JP5874537B2 - Vehicle system - Google Patents

Vehicle system Download PDF

Info

Publication number
JP5874537B2
JP5874537B2 JP2012124776A JP2012124776A JP5874537B2 JP 5874537 B2 JP5874537 B2 JP 5874537B2 JP 2012124776 A JP2012124776 A JP 2012124776A JP 2012124776 A JP2012124776 A JP 2012124776A JP 5874537 B2 JP5874537 B2 JP 5874537B2
Authority
JP
Japan
Prior art keywords
temperature
battery
vehicle
vehicle interior
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012124776A
Other languages
Japanese (ja)
Other versions
JP2013248966A (en
Inventor
慶 神谷
慶 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012124776A priority Critical patent/JP5874537B2/en
Publication of JP2013248966A publication Critical patent/JP2013248966A/en
Application granted granted Critical
Publication of JP5874537B2 publication Critical patent/JP5874537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

本発明は、電池と、空調装置と、温度調整部とを備える車両システムに関する。   The present invention relates to a vehicle system including a battery, an air conditioner, and a temperature adjustment unit.

従来では、ハイブリッド車両において、燃費の悪化を招くことなく電池の冷却を行うことを目的とする車両用電池の冷却制御装置に関する技術の一例が開示されている(例えば特許文献1を参照)。この車両用電池の冷却制御装置は、電気負荷予測手段によって電気負荷の増加が想定される場合に、予め室内の空気を荷室へ導入して荷室内を冷却するように切替え弁を切替える制御手段を備える。よって、電気負荷の増大が想定された場合には、予めトランクルーム内を車室内の空気によって冷却するので、電気負荷増大時に電池温度が許容温度に達するまでの時間が十分に確保される。   Conventionally, in a hybrid vehicle, an example of a technology related to a vehicle battery cooling control device for the purpose of cooling a battery without causing deterioration in fuel consumption has been disclosed (see, for example, Patent Document 1). The vehicle battery cooling control apparatus is configured to control the switching valve so that the indoor air is introduced into the cargo compartment in advance and the cargo compartment is cooled when the electrical load is predicted to be increased by the electrical load predicting means. Is provided. Therefore, when an increase in electrical load is assumed, the interior of the trunk room is cooled in advance by the air in the passenger compartment, so that a sufficient time is required until the battery temperature reaches the allowable temperature when the electrical load increases.

特許第3975990号公報Japanese Patent No. 3975990

しかし、ハイブリッド車両を含めた一般的な車両では、所定時間以上で継続して停止(すなわち駐車)する場合には、電気負荷の増大が想定されず、むしろ電気負荷が無くなる。よって車両を停止させる場合には、予め室内の空気を荷室へ導入するように切替え弁を切替えられず、結果として荷室内に設置される電池を冷却することができない。   However, in a general vehicle including a hybrid vehicle, when the vehicle is continuously stopped (that is, parked) for a predetermined time or longer, an increase in the electric load is not assumed, but rather there is no electric load. Therefore, when stopping the vehicle, the switching valve cannot be switched so as to introduce the indoor air into the cargo compartment in advance, and as a result, the battery installed in the cargo compartment cannot be cooled.

一方、車両の停止時には窓やドアを閉めたまま放置することが多く、車両の室内温度が高くなる。特に夏場は日射の影響が強く、室内温度がすぐに高くなり易い。仮に室内の空気を荷室へ導入するように切替え弁を切替える構成としても、高温になった室内空気を電池へ送ることとなり、かえって電池に悪影響を与える恐れがある。すなわち電池が熱せられて性能が劣化する恐れがある。   On the other hand, when the vehicle is stopped, it is often left with the windows and doors closed, and the interior temperature of the vehicle becomes high. Especially in the summer, the influence of solar radiation is strong, and the room temperature tends to rise quickly. Even if the switching valve is switched so that the indoor air is introduced into the cargo room, the heated indoor air is sent to the battery, which may adversely affect the battery. That is, the battery may be heated and the performance may deteriorate.

本発明はこのような点に鑑みてなしたものであり、車両を所定時間以上で継続して停止(すなわち駐車)させても、電池の温度変化を抑制し、当該電池の性能が劣化するのを防止できる車両システムを提供することを目的とする。   The present invention has been made in view of such points, and even if the vehicle is continuously stopped (that is, parked) for a predetermined time or longer, the temperature change of the battery is suppressed, and the performance of the battery is deteriorated. An object of the present invention is to provide a vehicle system that can prevent the above-described problem.

上記課題を解決するためになされた第1の発明は、車両に備える電池と、前記車両の車室内の空気調節を行う空調装置と、前記電池の温度を調整する温度調整部とを備える車両システムにおいて、前記電池の温度と前記車室内の温度とを検出する温度検出部を有し、前記空調装置は前記車両の停止時に所定条件を満たすと前記車室内の空気調節を行い、前記温度調整部(11a,12,50,70,80)は、前記車両の停止時に前記温度検出部によって検出される前記電池の第1電池温度が前記電池の充電状態に対応する充電対応温度に達すると前記電池の温度を調整し、前記所定条件は、前記電池の温度が所定温度に達する第1条件、前記車室内温度が前記第1電池温度に達する第2条件、前記温度検出部によって検出される外気温度が前記第1電池温度に達する第3条件、のうちで一以上の条件を適用し、前記所定温度は、前記電池が劣化しないように保管するための保管温度、または、前記充電対応温度のいずれかであることを特徴とする。 A first invention made to solve the above-described problems is a vehicle system including a battery provided in a vehicle, an air conditioner that adjusts air in a vehicle interior of the vehicle, and a temperature adjustment unit that adjusts the temperature of the battery. A temperature detection unit that detects a temperature of the battery and a temperature in the vehicle interior, and the air conditioner performs air conditioning in the vehicle interior when a predetermined condition is satisfied when the vehicle is stopped, and the temperature adjustment unit (11a, 12, 50, 70, 80) indicates that when the first battery temperature of the battery detected by the temperature detection unit when the vehicle is stopped reaches a charge-corresponding temperature corresponding to a charge state of the battery, The predetermined condition includes a first condition for the battery temperature to reach a predetermined temperature, a second condition for the vehicle interior temperature to reach the first battery temperature, and an outside air temperature detected by the temperature detector. But One or more of the third conditions for reaching the first battery temperature are applied, and the predetermined temperature is either a storage temperature for storing the battery so as not to deteriorate or a temperature corresponding to the charging. It is characterized by being.

この構成によれば、車両の停止時において、温度調整部は温度検出部によって検出される第1電池温度充電対応温度に達すると電池の温度を調整する。言い換えれば、電池の性能が劣化しないように電池の温度変化を抑制するように調整を行う。よって、電池の温度変化を抑制し、当該電池の性能が劣化するのを防止できる。また、第1条件、第2条件、第3条件のうちで一以上の条件を満たすと第1電池温度に達して、温度調整部は電池の温度を調整する。よって、電池の温度変化を抑制し、当該電池の性能が劣化するのを防止できる。さらに、所定温度は保管温度または充電対応温度であるので、電池の性能が劣化するのをより確実に防止できる。 According to this configuration, when the vehicle is stopped, the temperature adjustment unit adjusts the temperature of the battery when the first battery temperature detected by the temperature detection unit reaches the charge-corresponding temperature . In other words, adjustments are made to suppress battery temperature changes so that battery performance does not deteriorate. Therefore, the temperature change of a battery can be suppressed and the performance of the battery can be prevented from deteriorating. In addition, when one or more conditions among the first condition, the second condition, and the third condition are satisfied, the first battery temperature is reached, and the temperature adjustment unit adjusts the temperature of the battery. Therefore, the temperature change of a battery can be suppressed and the performance of the battery can be prevented from deteriorating. Furthermore, since the predetermined temperature is the storage temperature or the charge-compatible temperature, it is possible to more reliably prevent the battery performance from deteriorating.

なお「電池」は、例えば二次電池や燃料電池等が該当する。「車両の停止時」は、いわゆる駐車する状態を意味する。「温度調整部」は、電池の温度が調整可能な構成であれば任意である。例えば、温度調整のための制御信号を出力する制御装置や、送風機(ファンやブロワ等)・熱源(ヒータ等)・熱交換器(管路や熱媒体等)などとの組み合わせが該当する。温度の「調整」は、冷却のみ、加熱のみ、冷却および加熱の双方が該当する。   The “battery” corresponds to, for example, a secondary battery or a fuel cell. “When the vehicle is stopped” means a so-called parking state. The “temperature adjustment unit” is arbitrary as long as the temperature of the battery can be adjusted. For example, a combination of a control device that outputs a control signal for temperature adjustment, a blower (fan, blower, etc.), a heat source (heater, etc.), a heat exchanger (pipe line, heat medium, etc.) and the like is applicable. “Adjustment” of temperature corresponds to cooling only, heating only, and both cooling and heating.

