JP5872577B2 - Flame retardant masterbatch and method for producing styrenic flame retardant resin composition using the same - Google Patents

Flame retardant masterbatch and method for producing styrenic flame retardant resin composition using the same Download PDF

Info

Publication number
JP5872577B2
JP5872577B2 JP2013539492A JP2013539492A JP5872577B2 JP 5872577 B2 JP5872577 B2 JP 5872577B2 JP 2013539492 A JP2013539492 A JP 2013539492A JP 2013539492 A JP2013539492 A JP 2013539492A JP 5872577 B2 JP5872577 B2 JP 5872577B2
Authority
JP
Japan
Prior art keywords
flame retardant
mass
styrene
parts
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013539492A
Other languages
Japanese (ja)
Other versions
JPWO2013057841A1 (en
Inventor
寛己 大胡
寛己 大胡
卓幸 伊野
卓幸 伊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Publication of JPWO2013057841A1 publication Critical patent/JPWO2013057841A1/en
Application granted granted Critical
Publication of JP5872577B2 publication Critical patent/JP5872577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、スチレン系樹脂に難燃性を付与するために使用される難燃剤マスターバッチ及び、この難燃剤マスターバッチとスチレン系樹脂を使用したスチレン系難燃性樹脂組成物の製造方法及びその成形品の製造方法に関するものである。特に、UL難燃規格V−0であるスチレン系難燃性樹脂組成物を得るための難燃剤マスターバッチとそれを使用したスチレン系難燃性樹脂組成物の製造方法である。   The present invention relates to a flame retardant masterbatch used for imparting flame retardancy to a styrene resin, a method for producing a styrene flame retardant resin composition using the flame retardant masterbatch and a styrene resin, and The present invention relates to a method for manufacturing a molded product. In particular, it is a flame retardant masterbatch for obtaining a styrene flame retardant resin composition which is UL flame retardant standard V-0 and a method for producing a styrene flame retardant resin composition using the same.

スチレン系樹脂は、その特性を生かして広範囲な用途に使用されている。中でも高度な難燃性を付与したスチレン系難燃性樹脂は、ワープロ、パーソナルコンピュータ、プリンター、複写機等のOA機器、液晶テレビ、VTR、オーディオ等の家電製品等を始めとする多岐の分野で使用されている。   Styrenic resins are used in a wide range of applications by taking advantage of their properties. Above all, styrene-based flame retardant resins with advanced flame retardancy are used in a wide variety of fields, including office automation equipment such as word processors, personal computers, printers, copiers, liquid crystal televisions, VTRs, and audio home appliances. It is used.

昨今、OA機器や家電製品の分野では、プラスチック部品の大型化に対応するため、大型成形機を使用したホットランナー成形法やガスアシストインジェクション法等が適用される。このため、使用される樹脂には、難燃性以外に優れた成形性が要求される。
このように、多岐の分野に使用されるので、UL難燃規格の難燃性レベルでも5V,V−0、V−1、V−2、HBのいずれが要求されるのか、加えて耐熱性、流動性、耐衝撃性等の全て物性が一定の水準以上を満たさなければならないのか、あるいはこれらの特性の中で難燃性に加えて特に耐熱性が必要なのか、さらに耐衝撃性が必要になるのか、など用途によって多様な特性が必要とされる。
In recent years, in the field of OA equipment and home appliances, a hot runner molding method using a large molding machine, a gas assist injection method, and the like are applied in order to cope with an increase in the size of plastic parts. For this reason, the resin used is required to have excellent moldability in addition to flame retardancy.
In this way, because it is used in a wide variety of fields, 5V, V-0, V-1, V-2, and HB are required even at the flame retardancy level of UL flame retardance standards, plus heat resistance Whether all the physical properties such as fluidity and impact resistance must meet a certain level or more, in addition to flame retardancy among these properties, especially heat resistance is required, and further impact resistance is required Depending on the application, various characteristics are required.

従来から、スチレン系樹脂に難燃性を付与するために、種々の難燃剤が提案されている。中でも、安価で物性バランスに優れているハロゲン含有有機化合物が難燃剤として多く使用されている。代表的なものとしては、テトラブロモビスフェノールA、デカブロモジフェニルエーテル、デカブロモジフェニルエタン、臭素化トリアジン、臭素化エポキシ、又は臭素化エポキシ樹脂のエポキシ基をトリブロモフェノールで封鎖したものが使用される。中でも耐熱性、流動性、及び物性バランスが良好である臭素化トリアジン系の2,4,6−トリス(2,4,6−トリスブロモフェノキシ)−1,3,5−トリアジンの難燃性樹脂への使用が増えている。
これらの難燃剤がスチレン系樹脂に使用されている例は、特許文献1、特許文献2、特許文献3、特許文献4などが挙げられる。
Conventionally, various flame retardants have been proposed in order to impart flame retardancy to styrene-based resins. Among them, halogen-containing organic compounds that are inexpensive and excellent in physical property balance are often used as flame retardants. Typical examples include tetrabromobisphenol A, decabromodiphenyl ether, decabromodiphenyl ethane, brominated triazine, brominated epoxy, or a brominated epoxy resin having an epoxy group blocked with tribromophenol. Among them, a brominated triazine-based 2,4,6-tris (2,4,6-trisbromophenoxy) -1,3,5-triazine flame retardant resin having good heat resistance, fluidity, and physical property balance The use for is increasing.
Examples of these flame retardants used in styrene resins include Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4.

しかしながら、この2,4,6−トリス(2,4,6−トリスブロモフェノキシ)−1,3,5−トリアジンは顆粒状でスチレン系樹脂ペレットよりも小さい形状で、また大きい比重を有しているので、この難燃剤とスチレン系樹脂ペレットが分級し易く均一に混合し難い問題を有している。このため均一に混合させるためにはすべての押出機本体に別フィードを設置し、均一に溶融混合させる必要があり、簡便な単軸又は二軸押出機では製造し難い問題を有している。   However, this 2,4,6-tris (2,4,6-trisbromophenoxy) -1,3,5-triazine is granular, smaller in shape than styrenic resin pellets, and has a large specific gravity. Therefore, the flame retardant and the styrene resin pellet are easily classified and have a problem that it is difficult to mix them uniformly. For this reason, in order to mix uniformly, it is necessary to install another feed in all the extruder main bodies, and to melt-mix uniformly, and it has the problem that it is difficult to manufacture with a simple single screw or twin screw extruder.

また、スチレン系難燃性樹脂組成物の耐熱性及び剛性を向上させるためにタルクを配合するのが効果的であることが知られている。しかし、タルクは微粉末であり、粉塵の問題を有している。溶融混合させる際に粉塵問題を解決するためにすべての押出機に集塵機を備える必要がある。   Moreover, it is known that it is effective to mix talc in order to improve the heat resistance and rigidity of the styrene-based flame retardant resin composition. However, talc is a fine powder and has the problem of dust. In order to solve the dust problem when melt mixing, it is necessary to provide a dust collector in all the extruders.

日本特開平8−269275号Japanese Unexamined Patent Publication No. 8-269275 日本特開2002−97328号公報Japanese Unexamined Patent Publication No. 2002-97328 日本特開2002−3688号公報Japanese Unexamined Patent Publication No. 2002-3688 日本特表2008−501849号公報Japan Special Table 2008-501849

本発明の課題は、上記問題を解決し、難燃剤マスターバッチを製造し、その難燃剤マスターバッチを溶融混合することによってスチレン系難燃性樹脂組成物を製造する方法を提供することにある。
すなわち、それぞれ多岐に渡るスチレン系難燃樹脂組成物を別フィード・集塵機付きの二軸押出機を大小多数備えることなく、難燃剤の分散性が良好で、所望の難燃特性を有し、しかも、機械物性など、ポリスチレン系樹脂本来の特性が実質上低下せず、耐熱性、流動性等などのそれぞれの目的にあったスチレン系難燃性樹脂組成物を特に単軸押出機でも提供することにある。
The subject of this invention is providing the method of manufacturing a styrene-type flame retardant resin composition by solving the said problem, manufacturing a flame retardant masterbatch, and melt-mixing the flame retardant masterbatch.
In other words, each of a wide variety of styrene-based flame retardant resin compositions is provided with large and small twin-screw extruders with separate feed / dust collectors, good dispersibility of the flame retardant, and the desired flame retardant properties. Providing a styrene-based flame retardant resin composition suitable for each purpose such as heat resistance, fluidity, etc., even with a single-screw extruder, without substantially reducing the original properties of polystyrene-based resins such as mechanical properties. It is in.

本発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、下記の特定の組成を有する難燃剤入りマスターバッチと、このマスターバッチを使用するスチレン系難燃性樹脂組成物の製造方法と、を見出すことにより本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a masterbatch containing a flame retardant having the following specific composition and a styrene-based flame-retardant resin composition using the masterbatch The present invention was completed by finding the manufacturing method.

