the surface of the magnetic layer is smoothed and improved in appearance. It was possible to secure and improve the adhesion and to suppress the occurrence of rust.
さらに本発明は、鉄粉などの磁性粉と塗料バインダーと初めて接触させるに際して、予め該磁性粉を乾燥させておき、脱気・減圧下で該塗料バインダーと初めて接触させた後常圧に戻す処理を行った結果、磁性粉表面の水分や酸素の除去に留まらず、微粉が凝集して出来た微細空間や鉄粉内の空隙を塗料バインダーで濡らす事が出来たので、磁性粉の分散が促進されるだけで無く、錆の発生を更に防止する事が出来た。 Furthermore, the present invention is a process in which when magnetic powder such as iron powder is brought into contact with the paint binder for the first time, the magnetic powder is dried in advance, and is first brought into contact with the paint binder under deaeration and reduced pressure, and then returned to normal pressure. As a result, it was possible not only to remove moisture and oxygen from the surface of the magnetic powder, but also to wet the fine spaces formed by the aggregation of fine powder and the voids in the iron powder with the paint binder, thus promoting the dispersion of the magnetic powder. Not only was it possible, but it was possible to further prevent rusting.
本発明は、鉄粉を主成分とする磁性塗料を用いて形成した磁性主層と、その磁性主層の表裏に配置する表・裏磁性バリアー層に拠る層状構造からなる磁性層に関するものであって、磁着力を確保しつつ鉄粉が錆びる事を防止する事を目的としており、以下実施態様でもって詳しく説明する。 The present invention relates to a magnetic layer composed of a magnetic main layer formed by using a magnetic paint mainly composed of iron powder and a layered structure based on front and back magnetic barrier layers disposed on the front and back of the magnetic main layer. The purpose of this is to prevent the iron powder from rusting while ensuring the magnetizing force, and will be described in detail in the following embodiments.
図1の符号3、或は図2の符号3で示される部分が、鉄粉を主成分とする磁性塗料で形成された磁性主層であり、磁石が吸着する磁性を主に担う層である。
なお磁性主層の磁性粉は、鉄粉に加えてソフトフェライト粉や磁鉄鉱粉或はハードフェライト粉を含んでも磁着性は確保されるが、鉄粉の比率が高い程磁着力が高まる。鉄粉の比率は100%が最も好適であり、80重量%以上が好ましい。
なお本発明では、鉄粉、ソフトフェライト粉、磁鉄鉱粉、ハードフェライト粉の総称を磁性粉と言う。
The part indicated by reference numeral 3 in FIG. 1 or reference numeral 3 in FIG. 2 is a magnetic main layer formed of a magnetic paint mainly composed of iron powder, and is a layer mainly responsible for magnetism adsorbed by the magnet. .
The magnetic powder of the magnetic main layer contains soft ferrite powder, magnetite powder, or hard ferrite powder in addition to iron powder, but the magnetic adhesion is ensured, but the higher the ratio of iron powder, the higher the magnetic adhesion. The iron powder ratio is most preferably 100%, and preferably 80% by weight or more.
In the present invention, a general term for iron powder, soft ferrite powder, magnetite powder, and hard ferrite powder is referred to as magnetic powder.
表磁性バリアー層4は磁性主層3の表面に形成され、裏磁性バリアー層5は磁性主層の裏面と建装部材の表面との間に形成されている。
表磁性バリアー層及び裏磁性バリアー層は、本発明の磁性層が完成後、水分や酸素、或は他の化学成分が塗料膜中に進入・移動する事を妨げるバリアー機能を有している。該表磁性バリアー層及び裏磁性バリアー層は水分や酸素が磁性主層の鉄粉に作用して該鉄粉を錆びさせるまでの時間事を大幅に遅らせる機能を有している。
The front magnetic barrier layer 4 is formed on the surface of the magnetic main layer 3, and the back magnetic barrier layer 5 is formed between the back surface of the magnetic main layer and the surface of the building member.
The front magnetic barrier layer and the back magnetic barrier layer have a barrier function that prevents moisture, oxygen, or other chemical components from entering or moving into the coating film after the magnetic layer of the present invention is completed. The front magnetic barrier layer and the back magnetic barrier layer have a function of significantly delaying the time until moisture or oxygen acts on the iron powder of the magnetic main layer to rust the iron powder.
表磁性バリアー層は鉄粉を含まず磁鉄鉱粉やフェライト磁性粉が磁性成分なので、鉄粉を採用した場合に比較して磁着力が少し及ばないものの、しかし強い磁性を有している。
故に表磁性バリアー層は、磁石が近づくと磁気回路を形成して磁性主層の鉄粉の磁気特性を表磁性バリアー層表面に導く役割を果たすので、磁性主層が持つ強い磁着力が大きく損なわれるが無い。すなわち、該表磁性バリアー層から磁性粉を除去して単なる表バリアー層とした場合に比して、より強い磁着力を確保することが出来る。
The surface magnetic barrier layer does not contain iron powder, and magnetite powder or ferrite magnetic powder is a magnetic component. Therefore, although the magnetic adhesion force is slightly less than when iron powder is used, it has strong magnetism.
Therefore, the surface magnetic barrier layer forms a magnetic circuit when the magnet approaches, and plays a role of guiding the magnetic properties of the iron powder of the magnetic main layer to the surface magnetic barrier layer surface, so that the strong magnetic adhesion force of the magnetic main layer is greatly impaired. There is no. That is, a stronger magnetic adhesion can be ensured as compared with the case where the magnetic powder is removed from the surface magnetic barrier layer to obtain a simple surface barrier layer.
裏磁性バリアー層は鉄粉を含まず磁鉄鉱粉やフェライト磁性粉が磁性成分なので、鉄粉を採用した場合に比較して磁着力が少し及ばないものの、しかし強い磁性を有している。
裏磁性バリアー層は、磁性主層の厚さが増した効果が得られる。つまり裏磁性バリアー層が無い場合に較べ、磁着力を高める効果がある。
The back magnetic barrier layer does not contain iron powder, and magnetite powder or ferrite magnetic powder is a magnetic component. Therefore, although the magnetic adhesion force is slightly less than when iron powder is used, it has strong magnetism.