第2の発明は、車両に備える電池と、前記車両の車室内の空気調節を行う空調装置と、前記電池の温度を調整する温度調整部とを備える車両システムにおいて、前記電池の温度と前記車室内の温度とを検出する温度検出部を有し、前記空調装置は前記車両の停止時に所定条件を満たすと前記車室内の空気調節を行い、前記温度調整部は前記車両の停止時に前記温度検出部によって検出される前記車室内の車室内温度が前記電池の第1電池温度に達すると前記電池の温度を調整し、前記第2電池温度と前記第1電池温度との温度差は、前記外気温度と前記車室内温度との温度差、または、前記空調装置に設定される設定温度と前記車室内温度との温度差のいずれかから算出される値であることを特徴とする。この構成によれば、電池の温度変化を抑制し、当該電池の性能が劣化するのを防止できる。また、実際に取り得る温度差を温度差や算出値とするので、電池の温度を的確に調整することができ、電池の性能が劣化するのをより確実に防止できる。 According to a second aspect of the present invention, there is provided a vehicle system including a battery provided in a vehicle, an air conditioner that adjusts air in a vehicle interior of the vehicle, and a temperature adjustment unit that adjusts a temperature of the battery. A temperature detection unit that detects a temperature inside the vehicle, and the air conditioner adjusts air in the vehicle interior when a predetermined condition is satisfied when the vehicle is stopped, and the temperature adjustment unit detects the temperature when the vehicle is stopped. When the vehicle interior temperature detected by the unit reaches the first battery temperature of the battery, the temperature of the battery is adjusted, and the temperature difference between the second battery temperature and the first battery temperature is the outside air temperature. It is a value calculated from either the temperature difference between the temperature and the vehicle interior temperature, or the temperature difference between the set temperature set in the air conditioner and the vehicle interior temperature . According to this structure, the temperature change of a battery can be suppressed and the performance of the battery can be prevented from deteriorating. Moreover, since the temperature difference that can actually be taken is a temperature difference or a calculated value, the temperature of the battery can be adjusted accurately, and deterioration of the battery performance can be more reliably prevented.

第3の発明は、太陽光を受けて発電する太陽光発電機(太陽電池)と、前記太陽光発電機から供給される電力を前記空調装置と補機類とに分配する電力分配部とを有することを特徴とする。この構成によれば、電力分配部によって太陽光発電機から供給される電力が分配されて、温度調整部は電池の温度を調整する。電力が太陽光発電機から得られるので、電池の消耗(蓄電量の低下)を抑制することができる。なお「補機類」は、ECUやファンのように外気や内気を送る機器などが該当する。   According to a third aspect of the present invention, there is provided a solar power generator (solar cell) that receives sunlight to generate power, and a power distribution unit that distributes the power supplied from the solar power generator to the air conditioner and auxiliary equipment. It is characterized by having. According to this configuration, the power supplied from the solar power generator is distributed by the power distribution unit, and the temperature adjustment unit adjusts the temperature of the battery. Since electric power is obtained from the solar power generator, battery consumption (reduction in the amount of stored electricity) can be suppressed. The “auxiliary machines” corresponds to devices that send outside air or inside air such as ECUs and fans.

車両に備える車両システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the vehicle system with which a vehicle is equipped. 車両における空調の流れを示す俯瞰図である。It is an overhead view which shows the flow of the air conditioning in a vehicle. 温度調整処理の手続き例を示すフローチャートである。It is a flowchart which shows the example of a procedure of a temperature adjustment process. 時間と温度について経時的な変化を示すタイムチャートである。It is a time chart which shows a time-dependent change about time and temperature. 車両システムの非停止時における作動例を示す模式図である。It is a schematic diagram which shows the operation example at the time of the non-stop of a vehicle system.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。上下左右等の方向を言う場合には、図面の記載を基準とする。「稼働」には駆動の意味も含み、「設定」には変更や更新の意味を含むものとする。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Note that unless otherwise specified, “connecting” means electrically connecting. Each figure shows elements necessary for explaining the present invention, and does not necessarily show all actual elements. When referring to directions such as up, down, left and right, the description in the drawings is used as a reference. “Operation” includes the meaning of driving, and “setting” includes the meaning of change and update.

図1に示す車両システムは、電力部10、リレーSMR1,SMR2、平滑コンデンサCb、電力変換部20、回転電機30、コンバータ40、空調装置50、補機類に含まれるファン70、太陽光発電機80などを有する。太陽光発電機80を車両に備えるか否かは任意である。補機バッテリ60は必要に応じて備えられる。以下、各要素について簡単に説明する。   The vehicle system shown in FIG. 1 includes a power unit 10, relays SMR1 and SMR2, a smoothing capacitor Cb, a power conversion unit 20, a rotating electrical machine 30, a converter 40, an air conditioner 50, a fan 70 included in auxiliary machinery, a solar power generator. 80 and so on. Whether or not the solar power generator 80 is provided in the vehicle is arbitrary. The auxiliary battery 60 is provided as necessary. Hereinafter, each element will be briefly described.

電力部10は、電力変換部20や、当該電力変換部20と並列接続されるコンバータ40や空調装置50等に安定して電力を供給する機能を担う。図1に示す電力部10は、電池Eb、ECU(Electronic Control Unit)11、ファン12等を有する。本形態の電池Ebには、二次電池(例えばリチウムイオン電池等)を適用する。車両における電池Ebの配置は任意であり、例えばトランクルームや車室内(具体的にはセンターアームレスト部分、床下等)などが該当する。   The power unit 10 has a function of stably supplying power to the power conversion unit 20, the converter 40 connected in parallel with the power conversion unit 20, the air conditioner 50, and the like. The power unit 10 illustrated in FIG. 1 includes a battery Eb, an ECU (Electronic Control Unit) 11, a fan 12, and the like. A secondary battery (for example, a lithium ion battery) is applied to the battery Eb of this embodiment. Arrangement | positioning of the battery Eb in a vehicle is arbitrary, For example, a trunk room, a vehicle interior (specifically, a center armrest part, an under floor etc.), etc. correspond.

ECU11は、温度制御部11aや電力分配部11bなどを有し、電池Ebの温度調整のための制御信号Scを出力する。ECU11は、一のECU(制御装置)で構成してもよく、複数のECUで構成してもよい。各ECUの構成は任意であり、ゲート回路等のハードウェア構成や、CPUがプログラムを実行するソフトウェア構成等を問わない。複数のECUで構成する場合では、ECU間のネットワーク・トポロジーも任意である。   ECU11 has temperature control part 11a, electric power distribution part 11b, etc., and outputs control signal Sc for temperature adjustment of battery Eb. The ECU 11 may be composed of one ECU (control device) or a plurality of ECUs. The configuration of each ECU is arbitrary, and may be a hardware configuration such as a gate circuit or a software configuration in which a CPU executes a program. In the case of a plurality of ECUs, the network topology between the ECUs is also arbitrary.

温度制御部11aは、電池Ebの電池温度θbを目的温度に制御(すなわち調整)する機能を担う(後述する図3を参照)。電力分配部11bは必要に応じて備えられ、電力供給源から供給される電力を空調装置50とファン70(温度調整部)とに分配する機能を担う。当該電力供給源は、電池Eb、補機バッテリ60、太陽光発電機80のうちで一以上が該当する。ファン12,70や空調装置50のうちで一以上と、温度制御部11aとの組み合わせは「温度調整部」に相当する。送風機としてのファン12は、車室内から電池Ebに向けて送風する。ファン12,70や空調装置50等は、制御信号Scに基づいて稼働/非稼働する。   The temperature control unit 11a has a function of controlling (that is, adjusting) the battery temperature θb of the battery Eb to a target temperature (see FIG. 3 described later). The power distribution unit 11b is provided as necessary, and has a function of distributing the power supplied from the power supply source to the air conditioner 50 and the fan 70 (temperature adjustment unit). The power supply source corresponds to one or more of the battery Eb, the auxiliary battery 60, and the solar power generator 80. A combination of one or more of the fans 12, 70 and the air conditioner 50 and the temperature control unit 11a corresponds to a “temperature adjustment unit”. The fan 12 as a blower blows air from the passenger compartment toward the battery Eb. The fans 12, 70, the air conditioner 50, and the like are operated / not operated based on the control signal Sc.

リレーSMR1,SMR2および平滑コンデンサCbは、電池Ebと電力変換部20との間に備えられる。リレーSMR1,SMR2は、ECU11によって作動が制御される。当該ECU11は、車両の所定スイッチ(例えばイグニッションスイッチやキーレスシステム用スイッチ等)に連動して、リレーSMR1,SMR2の作動(オン/オフ)を制御する。図1にはオフの状態を示し、図5にはオンの状態を示す。平滑コンデンサCbは、回転電機30の電力変動に伴う電圧値VHの電位変動を低減する機能を担う。   Relays SMR1 and SMR2 and smoothing capacitor Cb are provided between battery Eb and power conversion unit 20. The operations of relays SMR1 and SMR2 are controlled by ECU 11. The ECU 11 controls the operation (ON / OFF) of the relays SMR1 and SMR2 in conjunction with a predetermined switch (for example, an ignition switch or a keyless system switch) of the vehicle. FIG. 1 shows an off state, and FIG. 5 shows an on state. Smoothing capacitor Cb has a function of reducing potential fluctuation of voltage value VH accompanying power fluctuation of rotating electrical machine 30.