すなわち、本発明は以下の構成を要旨とするものである。
1.(A)スチレン系樹脂75乃至25質量部、(B)2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジン15乃至50質量部、(C)三酸化アンチモン2乃至8質量部、及び(D)タルク5乃至17質量部を含有し、
かつ、(A)乃至(D)の合計100質量部に対し、更に(E)酸化防止剤0.5乃至2.0質量部を含有することを特徴とする難燃剤マスターバッチ。
2.前記(A)乃至(D)の合計100質量部に対し、更に、(F)カーボンブラック
1.7質量部未満(但し0は含まず。)を含有する前記1に記載の難燃剤マスターバッチ。
3.(A)スチレン系樹脂65乃至30質量部、(B)2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジン25乃至50質量部、(C)三酸化アンチモン3乃至8質量部、及び(D)タルク7乃至17質量部である前記1又は2に記載の難燃剤マスターバッチ。
4.(A)スチレン系樹脂が、スチレン−ブタジエンブロック共重合体及び/又はランダム共重合体を含有したゴム変性スチレン系樹脂である前記1乃至3のいずれかに記載の難燃剤マスターバッチ。
5.(E)酸化防止剤が、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートである前記1乃至4のいずれかに記載の難燃剤マスターバッチ。
6.前記1乃至前記5のいずれかに記載の難燃剤マスターバッチ(I)30乃至85質量部と、スチレン系樹脂(II)70乃至15質量部と、を溶融混合するスチレン系難燃性樹脂組成物の製造方法。
7.前記1乃至前記5のいずれかに記載の難燃剤マスターバッチ(I)30乃至60質量部と、スチレン系樹脂(II)70乃至40質量部と、を溶融混合するスチレン系難燃性樹脂組成物の製造方法。
That is, the gist of the present invention is as follows.
1. (A) 75 to 25 parts by mass of styrene-based resin, (B) 15 to 50 parts by mass of 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine, C) 2 to 8 parts by mass of antimony trioxide, and (D) 5 to 17 parts by mass of talc,
And the flame retardant masterbatch characterized by containing 0.5 to 2.0 mass parts of (E) antioxidant further with respect to a total of 100 mass parts of (A) thru | or (D).
2. (F) Carbon black is further added to 100 parts by mass of the total of (A) to (D).
The flame retardant masterbatch according to 1 above, containing less than 1.7 parts by mass (excluding 0).
3. (A) 65 to 30 parts by mass of styrene-based resin, (B) 25 to 50 parts by mass of 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine, (C) The flame retardant masterbatch according to 1 or 2 above, which is 3 to 8 parts by mass of antimony trioxide and (D) 7 to 17 parts by mass of talc.
4). (A) The flame retardant masterbatch according to any one of 1 to 3, wherein the styrene resin is a rubber-modified styrene resin containing a styrene-butadiene block copolymer and / or a random copolymer.
5. (E) The flame retardant master batch according to any one of 1 to 4 above, wherein the antioxidant is octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
6). The styrene-based flame retardant resin composition comprising 30 to 85 parts by mass of the flame retardant master batch (I) according to any one of 1 to 5 and 70 to 15 parts by mass of the styrene resin (II). Manufacturing method.
7). The styrene flame retardant resin composition comprising 30 to 60 parts by mass of the flame retardant masterbatch (I) according to any one of 1 to 5 and 70 to 40 parts by mass of the styrene resin (II). Manufacturing method.

8.難燃剤マスターバッチ(I)とスチレン系樹脂(II)の合計量100質量部に、更にポリテトラフルオロエチレン(PTFE)を0.4質量部以下(但し0は含まず。)を添加して溶融混合する前記6又は7に記載のスチレン系難燃性樹脂組成物の製造方法。
9.単軸押出機で溶融混合する前記6乃至8のいずれかに記載のスチレン系難燃性樹脂組成物の製造方法。
10.二軸押出機で溶融混合する前記6乃至8のいずれかに記載のスチレン系難燃性樹脂組成物の製造方法。
11.前記スチレン系難燃性樹脂組成物のUL―94に基づく難燃性の評価がV−0である前記6乃至10のいずれかに記載のスチレン系難燃性樹脂組成物の製造方法。
8). To a total amount of 100 parts by mass of the flame retardant masterbatch (I) and the styrene resin (II), 0.4 parts by mass or less (but not including 0) of polytetrafluoroethylene (PTFE) is added and melted. The manufacturing method of the styrene-type flame retardant resin composition of said 6 or 7 to mix.
9. 9. The method for producing a styrene-based flame retardant resin composition as described in any one of 6 to 8 above, which is melt-mixed with a single screw extruder.
10. 9. The method for producing a styrene-based flame retardant resin composition as described in any one of 6 to 8, which is melt-mixed with a twin-screw extruder.
11. 11. The method for producing a styrene flame retardant resin composition according to any one of 6 to 10, wherein the flame retardant evaluation based on UL-94 of the styrene flame retardant resin composition is V-0.

本発明によれば、特定の難燃剤マスターバッチを使用することによって、それぞれ多岐に渡るスチレン系難燃樹脂組成物を別フィード・集塵機付きの二軸押出機を大小多数備えることなく、また単軸押出機でもそれぞれの目的にあったスチレン系難燃性樹脂組成物を提供するものである。
すなわち、得られたスチレン系難燃性樹脂組成物は、難燃性、衝撃強度、耐熱性、流動性等の物性バランスに優れ、溶融混合に単軸押出機を使用して得た組成物でも容易に目的の成形品が得られ、成形品の外観も良好である。
According to the present invention, by using a specific flame retardant master batch, each of a wide variety of styrene-based flame retardant resin compositions can be provided with a large number of twin-screw extruders with separate feed / dust collectors, An extruder also provides a styrene-based flame retardant resin composition suitable for each purpose.
That is, the obtained styrene-based flame retardant resin composition is excellent in the balance of physical properties such as flame retardancy, impact strength, heat resistance, and fluidity, and even a composition obtained by using a single screw extruder for melt mixing. The desired molded product can be easily obtained and the appearance of the molded product is also good.

本発明の難燃剤マスターバッチは、(A)スチレン系樹脂、(B)2,4,6−トリス(2,4,6−トリスブロモフェノキシ)−1,3,5−トリアジン、(C)三酸化アンチモン、(D)タルク、及び(E)酸化防止剤を含有する。   The flame retardant masterbatch of the present invention comprises (A) a styrene resin, (B) 2,4,6-tris (2,4,6-trisbromophenoxy) -1,3,5-triazine, (C) three Contains antimony oxide, (D) talc, and (E) an antioxidant.

本発明の難燃剤マスターバッチに使用する(A)スチレン系樹脂は、ゴム変性スチレン系樹脂を使用するのが好ましい。ゴム変性スチレン系樹脂とは、例えば芳香族ビニル単量体と不活性溶媒の混合液にゴム状重合体を溶解し、攪拌して塊状重合、懸濁重合、溶液重合等を行うことにより得られる、芳香族ビニル重合体のマトリックス中にゴム状重合体が粒子状に分散してなる重合体を言う。マトリックス部分の分子量については特に制限はないが、難燃剤マスターバッチを製造する際又は難燃剤マスターバッチとしての機能を発揮する際に、マトリックス部分の還元粘度(ηsp/C)が、0.55乃至0.85であることが好ましい。ゴム含有量については特に制限はないが、ゴム変性スチレン系樹脂に一般的に使用される5乃至15質量%が好ましい。また、ゴム状重合体の平均粒子径については特に制限はないが、0.4乃至6.0μmが好ましい。これらの数値範囲を逸脱することは、難燃剤マスターバッチとしての機能が発揮されにくいので好ましくない。
更には、芳香族ビニル単量体と不活性溶媒の混合液にゴム状重合体を溶解して得られた重合体に、別途得られた芳香族ビニル重合体を混合した混合物であってもよい。
The (A) styrene resin used in the flame retardant masterbatch of the present invention is preferably a rubber-modified styrene resin. The rubber-modified styrenic resin is obtained, for example, by dissolving a rubber-like polymer in a mixed liquid of an aromatic vinyl monomer and an inert solvent and stirring to perform bulk polymerization, suspension polymerization, solution polymerization, or the like. A polymer in which a rubbery polymer is dispersed in the form of particles in an aromatic vinyl polymer matrix. The molecular weight of the matrix portion is not particularly limited, but when the flame retardant master batch is produced or when the function as the flame retardant master batch is exhibited, the reduced viscosity (ηsp / C) of the matrix portion is 0.55 to It is preferably 0.85. Although there is no restriction | limiting in particular about rubber content, 5 thru | or 15 mass% generally used for rubber-modified styrene resin is preferable. The average particle diameter of the rubbery polymer is not particularly limited, but is preferably 0.4 to 6.0 μm. Deviating from these numerical ranges is not preferable because the function as a flame retardant masterbatch is difficult to be exhibited.
Further, a mixture obtained by dissolving a rubbery polymer in a mixed liquid of an aromatic vinyl monomer and an inert solvent and a separately obtained aromatic vinyl polymer may be mixed. .

上記に挙げた芳香族ビニル単量体としては、主にスチレンであり、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、又はこれらの混合物を挙げることができる。特に、スチレンが最も好適である。   The aromatic vinyl monomer mentioned above is mainly styrene, and can include o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, or a mixture thereof. . In particular, styrene is most preferred.

また、ゴム状重合体としては、ポリブタジエン、スチレン−ブタジエン共重合体、ポリイソプレン等が挙げられ、中でもポリブタジエン、又はスチレン−ブタジエン共重合体が好ましい。なお、ハイシスポリブタジエンゴムとは、シス−1、4結合を90モル%以上の比率で含有するポリブタジエンゴムを意味する。また、ローシスポリブタジエンゴムとは、1,4−シス結合含量が好ましくは10乃至40質量%であるポリブタジエンゴムを意味する。ゴム状重合体としては、いずれも使用することが出来る。   Examples of the rubber-like polymer include polybutadiene, styrene-butadiene copolymer, polyisoprene, and the like. Among them, polybutadiene or styrene-butadiene copolymer is preferable. The high cis polybutadiene rubber means a polybutadiene rubber containing cis-1,4 bonds in a ratio of 90 mol% or more. The low-cis polybutadiene rubber means a polybutadiene rubber having a 1,4-cis bond content of preferably 10 to 40% by mass. Any rubbery polymer can be used.