The back magnetic barrier layer has the effect of increasing the thickness of the magnetic main layer. That is, compared to the case where there is no back magnetic barrier layer, there is an effect of increasing the magnetizing force.
本発明の目的の1つが、鉄粉のみを採用した場合に近い磁着力を確保することなので、表磁性バリアー層はバリアー層としての機能を確保する為に必要な最小限の厚さで良い。裏磁性バリアー層もまた、必要以上に厚くしても磁着力向上の効果は大きくはない。 Since one of the objects of the present invention is to secure a magnetic adhesion force close to that when only iron powder is used, the surface magnetic barrier layer may have a minimum thickness necessary for ensuring a function as a barrier layer. Even if the back magnetic barrier layer is made thicker than necessary, the effect of improving the magnetic adhesion is not significant.
本発明の磁性層の典型的な用途は、薄くて軽いパンフレットやメモなどを磁石との間に挟んで掲示する事に使用するので、磁着力は0.15N(ニュートン)/cm2(センチメートル平方)あれば十分である。
一方、磁気吸着させる磁石を例えば厚さ1.0mm、着磁ピッチ2.5mm、表面磁束密度が約35〜40mT(ミリテスラー)の一般的なマグネットシートを採用すると、磁性主層の厚さは0.3mm程度以上でもって磁着力0.15N/cm2を達成出来ることが判った。
他方で表磁性バリアー層の厚さは、含まれる磁性粉の粒度や必要なバリアー性でもって規定される。塗布の均一性やピンホールなどを考慮して、通常0.05〜0.1mm程度が採用される。
A typical application of the magnetic layer of the present invention is to use thin and light pamphlets and memos sandwiched between magnets for posting, so that the magnetic adhesion force is 0.15 N (Newton) / cm 2 (cm Square) is enough.
On the other hand, when a magnet having a thickness of 1.0 mm, a magnetization pitch of 2.5 mm, and a surface magnetic flux density of about 35 to 40 mT (milli-Tessler) is adopted as the magnet to be magnetically attracted, the thickness of the magnetic main layer is 0. It was found that a magnetic adhesion force of 0.15 N / cm 2 can be achieved with about 3 mm or more.
On the other hand, the thickness of the surface magnetic barrier layer is defined by the particle size of the magnetic powder contained and the necessary barrier properties. In consideration of coating uniformity and pinholes, a thickness of about 0.05 to 0.1 mm is usually employed.
上述した実験事実を本発明に適用すると、磁性主層の厚さと表磁性バリアー層の厚さとの比が、(0.3以上):(0.05〜0.10)となるので、磁性主層の厚さが表磁性バリアー層の3倍以上が好ましい。
本発明の磁性層が更に強い磁着力を必要とする場合は、該磁性主層の厚さを厚くすれば良い。
When the above experimental fact is applied to the present invention, the ratio of the thickness of the magnetic main layer to the thickness of the surface magnetic barrier layer becomes (0.3 or more): (0.05 to 0.10). The thickness of the layer is preferably at least 3 times that of the surface magnetic barrier layer.
When the magnetic layer of the present invention requires a stronger magnetizing force, the thickness of the magnetic main layer may be increased.
本発明で使用する磁性塗料は、磁性粉と塗料バインダーとを大気圧下で単純に混合する従来の方法の他に、以下の方法で得る事がより好ましい。
即ち、磁性粉と塗料バインダーとを混合するに当たって、予め乾燥した磁性粉と塗料バインダーとを予め脱気・減圧された容器内で初めて接触させ、磁性粉を塗料バインダーで濡れさせて、その後圧力を大気圧に戻す手順を経た磁性塗料を採用する。沈降防止剤などを添加する場合は、予め塗料バインダーと混合しておくと良い。
The magnetic coating used in the present invention is more preferably obtained by the following method in addition to the conventional method in which the magnetic powder and the coating binder are simply mixed at atmospheric pressure.
That is, when mixing the magnetic powder and the paint binder, the previously dried magnetic powder and the paint binder are brought into contact with each other for the first time in a previously deaerated and decompressed container, the magnetic powder is wetted with the paint binder, and then the pressure is increased. Adopt magnetic paint that has undergone a procedure to return to atmospheric pressure. When adding an anti-settling agent or the like, it is preferable to mix it with a paint binder in advance.
上述した脱気・減圧工程は、磁性粉表面やその内部の空隙の水分や大気、或は塗料バインダーに含まれる水分や大気を除去する。更に、微細な磁性粉が凝集した内部に微細気泡が残留して磁性粉と塗料バインダーとの濡れが不十分となり、磁性粉の分散を悪くする不具合を無くす効果がある。また、磁性粉と塗料バインダーとのなじみを良くして塗装・乾燥後の磁性粉表面での空隙の発生を防止するので、塗装後のピンホールの発生を無くしてバリアー効果を高めると共に塗装部分の機械特性の低下を防ぐ効果があり、好適である。
塗料バインダーと磁性粉とを混合後に混練する事は、該脱気・減圧工程の有無に関わらず混和を促進して好適である。
The degassing / depressurization step described above removes the moisture and air on the surface of the magnetic powder and the voids in the magnetic powder, or the moisture and air contained in the paint binder. Furthermore, there is an effect that fine bubbles remain inside the fine magnetic powder and the wetness between the magnetic powder and the coating binder becomes insufficient, thereby eliminating the problem of deteriorating the dispersion of the magnetic powder. In addition, the compatibility between the magnetic powder and the paint binder is improved to prevent the generation of voids on the surface of the magnetic powder after painting and drying, thus eliminating the occurrence of pinholes after painting and improving the barrier effect. It has an effect of preventing deterioration of mechanical properties, and is suitable.