電力変換部20は、電池Ebから供給される電力を変換して回転電機30に出力(伝達)する機能を担う。回転電機30で逆起電力が発生する場合には電池Ebに充電(蓄電)する機能を備えてもよい。この電力変換部20の構成は任意である。例えば回転電機30が三相(U相,V相,W相)であれば、上アームと下アームと合わせて6つのスイッチング素子およびダイオードを備える。本形態の回転電機30には、電動機と発電機の機能を持ち合わせる電動発電機(図では「MG」で示す)を適用する。   The power converter 20 has a function of converting the power supplied from the battery Eb and outputting (transmitting) it to the rotating electrical machine 30. When a counter electromotive force is generated in the rotating electrical machine 30, a function of charging (charging) the battery Eb may be provided. The configuration of the power conversion unit 20 is arbitrary. For example, if the rotating electrical machine 30 is a three-phase (U phase, V phase, W phase), six switching elements and diodes are provided in combination with the upper arm and the lower arm. A motor generator (indicated by “MG” in the figure) having the functions of an electric motor and a generator is applied to the rotating electrical machine 30 of this embodiment.

コンバータ40は、電池Ebや回転電機30の逆起電力にかかる電圧値VHを、目的とする電圧値VF(例えば14[V]等)に変換して出力する。電圧値VFは、空調、換気、温度調整等に用いる機器(例えばファン70等)を稼働させる電圧値が該当する。   The converter 40 converts the voltage value VH applied to the counter electromotive force of the battery Eb and the rotating electrical machine 30 to a target voltage value VF (for example, 14 [V]) and outputs the voltage value VH. The voltage value VF corresponds to a voltage value for operating a device (for example, the fan 70) used for air conditioning, ventilation, temperature adjustment, or the like.

空調装置50はいわゆるエアコンであり、外気や内気を導入して乗員等が設定した目的温度に調節する機能を担う。通常、空調装置50は電池Ebから供給される電力を受けて稼働する。なお、補機バッテリ60や太陽光発電機80に余剰電力が発生する場合には、電力分配部11bを経て供給される電力を受けて稼働させてもよい。補機バッテリ60や太陽光発電機80は、主にファン70(補機類)を稼働させるための電力源である。ファン70は外気や内気を車室内に送るが、空調装置50が稼働していれば空気調節された外気や内気を車室内に送る。よって車室内の空気調節を行える点で、ファン70は「空調装置」にも相当する。   The air conditioner 50 is a so-called air conditioner, and has a function of introducing outside air or inside air to adjust to a target temperature set by a passenger or the like. Normally, the air conditioner 50 operates by receiving power supplied from the battery Eb. When surplus power is generated in the auxiliary battery 60 or the solar power generator 80, the power supplied through the power distribution unit 11b may be received and operated. The auxiliary battery 60 and the solar power generator 80 are power sources mainly for operating the fan 70 (auxiliary equipment). The fan 70 sends outside air or inside air into the vehicle interior. If the air conditioner 50 is operating, the fan 70 sends outside air or inside air that has been air-conditioned. Therefore, the fan 70 corresponds to an “air conditioner” in that air conditioning in the passenger compartment can be performed.

補機バッテリ60は、上述した電池Ebとは別個に車両に備えられる電池(例えば二次電池や燃料電池等)である。リレーSMR1,SMR2がオンのときは、電池Ebや回転電機30の逆起電力にかかる電力がコンバータ40を介して供給される。よって、補機バッテリ60が二次電池であれば蓄電することもできる。太陽光発電機80は、光の持つエネルギーを直接的に電力に変換して出力する機器である。いわゆる太陽電池であって、光吸収層の材料や素子の形態などによって分類される種類を問わない。   The auxiliary battery 60 is a battery (for example, a secondary battery or a fuel cell) provided in the vehicle separately from the battery Eb described above. When relays SMR1 and SMR2 are on, the power applied to the back electromotive force of battery Eb and rotating electrical machine 30 is supplied via converter 40. Therefore, if auxiliary battery 60 is a secondary battery, it can also store electricity. The solar power generator 80 is a device that directly converts the energy of light into electric power and outputs it. It is what is called a solar cell, Comprising: The kind classified according to the material of an optical absorption layer, the form of an element, etc. does not ask | require.

図2には、車両100における温度センサや機器等の配置例を示す。温度センサSeは、外気温度(θe)を検出するために車両100のフロント側(図面左側)に備える。温度センサSiは、車室内温度(θi)を検出するために車室内に備える。温度センサSbは、電池温度(θb)を検出するために電池Ebの内外に備える。これらの温度センサSe,Si,Sbでそれぞれ検出される信号(データを含む)はECU11に入力される(図1を参照)。ファン12は電池Ebに車室内の空気を送れる位置(例えばダクト内や電池Ebの近傍等)に備える。太陽光発電機80は、光を受ける位置(例えばルーフ,ピラー,ボンネット等の車体)に備える。これらの配置例はあくまで一例に過ぎず、他の配置であってもよい。外気は、矢印D5に示すように空調装置50やファン70を経て車室内に送られる。車室内の空気は、矢印D6に示すようにファン12を経て電池Ebに当てることで、当該電池Ebの温度を調整する。   In FIG. 2, the example of arrangement | positioning of the temperature sensor, apparatus, etc. in the vehicle 100 is shown. The temperature sensor Se is provided on the front side (left side of the drawing) of the vehicle 100 in order to detect the outside air temperature (θe). The temperature sensor Si is provided in the vehicle interior in order to detect the vehicle interior temperature (θi). The temperature sensor Sb is provided inside and outside the battery Eb to detect the battery temperature (θb). Signals (including data) detected by these temperature sensors Se, Si, Sb are input to the ECU 11 (see FIG. 1). The fan 12 is provided at a position where air in the vehicle compartment can be sent to the battery Eb (for example, in the duct or in the vicinity of the battery Eb). The solar power generator 80 is provided at a position for receiving light (for example, a vehicle body such as a roof, a pillar, and a bonnet). These arrangement examples are merely examples, and other arrangements may be used. The outside air is sent to the vehicle interior through the air conditioner 50 and the fan 70 as indicated by an arrow D5. The air in the passenger compartment is applied to the battery Eb through the fan 12 as indicated by an arrow D6, thereby adjusting the temperature of the battery Eb.

電力部10に備える温度制御部11aにより、電池Ebの温度を調整する温度調整処理について図3を参照しながら説明する。この温度調整処理は、ECU11が作動中において繰り返し実行される。当該実行は、一定間隔でもよく不定間隔でもよい。   A temperature adjustment process for adjusting the temperature of the battery Eb by the temperature control unit 11a provided in the power unit 10 will be described with reference to FIG. This temperature adjustment process is repeatedly executed while the ECU 11 is in operation. The execution may be at regular intervals or irregular intervals.

温度調整処理では、まず車両100が停止(駐車)中か否かを判別する〔ステップS10〕。車両100が停止中か否かの判別条件は任意に設定することができる。例えば、上述した所定スイッチがオフか否かで判別してもよく、車両100に備える速度センサ(図示せず)によって検出される速度がゼロとなる状態が所定期間を超えるか否かで判別してもよい。当該所定期間は後述する停止判断期間Tsに相当し(図4を参照)、例えば1分間,20分間,1時間等が該当する。もし車両100が停止でなければ(NO)、そのまま温度調整処理をリターン(終了を含む。以下同じである。)する。   In the temperature adjustment process, it is first determined whether or not the vehicle 100 is stopped (parked) [step S10]. A determination condition for determining whether or not the vehicle 100 is stopped can be arbitrarily set. For example, the determination may be made based on whether the above-described predetermined switch is off, or whether the state in which the speed detected by a speed sensor (not shown) provided in the vehicle 100 is zero exceeds a predetermined period. May be. The predetermined period corresponds to a stop determination period Ts described later (see FIG. 4), and corresponds to, for example, 1 minute, 20 minutes, 1 hour, or the like. If the vehicle 100 is not stopped (NO), the temperature adjustment process is returned (including the end. The same applies hereinafter).

一方、車両100が停止中であれば(YES)、温度センサSbによって検出される電池温度θbが所定温度θAに達するか否か(θb>θAか否か)を判別する〔ステップS11〕。すなわち「第1条件」を満たすか否かを判別する。その他、車室内温度θiが第1電池温度θb1に達する「第2条件」や、温度検出部によって検出される外気温度θeが第1電池温度θb1に達する「第3条件」などを適用してもよい。さらには第1条件、第2条件、第3条件のうちで二以上の条件を課してもよい。   On the other hand, if the vehicle 100 is stopped (YES), it is determined whether or not the battery temperature θb detected by the temperature sensor Sb reaches a predetermined temperature θA (whether θb> θA) [step S11]. That is, it is determined whether or not the “first condition” is satisfied. In addition, the “second condition” in which the vehicle interior temperature θi reaches the first battery temperature θb1 or the “third condition” in which the outside air temperature θe detected by the temperature detection unit reaches the first battery temperature θb1 is applied. Good. Furthermore, two or more conditions may be imposed among the first condition, the second condition, and the third condition.

