JP6314442B2 - In-vehicle device controller - Google Patents

In-vehicle device controller Download PDF

Info

Publication number
JP6314442B2
JP6314442B2 JP2013240539A JP2013240539A JP6314442B2 JP 6314442 B2 JP6314442 B2 JP 6314442B2 JP 2013240539 A JP2013240539 A JP 2013240539A JP 2013240539 A JP2013240539 A JP 2013240539A JP 6314442 B2 JP6314442 B2 JP 6314442B2
Authority
JP
Japan
Prior art keywords
vehicle
power
charging
amount
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013240539A
Other languages
Japanese (ja)
Other versions
JP2015104143A (en
Inventor
篤司 ▲浜▼井
篤司 ▲浜▼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2013240539A priority Critical patent/JP6314442B2/en
Priority to DE102014222864.6A priority patent/DE102014222864A1/en
Priority to CN201410645971.1A priority patent/CN104648287A/en
Publication of JP2015104143A publication Critical patent/JP2015104143A/en
Application granted granted Critical
Publication of JP6314442B2 publication Critical patent/JP6314442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車載機器制御装置に関し、詳しくは、外部電源を利用して車載バッテリを充電するのに加えて、他の車載電気機器も外部電源の電力を利用して稼働させることのできる車載機器制御装置に関する。   The present invention relates to an in-vehicle device control apparatus, and more specifically, in addition to charging an in-vehicle battery using an external power source, other in-vehicle electric devices can be operated using the power of the external power source. The present invention relates to a control device.

高電圧の車載バッテリ内の電力を利用して走行用モータを駆動させることで走行する電気自動車(EV)や一部のハイブリッド車(HEV)は、外部電源に車載充電器を接続して車載バッテリを充電する機能を備えており、その車載バッテリの充電残量に航続可能距離は大きく依存する。   An electric vehicle (EV) and some hybrid vehicles (HEV) that run by driving a driving motor using electric power in a high-voltage on-vehicle battery are connected to an on-board charger connected to an external power source. The cruising distance greatly depends on the remaining charge of the in-vehicle battery.

また、電気自動車などでは、内燃機関を常時稼働させる車両のように、内燃機関の排熱や動力を常時利用することができないことから、車載バッテリ内の電力を利用する電気式ヒータや冷房システムを採用する空調装置を搭載して、車室内の快適性を向上させている。このことから、空調装置を使用する特に夏場や冬場には、車載バッテリの電力消費が大きくなり、航続可能距離が短くなる傾向にある。   In addition, since the exhaust heat and power of the internal combustion engine cannot be used at all times in an electric vehicle or the like, as in a vehicle that constantly operates the internal combustion engine, an electric heater or cooling system that uses the electric power in the in-vehicle battery is used. Equipped with an air conditioner to improve comfort in the passenger compartment. For this reason, especially in summer and winter when the air conditioner is used, the power consumption of the in-vehicle battery increases, and the cruising distance tends to be shortened.

ところで、近年の車両には、通勤等のように使用開始時刻が決まっている場合に、乗車する前に空調装置を稼働させて車室内の快適性を向上させておく予約空調機能(プレ空調機能)を備える車載機器制御装置が実用化されている。しかし、この予約空調機能を利用する場合には、充電した車載バッテリ内の電力を空調装置で利用して消費することになり、航続可能距離が短くなる。   By the way, the reservation air-conditioning function (pre-air-conditioning function) that improves the comfort in the vehicle interior by operating the air-conditioning device before getting on the vehicle when the use start time is decided like commuting, etc. In-vehicle device control apparatus equipped with a) is put into practical use. However, when this reservation air conditioning function is used, the power in the charged in-vehicle battery is consumed by the air conditioner, and the cruising range is shortened.

この不都合を解消するために、車載機器制御装置が外部電源の出力電圧に基づいて充電器から出力可能な最大出力電流値の大小を判別して、車載バッテリと空調装置に分配する電流値を変更することが特許文献1で提案されている。   In order to eliminate this inconvenience, the in-vehicle device control device determines the maximum output current value that can be output from the charger based on the output voltage of the external power supply, and changes the current value distributed to the in-vehicle battery and air conditioner This is proposed in Patent Document 1.

特許第3450906号公報Japanese Patent No. 3450906

しかしながら、特許文献1に記載のような車載機器制御装置にあっては、外部電源の最大出力電流値が小さい場合には、空調装置に供給する電力量が抑えられることになる。この場合には、空調装置を十分に機能させることができないことになり、乗車前に車室内を快適な環境に準備しておくことができない。
そこで、本発明は、乗車前の準備に必要な車載電気機器の稼働を確保しつつ車載バッテリの充電を行うことのできる車載機器制御装置を提供することを目的としている。
However, in the in-vehicle device control apparatus as described in Patent Document 1, when the maximum output current value of the external power source is small, the amount of power supplied to the air conditioner is suppressed. In this case, the air conditioner cannot function sufficiently, and the passenger compartment cannot be prepared in a comfortable environment before boarding.
Then, this invention aims at providing the vehicle equipment control apparatus which can charge a vehicle-mounted battery, ensuring the operation | movement of the vehicle-mounted electrical equipment required for the preparation before boarding.

本発明の第1の態様は、車両の外部に設置されている外部電源から車両に搭載されている車載機器の車載バッテリと他の車載電気機器とに電力を供給して稼働させる車載機器制御装置であって、前記外部電源の供給電力量を検出する供給電力検出部と、前記車載電気機器の消費電力量を取得する消費電力取得部と、を備えて、前記供給電力検出部の検出する供給電力量および前記消費電力取得部の取得する消費電力量に基づいて前記車載バッテリと前記車載電気機器に前記外部電源から供給する電力量を調整し、前記車載電気機器を優先して前記外部電源から電力供給することを特徴とするものである。   A first aspect of the present invention is an in-vehicle device control apparatus that operates by supplying electric power to an in-vehicle battery of an in-vehicle device mounted on the vehicle and another in-vehicle electric device from an external power source installed outside the vehicle. A supply power detection unit that detects a power consumption amount of the external power supply and a power consumption acquisition unit that acquires a power consumption amount of the in-vehicle electric device, and the supply power detection unit detects The power amount supplied from the external power source to the in-vehicle battery and the in-vehicle electrical device is adjusted based on the power amount and the power consumption amount acquired by the power consumption acquisition unit, and the in-vehicle electrical device is given priority from the external power source. It is characterized by supplying power.

また、本発明の第1の態様前記供給電力検出部の検出する供給電力量が前記消費電力取得部の取得する消費電力量を超える場合には、前記外部電源から当該供給電力量の余剰分を前記車載バッテリに供給して充電するようにしている
さらに、本発明の第1の態様前記供給電力検出部の検出する供給電力量が前記消費電力取得部の取得する前記消費電力量以下の場合には、前記車載バッテリの充電を中止し、前記外部電源から当該供給電力量の電力供給を前記車載電気機器にするようにしている
The first aspect of the present invention, when said supply power amount to be detected of the supply power detector exceeds the power consumption for obtaining the power consumption acquiring unit, the surplus from the external power source of the supply power amount The portion is supplied to the in-vehicle battery for charging .
Furthermore, the first aspect of the present invention, wherein when the supply power amount to be detected of the supply power detector is less than the power consumption amount for obtaining the power consumption acquiring unit stops the charging of the vehicle battery, The on-board electrical device is configured to supply power from the external power source with the amount of power supplied .

本発明の第2の態様としては、前記車載バッテリの充電残量を検出する残量検出部を備えて、前記残量検出部の検出する充電残量が予め設定されている制限値以上であるときには前記車載バッテリの充電を中止するようにするのが好ましい。
本発明の第3の態様としては、前記車載バッテリの充電残量を検出する残量検出部を備えて、前記残量検出部の検出する充電残量が予め設定されている限界値未満であるときには前記車載電気機器への電力供給を中止するようにするのが好ましい。
As a second aspect of the present invention, a remaining amount detection unit for detecting the remaining charge amount of the in-vehicle battery is provided, and the remaining charge amount detected by the remaining amount detection unit is equal to or greater than a preset limit value. Sometimes it is preferable to stop charging the in-vehicle battery.
As a 3rd aspect of this invention, it has the remaining amount detection part which detects the charge remaining amount of the said vehicle-mounted battery, and the charge remaining amount which the said remaining amount detection part detects is less than the preset limit value. Sometimes, it is preferable to stop the power supply to the in-vehicle electric device.