It is preferable to knead the paint binder and the magnetic powder after mixing to promote mixing regardless of the presence or absence of the degassing / depressurizing step.
磁性粉を予めシランカップリング材などで表面処理すれば、磁性粉と塗料バインダーとのなじみを良くする効果がある。一般に、無機物と有機物とを混合する場合には従来から採用されている技術であり、本発明においても好適である。 If the magnetic powder is surface-treated with a silane coupling material or the like in advance, there is an effect of improving the familiarity between the magnetic powder and the paint binder. In general, when an inorganic material and an organic material are mixed, this is a technique that has been conventionally employed, and is also suitable in the present invention.
本発明で採用する磁性粉は、鉄粉、磁鉄鉱粉、Mn−Znフェライトなどのソフトフェライトであり、さらに、保磁力が2千〜3千エルステッド程度のストロンチュームフェライト粉やバリウムフェライト粉などのハードフェライト粉を含む。
ハードフェライト粉は、ストロンチュームフェライトやバリウムフェライトの粉体であり、保磁力がやや高いので軟磁性粉には分類されないものの、ハードフェライト磁石若しくはそれ以上の表面磁束密度を有する永久磁石が近づくと磁化して磁気回路を構成するので本発明では採用される。ハードフェライト粉は、化学的に安定であり錆無いので好適である。
The magnetic powder employed in the present invention is soft ferrite such as iron powder, magnetite ore, Mn-Zn ferrite, and further hard such as strontium ferrite powder or barium ferrite powder having a coercive force of about 2,000 to 3,000 oersted. Contains ferrite powder.
Hard ferrite powders are strontium ferrite and barium ferrite powders, which are not classified as soft magnetic powders because of their slightly higher coercive force. However, when hard ferrite magnets or permanent magnets with a surface magnetic flux density higher than that, they are magnetized. Since the magnetic circuit is configured, it is adopted in the present invention. Hard ferrite powder is suitable because it is chemically stable and does not rust.
鉄粉は、他の磁性粉と比較して磁石への磁着力が最も強い。
磁鉄鉱(四酸化三鉄=マグネタイト)は、砂鉄として天然に産出する。砂鉄は主成分が磁鉄鉱であり、磁着性が強く、錆びないという特徴がある。
マンガンジンク(Mn−Zn)フェライト粉やニッケルジンク(Ni−Zn)フェライト粉は軟磁性であり錆びない。
Iron powder has the strongest magnetic adhesion to magnets compared to other magnetic powders.
Magnetite (triiron tetroxide = magnetite) is naturally produced as iron sand. Sand iron is mainly composed of magnetite, and has a characteristic that it has strong magnetic adhesion and does not rust.
Manganese zinc (Mn—Zn) ferrite powder and nickel zinc (Ni—Zn) ferrite powder are soft magnetic and do not rust.
鉄粉の種類は、インゴットの粉砕粉、アトマイズ粉(水−アトマイズ、及びガス−アトマイズ)、及び還元鉄粉があり、いずれも粉砕や分級工程を追加する場合がある。
砂鉄粉は、砂鉄として採取されたあと粉砕され、選別・分級されて粒度を調整する。
ソフトフェライト粉は、例えばトランスなどの他の用途に使用済を回収した安価な焼結体を粉砕・分級して望みの粒度を得る事が出来るが、他方で、焼結用原料としての数〜数+ミクロン径の仮焼粉体を入手可能である。
ハードフェライト粉は、ボンドマグネット用の粉体として市販されている粉体を入手する事が出来る。また、他の用途に使用済みを回収した安価な焼結体を消磁後粉砕・分級して望みの粒度を得る事が出来る。
The types of iron powder include ingot pulverized powder, atomized powder (water-atomized and gas-atomized), and reduced iron powder, which may add pulverization and classification steps.
The iron sand powder is collected as iron sand and then crushed, sorted and classified to adjust the particle size.
Soft ferrite powder can be obtained by pulverizing and classifying an inexpensive sintered body that has been collected for other uses such as a transformer to obtain the desired particle size. Several + micron diameter calcined powders are available.
As the hard ferrite powder, a commercially available powder can be obtained as a powder for a bond magnet. In addition, an inexpensive sintered body recovered for use in other applications can be demagnetized and then pulverized and classified to obtain a desired particle size.
表磁性バリアー層及び裏磁性バリアー層用の磁性粉の粒度は小さい方が好ましい。磁性粉の粒径が小さいと、磁性塗料の磁性粉の沈降や分離が発生しづらく好ましいのみならず、塗装表面が滑らかとなって好都合である。またノズル詰まりが改善されるので、スプレー塗装の実施が可能となる。
スプレー塗装は、0.05〜0.1mmの薄い層を比較的均一に塗装することが出来るので、本発明の表磁性バリアー層及び裏磁性バリアー層の塗装には好適である。
ハードフェライト粉は、ボンドマグネット用としてその粒径をミクロンオーダーでコントロールされていて好適である。
The particle size of the magnetic powder for the front magnetic barrier layer and the back magnetic barrier layer is preferably smaller. When the particle size of the magnetic powder is small, not only is it difficult for the magnetic powder of the magnetic paint to settle or separate, but also the coating surface is smooth and convenient. Moreover, since nozzle clogging is improved, spray coating can be performed.
Spray coating is suitable for coating the front magnetic barrier layer and the back magnetic barrier layer of the present invention because a thin layer of 0.05 to 0.1 mm can be coated relatively uniformly.
The hard ferrite powder is suitable for bond magnets because its particle size is controlled on the micron order.
従前から鉄粉を磁性成分とする磁性層表面を研磨によって滑らかにして、その上に非磁性表装塗装が実施されている。
本発明の実施態様では、上記非磁性表装塗装に替えて、錆びることの無い磁性粉を含有させた表磁性バリアー層で覆うので、錆を防止するとともに磁着力の大幅な低下を防ぐ事が出来る。
他方で本発明は、磁性主層表面の研磨の有無に関わらず、該磁性主層の上の表磁性バリアー層の更にその上に薄い非磁性表装塗装を実施することを妨げない。
但し、該非磁性表装塗装の厚さが増せば、磁着力を急激に低下させてしまう。
Conventionally, the surface of a magnetic layer containing iron powder as a magnetic component is smoothed by polishing, and a nonmagnetic surface coating is performed thereon.