電池温度θbには、温度センサSbによって検出される温度(すなわち第1電池温度θb1)を適用してもよく、当該第1電池温度θb1よりも温度差αだけ高い第2電池温度θb2を適用してもよい。第1電池温度θb1と第2電池温度θb2との温度差α(=θb2−θb1)は、任意の温度差から算出される算出値を適用してもよい。例えば、外気温度θeと車室内温度θiとの温度差や、空調装置50に設定される設定温度と車室内温度θiとの温度差のいずれかから算出される算出値などが該当する。算出方法は、車両100や電池Eb等などの諸条件に応じて適切に設定する。所定温度θAは任意に設定することができる。例えば、電池Ebが劣化しないように保管するための保管温度や、電池Ebの充電状態(例えば充電率や充電量等)に対応する充電対応温度などが該当する。充電状態と充電対応温度との関係は、電池Ebが劣化しないことを前提として、マップや関数等によって設定しておく。   As the battery temperature θb, the temperature detected by the temperature sensor Sb (that is, the first battery temperature θb1) may be applied, and the second battery temperature θb2 that is higher than the first battery temperature θb1 by the temperature difference α is applied. May be. A calculated value calculated from an arbitrary temperature difference may be applied to the temperature difference α (= θb2−θb1) between the first battery temperature θb1 and the second battery temperature θb2. For example, a calculated value calculated from any one of a temperature difference between the outside air temperature θe and the vehicle interior temperature θi, a temperature difference between a set temperature set in the air conditioner 50 and the vehicle interior temperature θi, and the like. The calculation method is appropriately set according to various conditions such as the vehicle 100 and the battery Eb. The predetermined temperature θA can be arbitrarily set. For example, the storage temperature for storing the battery Eb so as not to deteriorate, the charging-compatible temperature corresponding to the state of charge of the battery Eb (for example, the charging rate, the charge amount, etc.) are applicable. The relationship between the charge state and the charge-corresponding temperature is set by a map, a function, or the like on the assumption that the battery Eb does not deteriorate.

もし電池温度θbが所定温度θAに達してなければ(すなわちθb≦θA;NO)、電池Ebは劣化せずに保管に適した温度である。よって電池Ebの温度を調整する必要が無いので、そのまま温度調整処理をリターンする。   If the battery temperature θb does not reach the predetermined temperature θA (that is, θb ≦ θA; NO), the battery Eb is a temperature suitable for storage without deterioration. Therefore, since there is no need to adjust the temperature of the battery Eb, the temperature adjustment process is returned as it is.

これに対して電池温度θbが所定温度θAに達すると(YES)、電池温度θbが車室内温度θiに達するか否か(すなわちθb>θiか否か)を判別する〔ステップS12〕。車室内温度θiは温度センサSiによって検出される(図1を参照)。もし電池温度θbが車室内温度θiに達すると(YES)、ファン12を稼働させて車室内の空気を電池Ebに当てて温度を調整する〔ステップS13〕。電池温度θbと車室内温度θiとの温度差に応じてファン12の回転数を変化させることで送風量を加減し、電池温度θbの変化が大きくなるようにするとよい。   On the other hand, when the battery temperature θb reaches the predetermined temperature θA (YES), it is determined whether or not the battery temperature θb reaches the vehicle interior temperature θi (that is, whether θb> θi) [step S12]. The vehicle interior temperature θi is detected by a temperature sensor Si (see FIG. 1). If the battery temperature θb reaches the vehicle interior temperature θi (YES), the fan 12 is operated to adjust the temperature by applying air in the vehicle interior to the battery Eb [step S13]. It is preferable that the change in the battery temperature θb is increased by changing the rotational speed of the fan 12 in accordance with the temperature difference between the battery temperature θb and the vehicle interior temperature θi so as to increase or decrease the air flow rate.

ステップS13における電池Ebの温度調整は、電池温度θbが許容温度θBに達するまで行われる(θb>θB;ステップS14でNO)。ステップS14の許容温度θBは、電池Ebを保管するのに適した温度範囲である。一方、電池温度θbが許容温度θBに達すると(θb≦θB;ステップS14でYES)、電池Ebは劣化せずに保管に適した温度であるので、温度調整処理をリターンする。   The temperature adjustment of the battery Eb in step S13 is performed until the battery temperature θb reaches the allowable temperature θB (θb> θB; NO in step S14). The allowable temperature θB in step S14 is a temperature range suitable for storing the battery Eb. On the other hand, when the battery temperature θb reaches the allowable temperature θB (θb ≦ θB; YES in step S14), the battery Eb is a temperature suitable for storage without being deteriorated, and the temperature adjustment process is returned.

次にステップS12において、電池温度θbが車室内温度θiに達しない間(θb≦θi;NO)について以下に説明する。この間は、温度センサSeによって検出される外気温度θeと、車室内温度θiとの大小関係に応じてステップS30またはステップS21に分岐する〔ステップS20〕。   Next, in step S12, a description will be given below of the period during which the battery temperature θb does not reach the vehicle interior temperature θi (θb ≦ θi; NO). During this time, the process branches to step S30 or step S21 depending on the magnitude relationship between the outside air temperature θe detected by the temperature sensor Se and the vehicle interior temperature θi [step S20].

もし外気温度θeが車室内温度θiよりも低ければ(θe<θi;YES)、ファン70のみを稼働させて外気を車室内に送り〔ステップS30〕、ステップS12に戻って継続する。外気温度θeと車室内温度θiとの温度差に応じてファン70の回転数を変化させることで送風量を加減し、車室内温度θiの変化が大きくなるようにするとよい。   If the outside air temperature θe is lower than the vehicle interior temperature θi (θe <θi; YES), only the fan 70 is operated to send the outside air into the vehicle interior [step S30], and the process returns to step S12 and continues. It is preferable that the change in the vehicle interior temperature θi is increased by changing the rotational speed of the fan 70 according to the temperature difference between the outside air temperature θe and the vehicle interior temperature θi so as to adjust the air flow rate.

一方、外気温度θeが車室内温度θi以上であれば(θe≧θi;NO)、空調装置50およびファン70を稼働させて車室内の空気調節を行い〔ステップS30〕、ステップS12に戻って継続する。ステップS30の空気調節は、例えば外気モードかつファン70の稼働や、冷房を行う場合におけるコンプレッサ(空調装置50)およびファン70の稼働などが該当する。空調装置50の稼働形態は、連続的稼働でもよく、断続的稼働でもよい。断続的稼働の場合は、一定間隔や不定間隔ごとでもよく、一時的に稼働する時間も一定時間や不定時間ごとでもよい。空調装置50に供給される電力(電池Eb,補機バッテリ60,太陽光発電機80等の各電力)の大きさや、外気温度θeと車室内温度θiとの温度差などに基づいて、稼働形態を変化させてもよい。   On the other hand, if the outside air temperature θe is equal to or higher than the vehicle interior temperature θi (θe ≧ θi; NO), the air conditioner 50 and the fan 70 are operated to adjust the air in the vehicle interior [step S30], and the process returns to step S12 and continues. To do. The air conditioning in step S30 corresponds to, for example, the outside air mode and the operation of the fan 70, the operation of the compressor (air conditioner 50) and the fan 70 in the case of cooling. The operation mode of the air conditioner 50 may be continuous operation or intermittent operation. In the case of intermittent operation, it may be at regular intervals or irregular intervals, and the temporary operation time may be regular intervals or irregular intervals. Based on the magnitude of power supplied to the air conditioner 50 (each power of the battery Eb, auxiliary battery 60, solar power generator 80, etc.), the temperature difference between the outside air temperature θe and the vehicle interior temperature θi, etc. May be changed.

上述したステップS30,S21を実行するにあたって、電力分配部11bは空調装置50とファン70(温度調整部)とに電力を分配する分配比率を変化させる。分配比率は、0〜100%の範囲内で任意に設定する。例えば車室内温度θiと第1電池温度θb1とに基づく場合には、温度差(|θi−θb1|)や、当該温度差から算出される算出値などを適用する。図1には電力供給経路を矢印D1,D2で示す。二点鎖線で示す矢印D1は電力源を補機バッテリ60とする場合であり、太実線で示す矢印D1は電力源を太陽光発電機80とする場合である。   In executing steps S30 and S21 described above, the power distribution unit 11b changes the distribution ratio for distributing power to the air conditioner 50 and the fan 70 (temperature adjustment unit). The distribution ratio is arbitrarily set within a range of 0 to 100%. For example, when based on the vehicle interior temperature θi and the first battery temperature θb1, a temperature difference (| θi−θb1 |), a calculated value calculated from the temperature difference, or the like is applied. In FIG. 1, power supply paths are indicated by arrows D1 and D2. An arrow D1 indicated by a two-dot chain line is a case where the power source is the auxiliary battery 60, and an arrow D1 indicated by a thick solid line is a case where the power source is the solar power generator 80.