また、必要に応じて、ゴム変性スチレン系樹脂に、ランダム構造のスチレン−ブタジエン樹脂、ブロック構造のスチレン−ブタジエン樹脂などを混合して使用してもよい。スチレン−ブタジエン樹脂の混合量は、スチレン−ブタジエン樹脂に依存するゴム含有量が、ゴム変性スチレン樹脂における全ゴム含有量中に占める割合として、その25質量%以下となるように混合することが好ましい。なお、先に記載したように、全ゴム含有量はゴム変性スチレン系樹脂中では、5乃至15質量%であるのが好ましい。   If necessary, a rubber-modified styrene resin may be used by mixing a styrene-butadiene resin having a random structure, a styrene-butadiene resin having a block structure, or the like. The mixing amount of the styrene-butadiene resin is preferably such that the rubber content depending on the styrene-butadiene resin is 25% by mass or less as a proportion of the total rubber content in the rubber-modified styrene resin. . As described above, the total rubber content in the rubber-modified styrenic resin is preferably 5 to 15% by mass.

本発明で使用する(A)スチレン系樹脂の含有量は、難燃剤マスターバッチにおける前記(A)乃至(D)の合計100質量部に対し、25乃至75質量部が好ましく、さらに好ましくは30乃至65質量部である。含有量が25質量部未満であると難燃剤が多くなり、スチレン系難燃性樹脂組成物とした場合、シャルピー衝撃強度、及び熱変形温度が劣るようになる。含有量が75質量部を超えると樹脂成分が多くなり、難燃性能が劣ることになる。その結果、スチレン系難燃性樹脂組成物を得るのに難燃剤マスターバッチの添加量を増やさなければならないので、難燃剤マスターバッチとしての効率が劣ることになる。   The content of the (A) styrenic resin used in the present invention is preferably 25 to 75 parts by mass, more preferably 30 to 30 parts per 100 parts by mass in total of (A) to (D) in the flame retardant masterbatch. 65 parts by mass. When the content is less than 25 parts by mass, the amount of flame retardant increases, and when a styrene-based flame retardant resin composition is used, the Charpy impact strength and the heat distortion temperature become inferior. If the content exceeds 75 parts by mass, the resin component will increase and the flame retardancy will be poor. As a result, the addition amount of the flame retardant masterbatch must be increased to obtain a styrene-based flame retardant resin composition, resulting in poor efficiency as a flame retardant masterbatch.

また、本発明では、(B)2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジンを難燃剤として使用する。
難燃剤マスターバッチにおける前記(A)乃至(D)の合計100質量部に対し、該(B)難燃剤の含有量は、難燃剤マスターバッチとしての機能性、経済性の観点から、15乃至50質量部が好ましく、さらに好ましくは25乃至50質量部である。含有量が15質量部未満であれば難燃性能が劣り、難燃剤マスターバッチの添加量を増やさなければスチレン系難燃性樹脂組成物の難燃性が劣ることになり、難燃剤マスターバッチとしての経済効果が低い。含有量が50質量部を超えると難燃剤が多くなり、スチレン系難燃性樹脂組成物とした場合、シャルピー衝撃強度、及び熱変形温度が劣るようになる。また、樹脂成分が少なくなり、難燃剤マスターバッチとしてスチレン系樹脂と溶融混合してスチレン系難燃性樹脂組成物を製造する際に、難燃剤の分散不良を発生しやすく好ましくない。
In the present invention, (B) 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine is used as a flame retardant.
From the viewpoint of functionality and economy as a flame retardant master batch, the content of the flame retardant master batch is 15 to 50 with respect to 100 parts by mass of the total of (A) to (D) in the flame retardant master batch. A mass part is preferable, More preferably, it is 25-50 mass parts. If the content is less than 15 parts by mass, the flame retardancy is inferior, and if the addition amount of the flame retardant masterbatch is not increased, the flame retardancy of the styrene-based flame retardant resin composition will be inferior, and as a flame retardant masterbatch The economic effect is low. When the content exceeds 50 parts by mass, the amount of flame retardant increases, and when a styrene-based flame retardant resin composition is used, the Charpy impact strength and the heat distortion temperature become inferior. Further, when the resin component is reduced and a styrene-based flame retardant resin composition is produced by melt-mixing with a styrene resin as a flame retardant masterbatch, it is not preferable because the flame retardant is poorly dispersed.

さらに、本発明において使用される難燃化助剤である(C)三酸化アンチモンは、(B)含臭素系難燃剤の難燃効果をさらに高める働きをする。難燃化助剤は、さらに、三酸化アンチモンともに、例えば、四酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等の酸化アンチモン、ホウ酸亜鉛、メタホウ酸バリウム、無水ホウ酸亜鉛、無水ホウ酸等のホウ素系化合物、スズ酸亜鉛、ヒドロキシスズ酸亜鉛等のスズ系化合物、酸化モリブデン、モリブデン酸アンモニウム等のモリブデン系化合物、酸化ジルコニウム、水酸化ジルコニウム等のジルコニウム系化合物、硫化亜鉛等の亜鉛系化合物を使用してもよい。
本発明で、難燃剤マスターバッチにおける前記(A)乃至(D)の合計100質量部に対し、(C)三酸化アンチモンの含有量は、2乃至8質量部であり、好ましくは3乃至8質量部である。含有量が2質量部未満であれば、スチレン系難燃性樹脂組成物とした場合、難燃効果を高める効果が小さい。含有量が8質量部を超えると、スチレン系難燃性樹脂組成物とした場合、シャルピー衝撃強度も劣るようになり、燃焼時のグローイング挙動を高めるので好ましくない。
Furthermore, (C) antimony trioxide, which is a flame retardant aid used in the present invention, functions to further enhance the flame retardant effect of the (B) bromine-containing flame retardant. The flame retardant aid further includes, for example, antimony trioxide, antimony pentoxide, sodium antimonate, antimony oxide such as antimony tetroxide, zinc borate, barium metaborate, anhydrous zinc borate, and anhydrous boric acid. Boron compounds, zinc compounds such as zinc stannate and zinc hydroxystannate, molybdenum compounds such as molybdenum oxide and ammonium molybdate, zirconium compounds such as zirconium oxide and zirconium hydroxide, and zinc compounds such as zinc sulfide May be used.
In the present invention, the content of (C) antimony trioxide is 2 to 8 parts by mass, preferably 3 to 8 parts by mass with respect to 100 parts by mass in total of (A) to (D) in the flame retardant masterbatch. Part. If content is less than 2 mass parts, when it is set as a styrene-type flame retardant resin composition, the effect which improves a flame-retardant effect is small. When the content exceeds 8 parts by mass, when a styrene-based flame retardant resin composition is used, the Charpy impact strength becomes inferior and the glowing behavior during combustion is increased, which is not preferable.

さらに、本発明では、(D)タルクを使用する。(D)タルクの使用により、スチレン系難燃性樹脂組成物の耐熱性及び剛性を向上させるとともに、難燃剤マスターバッチとして、スチレン系樹脂と溶融混合して樹脂組成物を製造する際に、二軸押出機は無論のこと単軸押出機でも容易に目的のスチレン系難燃物性樹脂組成物を得ることができる。
難燃剤マスターバッチにおける前記(A)乃至(D)の合計100質量部に対し、(D)タルクの含有量は、5乃至17質量部であり、好ましくは7乃至17質量部である。含有量が5質量部未満であれば、得られたスチレン系難燃性樹脂組成物の耐熱性及び剛性を低下させるので難燃剤マスターバッチとしての効果が低い。含有量が17質量部を超えると、スチレン系難燃性樹脂組成物のシャルピー衝撃強度、耐熱性を低下させるので好ましくない。
Further, in the present invention, (D) talc is used. (D) The use of talc improves the heat resistance and rigidity of the styrene-based flame retardant resin composition, and as a flame retardant masterbatch, when the resin composition is produced by melting and mixing with a styrene resin, Of course, even a single screw extruder can easily obtain the desired styrene-based flame retardant resin composition.
The content of (D) talc is 5 to 17 parts by mass, preferably 7 to 17 parts by mass with respect to a total of 100 parts by mass of (A) to (D) in the flame retardant masterbatch. If content is less than 5 mass parts, since the heat resistance and rigidity of the obtained styrene-type flame retardant resin composition will be reduced, the effect as a flame retardant masterbatch will be low. When the content exceeds 17 parts by mass, the Charpy impact strength and heat resistance of the styrene-based flame retardant resin composition are lowered, which is not preferable.

更に、本発明では、難燃剤マスターバッチに(E)酸化防止剤を使用する。
例えばオクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス[3−(5−t−ブチル−4−ヒドロキシ−m−トリル)プロピオネート、ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]等のフェノール系酸化防止剤が使用される。また、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト等のリン系酸化防止剤と併用してもよい。なかでも、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを使用することが好ましい。
難燃剤マスターバッチにおける前記(A)乃至(D)の合計100質量部に対し、これらの酸化防止剤の添加量は0.5乃至2.0質量部であり、1.0乃至2.0質量部であることが好ましい。酸化防止剤の添加量が0.5質量部未満であると本発明の難燃剤マスターバッチを使用してスチレン系難燃性樹脂組成物を得た場合、シャルピー衝撃強度が発現し難くなる。また2.0質量部を超えると、耐熱性の低下を招き易くなる。
本発明の難燃性マスターバッチにおいて、前記(A)乃至(D)の配合割合としては、(A)スチレン系樹脂65乃至30質量部、(B)2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジン25乃至50質量部、(C)三酸化アンチモン3乃至8質量部、及び
(D)タルク7乃至17質量部であるのが好ましい。
Furthermore, in this invention, (E) antioxidant is used for a flame retardant masterbatch.
For example, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, ethylenebis (oxyethylene) bis [3- (5-t-butyl-4-hydroxy-m-tolyl) propionate, A phenolic antioxidant such as pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] is used. Phosphorus oxidation of 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, etc. You may use together with an inhibitor. Among these, it is preferable to use octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
The total amount of (A) to (D) in the flame retardant master batch is 100 parts by mass, and the added amount of these antioxidants is 0.5 to 2.0 parts by mass, and 1.0 to 2.0 parts by mass. Part. When the addition amount of the antioxidant is less than 0.5 parts by mass, when the styrene-based flame retardant resin composition is obtained using the flame retardant master batch of the present invention, the Charpy impact strength is hardly exhibited. Moreover, when it exceeds 2.0 mass parts, it will become easy to cause a heat resistant fall.
In the flame retardant masterbatch of the present invention, (A) 65 to 30 parts by mass of styrene resin, (B) 2,4,6-tris (2,4) , 6-tribromophenoxy) -1,3,5-triazine 25 to 50 parts by mass, (C) antimony trioxide 3 to 8 parts by mass, and (D) talc 7 to 17 parts by mass.