In the embodiment of the present invention, instead of the non-magnetic surface coating, it is covered with a surface magnetic barrier layer containing magnetic powder that does not rust, so that rust can be prevented and a significant decrease in magnetic adhesion can be prevented. .
On the other hand, the present invention does not prevent the thin non-magnetic surface coating from being performed on the surface magnetic barrier layer on the magnetic main layer, regardless of whether the surface of the magnetic main layer is polished or not.
However, if the thickness of the nonmagnetic surface coating is increased, the magnetic adhesion force is rapidly reduced.
本発明で採用される鉄粉の平均粒子径は、20〜200ミクロンが好ましい。20ミクロン未満の鉄粉は通常、粉砕や分級が繰り返され価格が高くなる。
200ミクロン以上の大きな平均粒子径を採用すると、鉄粉の粗さが塗装表面の粗さとなって見栄えが著しく悪くなるとともに、粗い表面は磁性成分が疎になって磁着力の低下を無視出来なくなるので好ましく無い。更に表面の粗さが大きいので、研磨が困難になってしまう。また、塗料樹脂バインダー中に混合した状態ではたとえ沈降防止剤を添加しても該鉄粉の沈降が顕著になって塗装作業性が悪化するので好ましく無い。
The average particle size of the iron powder employed in the present invention is preferably 20 to 200 microns. Iron powder of less than 20 microns is usually pulverized and classified repeatedly, resulting in a high price.
When a large average particle diameter of 200 microns or more is adopted, the roughness of the iron powder becomes rough on the surface of the coating, and the appearance is remarkably deteriorated. On the rough surface, the magnetic component becomes sparse and the decrease in the magnetic adhesion force cannot be ignored. It is not preferable. Furthermore, since the surface roughness is large, polishing becomes difficult. Further, in the state of being mixed in the paint resin binder, even if an anti-settling agent is added, the iron powder settles remarkably and the coating workability deteriorates, which is not preferable.
鉄粉の平均粒子径が上記範囲内であれば、塗装表面をより平滑に仕上げたい場合や磁着力を高める目的で、表面を平滑に研磨することが可能である。本発明においてはその研磨された表面を、磁性粉を含有した表磁性バリアー層で覆うことになるので、従来の単なる非磁性材料のコーティングやラミネートとは異なり、下述するように磁着力の低下を最小限に抑えることができる。 If the average particle diameter of the iron powder is within the above range, the surface can be polished smoothly in order to finish the coating surface more smoothly or to increase the magnetic adhesion. In the present invention, the polished surface is covered with a surface magnetic barrier layer containing magnetic powder. Therefore, unlike the conventional simple non-magnetic material coating or laminate, as described below, the magnetic adhesion force is reduced. Can be minimized.
表磁性バリアー層や裏磁性バリアー層に用いられるソフトフェライト粉、磁鉄鉱粉、或はハードフェライト粉の平均粒子径は、該層の厚さが薄いので、数ミクロンからせいぜい50〜60ミクロンが好ましい。 The average particle diameter of the soft ferrite powder, magnetite powder, or hard ferrite powder used for the front magnetic barrier layer and the back magnetic barrier layer is preferably from several microns to 50-60 microns at most because the thickness of the layer is small.
磁性粉等と塗料バインダーとを大気圧下で混合後に、改めて減圧・脱気する方法が従来から知られている。しかし該方法では、図5に示した還元鉄粉に見られる様な鉄粉表面やその奥部の微細な空隙の気泡の除去が困難であり、効果が限定されていた。
本発明では、塗料バインダーが存在しない状況で磁性粉等を脱気・減圧した後、塗料バインダーで濡らし、その後圧力を大気圧に戻すので、磁性材の奥深くの微細空隙や、凝集塊の内部を塗料バインダーで満たす事が出来たと考えられる。
Conventionally known is a method of depressurizing and degassing again after mixing magnetic powder or the like and a paint binder under atmospheric pressure. However, this method has a limited effect because it is difficult to remove the fine voids in the iron powder surface and the inner part thereof as seen in the reduced iron powder shown in FIG.
In the present invention, the magnetic powder is degassed and depressurized in the absence of the paint binder, and then wetted with the paint binder, and then the pressure is returned to atmospheric pressure. It is thought that it was able to be filled with the paint binder.
磁性層中の磁性材料の体積比率が大きい程磁着力が高い。したがって本発明において塗料バインダーに使用する組成は、採用した磁性粉を除く他の顔料や充填剤、着色剤等の使用を必要最低限に控え、塗膜形成の為と、塗装膜としての必要特性を確保するための組成とすることが好ましい。
他方で、体積比率がむやみに高いと、磁性塗料の安定性や塗装作業性が問題になるのみならず、鉄粉表面を覆う樹脂成分が少なくなり、結果として塗装・乾燥後の塗膜に錆が発生し易く、また塗装表面が粗くなってしまうので好ましく無い。
The larger the volume ratio of the magnetic material in the magnetic layer, the higher the magnetizing force. Therefore, the composition used for the paint binder in the present invention is the minimum required for the use of other pigments, fillers, colorants, etc., excluding the magnetic powder adopted, and for coating film formation and the necessary characteristics as a coating film. It is preferable to use a composition for ensuring the above.
On the other hand, if the volume ratio is excessively high, not only will the stability of the magnetic paint and the coating workability become a problem, but the resin component covering the surface of the iron powder will decrease, resulting in rust on the coated and dried coating film. This is not preferred because it tends to occur and the coating surface becomes rough.