上述した温度調整処理による温度の変化例について、図4を参照しながら説明する。図4は、縦軸を温度とし、横軸を時間とし、時刻t0を車両の所定スイッチがオフになった時点とする。車室内温度θiの変化を特性線Li(破線)で示し、電池温度θbの変化を特性線Lb1,Lb2(実線)で示し、外気温度θeの変化を特性線Le(一点鎖線)で示す。特性線Lb1は電池温度θbに第1電池温度θb1を適用した例であり、特性線Lb2は電池温度θbに第2電池温度θb2を適用した例である。実際には外気温度θeも変化するが、説明を簡単にするために外気温度θeを一定温度(θ1)とする。   An example of temperature change by the above-described temperature adjustment processing will be described with reference to FIG. In FIG. 4, the vertical axis is temperature, the horizontal axis is time, and the time t0 is the time when a predetermined switch of the vehicle is turned off. A change in the vehicle interior temperature θi is indicated by a characteristic line Li (broken line), a change in the battery temperature θb is indicated by characteristic lines Lb1 and Lb2 (solid line), and a change in the outside air temperature θe is indicated by a characteristic line Le (one-dot chain line). The characteristic line Lb1 is an example in which the first battery temperature θb1 is applied to the battery temperature θb, and the characteristic line Lb2 is an example in which the second battery temperature θb2 is applied to the battery temperature θb. Actually, the outside air temperature θe also changes. However, in order to simplify the explanation, the outside air temperature θe is set to a constant temperature (θ1).

まず、電池温度θbに第1電池温度θb1を適用した例を説明する。時刻t0では、第1電池温度θb1を温度θ2とし、車室内温度θiを温度θ4とする。所定スイッチがオフになる時刻t0は車両が停止したか否かは判別できないので、停止判断期間Tsが経過する時刻t1まで何も行わない(図3のステップS10でNO)。   First, an example in which the first battery temperature θb1 is applied to the battery temperature θb will be described. At time t0, the first battery temperature θb1 is the temperature θ2, and the vehicle interior temperature θi is the temperature θ4. Since it cannot be determined whether or not the vehicle has stopped at time t0 when the predetermined switch is turned off, nothing is performed until time t1 when the stop determination period Ts elapses (NO in step S10 of FIG. 3).

停止判断期間Tsを経過した後、第1電池温度θb1が所定温度θAに達するのは時刻t3である。このとき第1電池温度θb1が車室内温度θiよりも低く、車室内温度θiが外気温度θeよりも高いので、ファン70が稼働されて外気が車室内に送られる(図3のステップS12,S20,S21)。その後、第1電池温度θb1が車室内温度θiよりも高くなる時刻t5には、ファン12が稼働されて電池Ebの温度が調整される(図3のステップS11,S12,S13)。そして、第1電池温度θb1が許容温度θBに達する時刻t6には、ファン12の稼働を停止する(図3のステップS14,S15)   After the stop determination period Ts has elapsed, the first battery temperature θb1 reaches the predetermined temperature θA at time t3. At this time, since the first battery temperature θb1 is lower than the vehicle interior temperature θi and the vehicle interior temperature θi is higher than the outside air temperature θe, the fan 70 is operated and the outside air is sent into the vehicle interior (steps S12 and S20 in FIG. 3). , S21). Thereafter, at time t5 when the first battery temperature θb1 becomes higher than the vehicle interior temperature θi, the fan 12 is operated and the temperature of the battery Eb is adjusted (steps S11, S12, and S13 in FIG. 3). Then, at time t6 when the first battery temperature θb1 reaches the allowable temperature θB, the operation of the fan 12 is stopped (steps S14 and S15 in FIG. 3).

次に、電池温度θbに第1電池温度θb1を適用した例と異なる点について、電池温度θbに第2電池温度θb2を適用した例を説明する。第2電池温度θb2は第1電池温度θb1よりも温度差αだけ高いので、第2電池温度θb2が所定温度θAに達するのは時刻t3よりも前の時刻t2であり、時刻t2にファン70が稼働されて外気が車室内に送られる(図3のステップS12,S20,S21)。その後、第2電池温度θb2が車室内温度θiよりも低くなるのは時刻t5よりも前の時刻t4であり、ファン12が稼働されて電池Ebの温度が調整される(図3のステップS11,S12,S13)。そして、第2電池温度θb2が許容温度θBに達するのは時刻t6より後の時刻t7であり、ファン12の稼働を停止する(図3のステップS14,S15)。   Next, an example in which the second battery temperature θb2 is applied to the battery temperature θb will be described with respect to differences from the example in which the first battery temperature θb1 is applied to the battery temperature θb. Since the second battery temperature θb2 is higher than the first battery temperature θb1 by the temperature difference α, the second battery temperature θb2 reaches the predetermined temperature θA at time t2 before time t3, and the fan 70 is turned on at time t2. It is operated and the outside air is sent into the passenger compartment (steps S12, S20, S21 in FIG. 3). Thereafter, the second battery temperature θb2 becomes lower than the vehicle interior temperature θi at time t4 before time t5, and the fan 12 is operated to adjust the temperature of the battery Eb (step S11 in FIG. 3). S12, S13). The second battery temperature θb2 reaches the allowable temperature θB at time t7 after time t6, and the operation of the fan 12 is stopped (steps S14 and S15 in FIG. 3).

図1では、車両100の停止時における車両システムの構成例を示した。これに対して車両100が非停止時(所定スイッチがオンのとき)における車両システムの構成例を図5に示す。図5において、リレーSMR1,SMR2がオンになり、電池Ebの電力が電力変換部20によって変換されて回転電機30に出力され、回転電機30に生じた逆起電力は電力変換部20を介して電池Ebに蓄電される(矢印D3)。また、電池Ebの電力はコンバータ40を介してファン70に出力され(矢印D4)、空調装置50に直接的に出力される(矢印D5)。図示しないが、補機バッテリ60や太陽光発電機80によって電力が得られる場合には、図1と同様に電力分配部11bで分配してもよい。分配が行われる電力の分だけ電池Ebから必要としないので消耗(蓄電量の低下)を抑制できる。   In FIG. 1, the structural example of the vehicle system at the time of the stop of the vehicle 100 was shown. On the other hand, FIG. 5 shows a configuration example of the vehicle system when the vehicle 100 is not stopped (when the predetermined switch is on). In FIG. 5, the relays SMR 1 and SMR 2 are turned on, the electric power of the battery Eb is converted by the power conversion unit 20 and output to the rotating electrical machine 30, and the counter electromotive force generated in the rotating electrical machine 30 passes through the power conversion unit 20. The battery Eb is charged (arrow D3). Moreover, the electric power of the battery Eb is output to the fan 70 via the converter 40 (arrow D4), and is directly output to the air conditioner 50 (arrow D5). Although not shown, when electric power is obtained by the auxiliary battery 60 or the solar power generator 80, it may be distributed by the power distribution unit 11b as in FIG. Since it is not necessary from the battery Eb for the amount of electric power to be distributed, consumption (decrease in the amount of stored electricity) can be suppressed.

上述した実施の形態によれば、以下に示す各効果を得ることができる。   According to the embodiment described above, the following effects can be obtained.

(1)車両システムにおいて、電池Ebの温度(電池温度θb)と車室内の温度(車室内温度θi)とを検出する温度検出部(温度センサSb,温度センサSi)を有し、空調装置50は車両100の停止時に所定条件を満たすと車室内の空気調節を行い、温度調整部(電池Eb、温度制御部11a、ファン12,70、空調装置50、太陽光発電機80)は、車両100の停止時に温度検出部によって検出される車室内の車室内温度θiが電池Ebの第1電池温度θb1に達すると電池Ebの電池温度θbを調整する構成とした(図1,図3を参照)。この構成によれば、電池の性能が劣化しないように電池Ebの温度変化を抑制するように調整を行う。雰囲気温度(車室内温度θi)が電池温度θbよりも下がってから電池Eb用のファン12を駆動することとしたため、車両停止中の電池冷却に関し、熱風が電池Ebに送られることなく、電池Ebに悪影響を与えることはない。よって電池Ebの温度変化を抑制し、電池Ebの性能が劣化するのを防止できる。   (1) The vehicle system includes a temperature detection unit (temperature sensor Sb, temperature sensor Si) that detects the temperature of the battery Eb (battery temperature θb) and the temperature in the vehicle interior (vehicle interior temperature θi), and the air conditioner 50 When the vehicle 100 is stopped, the vehicle interior air is adjusted when a predetermined condition is satisfied, and the temperature adjustment unit (battery Eb, temperature control unit 11a, fans 12, 70, air conditioner 50, solar power generator 80) When the vehicle interior temperature θi detected by the temperature detector when the vehicle stops is reached the first battery temperature θb1 of the battery Eb, the battery temperature θb of the battery Eb is adjusted (see FIGS. 1 and 3). . According to this configuration, adjustment is performed so as to suppress the temperature change of the battery Eb so that the performance of the battery does not deteriorate. Since the fan 12 for the battery Eb is driven after the ambient temperature (the vehicle interior temperature θi) falls below the battery temperature θb, the battery Eb is not sent to the battery Eb for battery cooling while the vehicle is stopped. Will not be adversely affected. Therefore, the temperature change of the battery Eb can be suppressed and the performance of the battery Eb can be prevented from deteriorating.