本発明の第4の態様としては、前記車載電気機器の稼働を予め設定されている時刻に開始させる稼働開始部を備えて、前記車載電気機器の稼働開始設定時刻になる前の予め設定されている時刻から前記車載バッテリの充電を開始するようにするのが好ましい。
本発明の第5の態様としては、前記車載バッテリの充電を中止する場合には、メインリレーを遮断するようにするのが好ましい。
As a 4th aspect of this invention, the operation start part which starts operation | movement of the said vehicle-mounted electrical equipment at the preset time is provided, and it is preset before reaching the operation start setting time of the said vehicle-mounted electrical apparatus. It is preferable to start charging the in-vehicle battery from a certain time.
As a fifth aspect of the present invention, it is preferable to shut off the main relay when the charging of the in-vehicle battery is stopped.

このように、上記の第1の態様によれば、外部電源の供給電力量に応じて車載電気機器に優先的に電力供給するので、車載バッテリの充電よりも車載電気機器を優先して稼働させることができ、乗車前の準備を完了することができる。   Thus, according to said 1st aspect, since electric power is preferentially supplied to an in-vehicle electric device according to the amount of electric power supplied from the external power source, the in-vehicle electric device is operated with priority over the charging of the in-vehicle battery. You can complete the preparations before boarding.

上記の第1の態様によれば、外部電源の供給電力量が車載電気機器の消費電力量以下の場合には、その外部電源の供給電力量の全量を車載電気機器に供給して稼働させるので、車載バッテリの充電よりも車載電気機器を優先して稼働させることができる。
上記の第1の態様によれば、外部電源の供給電力量が車載電気機器の消費電力量を超える場合には、その外部電源の供給電力量の余剰分で車載バッテリを充電することができ、乗車前の準備をしつつ車載バッテリの充電も併せてすることができる。
According to the first aspect, when the power supply amount of the external power source is less than or equal to the power consumption amount of the in-vehicle electrical device, the entire power supply amount of the external power source is supplied to the in-vehicle electrical device and operated. The vehicle-mounted electric device can be operated with priority over the charging of the vehicle-mounted battery.
According to said 1st aspect, when the power supply amount of an external power supply exceeds the power consumption amount of a vehicle-mounted electrical apparatus, a vehicle-mounted battery can be charged with the surplus of the power supply amount of the external power supply, It is possible to charge the on-vehicle battery while preparing before boarding.

上記の第2の態様によれば、車載バッテリの充電残量が設定制限値以上である場合には、車載バッテリの充電を中止するので、車載電気機器での消費が急に変化して車載バッテリ側に外部電源の出力電力が供給され過充電になることを回避することができ、車載電気機器を稼働させつつ車載バッテリに充電するためにその車載バッテリが損傷してしまうことを防止することができる。
上記の第3の態様によれば、車載バッテリの充電残量が設定限界値未満である場合には、車載電気機器への電力供給を中止して車載バッテリに充電するので、車載バッテリの充電残量が充電する必要がある充電残量まで低下しているのにも拘わらずに、車載電気機器を稼働させて車載バッテリを充電できないまま使用開始するタイミングになってしまうことを回避することができ、充電残量の少ない車載バッテリの充電を確実に行うことができる。
According to said 2nd aspect, when the charge remaining amount of a vehicle-mounted battery is more than a setting limit value, since charge of a vehicle-mounted battery is stopped, consumption in a vehicle-mounted electrical device changes suddenly, and vehicle-mounted battery It is possible to avoid overcharging when the output power of the external power supply is supplied to the side, and to prevent the vehicle battery from being damaged in order to charge the vehicle battery while operating the vehicle electric device. it can.
According to the third aspect described above, when the remaining charge of the in-vehicle battery is less than the set limit value, the power supply to the in-vehicle electric device is stopped and the in-vehicle battery is charged. Despite the fact that the amount has dropped to the remaining charge level that needs to be charged, it is possible to avoid the timing when the vehicle-mounted electrical device is operated and the vehicle-mounted battery cannot be charged and the use starts. Thus, it is possible to reliably charge the in-vehicle battery with a small remaining charge.

上記の第4の態様によれば、車載電気機器の稼働開始設定時刻になる前から外部電源の供給電力量の全量を使って車載バッテリを充電することができ、その後には、車載電気機器を稼働させつつその供給電力量に応じた電力量で車載バッテリの充電をすることができる。 According to the fourth aspect described above, the in- vehicle battery can be charged using the entire amount of power supplied from the external power supply before the in-vehicle electric device starts operating, and thereafter the in-vehicle electric device is The in-vehicle battery can be charged with the amount of power corresponding to the amount of power supplied while operating.

図1は、本発明の第1実施形態に係る車載機器制御装置を示す図であり、その概略全体構成を示すブロック図である。FIG. 1 is a diagram showing an in-vehicle device control apparatus according to the first embodiment of the present invention, and is a block diagram showing a schematic overall configuration thereof. 図2は、その要部構成の間でやり取りする信号を説明するブロック図である。FIG. 2 is a block diagram illustrating signals exchanged between the main components. 図3は、高電圧バッテリ内の充電状態と、空調および充電の実行の可否との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the state of charge in the high-voltage battery and the availability of air conditioning and charging. 図4は、高電圧バッテリの充電と空調装置への電力供給との並行して実行する制御処理を説明するフローチャートである。FIG. 4 is a flowchart illustrating a control process that is executed in parallel with charging of the high-voltage battery and power supply to the air conditioner. 図5は、図4で実行する制御処理における高電圧バッテリの充電状態に応じた充電の制限を説明するフローチャートである。FIG. 5 is a flowchart for explaining the limitation of charging according to the charging state of the high voltage battery in the control process executed in FIG. 図6は、図5で実行する制御処理における外部電源の電力供給量に応じた充電の制限を説明するフローチャートである。FIG. 6 is a flowchart for explaining the limitation of charging according to the power supply amount of the external power supply in the control process executed in FIG. 図7は、図4で実行する制御処理による高電圧バッテリの充電状態を示すグラフである。FIG. 7 is a graph showing the state of charge of the high-voltage battery by the control process executed in FIG. 図8は、本発明の第2実施形態に係る車載機器制御装置を示す図であり、その充電制御処理による高電圧バッテリの充電状態を示すグラフである。FIG. 8 is a diagram showing an in-vehicle device control apparatus according to the second embodiment of the present invention, and is a graph showing a charge state of a high voltage battery by the charge control process.

以下、図面を参照して、本発明の実施形態について詳細に説明する。図1〜図6は本発明の第1実施形態に係る車載機器制御装置を示す図である。
(第1実施形態)
図1において、車両100は、高電圧バッテリシステム110と、走行用モータ120と、空調装置(車載電気機器)150と、充電システム160と、操作部170と、を車載して構築されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1-6 is a figure which shows the vehicle equipment control apparatus which concerns on 1st Embodiment of this invention.
(First embodiment)
In FIG. 1, a vehicle 100 is constructed by mounting a high voltage battery system 110, a traveling motor 120, an air conditioner (on-vehicle electric device) 150, a charging system 160, and an operation unit 170.

車両100は、高電圧バッテリシステム110の高電圧バッテリ(車載バッテリ)111内の電力を利用して走行用モータ120を駆動させることにより駆動輪130を転動させて走行する電気自動車(EV)として機能する。なお、本実施形態では、車両100を電気自動車として構築する場合を一例として説明するが、これに限るものではなく、走行用モータ120に加えて、駆動源として内燃機関を搭載するハイブリッド車(HEV)に適用してもよいことは言うまでもない。   The vehicle 100 is an electric vehicle (EV) that travels by rolling the driving wheel 130 by driving the traveling motor 120 using the electric power in the high voltage battery (vehicle battery) 111 of the high voltage battery system 110. Function. In the present embodiment, the case where the vehicle 100 is constructed as an electric vehicle will be described as an example. However, the present invention is not limited to this. The hybrid vehicle (HEV) includes an internal combustion engine as a driving source in addition to the traveling motor 120. It goes without saying that it may be applied to the above).

また、車両100は、走行用モータ120に電力供給可能に高電圧バッテリ111を電気的に接続する高電圧ラインDHに、空調装置150と充電システム160が接続されている。空調装置150は、操作部170から設定されている各種条件に従って、高電圧バッテリ111内の電力を利用して車室内の冷房・暖房・除湿等を行う。また、充電システム160は、同様に各種設定条件に従って、外部電源200からの電力供給を受けて高電圧バッテリ111を充電するようになっている。   Further, in the vehicle 100, an air conditioner 150 and a charging system 160 are connected to a high voltage line DH that electrically connects a high voltage battery 111 so that power can be supplied to the traveling motor 120. The air conditioner 150 performs cooling, heating, dehumidification, etc. of the passenger compartment using the electric power in the high voltage battery 111 according to various conditions set from the operation unit 170. Similarly, the charging system 160 is configured to charge the high-voltage battery 111 by receiving power supply from the external power source 200 according to various setting conditions.