いずれにせよ、塗料の樹脂成分の種類や分子量、或は溶媒の種類などで、磁性粉を分散させた磁性塗料の特徴は大きく異なる。そこで、必要に応じて沈降防止剤、分散剤、増粘剤などを最小限添加することが好ましい態様である。例えば、日本エアロジル社の親水性或は疎水性シリカや、ビックケミージャパン社のBYK−425などが有り、適宜選定することが出来る。
尚、塗料バインダー中の溶媒と固形成分との比率、及びそれぞれの密度、並びに塗料バインダーと磁性粉との比率やそれらの密度を勘案すれば、重量比率と体積比とを対応付けることが出来る。
In any case, the characteristics of the magnetic coating material in which the magnetic powder is dispersed differ greatly depending on the type and molecular weight of the resin component and the type of solvent. Therefore, it is a preferable aspect to add an anti-settling agent, a dispersant, a thickener and the like as required. For example, there are hydrophilic or hydrophobic silica manufactured by Nippon Aerosil Co., and BYK-425 manufactured by Big Chemie Japan Co., Ltd., which can be selected as appropriate.
The weight ratio and the volume ratio can be associated with each other by taking into consideration the ratio between the solvent and the solid component in the paint binder, the respective densities, the ratio between the paint binder and the magnetic powder, and their densities.
次に、本発明について、実施例並びに比較例を用いて説明する。
なお、本発明の磁気吸着力は以下の方法で測定した。30mm*30mmの正方形のマグネットシートサンプル(1.0mm厚、ピッチ2.5mm、多極着磁、表面磁束密度が35〜40mT)を準備し、50mm*50mmの大きさの磁性層に磁気吸着させ、それぞれを平面に対して垂直方向に引き離す為に必要な力を測定した。
Next, the present invention will be described using examples and comparative examples.
The magnetic attraction force of the present invention was measured by the following method. Prepare a 30 mm * 30 mm square magnet sheet sample (1.0 mm thick, 2.5 mm pitch, multipolar magnetization, 35-40 mT surface magnetic flux density), and magnetically adsorb it to a 50 mm * 50 mm size magnetic layer The force required to separate each of them in the direction perpendicular to the plane was measured.
また、錆発生日の試験は、磁性層を水平に保ち、その表面に水道水を十分に吸収させたキッチンペーパー(50mm*50mm)を載せて、乾燥しないように水分を補給しながら毎日磁性層表面を観察して、赤錆の発生が肉眼で確認出来た最初の日を記録した。
上記評価方法は新鮮な水に連続して接触させる過酷な促進試験であり、本評価方法で錆発生日が10日以内であれば錆び易く、それを超えると錆難いと判断した。
In addition, the test on the date of rusting was conducted every day while keeping the magnetic layer horizontal and placing a kitchen paper (50mm * 50mm) that sufficiently absorbed tap water on the surface, replenishing moisture so as not to dry. By observing the surface, the first day when the occurrence of red rust was confirmed with the naked eye was recorded.
The evaluation method described above is a severe acceleration test that is continuously brought into contact with fresh water. In this evaluation method, if the rust occurrence date is within 10 days, it is easy to rust, and if it exceeds that, it is determined that rust is difficult.
還元鉄粉DR(DOWA IP CREATION社製、平均粒子径は98ミクロン)100グラムを、塗料バインダー(ガーデニングカラー・クリアー、アトムサポート株式会社が販売)と沈降防止剤との混合物45グラムに混ぜ込み、磁性主層1を作成するための磁性主層用磁性塗料を得た。尚、此処で言う平均粒子径とは、多段分級法でもって累積重量50%が通過する篩の目開きに相当する大きさとする。
還元鉄粉の電子顕微鏡写真を図5に示した。撮影倍率は200倍、図の10目盛り(黒い線の全長)が500ミクロンメートルに相当する。
100 grams of reduced iron powder DR (DOWA IP CREATION, average particle size is 98 microns) is mixed with 45 grams of a mixture of paint binder (gardening color clear, sold by Atom Support Co., Ltd.) and anti-settling agent, A magnetic coating for the magnetic main layer for producing the magnetic main layer 1 was obtained. The average particle size referred to here is a size corresponding to the opening of the sieve through which a cumulative weight of 50% passes by the multistage classification method.
An electron micrograph of the reduced iron powder is shown in FIG. The shooting magnification is 200 times, and the 10 scales in the figure (the total length of the black lines) correspond to 500 micrometers.
同様に、砂鉄粉(粉砕した砂鉄を280メッシュの篩に通した通過粉で、粒子径が53ミクロン以下)100グラムを、上述した塗料バインダーと沈降防止剤との混合物75グラムに練り込み、表磁性バリアー層4を作成するための表磁性バリアー層用磁性塗料を得た。 Similarly, 100 grams of iron sand powder (pulverized sand iron passed through a 280 mesh sieve, particle size of 53 microns or less) is kneaded into 75 grams of the above-mentioned mixture of paint binder and anti-settling agent, A magnetic coating material for the surface magnetic barrier layer for forming the magnetic barrier layer 4 was obtained.
次に、磁性主層用磁性塗料をロールでもって図1の木板の建装部材2の表面に塗り、乾燥後塗るという作業を繰り返し計3回塗った結果、厚さが0.4mmの磁性主層3を得た。鉄粉の体積比率は54%であった。
更に、該磁性主層3の上に表磁性バリアー層用磁性塗料を、乾燥後の厚さが0.1mmに塗り、表磁性バリアー層4を形成させた。磁性粉の体積比率は57%であった。
Next, the magnetic coating material for the magnetic main layer was applied to the surface of the building member 2 of the wooden board in FIG. Layer 3 was obtained. The volume ratio of iron powder was 54%.
Further, the surface magnetic barrier layer 4 was formed by applying a magnetic coating for the surface magnetic barrier layer on the magnetic main layer 3 to a thickness of 0.1 mm after drying. The volume ratio of the magnetic powder was 57%.
該磁性層1に拠る磁着力は、比較例1を100とした場合の5%減に留まった。
また、錆発生日は、比較例1が2日目であったのに対して、それより2週間以上遅れて20日に初めて錆と思われる変色を視認した。
The magnetic adhesion force due to the magnetic layer 1 was reduced by 5% when the comparative example 1 was set to 100.