(2)所定条件は、電池Ebの電池温度θb(第1電池温度θb1または第2電池温度θb2)が所定温度θAに達する第1条件、車室内温度θiが第1電池温度θb1に達する第2条件、温度検出部によって検出される外気温度θeが第1電池温度θb1に達する第3条件、のうちで一以上の条件を適用する構成とした。この構成によれば、電池Ebの温度変化を抑制し、当該電池Ebの性能が劣化するのを防止できる。   (2) The predetermined condition is a first condition in which the battery temperature θb (the first battery temperature θb1 or the second battery temperature θb2) of the battery Eb reaches the predetermined temperature θA, and the second condition in which the vehicle interior temperature θi reaches the first battery temperature θb1. One or more conditions are applied among the conditions and the third condition in which the outside air temperature θe detected by the temperature detector reaches the first battery temperature θb1. According to this configuration, it is possible to suppress the temperature change of the battery Eb and prevent the performance of the battery Eb from deteriorating.

(3)所定温度θAは、電池Ebが劣化しないように保管するための保管温度、または、電池Ebの充電状態に対応する充電対応温度のいずれかである構成とした。この構成によれば、所定温度θAが保管温度にせよ充電対応温度にせよ、劣化しないように保管できる温度であるので、電池Ebの性能が劣化するのをより確実に防止できる。   (3) The predetermined temperature θA is either a storage temperature for storing the battery Eb so as not to deteriorate or a charge-corresponding temperature corresponding to the charged state of the battery Eb. According to this configuration, the predetermined temperature θA is a temperature that can be stored so as not to deteriorate regardless of whether it is a storage temperature or a temperature corresponding to charging, so that the performance of the battery Eb can be more reliably prevented from being deteriorated.

(4)温度調整部は、温度検出部によって検出される車室内温度θiが第1電池温度θb1よりも高く設定される第2電池温度θb2に達すると電池Ebの電池温度θbを調整する構成とした(図3,図4を参照)。この構成によれば、第2電池温度θb2は第1電池温度θb1よりも高いので、車室内温度θiに達しやすい。よって電池Ebの温度を早めに調整し始められるので、電池Ebの性能が劣化するのをより確実に防止できる。   (4) The temperature adjustment unit adjusts the battery temperature θb of the battery Eb when the vehicle interior temperature θi detected by the temperature detection unit reaches the second battery temperature θb2 set higher than the first battery temperature θb1. (See FIGS. 3 and 4). According to this configuration, the second battery temperature θb2 is higher than the first battery temperature θb1, and therefore easily reaches the vehicle interior temperature θi. Therefore, since the temperature of the battery Eb can be adjusted early, it is possible to more reliably prevent the performance of the battery Eb from deteriorating.

(5)第2電池温度θb2と第1電池温度θb1との温度差α(=θb2−θb1)は、外気温度θeと車室内温度θiとの温度差、または、空調装置50に設定される設定温度と車室内温度θiとの温度差のいずれかから算出される算出値(値)である構成とした(図3,図4を参照)。この構成によれば、実際に取り得る温度差を温度差αや算出値とするので、電池Ebの温度を的確に調整することができ、電池Ebの性能が劣化するのをより確実に防止できる。   (5) The temperature difference α (= θb2−θb1) between the second battery temperature θb2 and the first battery temperature θb1 is a temperature difference between the outside air temperature θe and the vehicle interior temperature θi, or is set in the air conditioner 50. It was set as the structure which is the calculated value (value) computed from either of the temperature difference of temperature and vehicle interior temperature (theta) i (refer FIG. 3, FIG. 4). According to this configuration, since the temperature difference that can actually be taken is the temperature difference α or the calculated value, the temperature of the battery Eb can be adjusted accurately, and the performance of the battery Eb can be prevented more reliably. .

(6)太陽光を受けて発電する太陽光発電機80と、太陽光発電機80から供給される電力を空調装置50とファン70(補機類)とに分配する電力分配部11bとを有する構成とした(図1を参照)。この構成によれば、補機類を稼働するための電力を太陽光発電機80から得られるので、電池Ebの消耗(蓄電量の低下)を抑制することができる。   (6) The solar power generator 80 that receives sunlight to generate power, and the power distribution unit 11b that distributes the power supplied from the solar power generator 80 to the air conditioner 50 and the fan 70 (auxiliaries). It was set as the structure (refer FIG. 1). According to this configuration, since electric power for operating the auxiliary machines can be obtained from the solar power generator 80, consumption of the battery Eb (reduction in the amount of stored electricity) can be suppressed.

(7)電力分配部11bは、車室内温度θiと第1電池温度θb1とに基づいて、空調装置50とファン70(温度調整部)とに分配する分配比率を変化させる構成とした(図1,図3を参照)。この構成によれば、空調装置50とファン70とで稼働に必要な電力が異なるので、供給される電力を有効に分配することができる。   (7) The power distribution unit 11b is configured to change the distribution ratio distributed to the air conditioner 50 and the fan 70 (temperature adjustment unit) based on the vehicle interior temperature θi and the first battery temperature θb1 (FIG. 1). , See FIG. According to this configuration, since the electric power required for operation differs between the air conditioner 50 and the fan 70, the supplied electric power can be effectively distributed.

(8)空調装置50は、外気温度θeが車室内温度θiよりも高ければ車室内に外気を導入することなく空気調節を行い、温度調整部は第1電池温度θb1が車室内温度θiに達すると電池Ebの電池温度θbを調整する構成とした(図3のステップS20,S21,S30を参照)。この構成によれば、車室内温度θiが高くなるのを抑制するとともに、電池Ebの性能が劣化するのをより確実に防止できる。   (8) If the outside air temperature θe is higher than the vehicle interior temperature θi, the air conditioner 50 adjusts the air without introducing the outside air into the vehicle interior, and the temperature adjustment unit causes the first battery temperature θb1 to reach the vehicle interior temperature θi. Then, it was set as the structure which adjusts battery temperature (theta) b of the battery Eb (refer step S20, S21, S30 of FIG. 3). According to this configuration, it is possible to more reliably prevent the performance of the battery Eb from deteriorating while suppressing an increase in the vehicle interior temperature θi.

〔他の実施の形態〕
以上では本発明を実施するための形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the form for implementing this invention was demonstrated above, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態では、車両100の停止時は補機バッテリ60や太陽光発電機80から供給される電力を受けて、空調装置50やファン70(補機類)を稼働させる構成とした(図1を参照)。この形態に代えて(あるいは併用して)、車両100に充電器を備えておき、車両100の停止時は外部電力源(例えば商用電源や発電機等)から供給される電力を受けて、空調装置50やファン70(補機類)を稼働させる構成としてもよい。この構成によれば、電池Ebの消耗(蓄電量の低下)を抑制することができる。また、充電器によって電池Ebや補機バッテリ60の充電を行うこともできる。   In the above-described embodiment, when the vehicle 100 is stopped, the air conditioner 50 and the fan 70 (auxiliaries) are operated by receiving power supplied from the auxiliary battery 60 and the solar power generator 80 ( (See FIG. 1). Instead of (or in combination with) this mode, the vehicle 100 is provided with a charger, and when the vehicle 100 is stopped, the vehicle 100 is supplied with electric power supplied from an external power source (for example, a commercial power source or a generator) and air-conditioned. The apparatus 50 and the fan 70 (auxiliary machines) may be operated. According to this configuration, consumption of the battery Eb (decrease in the amount of stored electricity) can be suppressed. Further, the battery Eb and the auxiliary battery 60 can be charged by the charger.

上述した実施の形態では、外気温度θeと車室内温度θiとの大小関係に応じて、空調装置50やファン70(補機類)の稼働を判別する構成とした(図3のステップS20,S21,S30を参照)。この形態に代えて(あるいは併用して)、車両100に日射センサを備えておき、日射センサによって検出される日射量に応じて空調装置50やファン70(補機類)の稼働を判別してもよい。車両100の停止時に日射量が多ければ車室内温度θiが急激に上がることが多いので、車室内温度θiの変化を抑制することができる。なお、車両100に太陽光発電機80を備える場合には、太陽光発電機80で発電される電力と日射量との関係をマップや関数等で設定し、太陽光発電機80で発電される電力に基づいて日射量を求めてもよい。   In the above-described embodiment, the operation of the air conditioner 50 and the fan 70 (auxiliary equipment) is determined according to the magnitude relationship between the outside air temperature θe and the vehicle interior temperature θi (steps S20 and S21 in FIG. 3). , S30). Instead of (or in combination with) this form, the vehicle 100 is provided with a solar radiation sensor, and the operation of the air conditioner 50 and the fan 70 (auxiliary equipment) is determined according to the amount of solar radiation detected by the solar radiation sensor. Also good. If the amount of solar radiation is large when the vehicle 100 is stopped, the vehicle interior temperature θi often increases rapidly, so that the change in the vehicle interior temperature θi can be suppressed. In the case where the vehicle 100 includes the solar power generator 80, the relationship between the power generated by the solar power generator 80 and the amount of solar radiation is set by a map or a function, and the solar power generator 80 generates power. The solar radiation amount may be obtained based on the electric power.

上述した実施の形態では、温度検出部(温度センサSb,温度センサSi,温度センサSe)によって検出された温度に基づいて、電池Ebの温度を調整したり、空調装置50やファン70を稼働させて車室内温度θiを変化させたりする構成とした(図1,図3を参照)。この形態に代えて(あるいは併用して)、車両100に湿度センサを備えておき、湿度センサによって検出される湿度に基づいて、電池Ebの温度を調整したり、空調装置50やファン70を稼働させて車室内温度θiを変化させたりする構成としてもよい。同じ温度でも湿度の高低に応じて感じる寒暖に差があり、例えば高い湿度の空気を電池Ebに送って温度を調整する場合には電池Ebの金属部分が腐食しやすい。これらを考慮すると、湿度が所定湿度値に達すると空調装置50を除湿モードで稼働するのがよい。この構成によれば、同じ温度下でも車室内を乾燥させ、金属部分の腐食を抑制できる。   In the above-described embodiment, the temperature of the battery Eb is adjusted based on the temperature detected by the temperature detection unit (temperature sensor Sb, temperature sensor Si, temperature sensor Se), or the air conditioner 50 or the fan 70 is operated. The vehicle interior temperature θi is changed (see FIGS. 1 and 3). Instead of (or in combination with) this form, the vehicle 100 is provided with a humidity sensor, and the temperature of the battery Eb is adjusted based on the humidity detected by the humidity sensor, and the air conditioner 50 and the fan 70 are operated. Alternatively, the vehicle interior temperature θi may be changed. Even when the temperature is the same, there is a difference in the temperature that is felt according to the level of humidity. For example, when adjusting the temperature by sending high-humidity air to the battery Eb, the metal part of the battery Eb is easily corroded. Considering these, it is preferable to operate the air conditioner 50 in the dehumidifying mode when the humidity reaches a predetermined humidity value. According to this configuration, the vehicle interior can be dried even under the same temperature, and corrosion of the metal portion can be suppressed.

上述した実施の形態では、太陽光発電機80で発電される電力は、電力分配部11bを介して空調装置50やファン70(補機類)の稼働に用いる構成とした(図1を参照)。この形態に代えて、太陽光発電機80または電力分配部11bに接続される充電器を備えておき、余剰電力が生じる場合には充電器によって電池Ebや補機バッテリ60の充電を行う構成としてもよい。余剰電力は、例えば空調装置50やファン70を稼働しない場合や、稼働しても電力が余剰する場合などで生じる。この構成によれば、外部電力源を必要とすることなく、電池Ebや補機バッテリ60の充電を行うことができる。   In the above-described embodiment, the power generated by the solar power generator 80 is configured to be used for the operation of the air conditioner 50 and the fan 70 (auxiliaries) via the power distribution unit 11b (see FIG. 1). . It replaces with this form, and is equipped with the charger connected to the solar power generator 80 or the electric power distribution part 11b, and when surplus electric power arises, it is the structure which charges the battery Eb and the auxiliary battery 60 with a charger. Also good. The surplus power is generated, for example, when the air conditioner 50 and the fan 70 are not operated, or when the power is surplus even when the air conditioner 50 is operated. According to this configuration, the battery Eb and the auxiliary battery 60 can be charged without requiring an external power source.

上述した実施の形態では、再生可能エネルギー(自然エネルギー)を利用する発電機として、太陽エネルギーを用いる太陽光発電機80を適用した(図1を参照)。この形態に代えて(あるいは併用して)、他の再生可能エネルギーを利用する発電機(例えば風力を利用する風力発電機等)を適用してもよい。車両100の停止時でも発電できる点では太陽光発電機80と同じであるので、上述した実施の形態と同様の作用効果が得られる。   In embodiment mentioned above, the solar power generator 80 which uses solar energy was applied as a generator using renewable energy (natural energy) (refer FIG. 1). Instead of (or in combination with) this form, a generator using other renewable energy (for example, a wind generator using wind power) may be applied. Since it is the same as the solar power generator 80 in that power can be generated even when the vehicle 100 is stopped, the same effects as those of the above-described embodiment can be obtained.

上述した実施の形態では、車両100の停止後に電池Ebの電池温度θbが上昇する場合に適用した(図1,図4を参照)。この形態に代えて(あるいは併用して)、寒冷地における寒冷期に外気温度θeが低いために、電池温度θbがあまり上昇せず、逆に外気温度θeの影響を受けて大きく下降する場合に適用してもよい。この場合には、空調装置50を暖房モードにして稼働して車室内温度θiを高めたり、車室とファン12との間に備えるヒータを稼働したりする。これにより、ファン12を稼働すれば電池Ebを加熱することができ、電池Ebが劣化しないように保管するための保管温度に保てる。   The above-described embodiment is applied when the battery temperature θb of the battery Eb rises after the vehicle 100 is stopped (see FIGS. 1 and 4). In place of this form (or in combination), when the outside temperature θe is low in the cold season in the cold region, the battery temperature θb does not rise so much, and conversely, when the temperature falls greatly due to the influence of the outside temperature θe. You may apply. In this case, the air conditioner 50 is operated in the heating mode to increase the passenger compartment temperature θi, or the heater provided between the passenger compartment and the fan 12 is operated. Thereby, if the fan 12 is operated, the battery Eb can be heated and kept at a storage temperature for storage so that the battery Eb does not deteriorate.

上述した実施の形態では、制御信号Scを出力する制御装置としてECU11を適用し、スイッチとしてリレーSMR1,SMR2を適用し、電池Ebとしてリチウムイオン電池等の二次電池を適用した(図1を参照)。この形態に代えて、制御信号Scを出力可能に構成された他の制御装置(例えばコンピュータやワンチップマイコン等)を適用してもよく、他のスイッチ(例えば開閉器等)を適用したりしてもよく、他の二次電池(例えば鉛蓄電池,リチウムイオンポリマー二次電池,ニッケル・水素蓄電池,ニッケル・カドミウム蓄電池,ニッケル・鉄蓄電池,ニッケル・亜鉛蓄電池,酸化銀・亜鉛蓄電池等)や燃料電池を適用してもよい。他の制御装置,他のスイッチ,他の電池を適用しても、上述した実施の形態と同様の作用効果が得られる。   In the above-described embodiment, the ECU 11 is applied as a control device that outputs the control signal Sc, the relays SMR1 and SMR2 are applied as switches, and a secondary battery such as a lithium ion battery is applied as the battery Eb (see FIG. 1). ). Instead of this form, another control device (for example, a computer or a one-chip microcomputer) configured to be able to output the control signal Sc may be applied, or another switch (for example, a switch) may be applied. Other secondary batteries (for example, lead storage batteries, lithium ion polymer secondary batteries, nickel / hydrogen storage batteries, nickel / cadmium storage batteries, nickel / iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries) and fuels A battery may be applied. Even when other control devices, other switches, and other batteries are applied, the same effects as those of the above-described embodiment can be obtained.

上述した実施の形態では、車両100の停止時に蓄電されている平滑コンデンサCbの電力は利用しない構成とした(図1を参照)。この形態に代えて、平滑コンデンサCbの電力を空調装置50やファン70(補機類)の稼働に用いる構成としてもよい。電力の有効利用を図ることができ、電池Ebの消耗を抑制することができる。   In the embodiment described above, the power of the smoothing capacitor Cb stored when the vehicle 100 is stopped is not used (see FIG. 1). Instead of this form, the power of the smoothing capacitor Cb may be used for the operation of the air conditioner 50 and the fan 70 (auxiliaries). Effective use of electric power can be achieved, and consumption of the battery Eb can be suppressed.

11a 温度制御部
50 空調装置
100 車両
θb 電池温度
θb1 第1電池温度
θi 車室内温度
Eb 電池
Sb,Si 温度センサ(温度検出部)
11a Temperature controller 50 Air conditioner 100 Vehicle θb Battery temperature θb1 First battery temperature θi Car interior temperature Eb Battery Sb, Si Temperature sensor (temperature detector)

Claims (8)