そして、高電圧バッテリシステム110は、メインリレー112を介して高電圧ラインDHに高電圧バッテリ111を接続している。高電圧バッテリシステム110は、バッテリコントローラ115がメインリレー112の接続/遮断を制御することで、走行用モータ120に高電圧バッテリ111内に蓄電されている直流電力を供給する。   The high voltage battery system 110 connects the high voltage battery 111 to the high voltage line DH via the main relay 112. In the high voltage battery system 110, the battery controller 115 controls connection / disconnection of the main relay 112, thereby supplying the traveling motor 120 with the DC power stored in the high voltage battery 111.

走行用モータ120は、高電圧バッテリ111内の直流電力をインバータ125で3相の交流電力に変換して供給されることにより駆動軸121を回転させるようになっており、ギヤボックス126を介して駆動軸121の回転駆動力を車軸131に伝達することで駆動輪130を転動させる。   The traveling motor 120 is configured to rotate the drive shaft 121 by converting the DC power in the high-voltage battery 111 into three-phase AC power by the inverter 125 and supplying the three-phase AC power via the gear box 126. The driving wheel 130 is rolled by transmitting the rotational driving force of the driving shaft 121 to the axle 131.

また、空調装置150は、PCT(Positive Temperature Coefficient)ヒータ151と、コンプレッサ152と、A/C(Air Conditioning)コントローラ155と、を備えて、後述する「プレ空調」を実行可能に構築されている。PCTヒータ151は、高電圧バッテリ111内の電力を供給することで発熱して、不図示のファンが車室内に吹き出させる空調風を加熱する。コンプレッサ152は、高電圧バッテリ111内の電力を供給することで駆動して、冷媒を圧縮した後に不図示のエバポレータ内に噴出(膨張)させることによる気化熱で上記の空調風を冷却する。A/Cコントローラ155は、これらPCTヒータ151やコンプレッサ152と共に上記のファンや不図示のダンパ等を個別に稼働させることにより車室内の空調程度を調整する。   The air conditioner 150 includes a PCT (Positive Temperature Coefficient) heater 151, a compressor 152, and an A / C (Air Conditioning) controller 155, and is constructed so that “pre-air conditioning” described later can be performed. . The PCT heater 151 generates heat by supplying electric power in the high-voltage battery 111 and heats the conditioned air blown out by a fan (not shown) into the vehicle interior. The compressor 152 is driven by supplying electric power in the high-voltage battery 111 and cools the conditioned air with heat of vaporization generated by jetting (expanding) the refrigerant into an evaporator (not shown) after compressing the refrigerant. The A / C controller 155 adjusts the degree of air conditioning in the vehicle interior by individually operating the above-described fan, a damper (not shown), etc. together with the PCT heater 151 and the compressor 152.

充電システム160は、充電ポート161と、充電器162と、充電リレー163と、DC/DCコンバータ169と、を備えて、後述する「夜間充電」を実行可能に構築されている。充電ポート161は、外部電源200の充電プラグ210を電気的に接続可能に準備されている。充電器162は、充電ポート161を介して供給される電源電力を、高電圧バッテリ111に充電可能な電圧の直流電力に調整して高電圧ラインDHに出力する。充電リレー163は、充電器162内に内蔵する不図示のコントローラが外部電源200側と通信して、あるいは、後述の操作部170での入力操作に従って車両コントローラ180により制御されることにより、充電ポート161(外部電源200)と充電器162の間の接続/遮断を実行する。DC/DCコンバータ169は、高電圧バッテリ111または充電器162から高電圧ラインDHを介して高電圧の直流電力を受け取って低電圧の直流電力に変換し12Vバッテリ119に出力する。   The charging system 160 includes a charging port 161, a charger 162, a charging relay 163, and a DC / DC converter 169, and is constructed so that “night charging” to be described later can be performed. The charging port 161 is prepared so that the charging plug 210 of the external power source 200 can be electrically connected. The charger 162 adjusts the power source power supplied via the charging port 161 to a DC power having a voltage that can charge the high voltage battery 111 and outputs it to the high voltage line DH. The charging relay 163 is connected to the external power source 200 side by a controller (not shown) built in the charger 162 or is controlled by the vehicle controller 180 according to an input operation in the operation unit 170 described later, thereby allowing the charging port Connection / disconnection between 161 (external power source 200) and charger 162 is executed. The DC / DC converter 169 receives high-voltage DC power from the high-voltage battery 111 or the charger 162 via the high-voltage line DH, converts it to low-voltage DC power, and outputs it to the 12V battery 119.

操作部170は、入力部171と、表示パネル172と、操作コントローラ173と、を備えて構築されている。入力部171は、車両100の乗員が操作して各種条件を入力する。表示パネル172は、入力部171への入力条件等を表示する。操作コントローラ173は、入力部171からの入力操作に従って不図示のメモリ内に必要な各種情報を格納保持するとともに、その入力操作状況を表示パネル172に表示出力させる。
この操作部170は、空調装置150の「プレ空調」や充電システム160の「夜間充電」などの制御処理を設定時刻に実行するように入力部171から選択入力する表示処理を操作コントローラ173が実行して「プレ空調」や「夜間充電」などの制御処理に必要な各種パラメータを車両コントローラ180のメモリ内に設定する。車両コントローラ180は、後述するように、そのメモリ内に予め設定されている制御処理を適宜実行する。
The operation unit 170 includes an input unit 171, a display panel 172, and an operation controller 173. The input unit 171 is operated by an occupant of the vehicle 100 to input various conditions. The display panel 172 displays input conditions for the input unit 171 and the like. The operation controller 173 stores and holds various information necessary in a memory (not shown) in accordance with an input operation from the input unit 171 and causes the display panel 172 to display and output the input operation status.
In the operation unit 170, the operation controller 173 executes display processing for selecting and inputting from the input unit 171 so that control processing such as “pre-air conditioning” of the air conditioner 150 and “night charging” of the charging system 160 is performed at the set time. Various parameters necessary for control processing such as “pre-air conditioning” and “night charging” are set in the memory of the vehicle controller 180. As will be described later, the vehicle controller 180 appropriately executes a control process preset in the memory.

これら車両各部の高電圧バッテリシステム110〜操作部170は、車両コントローラ180により統括制御されるようになっており、この車両コントローラ180が稼働開始部を構成している。
この車両コントローラ180は、高電圧バッテリシステム110のバッテリコントローラ115、走行用モータ120のインバータ125、空調装置150のA/Cコントローラ155、充電システム160の充電器162およびDC/DCコンバータ169、操作部170の操作コントローラ173に、CAN(Controller Area Network)通信ラインDCを介して接続されて、それぞれとの間で各種信号をやり取りする。この各種信号のやり取りを実行する各部115、125、155、162、169、173、180は、CPUやメモリ等をモジュール化したコンピュータユニットを搭載して構築されており、CPUがメモリ内に予め格納する制御プログラムに従って、そのメモリ内の格納情報や受け取った各種信号に基づいてそれぞれ機能するようになっている。
The high-voltage battery system 110 to the operation unit 170 of each part of the vehicle are controlled by the vehicle controller 180, and the vehicle controller 180 constitutes an operation start unit.
The vehicle controller 180 includes a battery controller 115 of the high voltage battery system 110, an inverter 125 of the traveling motor 120, an A / C controller 155 of the air conditioner 150, a charger 162 and a DC / DC converter 169 of the charging system 160, and an operation unit. It is connected to an operation controller 173 of 170 via a CAN (Controller Area Network) communication line DC and exchanges various signals with each other. Each of the units 115, 125, 155, 162, 169, 173, 180 for exchanging various signals is constructed by mounting a computer unit in which a CPU, a memory, and the like are modularized, and the CPU stores in advance in the memory. In accordance with the control program to be executed, the function is made based on the stored information in the memory and various received signals.

特に、車両コントローラ180は、CPUがメモリ内に予め格納されている充電時空調制御プログラムに従って、メモリ内の格納情報やバッテリコントローラ115、A/Cコントローラ155、充電器162から受け取った信号に応じた制御信号を返送することにより、空調装置150の稼働や充電器162の稼働を制御するようになっている。すなわち、車両コントローラ180が車載機器制御装置を構成している。   In particular, the vehicle controller 180 responds to information stored in the memory and signals received from the battery controller 115, the A / C controller 155, and the charger 162 according to the charge air conditioning control program stored in advance in the memory by the CPU. By returning a control signal, the operation of the air conditioner 150 and the operation of the charger 162 are controlled. That is, the vehicle controller 180 constitutes an in-vehicle device control device.