Further, the date of occurrence of rust was the second day in Comparative Example 1, whereas a discoloration that seemed to be rust was visually recognized for the first time on the 20th after a delay of two weeks or more.
実施例1で作成した表磁性バリアー層用磁性塗料と同様にして、以下の方法で本実施例のための表磁性バリアー層用磁性塗料と裏磁性バリアー層用磁性塗料とを兼ねた磁性塗料を準備した。即ち、該砂鉄粉に替えて、レーザー回折式粒度分析計による平均粒子径が1.8ミクロンのストロンチュームフェライト粒子100グラムを該塗料バインダー76.5グラムに練り込み、更に該混合物を塗料の混和装置である3本ロールに2回通して、表磁性バリアー層用及び裏磁性バリアー層用の磁性塗料を得た。 In the same manner as the magnetic coating material for the front magnetic barrier layer prepared in Example 1, a magnetic coating material that serves as both the magnetic coating material for the front magnetic barrier layer and the magnetic coating material for the back magnetic barrier layer for this example was prepared by the following method. Got ready. That is, instead of the iron sand powder, 100 grams of strontium ferrite particles having an average particle diameter of 1.8 microns measured by a laser diffraction particle size analyzer were kneaded into 76.5 grams of the paint binder, and the mixture was further mixed with the paint. Passing twice through the three rolls as an apparatus, magnetic coating materials for the front magnetic barrier layer and the back magnetic barrier layer were obtained.
次いで図2における木板の建装部材2の表面に、裏磁性バリアー層用磁性塗料のスプレー塗装を行った。乾燥後の裏磁性バリアー層5の厚さは0.06mmであった。磁性粉の体積比率は54%であった。
続いて、該裏磁性バリアー層5の上に、実施例1で用いたものと同様の磁性主層用磁性塗料を、実施例1と同様にして乾燥後の厚さが0.37mmの磁性主層3を形成した。
引き続いて該磁性主層の上に、上記表磁性バリアー層用の磁性塗料でもって、乾燥後の厚さが0.08mm厚の表磁性バリアー層4を得た。
Next, the surface of the wooden board building member 2 in FIG. 2 was spray-coated with the magnetic coating for the back magnetic barrier layer. The thickness of the back magnetic barrier layer 5 after drying was 0.06 mm. The volume ratio of the magnetic powder was 54%.
Subsequently, on the back magnetic barrier layer 5, the same magnetic coating for the magnetic main layer as that used in Example 1 was applied in the same manner as in Example 1, but the thickness after drying was 0.37 mm. Layer 3 was formed.
Subsequently, a surface magnetic barrier layer 4 having a thickness of 0.08 mm after drying was obtained on the magnetic main layer with the magnetic coating material for the surface magnetic barrier layer.
磁着力は比較例1に比べて4%の低下に留まり、錆発生日は19日だった。 The magnetizing force was only 4% lower than that of Comparative Example 1, and the rusting date was 19 days.
実施例1において、磁性主層3の表面を当初150番、続いて400番の細かい目のサンドペーパーで研磨した上に、実施例1と同様にして表磁性バリアー層4を形成した。
磁着力は98と比較例1に近づき、錆発生日は17日だった。
In Example 1, the surface of the magnetic main layer 3 was first polished with sand paper of finer number 150 and then 400, and the surface magnetic barrier layer 4 was formed in the same manner as in Example 1.
The magnetizing force was 98, approaching that of Comparative Example 1, and the rusting date was 17 days.
実施例1で用いた磁性主層用磁性塗料、及び表磁性バリアー層用磁性塗料を作成するに当り、それぞれ図4に示した脱気・減圧装置内で処理した。 In preparing the magnetic coating material for the magnetic main layer and the magnetic coating material for the surface magnetic barrier layer used in Example 1, each was processed in the deaeration / decompression apparatus shown in FIG.
具体的には、透明な真空容器7の中に、乾燥した所定量の磁性粉8を収納した容器9を設置し、その上方に漏斗10を配置した。
漏斗10には塗料バインダー及び沈降防止剤の混合物11(以下混合物11と略す)が所定量満たされてバルブ12で真空容器内とつながっている。真空ポンプ13で容器7の内部を少なくとも水銀柱数百パスカルまで減圧して数分後、真空ポンプ13を作動させながらバルブ12をゆっくりと開いて、該混合物11を容器9内へ垂らし、磁性粉8を濡らした。このとき、該混合物11は発泡し、かつその泡が破裂しながら滴下した。
Specifically, a container 9 containing a predetermined amount of dried magnetic powder 8 was placed in a transparent vacuum container 7, and a funnel 10 was placed above it.
The funnel 10 is filled with a predetermined amount of a mixture 11 of paint binder and anti-settling agent (hereinafter abbreviated as “mixture 11”) and is connected to the inside of the vacuum vessel by a valve 12. The pressure inside the container 7 is reduced to at least several hundred pascals of mercury with the vacuum pump 13 and after a few minutes, the valve 12 is slowly opened while operating the vacuum pump 13, and the mixture 11 is dropped into the container 9, and the magnetic powder 8 Wet. At this time, the mixture 11 foamed and was dropped while the bubbles burst.
該混合物11を全量注いだ後、バルブ12を閉め、ポンプバルブ14を閉めてから給気バルブ15をゆっくり開けて、容器3の内部を大気圧にもどした。
該処理中に該混合物11中の溶媒(水)が真空容器内で蒸発したが、冷却トラップ(図示せず)するとともに、容器7を大気圧に戻した後トラップした量に相当する溶媒を容器9に加えて撹拌した。次いで3本ロール(図示せず)に2回通して混和・均一化を促進した。
After the total amount of the mixture 11 was poured, the valve 12 was closed, the pump valve 14 was closed, and then the air supply valve 15 was slowly opened to return the inside of the container 3 to atmospheric pressure.