また、本発明の難燃剤マスターバッチを得るのに、さらに添加剤として着色剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤及び帯電防止剤等を目的に合わせて混合することができる。   Moreover, in order to obtain the flame retardant masterbatch of the present invention, a colorant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, an antistatic agent, and the like can be further mixed according to the purpose.

例えば、スチレン系難燃性樹脂組成物は、着色成形品として黒色物が多いので、本発明では、顔料として()カーボンブラックを必要に応じて混合して難燃性マスターバッチとすることができる。尚、スチレン系難燃性樹脂組成物中の()カーボンブラックの含有量はUL規格によって0.5質量%未満となる。従って、難燃性マスターバッチに添加出来る()カーボンブラックは、難燃剤マスターバッチにおける前記(A)乃至(D)の合計100質量部に対し、1.7質量部未満であるのが好ましく、1.5質量部以下であるのがより好ましい。




For example, since a styrene-based flame retardant resin composition is often a black product as a colored molded product, in the present invention, ( F ) carbon black may be mixed as a pigment as necessary to form a flame retardant masterbatch. it can. The content of ( F ) carbon black in the styrene-based flame retardant resin composition is less than 0.5% by mass according to UL standards. Therefore, ( F ) carbon black that can be added to the flame retardant masterbatch is preferably less than 1.7 parts by mass with respect to a total of 100 parts by mass of (A) to (D) in the flame retardant masterbatch, More preferably, it is 1.5 parts by mass or less.




また、難燃剤マスターバッチを製造する際の製造の容易性、また難燃剤マスターバッチを使用してスチレン系難燃性樹脂組成物を製造する際の製造の容易性、強度アップ等の観点から、滑剤としてポリオレフィン系ワックス、高級脂肪酸アミド、及び高級カルボン酸金属塩等を適宜使用することができる。   In addition, from the viewpoint of ease of production when producing a flame retardant masterbatch, and ease of production when producing a styrene-based flame retardant resin composition using a flame retardant masterbatch, an increase in strength, etc. As the lubricant, polyolefin waxes, higher fatty acid amides, higher carboxylic acid metal salts, and the like can be used as appropriate.

本発明の難燃剤マスターバッチの製造には、バンバリーミキサー、ニーダー、単軸押出機、二軸押出機等の方法を採用することが可能である。しかしながら、難燃剤マスターバッチを得る際には、難燃剤2,4,6−トリス(2,4,6−トリスブロモフェノキシ)−1,3,5−トリアジンを均一混合させるために、押出機本体に他の原料とは別のフィーダーを使用して均一に溶融混合させるのが好ましい。また、タルクを配合する場合はタルクの粉塵対策用に集塵機を備えるのが好ましい。   For the production of the flame retardant masterbatch of the present invention, methods such as a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder can be employed. However, when obtaining the flame retardant master batch, the extruder main body is used to uniformly mix the flame retardant 2,4,6-tris (2,4,6-trisbromophenoxy) -1,3,5-triazine. Further, it is preferable to uniformly melt and mix using a feeder different from other raw materials. Moreover, when mix | blending talc, it is preferable to provide a dust collector for dust countermeasures of talc.

次に、本発明のスチレン系難燃性樹脂組成物の製造方法について述べる。
なお、スチレン系難燃性樹脂組成物を得るのに使用するスチレン系樹脂をスチレン系樹脂(II)、また、これまで詳述した難燃剤マスターバッチを難燃剤マスターバッチ(I)と以下称する。
スチレン系難燃性樹脂組成物を得るのに使用するスチレン系樹脂(II)は、難燃剤マスターバッチ(I)で詳述した(A)スチレン系樹脂と同様のものが使用出来るが、同一組成、同一種類のものである必要はない。勿論同一のものであっても良い。ゴム変性スチレン系樹脂及び/又は芳香族ビニル重合体が好ましく使用される。
Next, the manufacturing method of the styrene-type flame retardant resin composition of this invention is described.
The styrene resin used to obtain the styrene flame retardant resin composition is hereinafter referred to as styrene resin (II), and the flame retardant master batch detailed above is referred to as flame retardant master batch (I).
The styrene resin (II) used to obtain the styrene flame retardant resin composition can be the same as (A) the styrene resin detailed in the flame retardant master batch (I), but the same composition. They do not have to be of the same type. Of course, they may be the same. A rubber-modified styrenic resin and / or an aromatic vinyl polymer is preferably used.

難燃剤マスターバッチ(I)とスチレン系樹脂(II)の配合比は、得られるスチレン系難燃性樹脂組成物に要求される難燃性のクラス等により変量することができる。なかでも、難燃剤マスターバッチ(I)30乃至85質量部とスチレン系樹脂(II)70乃至15質量部の割合で配合することが好ましい。特に、難燃剤マスターバッチ(I)30乃至60質量部とスチレン系樹脂(II)70乃至40質量部の割合で配合することが好ましい。更に、このスチレン系難燃性樹脂組成物に対して、他の添加剤を配合することができる。
本発明の製造方法で得られるスチレン系難燃性樹脂組成物の難燃性は、米国アンダーライターズ・ラボラトリーズ社のサブジェクト94号(以下、UL−94とも略記する。)の垂直燃焼試験方法に準拠する評価において、V−0であるのが好ましい。
The blending ratio of the flame retardant master batch (I) and the styrene resin (II) can be varied depending on the flame retardant class required for the obtained styrene flame retardant resin composition. Especially, it is preferable to mix | blend in the ratio of 30 to 85 mass parts of flame retardant masterbatch (I) and 70 to 15 mass parts of styrene resin (II). In particular, it is preferable to blend in a proportion of 30 to 60 parts by mass of the flame retardant masterbatch (I) and 70 to 40 parts by mass of the styrene resin (II). Furthermore, other additives can be blended with the styrene-based flame retardant resin composition.
The flame retardancy of the styrene-based flame retardant resin composition obtained by the production method of the present invention is determined by the vertical combustion test method of Subject No. 94 (hereinafter also abbreviated as UL-94) of US Underwriters Laboratories. In conforming evaluation, V-0 is preferable.

また、スチレン系難燃性樹脂組成物を得るのに一般的に使用する添加剤として難燃助剤、着色剤、熱安定剤、酸化防止剤、紫外線吸収剤、可塑剤、滑剤及び帯電防止剤等を目的に合わせて、そのままの形態で、或いは難燃剤マスターバッチに事前に添加して供給することもできる。   In addition, flame retardant aids, colorants, heat stabilizers, antioxidants, UV absorbers, plasticizers, lubricants and antistatic agents as additives generally used to obtain styrene-based flame retardant resin compositions In accordance with the purpose, it can be supplied as it is or added to the flame retardant master batch in advance.

特に、スチレン系難燃性樹脂組成物が燃焼した時の溶融滴下防止の目的でポリテトラフルオロエチレン(PTFE)を使用する場合、難燃剤マスターバッチ(I)とスチレン系樹脂(II)の合計量100質量部に対し、ポリテトラフルオロエチレン(PTFE)を好ましくは0.4質量部以下(但し0は含まず。)、より好ましくは0.1乃至0.3質量部を添加して溶融混合するのが好ましい。この場合、難燃剤マスターバッチ(I)、スチレン系樹脂(II)及びポリテトラフルオロエチレン(PTFE)とを予備混合してから溶融することが好ましい。事前に、難燃剤マスターバッチにポリテトラフルオロエチレン(PTFE)を混合すると、スチレン系難燃性樹脂組成物を得る際に、ポリテトラフルオロエチレン(PTFE)の劣化を促進するので好ましくない。   In particular, when polytetrafluoroethylene (PTFE) is used for the purpose of preventing melt dripping when the styrene flame retardant resin composition burns, the total amount of the flame retardant master batch (I) and the styrene resin (II) Preferably, polytetrafluoroethylene (PTFE) is added in an amount of 0.4 parts by mass or less (excluding 0), more preferably 0.1 to 0.3 parts by mass with respect to 100 parts by mass. Is preferred. In this case, it is preferable that the flame retardant master batch (I), the styrene resin (II) and the polytetrafluoroethylene (PTFE) are premixed and then melted. When polytetrafluoroethylene (PTFE) is mixed in advance with a flame retardant master batch, deterioration of polytetrafluoroethylene (PTFE) is promoted when a styrene-based flame retardant resin composition is obtained.

本発明のスチレン系難燃性樹脂組成物の製造方法で使用する溶融混合の方法としては、バンバリーミキサー、ニーダー、単軸押出機、二軸押出機等の方法を採用することが可能であるが、単軸押出機、又は二軸押出機の溶融押出機を使用することが好ましい。溶融押出におけるシリンダー温度は、一般的なスチレン系難燃性樹脂組成物を押し出す際に使用する温度で行なうことができ、特にこだわるものではないが、200乃至250℃が好ましく、210乃至240℃がより好ましい。   As a method of melt mixing used in the method for producing a styrene-based flame retardant resin composition of the present invention, a Banbury mixer, a kneader, a single screw extruder, a twin screw extruder, or the like can be adopted. It is preferable to use a melt extruder of a single screw extruder or a twin screw extruder. The cylinder temperature in melt extrusion can be performed at a temperature used when extruding a general styrene-based flame retardant resin composition, and is not particularly limited, but is preferably 200 to 250 ° C, and preferably 210 to 240 ° C. More preferred.

本発明の難燃剤マスターバッチ(I)とスチレン系樹脂(II)とを溶融押出機に供給する方法としては、タンブラーやVブレンダー等の公知の装置を使用して予備混合したものを供給する方法や、押出機の供給口に両材料を別々に定量的に供給する方法を採用することができる。   As a method of supplying the flame retardant master batch (I) and the styrene resin (II) of the present invention to a melt extruder, a method of supplying a premixed mixture using a known apparatus such as a tumbler or V blender. Alternatively, a method of separately and quantitatively supplying both materials to the supply port of the extruder can be employed.

更に、単軸押出機のスクリューは、最も汎用性の高いフルフライトスクリューを使用することができるが、より混練性の高いダルメージタイプ、ピンタイプ、又はマドックタイプのスクリューを使用することもできる。   Further, the most versatile full flight screw can be used as the screw of the single screw extruder, but a dull image type, pin type, or Maddock type screw having higher kneading properties can also be used.

以下に実施例を挙げて具体的に本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

以下の実施例において、難燃剤マスターバッチを得るのに使用した(A)スチレン系樹脂、及びスチレン系難燃性樹脂組成物を得るのに使用したスチレン系樹脂(II)としては、下記の特性を有する、(A−1)、(A−2)及び/又は(A−3)を使用した。
(A−1):
ゴム状重合体にシス1、4結合を90モル%以上の比率で含有するハイシスポリブタジエンゴムを使用したゴム変性スチレン系樹脂である。このゴム変性スチレン系樹脂の組成は、マトリックス部分の還元粘度が0.75dl/gであり、ゴム状重合体の含有量が9.3質量%であり、ゴム状重合体のゲル含有量が27.0質量%であり、及びゴム状重合体の体積平均粒子径が2.53μmであり、更にゴム変性スチレン系樹脂中の流動パラフィン含有量が1.9質量%である。
(A−2):
ゴム状重合体にシローシスポリブタジエンゴムを使用したゴム変性スチレン系樹脂である。このゴム変性スチレン系樹脂の組成はマトリックス部分の還元粘度が0.58dl/gであり、並びにゴム状重合体の含有量が9.9質量%であり、ゴム状重合体のゲル含有量が30.5質量%であり、及びゴム状重合体の体積平均粒子径が2.50μmであり、更にゴム変性スチレン系樹脂中の流動パラフィン含有量が2.0質量%である。
(A−3):
還元粘度が0.70dl/gであり、スチレン系樹脂中の流動パラフィン含有量が2.5質量%であるスチレン重合体(GP)を使用した。
また、ゴム変性スチレン系樹脂に添加したスチレン−ブタジエン共重合体(G)には、スチレン−ブタジエン−スチレンブロック共重合体(旭化成ケミカルズ社製、商品名タフプレン315P)を使用した。
In the following examples, the styrene resin (II) used to obtain the flame retardant master batch and the styrene resin (II) used to obtain the styrene flame retardant resin composition have the following characteristics: (A-1), (A-2) and / or (A-3) were used.
(A-1):
This is a rubber-modified styrene resin using a high-cis polybutadiene rubber containing cis 1,4 bonds in a ratio of 90 mol% or more in the rubber-like polymer. The composition of this rubber-modified styrenic resin is such that the reduced viscosity of the matrix portion is 0.75 dl / g, the content of the rubber-like polymer is 9.3% by mass, and the gel content of the rubber-like polymer is 27%. The rubber-like polymer has a volume average particle size of 2.53 μm, and the liquid paraffin content in the rubber-modified styrenic resin is 1.9% by mass.
(A-2):
It is a rubber-modified styrenic resin using a shirosis polybutadiene rubber as a rubbery polymer. The composition of this rubber-modified styrenic resin has a reduced viscosity of 0.58 dl / g in the matrix portion, a rubber-like polymer content of 9.9% by mass, and a rubber-like polymer gel content of 30. The volume average particle size of the rubber-like polymer is 2.50 μm, and the content of liquid paraffin in the rubber-modified styrenic resin is 2.0% by mass.
(A-3):
A styrene polymer (GP) having a reduced viscosity of 0.70 dl / g and a liquid paraffin content in the styrene resin of 2.5% by mass was used.
Further, as the styrene-butadiene copolymer (G) added to the rubber-modified styrene resin, a styrene-butadiene-styrene block copolymer (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name TUFPRENE 315P) was used.

本発明における、還元粘度、ゲル含有量、ゴム状重合体の含有量及び平均粒子径は以下の方法で測定した。尚、流動パラフィン含有量は仕込み量を示す。   In the present invention, the reduced viscosity, the gel content, the rubbery polymer content and the average particle size were measured by the following methods. The liquid paraffin content indicates the amount charged.

還元粘度(ηsp/C):
ゴム変性スチレン系樹脂1gにメチルエチルケトン15mlとアセトン15mlの混合溶媒を加え、温度25℃で2時間振とう溶解した。次いで、遠心分離で不溶分を沈降させ、デカンテーションにより上澄み液を取り出し、500mlのメタノールを加えて樹脂分を析出させ、不溶分を濾過乾燥した。同操作で得られた樹脂分をトルエンに溶解してポリマー濃度が0.4%(質量/体積)の試料溶液を調製した。この試料溶液、及び純トルエンを温度30℃の恒温でウベローデ型粘度計により溶液流下秒数を測定して、下式にて算出した。
ηsp/C=(t1/t0−1)/C
t0:純トルエン流下秒数
t1:試料溶液流下秒数
C:ポリマー濃度
Reduced viscosity (ηsp / C):
A mixed solvent of 15 ml of methyl ethyl ketone and 15 ml of acetone was added to 1 g of rubber-modified styrenic resin and dissolved by shaking at a temperature of 25 ° C. for 2 hours. Subsequently, the insoluble matter was settled by centrifugation, the supernatant was taken out by decantation, 500 ml of methanol was added to precipitate the resin, and the insoluble matter was filtered and dried. The resin component obtained by the same operation was dissolved in toluene to prepare a sample solution having a polymer concentration of 0.4% (mass / volume). This sample solution and pure toluene were measured at a constant temperature of 30 ° C. using a Ubbelohde viscometer, and the number of seconds during which the solution flowed was measured.
ηsp / C = (t1 / t0-1) / C
t0: Pure toluene flow down seconds
t1: Sample solution flow down seconds
C: Polymer concentration

ゴム状重合体のゲル含有量:
1gのゴム変性スチレン系樹脂組成物をメチルエチルケトン15mlとアセトン15mlの混合溶媒に加え、温度25℃で2時間振とう溶解した。次いで、遠心分離して不溶分を沈降させ、デカンテーションにより上澄み液を除去して不溶分を得、温度70℃で15時間程度真空乾燥し、20分間デシケーター中で冷却した後、乾燥した不溶分の質量G(g)を測定して次の式でより求めた。
ゴム状重合体のゲル含有量(質量%)=(G/1)×100
Gel content of rubbery polymer:
1 g of the rubber-modified styrenic resin composition was added to a mixed solvent of 15 ml of methyl ethyl ketone and 15 ml of acetone and dissolved by shaking at a temperature of 25 ° C. for 2 hours. Next, the insoluble matter is settled by centrifugation, the supernatant is removed by decantation to obtain an insoluble matter, vacuum dried at a temperature of 70 ° C. for about 15 hours, cooled in a desiccator for 20 minutes, and then dried insoluble matter. The mass G (g) of was measured and obtained from the following formula.
Gel content (mass%) of rubber-like polymer = (G / 1) × 100

ゴム状重合体の含有量:
ゴム変性スチレン系樹脂をクロロホルムに溶解させ、一定量の一塩化ヨウ素/四塩化炭素溶液を加え暗所に約1時間放置した。次いで、15質量/体積のヨウ化カリウム溶液と純水50mlを加え、過剰の一塩化ヨウ素を0.1Nチオ硫酸ナトリウム/エタノール水溶液で滴定し、付加した一塩化ヨウ素量から算出した。
Rubbery polymer content:
The rubber-modified styrenic resin was dissolved in chloroform, a certain amount of iodine monochloride / carbon tetrachloride solution was added, and the mixture was left in the dark for about 1 hour. Subsequently, 15 mass / volume potassium iodide solution and 50 ml of pure water were added, excess iodine monochloride was titrated with 0.1N sodium thiosulfate / ethanol aqueous solution, and the amount of iodine monochloride added was calculated.

(B)難燃剤には、(B−1)2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジンである第一工業製薬社製の商品名ピロガードSR245を使用した。また、比較用難燃剤として、(B−2)エチレンビスペンタブロモベンゼンであるアルベマール社製の商品名SAYTEX−8010(以下、S8010と略記する。)を使用した。   (B) For the flame retardant, (B-1) 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine, trade name of Daiichi Kogyo Seiyaku Co., Ltd. Pyroguard SR245 was used. Moreover, the brand name SAYTEX-8010 (henceforth S8010) by the Albemarle company which is (B-2) ethylenebispentabromobenzene was used as a comparative flame retardant.

(C)難燃助剤には、鈴裕化学社製、商品名AT−3CN(三酸化アンチモン)を使用した。   (C) Suzuhiro Chemical Co., Ltd. product name AT-3CN (antimony trioxide) was used for the flame retardant aid.

(D)タルクには、富士タルク社製の商品名KPタルクを使用した。   (D) The product name KP talc manufactured by Fuji Talc was used as the talc.

(E)酸化防止剤には、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート(BASFジャパン社製、商品名IRGANOX1076)を使用した。   (E) Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (BASF Japan, trade name IRGANOX1076) was used as the antioxidant.

(F)カーボンブラックには、カーボンブラック含有量が40質量%である越谷化成社製の商品名RB962Pを使用した。   (F) As the carbon black, trade name RB962P manufactured by Koshigaya Kasei Co., Ltd. having a carbon black content of 40% by mass was used.

ポリテトラフルオロエチレン(PTFE)には、三井・デュポンフロロケミカル社製の商品名PTFE31−JRを使用した。これを(H)と略記する。   As polytetrafluoroethylene (PTFE), trade name PTFE31-JR manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used. This is abbreviated as (H).

次に、本発明の難燃剤マスターバッチの混合方法を述べる。(A)スチレン系樹脂、(B)難燃剤、(C)難燃助剤、(D)タルク、(E)酸化防止剤、(F)カーボンブラック、及び(G)スチレン−ブタジエン−スチレン共重合体を表1、表2、表3に示す配合量(質量部)にて、形状別に、ペレット状と粉体状に分けて、それぞれの形状の成分をヘンシェルミキサー(三井三池化工社製、FM20B)にて予備混合した。予備今後物を、二軸押出機(東芝機械社製、TEM26SS)にペレット状成分と粉体状成分とを別フィード供給してストランドとし、水冷してからペレタイザーへ導きペレット化した。この際、シリンダー温度200℃、供給量50kg/時間とした。   Next, a method for mixing the flame retardant master batch of the present invention will be described. (A) Styrenic resin, (B) flame retardant, (C) flame retardant aid, (D) talc, (E) antioxidant, (F) carbon black, and (G) styrene-butadiene-styrene copolymer The coalescence is divided into pellets and powders by blending amount (parts by mass) shown in Table 1, Table 2 and Table 3, and the components of each shape are divided into Henschel mixers (FM20B, manufactured by Mitsui Miike Chemical Co., Ltd.). ). The preliminary future product was fed into a twin screw extruder (Toshiki Machine Co., Ltd., TEM26SS) by separately feeding the pellet component and the powder component into strands, cooled with water, then led to a pelletizer and pelletized. At this time, the cylinder temperature was 200 ° C., and the supply amount was 50 kg / hour.

なお、上記予備混合時に、ソジウムアルミノシリケートとA型ゼオライトの混合物及びカルシウムステアレートも同時添加した。   During the preliminary mixing, a mixture of sodium aluminosilicate and A-type zeolite and calcium stearate were also added simultaneously.

本発明で検討に使用した難燃マスターバッチの組成物を下記の表1、表2、表3に示す。   The composition of the flame retardant masterbatch used for the study in the present invention is shown in Table 1, Table 2, and Table 3 below.

Figure 0005872577
Figure 0005872577

Figure 0005872577
Figure 0005872577

Figure 0005872577
Figure 0005872577

また、上記で得られた難燃剤マスターバッチ(I)、スチレン系樹脂(II)、及び(H)ポリテトラフルオロエチレン(PTFE)を表4、表5、表6に示す配合量(質量部)にて、全成分をタンブラーにて予備混合した。予備混合物を、単軸押出機(IKG社製 PMS40−28)及び二軸押出機(東芝機械社製、TEM26SS)に供給してストランドとし、水冷してからペレタイザーへ導きペレット化した。この際、二軸押出機はシリンダー温度230℃、供給量30kg/時間とした。また、単軸押出機はシリンダー温度230℃、スクリュー回転数100rpmとした。なお、(H)ポリテトラフルオロエチレン(PTFE)はPTFE純量が配合量となるように添加した。   Further, the flame retardant master batch (I), the styrene resin (II), and the (H) polytetrafluoroethylene (PTFE) obtained in the above are shown in Tables 4, 5, and 6 (parts by mass). All components were premixed in a tumbler. The premix was fed to a single screw extruder (PMS PMS40-28 manufactured by IKG) and a twin screw extruder (manufactured by Toshiba Machine Co., TEM26SS) to form a strand, which was cooled with water and led to a pelletizer to be pelletized. At this time, the twin screw extruder was set to a cylinder temperature of 230 ° C. and a supply amount of 30 kg / hour. The single screw extruder was set to a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm. Note that (H) polytetrafluoroethylene (PTFE) was added so that the pure amount of PTFE would be the blending amount.

また、(A)スチレン系樹脂、(B)難燃剤、(C)難燃助剤、(D)タルク、(E)酸化防止剤、(F)カーボンブラック、(G)スチレン−ブタジエン−スチレン共重合体、及び(H)ポリテトラフルオロエチレン(PTFE)を表7に示す配合量(質量部)にて難燃剤マスターバッチ(I)を使用せずにスチレン系難燃性樹脂組成物を得た。
二軸押出機(東芝機械社製、TEM26SS)を使用した場合は、形状がペレット状と粉体状の物を分けて、それぞれの形状成分をヘンシェルミキサー(三井三池化工社製、FM20B)にて予備混合し、別フィード供給してストランドとし、水冷してからペレタイザーへ導きペレット化した。この際、シリンダー温度230℃、供給量30kg/時間とした。
単軸押出機(IKG社製 PMS40−28)を使用した場合は、全成分をタンブラーにて予備混合し、ストランドとし、水冷してからペレタイザーへ導きペレット化した。この際、シリンダー温度230℃、スクリュー回転数100rpmとした。なお、(H)ポリテトラフルオロエチレン(PTFE)はPTFE純量が配合量となるように添加した。
(A) styrene resin, (B) flame retardant, (C) flame retardant aid, (D) talc, (E) antioxidant, (F) carbon black, (G) styrene-butadiene-styrene A styrene-based flame retardant resin composition was obtained without using the flame retardant masterbatch (I) at a blending amount (part by mass) of the polymer and (H) polytetrafluoroethylene (PTFE) shown in Table 7. .
When a twin-screw extruder (Toshiki Machine Co., Ltd., TEM26SS) is used, the shape is divided into pellets and powder, and each shape component is separated by a Henschel mixer (Mitsui Miike Chemical Industries, FM20B). The mixture was preliminarily mixed and fed separately to form a strand, which was cooled with water and then led to a pelletizer to be pelletized. At this time, the cylinder temperature was 230 ° C. and the supply amount was 30 kg / hour.
When a single screw extruder (PMS40-28 manufactured by IKG) was used, all components were premixed with a tumbler to form a strand, cooled with water, and then led to a pelletizer to be pelletized. At this time, the cylinder temperature was 230 ° C. and the screw rotation speed was 100 rpm. Note that (H) polytetrafluoroethylene (PTFE) was added so that the pure amount of PTFE would be the blending amount.

なお、実施例、比較例に示された各種測定は以下の方法により実施した。   Various measurements shown in Examples and Comparative Examples were performed by the following methods.

(1)難燃性の測定
難燃性の測定は、米国アンダーライターズ・ラボラトリーズ社のサブジェクト94号の垂直燃焼試験方法に準拠し、試験片厚さ1.5mmの燃焼性を評価した。評価結果は下記の様に表記した。
NG:V−0でない燃焼性(V−1、V−2、又はHB)を示すもの。
(1) Measurement of flame retardance The flame retardancy was measured in accordance with the vertical combustion test method of Subject No. 94 of US Underwriters Laboratories, Inc., and the combustibility with a specimen thickness of 1.5 mm was evaluated. The evaluation results are shown as follows.
NG: What shows non-V-0 flammability (V-1, V-2, or HB).

(2)シャルピー衝撃強度の測定
シャルピー衝撃強度は、JIS K 7111−1に基づき測定を行った。
測定装置:シャルピー試験機(東洋精機社製)
ノッチタイプ:タイプA
打撃方向:エッジワイズ
測定環境:23℃
(2) Measurement of Charpy impact strength The Charpy impact strength was measured based on JIS K7111-1.
Measuring device: Charpy testing machine (Toyo Seiki Co., Ltd.)
Notch type: Type A
Stroke direction: Edgewise Measurement environment: 23 ° C

(3)荷重たわみ温度(HDT)
荷重たわみ温度は、JIS K 7191に基づき測定を行った。
測定装置:No.148−HD−PC−3(安田精機社製)
応力:1.80MPa
支点間距離:64mm
試験片サイズ:長さ80mm 幅10mm 高さ4mm フラットワイズ
(3) Deflection temperature under load (HDT)
The deflection temperature under load was measured based on JIS K 7191.
Measuring device: No. 148-HD-PC-3 (manufactured by Yasuda Seiki Co., Ltd.)
Stress: 1.80 MPa
Distance between fulcrums: 64mm
Specimen size: Length 80mm Width 10mm Height 4mm Flatwise

(4)メルトフローレート(MFR)
メルトフローレート(MFR)は、得られたペレットをJIS K 7210に基づき測定を行った。
試験温度:200℃
試験荷重:49.03N
(4) Melt flow rate (MFR)
Melt flow rate (MFR) measured the obtained pellet based on JISK7210.
Test temperature: 200 ° C
Test load: 49.03N

(5)外観
射出成形機(日本製鋼所社製、J100E−P)にて90mm角板(厚み2mm)に成形し、成形品の表面に成形不良(ブツ・フラッシュ等)の有無を観察して外観を評価した。この際、シリンダー温度230℃、金型温度30℃とした。
○:成形品表面の不良(ブツ・フラッシュ)が見られないもの。
×:成形品表面の不良(ブツ・フラッシュ)が見られたもの。
(5) Appearance Molded into a 90mm square plate (thickness 2mm) with an injection molding machine (Nippon Steel Works, J100E-P), and observed the presence or absence of molding defects (such as flashing) on the surface of the molded product. Appearance was evaluated. At this time, the cylinder temperature was 230 ° C. and the mold temperature was 30 ° C.
○: No defects on the surface of the molded product (buzz / flash).
X: The surface of the molded product was found to be defective (buzz / flash).

各種試験の試験片の作製条件
シャルピー衝撃強度用試験片、及び荷重たわみ温度試験片として、射出成形機(日本製鋼所社製、J100E−P)にて、JIS K 7139に記載のA型試験片(ダンベル)を作製した。成形条件はJIS K 6926−2に準拠して行った。シャルピー衝撃強度用試験片は、該ダンベル片の中央部より切り出し、切削でノッチ(タイプA、r=0.25mm)を入れ、試験に用いた。また、荷重たわみ温度試験片は、該ダンベル片の中央部より切り出し、試験に用いた。
Preparation conditions of test pieces for various tests A-type test pieces described in JIS K 7139 as Charpy impact strength test pieces and load deflection temperature test pieces using an injection molding machine (manufactured by Nippon Steel Works, J100E-P) (Dumbell) was produced. Molding conditions were performed according to JIS K 6926-2. The Charpy impact strength test piece was cut out from the center of the dumbbell piece, cut into a notch (type A, r = 0.25 mm), and used for the test. Moreover, the load deflection temperature test piece was cut out from the center part of the dumbbell piece and used for the test.

燃焼性の評価用試験片は、射出成形機(日本製鋼所社製、J100E−P)にて、127×12.7×1.5mmの燃焼用試験片を成形した。この際、シリンダー温度190℃、金型温度30℃とした。   The test piece for evaluation of combustibility was formed as a 127 × 12.7 × 1.5 mm combustion test piece with an injection molding machine (manufactured by Nippon Steel Works, J100E-P). At this time, the cylinder temperature was 190 ° C. and the mold temperature was 30 ° C.

難燃マスターバッチを使用したスチレン系難燃性樹脂組成物の溶融混合方法及びそれらの物性値を以下の表4、表5、表6に示す。   The following Table 4, Table 5, and Table 6 show the melt mixing method of the styrene-based flame retardant resin composition using the flame retardant masterbatch and the physical property values thereof.

Figure 0005872577
Figure 0005872577

Figure 0005872577
Figure 0005872577

Figure 0005872577
Figure 0005872577

難燃性マスターバッチを使用しないで単軸押出機で押出したスチレン系難燃性樹脂組成物の評価結果を表7に示す。   Table 7 shows the evaluation results of the styrene-based flame-retardant resin composition extruded with a single screw extruder without using the flame-retardant masterbatch.

Figure 0005872577
Figure 0005872577

上記の実施例にみられるように、本発明の難燃剤マスターバッチを使用し、本発明の製造方法で得られたスチレン系難燃性樹脂組成物は、難燃性、衝撃強度、耐熱性、流動性のバランスが良く、更に外観も良好であることがわかる。
しかし、本発明の要件を満足しない比較例で得られたスチレン系難燃性樹脂組成物は、難燃性、衝撃強度、耐熱性、流動性の何れかに優れることはあっても、その全てに優れていることはないことがわかる。
As seen in the above examples, using the flame retardant master batch of the present invention, the styrene-based flame retardant resin composition obtained by the production method of the present invention is flame retardant, impact strength, heat resistance, It can be seen that the fluidity balance is good and the appearance is also good.
However, the styrene-based flame retardant resin composition obtained in the comparative example that does not satisfy the requirements of the present invention is excellent in any of flame retardancy, impact strength, heat resistance, and fluidity, but all of them. It is clear that there is nothing better than

例えば、難燃剤マスターバッチの(A)スチレン系樹脂が規定量より多いと難燃性が劣り(比較例1)、少ないとシャルピー衝撃強度及び耐熱性が低い(比較例2)。また、難燃剤マスターバッチの(B)難燃剤が規定量より多いとシャルピー及び耐熱性が低く(比較例3)、少ないと難燃性に劣りUL94燃焼試験でのV−0レベルが確保できなくなり(比較例4)、難燃剤種をS8010にするとシャルピー、流動性が低い(比較例16)。また、難燃剤マスターバッチの(C)難燃助剤が規定量より多いとUL94燃焼試験でグローイング時間が延びてV−0レベルが確保できなくなり、シャルピーも低く(比較例5)、少ないと難燃性に劣りUL94燃焼試験でのV−0レベルが確保できなくなる(比較例6)。   For example, if the amount of (A) styrene resin in the flame retardant master batch is larger than the specified amount, the flame retardancy is inferior (Comparative Example 1), and if it is small, the Charpy impact strength and heat resistance are low (Comparative Example 2). In addition, when the flame retardant masterbatch (B) flame retardant is more than the specified amount, Charpy and heat resistance are low (Comparative Example 3), and when it is small, flame retardancy is inferior and the V-0 level in the UL94 combustion test cannot be secured. (Comparative Example 4) When the flame retardant species is S8010, Charpy and fluidity are low (Comparative Example 16). In addition, if the flame retardant master batch (C) flame retardant aid is more than the specified amount, the glowing time is extended in the UL94 combustion test, the V-0 level cannot be secured, and the Charpy is low (Comparative Example 5). It is inferior in flammability and cannot secure the V-0 level in the UL94 combustion test (Comparative Example 6).

また、難燃剤マスターバッチの(D)タルクが規定量より多いと難燃性に劣りUL94燃焼試験でのV−0レベルが確保できなくなり、シャルピーも低く(比較例7)、少ないと耐熱性が低い(比較例8)。また、難燃剤マスターバッチの(E)酸化防止剤を添加しないとシャルピーが低い(比較例9乃至11)。また、難燃剤マスターバッチが規定量のものを使用しても、難燃剤マスターバッチ配合量が規定量より少ないと難燃性に劣りUL94燃焼試験でのV−0レベルが確保できなくなり(比較例12)、多いと耐熱性が低い(比較例13)。また、難燃剤マスターバッチが規定量のものを使用しても、(H)PTFEが規定量より多いとUL94燃焼試験でグローイング時間が延びてV−0レベルが確保できなくなる(比較例14)。また、難燃剤マスターバッチを使用し、溶融混合は単軸押出機・二軸押出機どちらも同じ物性になり容易に単軸押出機でスチレン系難燃性樹脂組成物を得ることができる(実施例10、11、比較例14、15)。   In addition, if the flame retardant master batch (D) talc is more than the specified amount, the flame retardancy is inferior and the V-0 level in the UL94 combustion test cannot be secured, the Charpy is low (Comparative Example 7), and if it is low, the heat resistance is low. Low (Comparative Example 8). Moreover, Charpy is low unless the (E) antioxidant of a flame retardant masterbatch is added (Comparative Examples 9 to 11). Moreover, even if a flame retardant masterbatch having a specified amount is used, if the amount of the flame retardant masterbatch is less than the specified amount, the flame retardancy is inferior and the V-0 level in the UL94 combustion test cannot be secured (Comparative Example). 12) If too much, the heat resistance is low (Comparative Example 13). Further, even when a flame retardant master batch having a specified amount is used, if the amount of (H) PTFE is larger than the specified amount, the glowing time is extended in the UL94 combustion test and the V-0 level cannot be secured (Comparative Example 14). Also, using a flame retardant masterbatch, melt mixing has the same physical properties for both single-screw and twin-screw extruders, and a styrene-based flame-retardant resin composition can be easily obtained with a single-screw extruder. Examples 10, 11 and Comparative Examples 14, 15).

また、難燃剤マスターバッチ(I)を使用せずにスチレン系難燃性樹脂組成物を単軸押出機で溶融混合するとシャルピー、耐熱性、外観が劣る(比較例17乃至19)。難燃剤マスターバッチを使用して得たスチレン系難燃性樹脂組成物は表4、表5の実施例に示したとおり難燃性、衝撃強度、耐熱性、流動性のバランスが良く、更に外観も良好である。   Further, when the styrene flame retardant resin composition is melt-mixed with a single screw extruder without using the flame retardant master batch (I), the Charpy, heat resistance and appearance are inferior (Comparative Examples 17 to 19). Styrenic flame retardant resin compositions obtained using the flame retardant masterbatch have a good balance of flame retardancy, impact strength, heat resistance, and fluidity as shown in the examples of Tables 4 and 5, and further the appearance. Is also good.

本発明の難燃剤マスターバッチは、スチレン系難燃性樹脂組成物の製造に利用できる。   The flame retardant masterbatch of the present invention can be used for the production of a styrene-based flame retardant resin composition.

Claims (11)

(A)スチレン系樹脂75乃至25質量部、
(B)2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジン15乃至50質量部、
(C)三酸化アンチモン2乃至8質量部、及び
(D)タルク5乃至17質量部を含有し、
かつ、(A)乃至(D)の合計100質量部に対し、更に
(E)酸化防止剤0.5乃至2.0質量部を含有することを特徴とする難燃剤マスターバッチ。
(A) 75 to 25 parts by mass of a styrene resin,
(B) 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine 15 to 50 parts by mass,
(C) 2 to 8 parts by mass of antimony trioxide, and (D) 5 to 17 parts by mass of talc,
And the flame retardant masterbatch characterized by further containing (E) antioxidant 0.5 thru | or 2.0 mass part with respect to a total of 100 mass parts of (A) thru | or (D).
前記(A)乃至(D)の合計100質量部に対し、更に、(F)カーボンブラック1.7質量部未満(但し0は含まず。)を含有する請求項1に記載の難燃剤マスターバッチ。   The flame retardant masterbatch according to claim 1, further comprising (F) less than 1.7 parts by mass of carbon black (excluding 0) with respect to a total of 100 parts by mass of (A) to (D). . (A)スチレン系樹脂65乃至30質量部、
(B)2,4,6−トリス(2,4,6−トリブロモフェノキシ)−1,3,5−トリアジン25乃至50質量部、
(C)三酸化アンチモン3乃至8質量部、及び
(D)タルク7乃至17質量部である請求項1又は2に記載の難燃剤マスターバッチ。
(A) 65 to 30 parts by mass of a styrene resin,
(B) 25 to 50 parts by mass of 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine,
The flame retardant masterbatch according to claim 1 or 2, wherein (C) 3 to 8 parts by mass of antimony trioxide and (D) 7 to 17 parts by mass of talc.
(A)スチレン系樹脂が、スチレン−ブタジエンブロック共重合体及び/又はランダム共重合体を含有したゴム変性スチレン系樹脂である請求項1乃至3のいずれか1項に記載の難燃剤マスターバッチ。   The flame retardant masterbatch according to any one of claims 1 to 3, wherein (A) the styrene resin is a rubber-modified styrene resin containing a styrene-butadiene block copolymer and / or a random copolymer. (E)酸化防止剤が、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートである請求項1乃至4のいずれか1項に記載の難燃剤マスターバッチ。   The flame retardant masterbatch according to any one of claims 1 to 4, wherein (E) the antioxidant is octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate. 請求項1乃至5のいずれか1項に記載の難燃剤マスターバッチ(I)30乃至85質量部と、スチレン系樹脂(II)70乃至15質量部とを、溶融混合するスチレン系難燃性樹脂組成物の製造方法。   A styrene flame retardant resin in which 30 to 85 parts by mass of the flame retardant masterbatch (I) according to any one of claims 1 to 5 and 70 to 15 parts by mass of a styrene resin (II) are melt-mixed. A method for producing the composition. 請求項1乃至5のいずれか1項に記載の難燃剤マスターバッチ(I)30乃至60質量部と、スチレン系樹脂(II)70乃至40質量部とを溶融混合するスチレン系難燃性樹脂組成物の製造方法。   A styrene flame retardant resin composition in which 30 to 60 parts by mass of the flame retardant masterbatch (I) according to any one of claims 1 to 5 and 70 to 40 parts by mass of a styrene resin (II) are melt-mixed. Manufacturing method. 難燃剤マスターバッチ(I)とスチレン系樹脂(II)の合計量100質量部に対して、更にポリテトラフルオロエチレン(PTFE)を0.4質量部以下(但し0は含まず。)を添加して溶融混合する請求項6又は7に記載のスチレン系難燃性樹脂組成物の製造方法。   0.4 parts by mass or less (excluding 0) of polytetrafluoroethylene (PTFE) is further added to 100 parts by mass of the total amount of the flame retardant master batch (I) and the styrene resin (II). The method for producing a styrene-based flame retardant resin composition according to claim 6 or 7, wherein the mixture is melt mixed. 単軸押出機で溶融混合する請求項6乃至8のいずれか1項に記載のスチレン系難燃性樹脂組成物の製造方法。   The method for producing a styrene-based flame retardant resin composition according to any one of claims 6 to 8, wherein the mixture is melt-mixed with a single screw extruder. 二軸押出機で溶融混合する請求項6乃至8のいずれか1項に記載のスチレン系難燃性樹脂組成物の製造方法。   The method for producing a styrene-based flame-retardant resin composition according to any one of claims 6 to 8, wherein the melt-mixing is performed by a twin-screw extruder. 前記スチレン系難燃性樹脂組成物のUL―94に基づく難燃性の評価がV−0である請求項6乃至10のいずれか1項に記載のスチレン系難燃性樹脂組成物の製造方法。   The method for producing a styrene-based flame retardant resin composition according to any one of claims 6 to 10, wherein the flame-retardant evaluation based on UL-94 of the styrene-based flame retardant resin composition is V-0. .
JP2013539492A 2011-10-21 2011-10-21 Flame retardant masterbatch and method for producing styrenic flame retardant resin composition using the same Active JP5872577B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074355 WO2013057841A1 (en) 2011-10-21 2011-10-21 Flame retardant master batch and method for producing styrene-based flame-retardant resin composition with use of same

Publications (2)

Publication Number Publication Date
JPWO2013057841A1 JPWO2013057841A1 (en) 2015-04-02
JP5872577B2 true JP5872577B2 (en) 2016-03-01

Family

ID=48140517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013539492A Active JP5872577B2 (en) 2011-10-21 2011-10-21 Flame retardant masterbatch and method for producing styrenic flame retardant resin composition using the same

Country Status (3)

Country Link
JP (1) JP5872577B2 (en)
CN (1) CN103890083B (en)
WO (1) WO2013057841A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254540B (en) * 2013-04-19 2019-08-09 东洋苯乙烯股份有限公司 Styrene flame-retardant resin composition and its manufacturing method
JP6360700B2 (en) * 2014-03-27 2018-07-18 東洋スチレン株式会社 Styrene flame-retardant resin composition and molded article using the same
KR102528840B1 (en) 2015-02-17 2023-05-04 가부시키가이샤 아데카 Method for producing resin additive composition and resin additive composition
JP6192143B1 (en) * 2016-10-03 2017-09-06 東洋スチレン株式会社 Flame retardant resin composition and flame retardant resin molded article
JP7362601B2 (en) * 2018-06-04 2023-10-17 東洋スチレン株式会社 Method for producing styrenic flame-retardant resin composition
CN114591588B (en) * 2022-03-18 2023-08-25 广东圆融新材料有限公司 Flame-retardant wave-absorbing PC/ASA composite material and preparation method thereof
CN114716715B (en) * 2022-04-06 2023-09-22 江苏普非尔塑料科技有限公司 Light wear-resistant PBT composite material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109269A (en) * 1994-10-11 1996-04-30 Asahi Chem Ind Co Ltd Flame retardant masterbatch and its production
JPH107855A (en) * 1996-06-26 1998-01-13 Denki Kagaku Kogyo Kk Resin composition and molded resin article
JP2003335950A (en) * 2002-05-20 2003-11-28 Asahi Kasei Corp Flame-retardant resin composition containing inorganic compound
JP2005281327A (en) * 2004-03-03 2005-10-13 Nippon Polystyrene Kk Method for molding polystyrene resin using flame retardant masterbatch resin composition and molding obtained thereby
JP2008050582A (en) * 2006-07-28 2008-03-06 Teijin Ltd Resin composition and molded product
US8524813B2 (en) * 2008-07-22 2013-09-03 Bromine Compounds Ltd. Flame-retarded compositions of styrene-containing polymers
JP5319425B2 (en) * 2009-07-01 2013-10-16 東洋スチレン株式会社 Method for producing styrene-based flame retardant resin composition

Also Published As

Publication number Publication date
CN103890083B (en) 2016-03-16
WO2013057841A1 (en) 2013-04-25
CN103890083A (en) 2014-06-25
JPWO2013057841A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5872577B2 (en) Flame retardant masterbatch and method for producing styrenic flame retardant resin composition using the same
JP6128926B2 (en) Flame retardant masterbatch, method for producing the same, and method for producing styrene-based flame retardant resin composition using the same
JP2011011415A (en) Method for manufacturing flame-retardant styrenic resin composition
JP2014012776A (en) Styrenic flame-retardant resin composition excellent in hinge properties and formed article consisting of the same
JP6078326B2 (en) Styrenic flame retardant resin composition and molded article comprising the same
JP6155058B2 (en) Polyphenylene ether-based resin composition, molded article, and connection structure for solar power generation module
JP5759240B2 (en) Flame retardant styrene resin composition and liquid crystal TV back cover using the same
US11618815B2 (en) Resin composition, molded body, electronic part, and electronic device
JP6282928B2 (en) Method for producing styrene-based flame retardant resin composition
EP2657288A1 (en) Flame-retardant styrene resin composition, and toner cartridge container produced using same
JP6131112B2 (en) Styrene flame-retardant resin composition and molded body using the same
JP6100507B2 (en) Styrene flame-retardant resin composition and molded article
JP2013108032A (en) Styrenic flame retardant resin composition
JP6408261B2 (en) Styrene flame-retardant resin resin composition and molded article using the same
JP6785054B2 (en) Styrene-based resin composition
JP2021014528A (en) Resin composition, molded body, electronic part, and electronic device
JP6518438B2 (en) Flame retardant resin composition and injection molded article comprising the same
JP2014095056A (en) Flame-retardant styrene resin composition and molded body using the same
WO2017018505A1 (en) Flame retardant masterbatch and method for manufacturing same
JP6227865B2 (en) Rubber-modified polystyrene-based resin composition, rubber-modified polystyrene-based flame retardant resin composition, and molded products using these.
JP6328404B2 (en) Styrenic flame retardant resin composition and molded article comprising the same
JP4870962B2 (en) Styrenic flame retardant resin composition and styrene flame retardant resin molded product
CN103254540B (en) Styrene flame-retardant resin composition and its manufacturing method
JP2016030807A (en) Styrenic flame-retardant resin composition and molding comprising the same
JP2022174462A (en) Resin composition, molding, electronic component, electronic apparatus, and method for producing resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R150 Certificate of patent or registration of utility model

Ref document number: 5872577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250