具体的には、図2に示すように、車両コントローラ180は、操作部170の操作コントローラ173から、入力部171を操作して入力されたシステムの起動/停止を含む各種の要求信号を受け取って各種制御処理を実行するとともに、その入力部171の操作により入力された各種条件を受け取ってメモリ内に記憶保持(設定)する。
また、車両コントローラ180は、高電圧バッテリシステム110のバッテリコントローラ115から、高電圧バッテリ111内の充電残量SOC(state of charge)を受け取って蓄電電力を利用する各種制御処理を実行する。すなわち、バッテリコントローラ115が残量検出部を構成する。なお、バッテリコントローラ115は高電圧バッテリ111の充放電電流値を検出するセンサの検出情報に基づいてその高電圧バッテリ111内の充電残量SOCを検出する構成を備えて、残量検出部として機能する。
Specifically, as shown in FIG. 2, the vehicle controller 180 receives various request signals including start / stop of the system input by operating the input unit 171 from the operation controller 173 of the operation unit 170. Various control processes are executed, and various conditions input by operating the input unit 171 are received and stored (set) in the memory.
Further, the vehicle controller 180 receives a remaining charge SOC (state of charge) in the high voltage battery 111 from the battery controller 115 of the high voltage battery system 110 and executes various control processes using the stored power. That is, the battery controller 115 constitutes a remaining amount detection unit. The battery controller 115 has a configuration for detecting the remaining charge SOC in the high voltage battery 111 based on detection information of a sensor for detecting the charge / discharge current value of the high voltage battery 111, and functions as a remaining amount detection unit. To do.

例えば、車両コントローラ180は、通常制御処理では、充電システム160の充電ポート161に充電プラグ210を接続されたときに、充電器162を介して外部電源200から送られてくる充電電力値(供給電力量)を受け取る。また、車両コントローラ180は、その外部電源200に供給させる電源電力の充電電力最大値を充電器162に送って指示する。そして、車両コントローラ180は、バッテリコントローラ115から高電圧バッテリ111内の充電残量SOCを受け取って高電圧バッテリ111に充電する各種制御処理を実行する。すなわち、充電器162が供給電力検出部を構成する。
ここで、外部電源200に送って指示する電源電力の充電電力最大値は、外部電源200から受け取る充電電力値よりも大きな値にすることにより車両コントローラ180側(高電圧バッテリ111側)から制限することなく、外部電源200の能力一杯の電力量を受け取って充電処理をできるようにする。なお、12Vバッテリ119への充電は、走行時の充電で不足している場合にDC/DCコンバータ169を介して高電圧バッテリ111または充電器162から必要な電力供給を行うようにしてもよい。
For example, in the normal control process, the vehicle controller 180 supplies a charging power value (supplied power) sent from the external power source 200 via the charger 162 when the charging plug 210 is connected to the charging port 161 of the charging system 160. Quantity). Vehicle controller 180 also sends to charger 162 an instruction for the maximum charging power value to be supplied to external power supply 200. Then, the vehicle controller 180 executes various control processes for receiving the remaining charge SOC in the high voltage battery 111 from the battery controller 115 and charging the high voltage battery 111. That is, the charger 162 constitutes a supply power detection unit.
Here, the charging power maximum value of the power source power sent to the external power source 200 and instructed is limited from the vehicle controller 180 side (high voltage battery 111 side) by setting it to a value larger than the charging power value received from the external power source 200. Without receiving the full power of the external power supply 200, the charging process can be performed. Note that charging to the 12V battery 119 may be performed by supplying necessary power from the high-voltage battery 111 or the charger 162 via the DC / DC converter 169 when charging during running is insufficient.

また、車両コントローラ180は、通常制御処理では、空調装置150を稼働させて車室内の空調処理を実行する要求を受け取ったときに、A/Cコントローラ155から送られてくる最大出力の空調消費電力値(消費電力量)を受け取る。また、車両コントローラ180は、その空調装置150を稼働させる空調消費電力制限値をA/Cコントローラ155に送って指定し、高電圧バッテリ111内の電力で空調装置150を起動して車室内を設定温度にする空調制御処理を実行する。すなわち、A/Cコントローラ155が消費電力取得部を構成する。
ここで、空調装置150(A/Cコントローラ155)に送って指定する空調消費電力制限値は、空調装置150から受け取る空調消費電力値よりも大きな値にすることにより車両コントローラ180側(高電圧バッテリ111側)から制限することなく、空調装置150の能力一杯の電力消費する空調処理をできるようにする。
Further, in the normal control process, the vehicle controller 180 receives the request for operating the air conditioner 150 and executing the air conditioning process in the vehicle interior, and the maximum output air conditioning power consumption sent from the A / C controller 155. Receives the value (power consumption). Further, the vehicle controller 180 sends the A / C controller 155 to specify the air conditioning power consumption limit value for operating the air conditioner 150 and activates the air conditioner 150 with the power in the high voltage battery 111 to set the vehicle interior. Execute the air conditioning control process to make the temperature. That is, the A / C controller 155 constitutes a power consumption acquisition unit.
Here, the air conditioning power consumption limit value that is sent to the air conditioner 150 (A / C controller 155) and specified is set to a value larger than the air conditioning power consumption value received from the air conditioner 150, whereby the vehicle controller 180 side (high voltage battery). 111 side), air conditioning processing that consumes the full capacity of the air conditioner 150 can be performed.

このとき、図3に示すように、車両コントローラ180は、高電圧バッテリ111内の充電残量SOC(%)が予め設定されている制限値の満充電判定値C1(%)に達している場合には、充電器162に外部電源200の電源電力の充電電力最大値としてゼロ(W)を送る。すなわち、車両コントローラ180は、高電圧バッテリ111内の充電残量SOCが満充電判定値C1以上の場合には、高電圧バッテリ111への充電処理を停止するとともに、空調装置150の外部電源200の電源電力での稼働を許容する。
またこのとき、車両コントローラ180は、充電残量SOCが予め設定されている限界値の充電要判定値C2(%)を下回っている場合には、空調装置150(A/Cコントローラ155)に空調消費電力制限値としてゼロ(W)を送る。すなわち、車両コントローラ180は、充電残量SOCが充電要判定値C2未満の場合には、空調装置150の稼働を停止するとともに、高電圧バッテリ111への外部電源200の電源電力による充電を実施する。
At this time, as shown in FIG. 3, the vehicle controller 180 has a case where the remaining charge SOC (%) in the high-voltage battery 111 has reached a preset full charge determination value C1 (%). In this case, zero (W) is sent to the charger 162 as the charging power maximum value of the power source power of the external power source 200. That is, when the remaining charge SOC in the high voltage battery 111 is equal to or higher than the full charge determination value C1, the vehicle controller 180 stops the charging process to the high voltage battery 111 and the external power source 200 of the air conditioner 150 Allow operation with power supply.
At this time, if the remaining charge SOC is lower than the predetermined limit value C2 (%) that needs to be charged, the vehicle controller 180 air-conditions the air conditioner 150 (A / C controller 155). Zero (W) is sent as the power consumption limit value. That is, when the remaining charge SOC is less than the charge requirement determination value C2, the vehicle controller 180 stops the operation of the air conditioner 150 and charges the high voltage battery 111 with the power of the external power source 200. .

そして、車両コントローラ180は、操作部170の操作コントローラ173から安価な深夜電力で高電圧バッテリ111の充電を行う「夜間充電」が設定されている場合には、予め設定されている充電開始時刻を経過した時間帯に、外部電源200の電源電力で高電圧バッテリ111を充電する夜間充電制御処理を実行する。ここで、本実施形態では充電時刻として夜間の時間帯を設定する場合を一例として説明するが、これに限るものではなく、車両の不使用時間帯に応じて任意に設定すればよいことは言うまでもない。   Then, when “night charge” for charging the high voltage battery 111 with inexpensive midnight power is set from the operation controller 173 of the operation unit 170, the vehicle controller 180 sets a preset charge start time. During the elapsed time period, the night charge control process for charging the high voltage battery 111 with the power of the external power source 200 is executed. Here, in this embodiment, a case where a night time zone is set as the charging time will be described as an example. However, the present invention is not limited to this, and needless to say, it may be arbitrarily set according to a vehicle non-use time zone. Yes.

またこのとき、車両コントローラ180は、操作部170の操作コントローラ173から予め設定されている乗車時刻時に車室内を快適環境にしておく、所謂、「プレ空調(予約空調)」が設定されている場合には、予め設定されているプレ空調開始時刻に、高電圧バッテリ111内の蓄電電力または外部電源200の電源電力で空調装置150を起動して車室内を設定温度にする空調制御処理を実行する。ここで、本実施形態では通勤時刻前に車室内を快適に空調する場合を一例として説明するがこれに限るものではなく、車両の使用開始時刻に応じて任意に設定すればよいことは言うまでもない。   At this time, when the vehicle controller 180 sets a so-called “pre-air-conditioning (reserved air-conditioning)” in which the vehicle interior is kept in a comfortable environment at the boarding time preset from the operation controller 173 of the operation unit 170. The air-conditioning control processing for starting the air-conditioning device 150 with the stored power in the high-voltage battery 111 or the power source power of the external power source 200 to bring the passenger compartment to a set temperature is executed at the preset pre-air-conditioning start time. . Here, in the present embodiment, a case where the passenger compartment is comfortably air-conditioned before the commuting time will be described as an example, but the present invention is not limited to this, and it is needless to say that it may be arbitrarily set according to the use start time of the vehicle. .

さらにこのとき、車両コントローラ180は、「プレ空調」と「夜間充電」を同時に実行する場合に、外部電源200が空調装置150の空調消費電力値(消費電力量)に加えて高電圧バッテリ111の充電に十分な充電電力値で電力供給することができないときには、電力供給の分配を調整して「夜間充電」よりも「プレ空調」を優先するように構築されている。   Further, at this time, when the vehicle controller 180 executes “pre-air conditioning” and “night charging” at the same time, the external power source 200 adds the air-conditioning power consumption value (power consumption amount) of the air-conditioning device 150 to the high-voltage battery 111. When power cannot be supplied with a charging power value sufficient for charging, power distribution is adjusted to give priority to “pre-air conditioning” over “night charging”.

例えば、車両コントローラ180は、外部電源200の充電電力値が空調装置150の空調消費電力値に満たない場合には、空調装置150のみの稼働を確保する。このとき、空調装置150の稼働により高電圧バッテリ111の充電のための余剰分の電力がないため、高電圧バッテリ111の充電は停止される。また、車両コントローラ180は、外部電源200の充電電力値が空調装置150の空調消費電力値を超える場合には、空調装置150には空調消費電力値の電力供給で稼働を確保するのと同時に、外部電源200の充電電力値のうちの空調装置150の空調消費電力値に対する余剰分を高電圧バッテリ111に供給する充電を実施する。   For example, when the charging power value of the external power source 200 is less than the air conditioning power consumption value of the air conditioner 150, the vehicle controller 180 ensures the operation of only the air conditioner 150. At this time, since there is no surplus power for charging the high voltage battery 111 due to the operation of the air conditioner 150, the charging of the high voltage battery 111 is stopped. In addition, when the charging power value of the external power source 200 exceeds the air conditioning power consumption value of the air conditioner 150, the vehicle controller 180 secures operation by supplying the air conditioning power consumption value to the air conditioning apparatus 150, Charging is performed to supply the high voltage battery 111 with a surplus with respect to the air conditioning power consumption value of the air conditioner 150 in the charging power value of the external power source 200.

詳細には、車両コントローラ180は、図4のフローチャートに示すように、イグニッション・オンに伴って起動された後に(ステップS11)、操作部170からメモリ内に格納されている各種設定要求の有無を確認する(ステップS12)。この各種設定要求内に、「夜間充電」および「プレ空調」を確認した場合には(ステップS13)、充電時空調制御の待機状態を維持して、例えば、電気料金が安価な深夜(例えば、深夜23時〜早朝7時)の時間帯で、通勤時刻(例えば、朝7時)から車室内の空調に掛かる時間(例えば、15分)を減算したプレ空調開始時刻に達したか否か確認する(ステップS14)。   Specifically, as shown in the flowchart of FIG. 4, the vehicle controller 180 is activated when the ignition is turned on (step S <b> 11), and then checks whether there are various setting requests stored in the memory from the operation unit 170. Confirm (step S12). When “night charging” and “pre-air conditioning” are confirmed in the various setting requests (step S13), the standby state of the air conditioning control during charging is maintained, for example, at midnight when the electricity rate is low (for example, Check whether or not the pre-air conditioning start time has been reached by subtracting the time required for air conditioning in the passenger compartment (for example, 15 minutes) from the commuting time (for example, 7:00 am) in the time zone from midnight to 7:00 am (Step S14).

このステップS14において、深夜時間帯のプレ空調開始時刻に達したことを確認した
場合には、外部電源200の充電プラグ210が充電システム160の充電ポート161に接続されているか否かを確認して(ステップS15)、接続されていない場合にはそのままこの制御処理を終了する。また、ステップS15において、充電プラグ210の充電ポート161への接続が確認された場合には、充電システム160と空調装置150を起動して(ステップS16)、充電器162と外部電源200による高電圧バッテリ111への充電制御処理と共に空調装置150による空調制御処理を開始する(ステップS17)。
In step S14, when it is confirmed that the pre-air conditioning start time in the midnight time has been reached, it is confirmed whether or not the charging plug 210 of the external power source 200 is connected to the charging port 161 of the charging system 160. (Step S15) If it is not connected, the control process is terminated. If the connection of the charging plug 210 to the charging port 161 is confirmed in step S15, the charging system 160 and the air conditioner 150 are activated (step S16), and the high voltage generated by the charger 162 and the external power supply 200 is activated. The air conditioning control process by the air conditioner 150 is started together with the charging control process for the battery 111 (step S17).

この後に、上記の「プレ空調」として設定されている通勤使用開始時刻に達したか否かを確認して(ステップS18)、通勤時刻になるまで充電処理と空調処理を継続して、通勤時刻になった場合に、充電制御処理を停止するとともに、空調制御処理も一旦停止する(ステップS19)。続けて、充電システム160と空調装置150の停止処理を行って、外部電源200の充電プラグ210を充電システム160の充電ポート161から安全に離脱させることができる状態にする接地処理等をして、この制御処理を終了する(ステップS20)。   Thereafter, it is confirmed whether or not the commuting use start time set as the “pre-air conditioning” is reached (step S18), and the charging process and the air conditioning process are continued until the commuting time is reached. In this case, the charging control process is stopped and the air conditioning control process is also temporarily stopped (step S19). Subsequently, a stop process of the charging system 160 and the air conditioner 150 is performed, and a grounding process is performed so that the charging plug 210 of the external power source 200 can be safely detached from the charging port 161 of the charging system 160. This control process is terminated (step S20).

このとき、車両コントローラ180は、ステップS17において空調装置150を起動する際には、単独で空調装置150を起動する場合と同様に、図5のフローチャートに示すように、まずは、高電圧バッテリ111内の充電残量SOCが満充電判定値C1未満か否かを確認する(ステップS171)。その充電残量SOCが満充電判定値C1以上である場合には、空調装置150のみに外部電源200の電源電力を供給して電力制限なく稼働させる(ステップS172)。詳細には、充電器162に電源電力の充電電力最大値としてゼロ(W)を送って充電制御自体は停止(中止)するとともに、A/Cコントローラ155に最大出力の空調消費電力値に対応する空調消費電力制限値Pa(W)を送る。このとき、充電器162は、バッテリコントローラ115に充電を制限する信号を送ってメインリレー112を遮断することで、高電圧バッテリ111への充電を禁止する。
これにより、高電圧バッテリ111が満充電判定値C1以上充電されている状態からさらに充電されて過充電状態になってしまうことを回避することができる。例えば、空調装置150などの車載電気機器での消費が急に変化して高電圧バッテリ111側への充電量が瞬間的に増加することにより、高電圧バッテリ111が過充電となって損傷してしまうことを未然に防止することができる。
At this time, when starting the air conditioner 150 in step S17, the vehicle controller 180 first starts in the high voltage battery 111 as shown in the flowchart of FIG. It is confirmed whether or not the remaining charge SOC is less than the full charge determination value C1 (step S171). If the remaining charge SOC is equal to or greater than the full charge determination value C1, the power supply of the external power supply 200 is supplied only to the air conditioner 150 to operate without power limitation (step S172). Specifically, zero (W) is sent to the charger 162 as the charging power maximum value of the power supply power, and the charging control itself stops (stops), and the A / C controller 155 corresponds to the maximum output air conditioning power consumption value. The air conditioning power consumption limit value Pa (W) is sent. At this time, the charger 162 inhibits the charging of the high voltage battery 111 by sending a signal for limiting the charging to the battery controller 115 and shutting off the main relay 112.
Thereby, it can avoid that the high voltage battery 111 will be further charged from the state charged more than full charge determination value C1, and will be in an overcharge state. For example, the consumption of in-vehicle electrical equipment such as the air conditioner 150 suddenly changes and the amount of charge to the high voltage battery 111 increases momentarily, which causes the high voltage battery 111 to be overcharged and damaged. Can be prevented in advance.

また、ステップS171において、車両コントローラ180は、充電残量SOCが満充電判定値C1未満である場合には、続けて、高電圧バッテリ111内の充電残量SOCが充電要判定値C2未満か否かを確認する(ステップS173)。その充電残量SOCが充電要判定値C2未満である場合には、高電圧バッテリ111のみに外部電源200の電源電力を供給して充電する(ステップS174)。詳細には、A/Cコントローラ155に最大出力の空調消費電力値としてゼロ(W)を送って空調制御を停止するとともに、充電器162に外部電源200の電源電力の充電電力最大値としてその充電能力に応じた充電電力値Pc(W)を送る。
これにより、高電圧バッテリ111が充電要判定値C2未満の状態で優先的に充電する必要があるのにも拘わらず車室内の空調を開始してしまうことを防止することができ、乗車して走行する際に、早期に高電圧バッテリ111の充電量が不足することを回避することができる。
In step S171, when the remaining charge SOC is less than the full charge determination value C1, the vehicle controller 180 continues to determine whether the remaining charge SOC in the high voltage battery 111 is less than the determination required value C2. (Step S173). If the remaining charge SOC is less than the charge determination value C2, only the high voltage battery 111 is supplied with power from the external power source 200 and charged (step S174). More specifically, zero (W) is sent as the maximum output air conditioning power consumption value to the A / C controller 155 to stop the air conditioning control, and the charger 162 is charged as the maximum charge power value of the external power supply 200. A charging power value Pc (W) corresponding to the capability is sent.
As a result, it is possible to prevent the air conditioning of the passenger compartment from starting even though the high voltage battery 111 needs to be preferentially charged in a state of less than the charge requirement determination value C2, When traveling, it can be avoided that the amount of charge of the high-voltage battery 111 is insufficient at an early stage.

また、ステップS173において、車両コントローラ180は、充電残量SOCが満充電判定値C1未満で充電要判定値C2以上である場合には、空調装置150の起動と共に高電圧バッテリ111への充電を行うが、高電圧バッテリ111の充電よりも空調装置150の稼働を優先する電力供給を行う(ステップS175)。
このステップS175において、車両コントローラ180は、高電圧バッテリ111への充電と共に空調装置150を起動する際に、図6のフローチャートに示すように、外部電源200の充電電力値から空調装置150の空調消費電力値を減算する演算処理を行う(ステップS271)。
In step S173, if the remaining charge SOC is less than the full charge determination value C1 and equal to or greater than the charge necessity determination value C2, the vehicle controller 180 charges the high voltage battery 111 with the activation of the air conditioner 150. However, the power supply that gives priority to the operation of the air conditioner 150 over the charging of the high voltage battery 111 is performed (step S175).
In this step S175, when the vehicle controller 180 starts up the air conditioner 150 together with charging of the high voltage battery 111, the air conditioning consumption of the air conditioner 150 is determined from the charged power value of the external power source 200 as shown in the flowchart of FIG. An arithmetic process for subtracting the power value is performed (step S271).

このステップS271の演算結果(差)がゼロまたは負になるか否かを確認して(ステップS272)、演算結果がゼロまたは負になる場合には、空調装置150のみに外部電源200の電源電力を供給して電力制限なく稼働させる(ステップS273)。詳細には、充電器162に充電電力最大値としてゼロ(W)を送って充電制御自体は停止するとともに、A/Cコントローラ155に供給電力の全量を使用するように空調消費電力制限値Pa(W)を送って空調装置150を稼働させる。このとき、充電器162は、バッテリコントローラ115に充電を制限する信号を送ってメインリレー112を遮断することで、高電圧バッテリ111への充電を禁止する。   It is confirmed whether or not the calculation result (difference) in step S271 is zero or negative (step S272). If the calculation result is zero or negative, the power supply power of the external power source 200 is supplied only to the air conditioner 150. To operate without power limitation (step S273). More specifically, zero (W) is sent to the charger 162 as the maximum charging power value to stop the charging control itself, and the A / C controller 155 uses the entire amount of supplied power to the air conditioning power consumption limit value Pa ( W) is sent to operate the air conditioner 150. At this time, the charger 162 inhibits the charging of the high voltage battery 111 by sending a signal for limiting the charging to the battery controller 115 and shutting off the main relay 112.

また、ステップS271の演算結果(差)がゼロまたは負にならない場合には、空調装置150を優先して稼働させるとともに、余剰分で高電圧バッテリ111に充電する(ステップS274)。詳細には、A/Cコントローラ155には空調消費電力制限値Pa(W)を送って空調装置150を電力制限なく稼働させるとともに、その余剰分である演算結果の差分電力値Pc(W)を充電器162に送って高電圧バッテリ111への充電制御を実行する。   If the calculation result (difference) in step S271 does not become zero or negative, the air conditioner 150 is preferentially operated and the high voltage battery 111 is charged with a surplus (step S274). Specifically, the air conditioning power consumption limit value Pa (W) is sent to the A / C controller 155 to operate the air conditioner 150 without power limitation, and the difference power value Pc (W) of the calculation result that is the surplus is sent. Control is sent to the charger 162 to charge the high voltage battery 111.

これにより、空調装置150を十分に稼働させて車室内の空調処理を実行しつつ、高電圧バッテリ111への充電処理も並行して余剰分で行うことができ、走行するのに必要な電力量を高電圧バッテリ111内に充電するとともに乗車時には車室内を快適環境にすることができる。また、高電圧バッテリ111に充電する余剰分がない場合には、空調装置150のみを稼働させて乗車時には車室内を快適環境にすることができる。   As a result, while the air conditioner 150 is sufficiently operated to perform the air conditioning process in the vehicle interior, the charging process to the high voltage battery 111 can also be performed in excess, and the amount of power necessary for traveling Can be charged into the high voltage battery 111 and the passenger compartment can be made comfortable when riding. In addition, when there is no surplus to charge the high voltage battery 111, only the air conditioner 150 can be operated to make the passenger compartment a comfortable environment when boarding.

このように、車両コントローラ180は、受け取った充電残量SOCが満充電判定値C1未満と充電要判定値C2以上の間の充電状態であるときに、「夜間充電」と「プレ空調」が設定(要求)されている場合には、外部電源200から能力一杯の電力量の供給を受けて、空調装置150を必要な空調消費電力制限値Paで優先的に稼働させるのと同時に、その余った電力量で高電圧バッテリ111に充電することができる。   Thus, the vehicle controller 180 sets “night charge” and “pre-air conditioning” when the received remaining charge SOC is in a charge state between the full charge determination value C1 and the charge necessity determination value C2 or more. In the case of (requested), the surplus power is supplied at the same time that the air conditioner 150 is preferentially operated at the required air conditioning power consumption limit value Pa by receiving the supply of electric power with full capacity from the external power source 200. The high voltage battery 111 can be charged with the amount of electric power.

図7には、プレ空調開始時刻からの高電圧バッテリ111の充電状態を示している。破線(1)は外部電源200の電源電力が空調装置150の必要な空調消費電力よりも特に大きい場合を示し、実線(2)は外部電源200の電源電力が空調装置150の必要な空調消費電力よりも大きい場合を示し、破線(3)は外部電源200の電源電力が空調装置150の必要な空調消費電力と同値である場合を示している。破線(1)の場合は、空調装置150を稼働しつつ高電圧バッテリ111の充電を行い、充電残量SOCが満充電判定値C1になると高電圧バッテリ111の充電を停止して空調装置150の稼働を出発予定時刻まで継続する。実線(2)の場合は、出発予定時刻まで空調装置150を稼働しつつ高電圧バッテリ111の充電を行っている。破線(3)の場合は、高電圧バッテリ111の充電を行わないが、出発予定時刻まで空調装置150の稼働を行っている。
したがって、図7に示すように、空調装置150はプレ空調開始時刻から十分な電力で駆動して車室内を快適に空調する制御処理を実行するのと並行して、通勤使用開始時刻まで高電圧バッテリ111への充電も実行することができ、その通勤時刻には走行に必要な電力を高電圧バッテリ111に補充しつつ車室内を快適な状態にすることができる。すなわち、外部電源200の電力供給能力が不足する場合には、空調装置150を優先して十分な電力で稼働させつつ余剰分で高電圧バッテリ111に充電することができる。
FIG. 7 shows the state of charge of the high voltage battery 111 from the pre-air conditioning start time. A broken line (1) indicates a case where the power supply power of the external power supply 200 is particularly larger than a necessary air conditioning power consumption of the air conditioner 150, and a solid line (2) indicates that the power supply power of the external power supply 200 is a required air conditioning power consumption of the air conditioning apparatus 150. The broken line (3) shows the case where the power source power of the external power source 200 is equal to the required air conditioning power consumption of the air conditioner 150. In the case of the broken line (1), the high voltage battery 111 is charged while operating the air conditioner 150. When the remaining charge SOC reaches the full charge determination value C1, the charging of the high voltage battery 111 is stopped and the air conditioner 150 Continue operation until the scheduled departure time. In the case of the solid line (2), the high voltage battery 111 is charged while operating the air conditioner 150 until the scheduled departure time. In the case of the broken line (3), the high voltage battery 111 is not charged, but the air conditioner 150 is operated until the scheduled departure time.
Therefore, as shown in FIG. 7, the air conditioner 150 is driven with sufficient power from the pre-air-conditioning start time to execute a control process for comfortably air-conditioning the passenger compartment, and at the same time, the high-voltage until the commuting use start time. The battery 111 can also be charged, and at the commuting time, the high-voltage battery 111 can be replenished with electric power necessary for traveling to make the vehicle interior comfortable. That is, when the power supply capability of the external power source 200 is insufficient, the high voltage battery 111 can be charged with a surplus while operating the air conditioner 150 with sufficient power.

(第2実施形態)
図8は本発明の第2実施形態に係る車載機器制御装置を示す図である。ここで、本実施形態は上述第1実施形態と略同様に構成されているので、図面を流用して同様の構成には同一の符号を付して特徴部分を説明する。
本実施形態の車両100も上述第1実施形態と同様に、高電圧バッテリシステム110と、走行用モータ120と、空調装置150と、充電システム160と、操作部170と、を車載して構築されており、上述実施形態では、「夜間充電」および「プレ空調」をプレ空調開始時刻に同時に開始する場合の一例を説明するが、本実施形態では、「夜間充電」および「プレ空調」を別個に実行するように構築されている。
(Second Embodiment)
FIG. 8 is a diagram showing an in-vehicle device control apparatus according to the second embodiment of the present invention. Here, since the present embodiment is configured in substantially the same manner as the first embodiment described above, the same reference numerals are given to the same configurations using the drawings, and the characteristic portions will be described.
Similarly to the first embodiment, the vehicle 100 of the present embodiment is constructed by mounting the high-voltage battery system 110, the traveling motor 120, the air conditioner 150, the charging system 160, and the operation unit 170 on the vehicle. In the above embodiment, an example in which “night charging” and “pre-air conditioning” are started simultaneously at the pre-air conditioning start time will be described. In this embodiment, “night charging” and “pre-air conditioning” are separately performed. Built to run on.

詳細には、図8に示すように、車両コントローラ180は、電気料金が安価になる深夜の時間帯で、予め設定されている充電開始時刻(例えば、深夜1時)以降に、充電システム160の充電ポート161への外部電源200の充電プラグ210の接続が確認された場合に、充電器162と外部電源200を起動して高電圧バッテリ111への充電制御処理を開始する。また、車両コントローラ180は、予め設定されている通勤時刻から車室内の空調に掛かる時間を減算したプレ空調開始時刻(例えば、朝6時45分)に達したことを確認したときに、空調装置150による空調制御処理を開始する。 Specifically, as shown in FIG. 8, the vehicle controller 180 is connected to the charging system 160 after a preset charging start time (for example, midnight) in a midnight time zone when the electricity rate is low. When the connection of the charging plug 210 of the external power source 200 to the charging port 161 is confirmed, the charger 162 and the external power source 200 are activated to start the charging control process for the high voltage battery 111. When the vehicle controller 180 confirms that the pre-air conditioning start time (for example, 6:45 in the morning), which is obtained by subtracting the time required for air conditioning in the vehicle interior from the preset commuting time, the air conditioner 150 starts the air conditioning control process.

このとき、車両コントローラ180は、例えば、深夜1時の充電開始後に、高電圧バッテリ111内の充電残量SOCが満充電判定値C1に達した満充電状態になったことをバッテリコントローラ115から受け取ったときに充電制御を停止して外部電源200からの電力供給を停止させることになる。この充電制御の停止後には、高電圧バッテリ111は満充電判定値C1の充電残量SOCで安定している。   At this time, the vehicle controller 180 receives from the battery controller 115 that, for example, after starting charging at midnight, the battery controller 115 has reached a fully charged state in which the remaining charge SOC in the high voltage battery 111 has reached the full charge determination value C1. The charging control is stopped and the power supply from the external power source 200 is stopped. After the stop of the charge control, the high voltage battery 111 is stable at the remaining charge SOC of the full charge determination value C1.

また、車両コントローラ180は、例えば、朝6時45分のプレ空調開始後に、車室内の環境を快適に空調して通勤時刻になったときに空調制御を一旦停止する。このときには、外部電源200からの供給電力が高電圧バッテリ111への充電に回されることなく、空調装置150に全量供給されて消費されることになり、その高電圧バッテリ111が過充電されることなく、満充電状態を維持しつつ、走行を開始する通勤時刻には車室内を快適環境にする空調を完了しておくことができる。   Further, for example, after starting pre-air-conditioning at 6:45 am, the vehicle controller 180 comfortably air-conditions the interior of the vehicle and temporarily stops air-conditioning control when the commuting time comes. At this time, the power supplied from the external power source 200 is not supplied to the high voltage battery 111 but is supplied to the air conditioner 150 and consumed, and the high voltage battery 111 is overcharged. Therefore, it is possible to complete the air conditioning that makes the passenger compartment a comfortable environment at the time of commuting when traveling while maintaining a fully charged state.

したがって、空調装置150がプレ空調開始時刻から十分な電力で駆動して通勤使用開始時刻までに車室内を快適に空調することができ、また、そのプレ空調開始時刻までに、高電圧バッテリ111への充電を実行して完了することができる。
ここで、本実施形態では、「夜間充電」と「プレ空調」とがそれぞれ別個に完了する場合を一例として説明するが、「夜間充電」が完了する前に「プレ空調」を開始する場合には、上述実施形態と同様に「夜間充電」と「プレ空調」とを並行処理するタイミングには、「プレ空調」を優先処理して余剰電力で「夜間充電」を実施することになる。
Accordingly, the air conditioner 150 can be driven with sufficient power from the pre-air conditioning start time to comfortably air-condition the passenger compartment by the commuting use start time, and to the high voltage battery 111 by the pre-air conditioning start time. Can be completed by running the charge.
Here, in this embodiment, the case where “night charging” and “pre-air conditioning” are completed separately will be described as an example. However, when “pre-air conditioning” is started before “night charging” is completed. In the same manner as in the above-described embodiment, at the timing of performing “night charging” and “pre-air conditioning” in parallel, “pre-air conditioning” is preferentially processed and “night charging” is performed with surplus power.

本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。   While embodiments of the invention have been disclosed, it will be apparent to those skilled in the art that changes may be made without departing from the scope of the invention. All such modifications and equivalents are intended to be included in the following claims.

100 車両
110 高電圧バッテリシステム
111 高電圧バッテリ
115 バッテリコントローラ
120 走行用モータ
125 インバータ
150 空調装置
151 ヒータ
152 コンプレッサ
155 A/Cコントローラ
160 充電システム
161 充電ポート
162 充電器
170 操作部
171 入力部
172 表示パネル
173 操作コントローラ
180 車両コントローラ
200 外部電源
210 充電プラグ
DESCRIPTION OF SYMBOLS 100 Vehicle 110 High voltage battery system 111 High voltage battery 115 Battery controller 120 Driving motor 125 Inverter 150 Air conditioner 151 Heater 152 Compressor 155 A / C controller 160 Charging system 161 Charging port 162 Charger 170 Operation part 171 Input part 172 Display panel 173 Operation controller 180 Vehicle controller 200 External power supply 210 Charging plug

Claims (5)

車両の外部に設置されている外部電源から車両に搭載されている車載機器の車載バッテリと他の車載電気機器とに電力を供給して稼働させる車載機器制御装置であって、
前記外部電源の供給電力量を検出する供給電力検出部と、
前記車載電気機器の消費電力量を取得する消費電力取得部と、を備えて、
前記供給電力検出部の検出する供給電力量および前記消費電力取得部の取得する消費電力量に基づいて前記車載バッテリと前記車載電気機器に前記外部電源から供給する電力量を調整し、前記車載電気機器を優先して前記外部電源から電力供給し、
前記供給電力検出部の検出する供給電力量が前記消費電力取得部の取得する消費電力量を超える場合には、前記外部電源から当該供給電力量の余剰分を前記車載バッテリに供給して充電し、
前記供給電力検出部の検出する供給電力量が前記消費電力取得部の取得する前記消費電力量以下の場合には、前記車載バッテリの充電を中止し、前記外部電源から当該供給電力量の電力供給を前記車載電気機器にすることを特徴とする車載機器制御装置。
An in-vehicle device control device that operates by supplying electric power to an in-vehicle battery of an in-vehicle device mounted on the vehicle and other in-vehicle electric device from an external power source installed outside the vehicle,
A supply power detection unit for detecting a supply power amount of the external power source;
A power consumption acquisition unit that acquires the power consumption of the in-vehicle electrical device,
Adjusting the amount of power supplied from the external power source to the in-vehicle battery and the in-vehicle electrical device based on the amount of power to be detected detected by the supply power detection unit and the amount of power to be acquired by the power consumption acquisition unit, Priority is given to the device to supply power from the external power source ,
When the power supply amount detected by the power supply detection unit exceeds the power consumption amount acquired by the power consumption acquisition unit, the surplus power supply amount is supplied from the external power source to the in-vehicle battery for charging. ,
When the supply power amount detected by the supply power detection unit is equal to or less than the power consumption amount acquired by the power consumption acquisition unit, the charging of the in-vehicle battery is stopped and the power supply of the supply power amount from the external power source is performed. A vehicle-mounted device control apparatus characterized in that the vehicle- mounted electrical device is used.
前記車載バッテリの充電残量を検出する残量検出部を備えて、Provided with a remaining amount detection unit for detecting the remaining charge of the in-vehicle battery,
前記残量検出部の検出する充電残量が予め設定されている制限値以上であるときには前記車載バッテリの充電を中止することを特徴とする請求項1に記載の車載機器制御装置。The in-vehicle device control apparatus according to claim 1, wherein when the remaining charge detected by the remaining amount detection unit is equal to or greater than a preset limit value, charging of the in-vehicle battery is stopped.
前記車載バッテリの充電残量を検出する残量検出部を備えて、Provided with a remaining amount detection unit for detecting the remaining charge of the in-vehicle battery,
前記残量検出部の検出する充電残量が予め設定されている限界値未満であるときには前記車載電気機器への電力供給を中止することを特徴とする請求項1または請求項2に記載の車載機器制御装置。3. The vehicle-mounted device according to claim 1, wherein power supply to the vehicle-mounted electric device is stopped when a remaining charge amount detected by the remaining amount detection unit is less than a preset limit value. Equipment control device.
前記車載電気機器の稼働を予め設定されている時刻に開始させる稼働開始部を備えて、An operation start unit for starting operation of the in-vehicle electric device at a preset time,
前記車載電気機器の稼働開始設定時刻になる前の予め設定されている時刻から前記車載バッテリの充電を開始することを特徴とする請求項1から請求項3のいずれか1項に記載の車載機器制御装置。The in-vehicle device according to any one of claims 1 to 3, wherein charging of the in-vehicle battery is started from a preset time before an operation start setting time of the in-vehicle electric device. Control device.
前記車載バッテリの充電を中止する場合には、メインリレーを遮断することを特徴とする請求項1から請求項4のいずれか1項に記載の車載機器制御装置。The in-vehicle device control device according to any one of claims 1 to 4, wherein when the charging of the in-vehicle battery is stopped, the main relay is cut off.
JP2013240539A 2013-11-21 2013-11-21 In-vehicle device controller Active JP6314442B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013240539A JP6314442B2 (en) 2013-11-21 2013-11-21 In-vehicle device controller
DE102014222864.6A DE102014222864A1 (en) 2013-11-21 2014-11-10 Control system for on-board equipment
CN201410645971.1A CN104648287A (en) 2013-11-21 2014-11-14 Vehicle equipment control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013240539A JP6314442B2 (en) 2013-11-21 2013-11-21 In-vehicle device controller

Publications (2)

Publication Number Publication Date
JP2015104143A JP2015104143A (en) 2015-06-04
JP6314442B2 true JP6314442B2 (en) 2018-04-25

Family

ID=53184536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013240539A Active JP6314442B2 (en) 2013-11-21 2013-11-21 In-vehicle device controller

Country Status (3)

Country Link
JP (1) JP6314442B2 (en)
CN (1) CN104648287A (en)
DE (1) DE102014222864A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066439B1 (en) * 2017-05-18 2020-07-17 Bluebus AIR TREATMENT METHOD AND SYSTEM FOR AN INTERIOR OF AN ELECTRIC VEHICLE, AND ELECTRIC VEHICLE IMPLEMENTING SUCH A METHOD OR SYSTEM
DE102018104678A1 (en) * 2018-03-01 2019-09-05 Minebea Mitsumi Inc. Control of an electrical load in an electric vehicle during the charging process
JP7332287B2 (en) 2018-12-26 2023-08-23 株式会社Subaru Automotive electrical system
JP2020108231A (en) * 2018-12-26 2020-07-09 株式会社Subaru On-vehicle electric system
JP7252808B2 (en) * 2019-03-27 2023-04-05 株式会社Subaru power system
JP7252807B2 (en) * 2019-03-27 2023-04-05 株式会社Subaru power system
JP7291513B2 (en) * 2019-03-27 2023-06-15 株式会社Subaru vehicle
JP7253952B2 (en) 2019-03-27 2023-04-07 株式会社Subaru vehicle
JP7235569B2 (en) * 2019-04-03 2023-03-08 株式会社Subaru vehicle
JP7215317B2 (en) * 2019-05-10 2023-01-31 トヨタ自動車株式会社 Supply and demand control system for vehicles
CN112078423B (en) * 2019-06-12 2022-03-29 北京新能源汽车股份有限公司 Vehicle high-voltage power-on control method, vehicle control unit, system and vehicle
JP6946376B2 (en) * 2019-06-24 2021-10-06 本田技研工業株式会社 Air conditioners, air conditioning control methods, and programs
WO2021004640A1 (en) * 2019-07-11 2021-01-14 Volvo Truck Corporation A method for energy management of a vehicle or vessel
CN113183897B (en) * 2021-04-13 2022-09-30 广西玉柴新能源汽车有限公司 Power supply circuit of refrigerating unit system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865814A (en) * 1994-08-25 1996-03-08 Honda Motor Co Ltd Charging controller for electric vehicle
JP3450906B2 (en) * 1994-08-25 2003-09-29 本田技研工業株式会社 Charge control device for electric vehicles
JP2000078701A (en) * 1998-08-27 2000-03-14 Toyota Motor Corp Air conditionier for electric vehicle
JP4341712B2 (en) * 2007-09-10 2009-10-07 トヨタ自動車株式会社 Charge control device and charge control method for power storage mechanism
US8760115B2 (en) * 2009-08-20 2014-06-24 GM Global Technology Operations LLC Method for charging a plug-in electric vehicle
JP5821256B2 (en) * 2010-06-09 2015-11-24 日産自動車株式会社 Battery charging system
WO2012081104A1 (en) * 2010-12-16 2012-06-21 トヨタ自動車株式会社 Vehicle control device and vehicle control method
DE102011079415B4 (en) * 2011-07-19 2018-10-25 Bayerische Motoren Werke Aktiengesellschaft Charging an electric vehicle comprising an electric air-conditioning system
JP6042055B2 (en) * 2011-07-20 2016-12-14 スズキ株式会社 Air conditioner for vehicles

Also Published As

Publication number Publication date
JP2015104143A (en) 2015-06-04
DE102014222864A1 (en) 2015-05-21
CN104648287A (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP6314442B2 (en) In-vehicle device controller
JP5291909B2 (en) Electric vehicle charging device
US8849491B2 (en) Electric vehicle
JP6475359B2 (en) Solar energy automotive air conditioner system
KR101519780B1 (en) Control method for battery reservation charge of vehicle
US10293654B2 (en) Passenger cabin preconditioning during DC fast charging events
US20120022744A1 (en) Vehicle power supply system and method for controlling the same
CN106042946A (en) Cooling system for on-vehicle secondary battery
CN106394269B (en) Personalized range protection strategy for electric vehicles
JP2012045977A (en) Air conditioning control apparatus
WO2012081104A1 (en) Vehicle control device and vehicle control method
JP5673474B2 (en) Power switching device
JP2019221025A (en) Drive control device of vehicle drive system
JP2008199761A (en) Power supply controller
JP2011083076A (en) Vehicle and control method therefor
JP6287938B2 (en) In-vehicle secondary battery cooling system
US20210013564A1 (en) Electric vehicle
JP6424596B2 (en) Vehicle charge control device
US10988026B2 (en) Vehicle electrical load shed
JP2018098926A (en) Vehicle
CN114193998B (en) Control device for vehicle
JP2018095091A (en) Vehicle
US20200369113A1 (en) Vehicle cabin thermal management systems and methods
JP5772309B2 (en) Power converter
JP6299971B2 (en) Air conditioning controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6314442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151