During the treatment, the solvent (water) in the mixture 11 evaporates in the vacuum vessel, but a cooling trap (not shown) is used, and the solvent corresponding to the trapped amount is returned to the atmospheric pressure after the vessel 7 is returned to atmospheric pressure. In addition to 9, the mixture was stirred. Next, the mixture was passed twice through three rolls (not shown) to promote mixing and homogenization.
以下実施例1と同様にして、磁性主層3及び表磁性バリアー層4を得た。
磁着力は98となり、錆発生日は飛躍的に伸びた。
Thereafter, the magnetic main layer 3 and the surface magnetic barrier layer 4 were obtained in the same manner as in Example 1.
The magnetizing force was 98, and the date of rusting increased dramatically.
(比較例1)
図3に示した様に、表磁性バリアー層を設けないこと以外は実施例1と全く同様に、実施例1で用いた磁性主層用磁性塗料を建装部材2の上に塗布し磁性塗料層6を形成した。
(Comparative Example 1)
As shown in FIG. 3, the magnetic coating material for the magnetic main layer used in Example 1 was applied onto the building member 2 in exactly the same manner as in Example 1 except that the surface magnetic barrier layer was not provided. Layer 6 was formed.
磁着力の実測値は、0.185ニュートン/平方センチであった。この値を基準の100とした。好ましい磁着力は0.15(ニュートン/平方センチ)以上なので、本発明において相対値は81.1以上が好ましく、これ以上の磁着力が有れば良好であると判断した。
錆発生日は著しく短くて、2日だった。
実施例及び比較例の磁着力の相対値と錆発生日を表1に示す。
The measured value of the magnetizing force was 0.185 Newton / square centimeter. This value was set to 100 as a reference. Since the preferable magnetizing force is 0.15 (Newton / square centimeter) or more, in the present invention, the relative value is preferably 81.1 or more, and it is judged that the magnetizing force is more than that.
The date of rust occurrence was extremely short, 2 days.
Table 1 shows the relative values of the magnetic adhesion force of Examples and Comparative Examples and the date of rust occurrence.
(比較例2)
実施例1と同様にして磁性主層3を作製した。
続いて、実施例1の表磁性バリアー層用磁性塗料に替えて、平均粒子径が50ミクロンの無機ガラス粉末(密度は2.5グラム/センチ立方)48グラムを、実施例1で用いた塗料バインダーと沈降防止剤の混合物74.5グラムに混ぜ込んだ非磁性塗料を準備し、該磁性主層の上に塗装後乾燥させて、厚さ0.09ミリの非磁性被覆層を形成した。
(Comparative Example 2)
A magnetic main layer 3 was produced in the same manner as in Example 1.
Subsequently, instead of the magnetic coating for the surface magnetic barrier layer of Example 1, 48 g of inorganic glass powder having an average particle diameter of 50 microns (density is 2.5 g / cm 3) was used in Example 1. A nonmagnetic paint mixed with 74.5 grams of a mixture of binder and anti-settling agent was prepared, and coated on the magnetic main layer and dried to form a nonmagnetic coating layer having a thickness of 0.09 mm.
該非磁性塗料層のガラス成分以外の塗料バインダーの固形成分は45体積%で、実施例1及び実施例2の表磁性バリアー層における塗料バインダーの固形成分の体積比率とほぼ同等であった。
錆の発生は29日だったが、被覆層が磁性粉を含まないために、磁着力は著しく低く72であった。
The solid component of the paint binder other than the glass component of the non-magnetic paint layer was 45% by volume, which was substantially equal to the volume ratio of the solid component of the paint binder in the surface magnetic barrier layers of Examples 1 and 2.
The occurrence of rust was 29 days, but the magnetic adhesion was remarkably low at 72 because the coating layer did not contain magnetic powder.
表1で明らかな様に、本発明に拠れば、必要な磁着力を十分確保しつつ鉄粉の錆を防ぐ事が出来た。 As apparent from Table 1, according to the present invention, it was possible to prevent iron powder from rusting while sufficiently securing the necessary magnetic adhesion.
なお、本発明における磁性層1の形成方法は、ロール塗りやスプレーによる塗装方法にて説明してきたが、これに限ることなく適宜の方法を選択して実施することができる。
例えば、刷毛塗り塗装や、印刷法を採用することが出来る。
In addition, although the formation method of the magnetic layer 1 in this invention has demonstrated by the coating method by roll coating or spray, it can implement by selecting an appropriate method without being restricted to this.
For example, brush painting or a printing method can be employed.
本発明の磁性層は、柱や戸、ボードなどの塗装可能な任意の面に磁性塗料を塗布して得られて且つ錆に強い磁性層であって、マグネットシートなどの面状磁石や、マグネットホルダーやマグネットフックなどの磁石を磁着させる事が出来る。
建装部材やパネルの表面に適用して、掲示や表示、あるいは掛止のための磁性面、または幼児の知育教育の為の磁性壁面などとして利用される。
The magnetic layer of the present invention is a magnetic layer that is obtained by applying a magnetic paint to any paintable surface such as a pillar, door, or board, and is resistant to rust. Magnets such as holders and magnet hooks can be magnetized.
It is applied to the surface of building members and panels, and is used as a magnetic surface for posting, displaying or hanging, or as a magnetic wall for educational education for young children.