車両に備える電池と、前記車両の車室内の空気調節を行う空調装置と、前記電池の温度を調整する温度調整部とを備える車両システムにおいて、
前記電池の温度と前記車室内の温度とを検出する温度検出部(Sb,Si)を有し、
前記空調装置(50,70)は、前記車両の停止時に所定条件を満たすと前記車室内の空気調節を行い、
前記温度調整部(11a,12,50,70,80)は、前記車両の停止時に前記温度検出部によって検出される前記電池の第1電池温度が前記電池の充電状態に対応する充電対応温度に達すると前記電池の温度を調整し、
前記所定条件は、前記電池の温度が所定温度に達する第1条件、前記車室内温度が前記第1電池温度に達する第2条件、前記温度検出部によって検出される外気温度が前記第1電池温度に達する第3条件、のうちで一以上の条件を適用し、
前記所定温度は、前記電池が劣化しないように保管するための保管温度、または、前記充電対応温度のいずれかであることを特徴とする車両システム。
In a vehicle system comprising: a battery provided in a vehicle; an air conditioner that adjusts air in a vehicle interior of the vehicle; and a temperature adjustment unit that adjusts a temperature of the battery.
A temperature detection unit (Sb, Si) for detecting the temperature of the battery and the temperature of the vehicle interior;
When the air conditioner (50, 70) satisfies a predetermined condition when the vehicle is stopped, the air conditioner adjusts the air in the vehicle interior,
The temperature adjusting unit (11a, 12, 50, 70, 80) is configured such that the first battery temperature of the battery detected by the temperature detecting unit when the vehicle is stopped is a charge-corresponding temperature corresponding to a charged state of the battery. When it reaches, adjust the temperature of the battery ,
The predetermined condition includes a first condition in which the temperature of the battery reaches a predetermined temperature, a second condition in which the vehicle interior temperature reaches the first battery temperature, and an outside air temperature detected by the temperature detection unit is the first battery temperature. Apply one or more of the third conditions that reach
The vehicle system according to claim 1, wherein the predetermined temperature is either a storage temperature for storing the battery so as not to deteriorate or a temperature corresponding to the charging .
前記温度調整部は、前記温度検出部によって検出される前記車室内温度が前記第1電池温度よりも高く設定される第2電池温度に達すると前記電池の温度を調整することを特徴とする請求項に記載の車両システム。 The said temperature adjustment part adjusts the temperature of the said battery, when the said vehicle interior temperature detected by the said temperature detection part reaches the 2nd battery temperature set higher than a said 1st battery temperature. Item 4. The vehicle system according to Item 1 . 前記第2電池温度と前記第1電池温度との温度差(α)は、前記外気温度と前記車室内温度との温度差、または、前記空調装置に設定される設定温度と前記車室内温度との温度差のいずれかから算出される値であることを特徴とする請求項に記載の車両システム。 The temperature difference (α) between the second battery temperature and the first battery temperature is a temperature difference between the outside air temperature and the vehicle interior temperature, or a set temperature set in the air conditioner and the vehicle interior temperature. The vehicle system according to claim 2 , wherein the vehicle system is a value calculated from any one of the temperature differences. 車両に備える電池と、前記車両の車室内の空気調節を行う空調装置と、前記電池の温度を調整する温度調整部とを備える車両システムにおいて、
前記電池の温度と前記車室内の温度とを検出する温度検出部(Sb,Si)を有し、
前記空調装置(50,70)は、前記車両の停止時に所定条件を満たすと前記車室内の空気調節を行い、
前記温度調整部(11a,12,50,70,80)は、前記車両の停止時に前記温度検出部によって検出される前記車室内の車室内温度が前記電池の第1電池温度に達すると前記電池の温度を調整するとともに、前記車室内温度が前記第1電池温度よりも高く設定される第2電池温度に達すると前記電池の温度を調整し、
前記第2電池温度と前記第1電池温度との温度差(α)は、前記外気温度と前記車室内温度との温度差、または、前記空調装置に設定される設定温度と前記車室内温度との温度差のいずれかから算出される値であることを特徴とする車両システム。
In a vehicle system comprising: a battery provided in a vehicle; an air conditioner that adjusts air in a vehicle interior of the vehicle; and a temperature adjustment unit that adjusts a temperature of the battery.
A temperature detection unit (Sb, Si) for detecting the temperature of the battery and the temperature of the vehicle interior;
When the air conditioner (50, 70) satisfies a predetermined condition when the vehicle is stopped, the air conditioner adjusts the air in the vehicle interior,
The temperature adjustment unit (11a, 12, 50, 70, 80) is configured such that when the vehicle interior temperature detected by the temperature detection unit when the vehicle is stopped reaches the first battery temperature of the battery. And adjusting the temperature of the battery when the vehicle interior temperature reaches a second battery temperature set higher than the first battery temperature,
The temperature difference (α) between the second battery temperature and the first battery temperature is a temperature difference between the outside air temperature and the vehicle interior temperature, or a set temperature set in the air conditioner and the vehicle interior temperature. A vehicle system that is a value calculated from any one of the temperature differences .
前記所定条件は、前記電池の温度が所定温度に達する第1条件、前記車室内温度が前記第1電池温度に達する第2条件、前記温度検出部によって検出される外気温度が前記第1電池温度に達する第3条件、のうちで一以上の条件を適用することを特徴とする請求項に記載の車両システム。 The predetermined condition includes a first condition in which the temperature of the battery reaches a predetermined temperature, a second condition in which the vehicle interior temperature reaches the first battery temperature, and an outside air temperature detected by the temperature detection unit is the first battery temperature. 5. The vehicle system according to claim 4 , wherein one or more conditions among the third conditions reaching the above are applied. 太陽光を受けて発電する太陽光発電機(80)と、
前記太陽光発電機から供給される電力を前記空調装置と補機類とに分配する電力分配部(11b)と、
を有することを特徴とする請求項1から5のいずれか一項に記載の車両システム。
A solar power generator (80) that receives sunlight to generate power;
A power distribution unit (11b) that distributes the power supplied from the solar power generator to the air conditioner and the auxiliary devices;
The vehicle system according to claim 1, comprising:
前記電力分配部は、前記車室内温度と前記第1電池温度とに基づいて、前記空調装置と前記温度調整部とに分配する分配比率を変化させることを特徴とする請求項6に記載の車両システム。   The vehicle according to claim 6, wherein the power distribution unit changes a distribution ratio distributed to the air conditioner and the temperature adjustment unit based on the vehicle interior temperature and the first battery temperature. system. 前記空調装置は、前記外気温度が前記車室内温度よりも高ければ、前記車室内に外気を導入することなく空気調節を行い、
前記温度調整部は、前記第1電池温度が前記車室内温度に達すると前記電池の温度を調整することを特徴とする請求項から7のいずれか一項に記載の車両システム。
If the outside air temperature is higher than the vehicle interior temperature, the air conditioner adjusts the air without introducing outside air into the vehicle interior,
The vehicle system according to any one of claims 1 to 7, wherein the temperature adjustment unit adjusts the temperature of the battery when the first battery temperature reaches the vehicle interior temperature.
JP2012124776A 2012-05-31 2012-05-31 Vehicle system Active JP5874537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124776A JP5874537B2 (en) 2012-05-31 2012-05-31 Vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124776A JP5874537B2 (en) 2012-05-31 2012-05-31 Vehicle system

Publications (2)

Publication Number Publication Date
JP2013248966A JP2013248966A (en) 2013-12-12
JP5874537B2 true JP5874537B2 (en) 2016-03-02

Family

ID=49848087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124776A Active JP5874537B2 (en) 2012-05-31 2012-05-31 Vehicle system

Country Status (1)

Country Link
JP (1) JP5874537B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207958B2 (en) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6791075B2 (en) * 2017-09-19 2020-11-25 トヨタ自動車株式会社 Power storage device cooling system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19903769C2 (en) * 1999-01-30 2002-09-12 Webasto Vehicle Sys Int Gmbh Method for parking air conditioning in a motor vehicle
JP4192625B2 (en) * 2003-02-25 2008-12-10 株式会社デンソー Battery cooling system
JP2005262897A (en) * 2004-03-16 2005-09-29 Toyota Motor Corp Air-conditioning auxiliary device for vehicle
JP4797848B2 (en) * 2006-07-13 2011-10-19 日産自動車株式会社 Temperature control device for vehicles
WO2009096584A1 (en) * 2008-02-02 2009-08-06 Calsonic Kansei Corporation Vehicle battery protective device and method
US8039988B2 (en) * 2008-10-09 2011-10-18 GM Global Technology Operations LLC Solar powered ventilation system for vehicle and method of operating the same

Also Published As

Publication number Publication date
JP2013248966A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP4623181B2 (en) Electric vehicle and charging control system
CN102844956B (en) Control device for electricity storage device and vehicle for mounting same
US10239417B2 (en) Vehicle
US9421867B2 (en) Electric vehicle
US20120022744A1 (en) Vehicle power supply system and method for controlling the same
US9834200B2 (en) Vehicle and method of controlling vehicle
JP6314442B2 (en) In-vehicle device controller
US20200062126A1 (en) Autonomous vehicle route planning
KR20110054135A (en) Soc band strategy for hev
JP2013255365A (en) Vehicle control device
JP5880394B2 (en) Vehicle power supply
US9718453B2 (en) Hybrid vehicle
US10414289B2 (en) Method to condition a battery on demand while off charge
KR20160050829A (en) System for using solar cell and the method the same
JP2013031310A (en) Control device, battery system, electric vehicle, mobile body, power storage device, and power supply device
JP5874537B2 (en) Vehicle system
JP2012044849A (en) Controller of electric vehicle
KR20200125811A (en) A method and system for controlling charging of the energy from a solar roof
JP6673177B2 (en) vehicle
JP6778056B2 (en) Air conditioner for electric vehicles
JP7306179B2 (en) Vehicle control device, control program
JP2018098926A (en) Vehicle
JP6054918B2 (en) Dual power load drive fuel cell system and fuel cell vehicle
JP2014076717A (en) Electric power supply system
JP6992453B2 (en) Solar power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R151 Written notification of patent or utility model registration

Ref document number: 5874537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250