1 磁性層
2 建装部材
3 磁性主層
4 表磁性バリアー層
5 裏磁性バリアー層
6 磁性塗料層
7 真空容器
8 磁性粉
9 容器
10 漏斗
11 塗料バインダー及び沈降防止剤の混合物
12 バルブ
13 真空ポンプ
14 真空ポンプバルブ
15 通気バルブ
DESCRIPTION OF SYMBOLS 1 Magnetic layer 2 Building member 3 Magnetic main layer 4 Front magnetic barrier layer 5 Back magnetic barrier layer 6 Magnetic paint layer 7 Vacuum container 8 Magnetic powder 9 Container 10 Funnel 11 Mixture of paint binder and anti-settling agent 12 Valve 13 Vacuum pump 14 Vacuum pump valve 15 Ventilation valve
Claims (6)
The manufacturing method of the magnetic layer of the building member according to claim 1 or 2 , or the manufacturing method of the magnetic layer of the building member according to any one of claims 3 to 5, wherein the magnetic main layer Is a magnetic main layer magnetic paint that has been subjected to the process of bringing the dried magnetic powder as a main component into contact with a paint binder for the first time in a container deaerated and decompressed in advance, and then returning the pressure to atmospheric pressure. A method for producing a magnetic layer of a building member, comprising drying after coating and laminating .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013016476A JP5877804B2 (en) | 2012-02-28 | 2013-01-31 | Magnetic layer of building member and method for manufacturing magnetic layer of building member |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012041470 | 2012-02-28 | ||
JP2012041470 | 2012-02-28 | ||
JP2013016476A JP5877804B2 (en) | 2012-02-28 | 2013-01-31 | Magnetic layer of building member and method for manufacturing magnetic layer of building member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013209874A JP2013209874A (en) | 2013-10-10 |
JP5877804B2 true JP5877804B2 (en) | 2016-03-08 |
Family
ID=49527937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013016476A Active JP5877804B2 (en) | 2012-02-28 | 2013-01-31 | Magnetic layer of building member and method for manufacturing magnetic layer of building member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5877804B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655091A (en) * | 2014-10-23 | 2016-06-08 | 国家电网公司 | Low frequency transformer shielding layer |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5916228B2 (en) * | 2013-01-31 | 2016-05-11 | ニチレイマグネット株式会社 | Magnetic film structure and method of manufacturing magnetic film structure |
CA3036102A1 (en) * | 2016-10-18 | 2018-04-26 | Yoshino Gypsum Co., Ltd. | Gypsum-based building material with magnetic layer, magnetic joint material, method for fabricating gypsum-based building material with magnetic layer |
JP6740913B2 (en) * | 2017-01-19 | 2020-08-19 | 住友ベークライト株式会社 | Construction method |
JP6855805B2 (en) * | 2017-01-19 | 2021-04-07 | 住友ベークライト株式会社 | Construction method and laminate |
DK3839169T3 (en) * | 2018-10-05 | 2023-10-02 | Yoshino Gypsum Co | BUILDING SURFACE MATERIAL WITH MAGNETIC LAYER |
JP2021028468A (en) * | 2020-11-25 | 2021-02-25 | 住友ベークライト株式会社 | Construction method, wall structure, and construction set |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0676729B2 (en) * | 1987-06-23 | 1994-09-28 | ニチレイマグネット株式会社 | Wall board |
JPH01207367A (en) * | 1988-02-15 | 1989-08-21 | Tokin Corp | Magnetic coating |
JP2663409B2 (en) * | 1992-05-28 | 1997-10-15 | 富士電気化学株式会社 | Laminated wave absorber |
JP2006272822A (en) * | 2005-03-30 | 2006-10-12 | Decolanitto Corp | Decorative panel |
JP4931401B2 (en) * | 2005-11-10 | 2012-05-16 | 国立大学法人名古屋大学 | Magnetic tile and method for manufacturing magnetic tile |
JP5135313B2 (en) * | 2009-10-08 | 2013-02-06 | 株式会社マグエックス | Paint, magnetic substrate coated with the paint, and method of forming a magnetized surface |
-
2013
- 2013-01-31 JP JP2013016476A patent/JP5877804B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655091A (en) * | 2014-10-23 | 2016-06-08 | 国家电网公司 | Low frequency transformer shielding layer |
Also Published As
Publication number | Publication date |
---|---|
JP2013209874A (en) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5877804B2 (en) | Magnetic layer of building member and method for manufacturing magnetic layer of building member | |
CN107004499B (en) | The manufacturing method of R-T-B based sintered magnet | |
CN104231708B (en) | Soft magnetism coating used under multipole magnetostatic field and preparation method thereof | |
DE102014221200A1 (en) | METHOD FOR PRODUCING RARE-THERMAL NETWORKS | |
JP5975002B2 (en) | Color magnetic film structure | |
US20110018664A1 (en) | Permanent magnet and method for manufacturing the same | |
JP2009170541A5 (en) | ||
KR20170093696A (en) | Composition for 3 dimensional printing | |
CN107492429A (en) | A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof | |
CN109715720B (en) | Composition for three-dimensional printing | |
DE102017115791A1 (en) | R-T-B-based rare earth permanent magnet | |
JP2013191839A (en) | Dust core and powder for magnetic core used therefor | |
JP5916228B2 (en) | Magnetic film structure and method of manufacturing magnetic film structure | |
TW201929002A (en) | Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, metal foil-attached magnetic resin sheet, magnetic prepreg, and inductor component | |
JP6784484B2 (en) | RTB-based sintered magnets and motors | |
CN109148069B (en) | RFeB-based magnet and method for producing RFeB-based magnet | |
US20100129540A1 (en) | Method for the production of a magnetic layer on a substrate and printable magnetizable varnish | |
US11004582B2 (en) | Molded product of magnetic powder composition comprising magnetic powder of surface-treated magnetite particles, and methods of producing thereof | |
CN106158205A (en) | A kind of preparation method of neodymium iron boron magnetic body | |
JP2868948B2 (en) | Magnetic coating method | |
JP2017028087A (en) | Flat soft magnetic metal powder for magnetic sheet, magnetic sheet, and antenna coil | |
JP7251053B2 (en) | RFeB magnet and method for manufacturing RFeB magnet | |
JPH0222804A (en) | Rare-earth, iron resin-bonded magnet | |
JP2009256753A (en) | METHOD FOR MANUFACTURING Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, RESIN COMPOSITION FOR BONDING MAGNET CONTAINING Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, AND BONDING MAGNET | |
JP7490200B2 (en) | Nd magnetic powder-containing aqueous coating composition and magnetic surface and magnetic sheet using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5877804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |