JP5870874B2 - Method for producing alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more - Google Patents

Method for producing alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more Download PDF

Info

Publication number
JP5870874B2
JP5870874B2 JP2012179856A JP2012179856A JP5870874B2 JP 5870874 B2 JP5870874 B2 JP 5870874B2 JP 2012179856 A JP2012179856 A JP 2012179856A JP 2012179856 A JP2012179856 A JP 2012179856A JP 5870874 B2 JP5870874 B2 JP 5870874B2
Authority
JP
Japan
Prior art keywords
steel sheet
mass
alloying
vol
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012179856A
Other languages
Japanese (ja)
Other versions
JP2014037571A (en
Inventor
鈴木 克一
克一 鈴木
由康 川崎
由康 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012179856A priority Critical patent/JP5870874B2/en
Publication of JP2014037571A publication Critical patent/JP2014037571A/en
Application granted granted Critical
Publication of JP5870874B2 publication Critical patent/JP5870874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、引張強度が980MPa以上である高強度合金化溶融亜鉛めっき鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-strength galvannealed steel sheet having a tensile strength of 980 MPa or more.

近年、地球環境保全の見地から、自動車の燃費向上が重要な課題となっている。これに伴い、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。軽量化と共に車体防錆性の要求も高いために、高強度鋼板に溶融亜鉛めっきを施した高強度溶融亜鉛めっき鋼板のニーズが高まっている。   In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of global environmental conservation. Along with this, there is an active movement to reduce the thickness of the vehicle body by increasing the strength of the vehicle body material and to reduce the weight of the vehicle body itself. The demand for high-strength hot-dip galvanized steel sheets in which high-strength steel sheets have been hot-dip galvanized has been increasing because the demand for car body rust prevention is high as well as weight reduction.

鋼板の強度を高めるために、Si、Mn、Cを高濃度に含有させることが行われるが、周知のようにSi、Mn、Cを高濃度に含有させると溶融亜鉛めっき鋼板の製造時に種々の問題を生じる。例えば、Si酸化物やMn酸化物の表面濃化によりめっき性が低下するという問題がある。この問題に対しては、特許文献1に示されるように、焼鈍加熱時に前段で酸化を行い、後段で還元を行って表面にFe酸化物の生成を促進させる方法や、特許文献2に示されるように、焼鈍時の露点を−40℃以下にしてSi、Mnの酸化を抑制する方法が知られている。   In order to increase the strength of the steel sheet, Si, Mn, and C are contained at a high concentration. As is well known, when Si, Mn, and C are contained at a high concentration, various kinds of galvanized steel sheets are produced. Cause problems. For example, there is a problem that the plating property is lowered due to the surface concentration of Si oxide or Mn oxide. To solve this problem, as shown in Patent Document 1, a method of performing oxidation at the front stage during annealing and performing reduction at the rear stage to promote the formation of Fe oxide on the surface, or Patent Document 2 shows. Thus, a method is known in which the dew point during annealing is set to −40 ° C. or lower to suppress the oxidation of Si and Mn.

特開2007−262464公報JP 2007-262464 A 特開2010−255100公報JP 2010-255100 A

本発明者らは、Si、Mn、Cを高濃度に含有した高強度合金化溶融亜鉛めっき鋼板の製造に関して、上述したようなめっき性の低下という問題以外に、新たな課題に直面した。それは合金化時に必要とする合金化度(めっき皮膜のFe含有率)に達しないという問題である。通常、合金化溶融亜鉛めっき鋼板を製造する際の亜鉛めっきの合金化はIH加熱により行う。その場合、合金化度の制御はライン速度とIH出力により行うが、IH出力を最大にしても目標とする合金化度に達しない場合が生じた。また、目標とする合金化度に達する場合であっても、Si、Mn、Cを高濃度に添加しない場合に比べて顕著に高いIH出力にしなければならない場合や、ライン速度を顕著に低下させなければならない場合が発生し、生産コストの顕著な増大を招くという問題が生じた。   The present inventors faced a new problem in addition to the above-described problem of a decrease in plating properties regarding the production of a high-strength galvannealed steel sheet containing Si, Mn, and C at high concentrations. That is the problem that the degree of alloying (Fe content of the plating film) required at the time of alloying is not reached. Usually, alloying of galvanizing at the time of manufacturing an alloyed hot-dip galvanized steel sheet is performed by IH heating. In this case, the degree of alloying is controlled by the line speed and the IH output, but the target degree of alloying may not be reached even if the IH output is maximized. Even when the target degree of alloying is reached, when the IH output must be significantly higher than when Si, Mn, and C are not added at a high concentration, the line speed is significantly reduced. In some cases, the production cost has to be increased, resulting in a significant increase in production cost.

したがって本発明の目的は、以上のような課題を解決し、通常の合金化加熱条件やライン速度の下で、所定の合金化度を有する高強度合金化溶融亜鉛めっき鋼板を安定して製造することができる高強度合金化溶融亜鉛めっき鋼板の製造方法を提供することにある。   Therefore, the object of the present invention is to solve the above problems and stably produce a high-strength galvannealed steel sheet having a predetermined degree of alloying under normal alloying heating conditions and line speed. An object of the present invention is to provide a method for producing a high-strength galvannealed steel sheet that can be used.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]C:0.05〜0.25mass%、Si:1.0〜3.0mass%、Mn:1.5〜3.5mass%、P:0.1mass%以下、S:0.01mass%以下、Al:0.1mass%以下を含有し、残部が鉄及び不可避的不純物からなり、且つ下記(b)式で表される[C当量]が1.8以上である鋼板を焼鈍した後、溶融亜鉛めっきし、引き続き合金化処理を行う合金化溶融亜鉛めっき鋼板の製造方法であって、
下記(a)式で表される合金化処理時の鋼板のオーステナイト分率γ(vol%)を30〜70vol%とすることを特徴とする、引張強度が980MPa以上である合金化溶融亜鉛めっき鋼板の製造方法。
γ=[−0.15Y+0.2(T−800)+225[C当量]−374]/1.93 …(a)
但し T:鋼板の焼鈍温度(℃)
Y:焼鈍後の鋼板の冷却速度(℃/sec)
[C当量]=3.73×〔C%〕+0.05×〔Si%〕+0.65×〔Mn%〕 …(b)
但し 〔C%〕: 鋼板のC含有量(mass%)
〔Si%〕:鋼板のSi含有量(mass%)
〔Mn%〕:鋼板のMn含有量(mass%)
[2]上記[1]の製造方法において、鋼板が、さらに、Ti:0.01〜0.1mass%を含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[3]上記[1]の製造方法において、鋼板が、さらに、B:0.0003〜0.0050mass%を含有し、(a)式で表される合金化処理時の鋼板のオーステナイト分率γ(vol%)を30〜50vol%とすることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] C: 0.05 to 0.25 mass%, Si: 1.0 to 3.0 mass%, Mn: 1.5 to 3.5 mass%, P: 0.1 mass% or less, S: 0.01 mass% Hereinafter, after annealing a steel sheet containing Al: 0.1 mass% or less, the balance being iron and inevitable impurities, and [C equivalent] represented by the following formula (b) being 1.8 or more, A method for producing an galvannealed steel sheet, which is galvanized and subsequently alloyed,
An alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more, wherein the austenite fraction γ (vol%) of the steel sheet during the alloying treatment represented by the following formula (a) is 30 to 70 vol% Manufacturing method.
γ = [− 0.15Y + 0.2 (T−800) +225 [C equivalent] −374] /1.93 (a)
T: annealing temperature of steel sheet (° C)
Y: Cooling rate of steel plate after annealing (° C / sec)
[C equivalent] = 3.73 × [C%] + 0.05 × [Si%] + 0.65 × [Mn%] (b)
However, [C%]: C content of steel sheet (mass%)
[Si%]: Si content of steel sheet (mass%)
[Mn%]: Mn content of steel sheet (mass%)
[2] The method for producing an alloyed hot-dip galvanized steel sheet, wherein the steel sheet further contains Ti: 0.01 to 0.1 mass % in the production method of [1].
[3] In the manufacturing method of [1], the steel sheet further contains B: 0.0003 to 0.0050 mass%, and the austenite fraction γ of the steel sheet during the alloying treatment represented by the formula (a) (Vol%) is 30-50 vol%, The manufacturing method of the galvannealed steel plate characterized by the above-mentioned.

本発明によれば、通常の合金化加熱条件やライン速度の下で、所定の合金化度を有する高強度合金化溶融亜鉛めっき鋼板を安定して製造することができる。   According to the present invention, a high-strength galvannealed steel sheet having a predetermined degree of alloying can be stably produced under normal alloying heating conditions and line speed.

引張強度980MPaと1180MPaの合金化溶融亜鉛めっき鋼板の製造において、合金化処理のIH加熱効率と合金化処理時の鋼板のオーステナイト分率γとの関係を示すグラフThe graph which shows the relationship between the IH heating efficiency of alloying treatment, and the austenite fraction (gamma) of the steel plate at the time of alloying in manufacture of an alloying hot-dip galvanized steel plate with a tensile strength of 980 MPa and 1180 MPa

本発明者らは、上述した課題、すなわち、合金化時に必要とする合金化度に達しないという問題の発生原因について検討を行い、その結果、以下のような事実を知見した。すなわち、高強度化のために鋼板中に高濃度に含有させたMnとCが、焼鈍炉内での加熱・均熱過程でオーステナイト変態を起こし、その結果、溶融亜鉛めっき後の合金化加熱する際に未変態オーステナイトが残留した状態にある。そして、このオーステナイトは非磁性であるため、IH加熱での加熱発熱が少なくなり、目標とする合金化度に達しないことが判った。未変態オーステナイト量(体積分率)は、Mn、C量が多くなるほど増加する傾向が認められた。   The present inventors have studied the cause of the problem described above, that is, the problem of not reaching the degree of alloying required at the time of alloying, and as a result, have found the following facts. That is, Mn and C contained in a high concentration in the steel sheet for high strength cause austenite transformation in the heating and soaking process in the annealing furnace, and as a result, alloying heating is performed after hot dip galvanization. In this case, untransformed austenite remains. And since this austenite is nonmagnetic, it turned out that the heat_generation | fever heat_generation | fever by IH heating decreases and it does not reach the target degree of alloying. The untransformed austenite amount (volume fraction) tended to increase as the amount of Mn and C increased.

図1に、引張強度980MPaと1180MPaの合金化溶融亜鉛めっき鋼板の製造において、合金化処理のIH加熱効率(=[IH出力実績〔電流値〕/合金化に必要なIH出力計算値〔電流値〕]×100)と、合金化処理する際の鋼板のオーステナイト分率γとの関係を示す。ここで、合金化溶融亜鉛めっき鋼板のマルテンサイト分率と合金化処理時のオーステナイト分率とは相関すると考えられる。すなわち、本発明が対象とする鋼板は高Mn成分であるため、合金化処理によるオーステナイトの分解(炭化物の生成)はきわめて生じにくい。そのため、合金化時のオーステナイト分率と最終組織のマルテンサイト分率はほぼ等しくなると考えられる。
IH加熱効率は高いことが望ましいが、50%以上であれば実製造では許容範囲内である。IH加熱効率が50%未満では合金化不良となりやすい。
FIG. 1 shows the IH heating efficiency of alloying treatment (= [IH output performance [current value] / calculated value of IH output required for alloying [current value]. ]] × 100) and the austenite fraction γ of the steel sheet during alloying. Here, it is considered that the martensite fraction of the galvannealed steel sheet correlates with the austenite fraction during the alloying treatment. That is, since the steel sheet which is the object of the present invention has a high Mn component, the decomposition of austenite (generation of carbides) due to alloying treatment is extremely difficult to occur. Therefore, it is considered that the austenite fraction at the time of alloying and the martensite fraction in the final structure are almost equal.
Although it is desirable that the IH heating efficiency be high, if it is 50% or more, it is within an allowable range in actual production. If the IH heating efficiency is less than 50%, alloying failure tends to occur.

ここで、合金化処理する際のオーステナイト分率γについて検討した結果、オーステナイト分率γは鋼板のC当量が高いほど、また焼鈍温度T(℃)が高いほど高くなり、焼鈍後の鋼板の冷却速度Yが速いほど低くなることが判った。これらの相関関係から、合金化処理時のオーステナイト分率γ(vol%)を求める下記(a)式を導出した。この(a)式の導出に当たっては、オーステナイト分率γとC当量、焼鈍温度T、冷却速度Yの関係(方向性)から関係式γ=[aY+b(T−800)+c[C当量]−d]/eを想定し、実験結果からa,b,c,d,eを求めた。また、(T−800)と設定したのは、800℃以上ではオーステナイトが生成しやすいためである。
γ=[−0.15Y+0.2(T−800)+225[C当量]−374]/1.93 …(a)
但し T:鋼板の焼鈍温度(℃)
Y:焼鈍後の鋼板の冷却速度(℃/sec)
Here, as a result of examining the austenite fraction γ during the alloying treatment, the austenite fraction γ increases as the C equivalent of the steel sheet increases and the annealing temperature T (° C.) increases, and the steel sheet after annealing is cooled. It was found that the higher the speed Y, the lower. From these correlations, the following equation (a) for obtaining the austenite fraction γ (vol%) during the alloying treatment was derived. In deriving this equation (a), the relationship γ = [aY + b (T−800) + c [C equivalent] −d from the relationship (directionality) of the austenite fraction γ and C equivalent, annealing temperature T, and cooling rate Y. ], And a, b, c, d, and e were obtained from the experimental results. Moreover, (T-800) is set because austenite is easily generated at 800 ° C. or higher.
γ = [− 0.15Y + 0.2 (T−800) +225 [C equivalent] −374] /1.93 (a)
T: annealing temperature of steel sheet (° C)
Y: Cooling rate of steel plate after annealing (° C / sec)

なお、C当量は下記(b)式で表される。このC当量はマルテンサイトの生成指標となるものであり、本発明では、焼鈍中でのオーステナイト分率の確保の観点と実際の実験データとの整合性を考慮し、この当量式を用いる。
[C当量]=3.73×〔C%〕+0.05×〔Si%〕+0.65×〔Mn%〕 …(b)
但し 〔C%〕: 鋼板のC含有量(mass%)
〔Si%〕:鋼板のSi含有量(mass%)
〔Mn%〕:鋼板のMn含有量(mass%)
In addition, C equivalent is represented by the following (b) formula. This C equivalent is a martensite formation index. In the present invention, this equivalent formula is used in consideration of the consistency between the austenite fraction during annealing and the actual experimental data.
[C equivalent] = 3.73 × [C%] + 0.05 × [Si%] + 0.65 × [Mn%] (b)
However, [C%]: C content of steel sheet (mass%)
[Si%]: Si content of steel sheet (mass%)
[Mn%]: Mn content of steel sheet (mass%)

合金化処理する際のオーステナイト分率γ(未変態オーステナイト分率)は、30〜70vol%とすることが必要である。図1に示されるように、合金化処理する際のオーステナイト分率γが70vol%を超えると、合金化処理時のIH加熱効率を50%以上に維持できず、合金化度が不十分となりやすい。また、合金化処理する際のオーステナイト分率γを60vol%以下にすれば、合金化処理時のIH加熱効率を60%以上に維持することができるので、より望ましい。さらに、合金化処理する際のオーステナイト分率γを50vol%以下にすれば、合金化処理時のIH加熱効率を75%以上に維持できるので、特に望ましい。
一方、合金化処理する際のオーステナイト分率γが30vol%未満では、十分な引張強度を確保できない場合がある。
The austenite fraction γ (untransformed austenite fraction) at the time of alloying treatment needs to be 30 to 70 vol%. As shown in FIG. 1, when the austenite fraction γ during the alloying process exceeds 70 vol%, the IH heating efficiency during the alloying process cannot be maintained at 50% or more, and the degree of alloying tends to be insufficient. . Moreover, if the austenite fraction γ during the alloying treatment is 60 vol% or less, the IH heating efficiency during the alloying treatment can be maintained at 60% or more, which is more desirable. Furthermore, if the austenite fraction γ during the alloying treatment is 50 vol% or less, the IH heating efficiency during the alloying treatment can be maintained at 75% or more, which is particularly desirable.
On the other hand, if the austenite fraction γ during alloying is less than 30 vol%, sufficient tensile strength may not be ensured.

本発明では、鋼板を焼鈍した後、溶融亜鉛めっきし、引き続き合金化処理(IH加熱による合金化)を行うことで合金化溶融亜鉛めっき鋼板を製造するが、鋼板の成分組成から[C当量]を事前に求めておき、上記(a)式に基づき、鋼板の焼鈍温度Tと焼鈍後の鋼板の冷却速度Yを調整することにより、合金化処理する際のオーステナイト分率γを上記の範囲に制御することができ、これにより合金化処理時のIH加熱効率を所望のレベルに維持し、必要な合金化度を確保することができる。一般に、合金化溶融亜鉛めっき鋼板の合金化度は8〜15%程度の範囲で目標とする値が設定される。   In the present invention, after annealing a steel sheet, hot dip galvanizing and subsequently alloying treatment (alloying by IH heating) is performed to produce an alloyed hot dip galvanized steel sheet. And by adjusting the annealing temperature T of the steel sheet and the cooling rate Y of the steel sheet after annealing based on the above formula (a), the austenite fraction γ during alloying treatment is within the above range. Thus, the IH heating efficiency during the alloying process can be maintained at a desired level, and a necessary degree of alloying can be ensured. Generally, the target value is set in the range of about 8 to 15% for the degree of alloying of the galvannealed steel sheet.

また、一般に、連続溶融亜鉛めっき設備における鋼板の焼鈍温度は700〜
900℃程度、焼鈍後の鋼板の冷却速度は3〜30℃/sec程度であり、したがって、オーステナイト分率γを制御するための焼鈍温度Tと冷却速度Yの調整は、上記の範囲でなされることが好ましい。一般に、焼鈍後の鋼板の冷却は、ガスジェットによりなされるので、冷却速度はファンの風量により調整することができる。
Moreover, generally the annealing temperature of the steel plate in a continuous hot-dip galvanization equipment is 700-
The cooling rate of the steel sheet after annealing at about 900 ° C. is about 3 to 30 ° C./sec. Therefore, the adjustment of the annealing temperature T and the cooling rate Y for controlling the austenite fraction γ is made within the above range. It is preferable. Generally, cooling of the steel plate after annealing is performed by a gas jet, so that the cooling rate can be adjusted by the air volume of the fan.

次に、鋼板の成分組成について説明する。
・C:0.05〜0.25mass%
Cはオーステナイト生成元素であり、鋼の強化に不可欠な元素である。C量が0.05mass%未満では、所望の強度確保が難しい。一方、Cを0.25mass%を超えて過剰に添加すると、マルテンサイト相の面積率が大幅に増大し、加工性が低下する。よって、Cは0.05〜0.25mass%とし、好ましくは0.05〜0.20mass%とする。
Next, the component composition of the steel sheet will be described.
-C: 0.05-0.25 mass%
C is an austenite-forming element and is an essential element for strengthening steel. If the amount of C is less than 0.05 mass%, it is difficult to secure desired strength. On the other hand, when C is added excessively exceeding 0.25 mass%, the area ratio of the martensite phase increases significantly, and the workability decreases. Therefore, C is 0.05 to 0.25 mass%, preferably 0.05 to 0.20 mass%.

・Si:1.0〜3.0mass%
Siはフェライト生成元素であり、また、固溶強化に有効な元素でもある。そして、強度と延性のバランスの改善及びフェライト地の強度確保のためには1.0mass%以上の添加が必要である。しかし、Siの過剰な添加は、赤スケール等の発生による表面性状の劣化や、めっき付着・密着性の劣化を引き起こす。よって、Siは1.0〜3.0mass%とし、好ましくは1.2〜2.0mass%とする。
・ Si: 1.0-3.0mass%
Si is a ferrite forming element and is also an element effective for solid solution strengthening. And in order to improve the balance between strength and ductility and secure the strength of the ferrite ground, it is necessary to add 1.0 mass% or more. However, excessive addition of Si causes deterioration of surface properties due to generation of red scale and the like, and deterioration of adhesion and adhesion of plating. Therefore, Si is set to 1.0 to 3.0 mass%, preferably 1.2 to 2.0 mass%.

・Mn:1.5〜3.5mass%
Mnは、鋼の強化に有効な元素である。また、オーステナイトを安定化させる元素であり、第二相の分率調整に必要な元素である。このため、Mnは1.5mass%以上の添加が必要である。一方、Mnを3.5mass%を超えて過剰に添加すると、第二相中のマルテンサイト面積率が増加し、良好な加工性の確保が困難となる。また、近年Mnの合金コストが高騰しているため、コストアップの要因にも繋がる。よって、Mnは1.5〜3.5mass%とし、好ましくは2.2〜3.0mass%とする。
・P:0.1mass%以下
Pは、鋼の強化に有効な元素であるが、0.1mass%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。また、0.1mass%を超えると合金化速度を大幅に遅延させる。よって、Pは0.1mass%以下とする。
・ Mn: 1.5-3.5mass%
Mn is an element effective for strengthening steel. In addition, it is an element that stabilizes austenite, and is an element necessary for adjusting the fraction of the second phase. For this reason, Mn needs addition of 1.5 mass% or more. On the other hand, when Mn is added excessively exceeding 3.5 mass%, the martensite area ratio in the second phase increases, and it becomes difficult to ensure good workability. Moreover, since the alloy cost of Mn has soared in recent years, it also leads to a cost increase factor. Therefore, Mn is 1.5 to 3.5 mass%, preferably 2.2 to 3.0 mass%.
-P: 0.1 mass% or less P is an element effective for strengthening steel, but if added in excess of 0.1 mass%, it causes embrittlement due to segregation at the grain boundaries and deteriorates impact resistance. Moreover, if it exceeds 0.1 mass%, the alloying speed is significantly delayed. Therefore, P is set to 0.1 mass% or less.

・S:0.01mass%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるので極力低い方がよいが、製造コストの面からSは0.01mass%以下とする。
・Al:0.1mass%以下
Alは、フェライト生成元素であり、製造時におけるフェライト生成量をコントロールするのに有効な元素である。しかし、Alの過剰な添加は製鋼時におけるスラブ品質を劣化させる。よって、Alは0.1mass%以下とする。
・ S: 0.01 mass% or less S is an inclusion such as MnS, and it is better to be as low as possible because it causes degradation of impact resistance and cracks along the metal flow of the weld. From the surface, S is set to 0.01 mass% or less.
-Al: 0.1 mass% or less Al is a ferrite forming element, and is an effective element for controlling the amount of ferrite generated during production. However, excessive addition of Al deteriorates the slab quality during steelmaking. Therefore, Al is 0.1 mass% or less.

残部はFe及び不可避的不純物である。但し、上記成分元素に加えて、以下の元素のうちの1種以上を必要に応じて添加することができる。
・Ti:0.01〜0.1mass%
Tiは鋼の析出強化に有効で、その効果は0.01mass%以上の添加量で得られる。しかし、添加量が0.1mass%を超えると加工性及び形状凍結性が低下する。また、コストアップの要因にもなる。したがって、Tiを添加する場合には、その添加量を0.01〜0.1mass%とすることが好ましい。
The balance is Fe and inevitable impurities. However, in addition to the above component elements, one or more of the following elements can be added as necessary.
・ Ti: 0.01-0.1mass%
Ti is effective for precipitation strengthening of steel, and the effect is obtained with an addition amount of 0.01 mass% or more. However, when the addition amount exceeds 0.1 mass%, the workability and the shape freezing property decrease. In addition, the cost increases. Therefore, when adding Ti, it is preferable that the addition amount shall be 0.01-0.1 mass%.

・B:0.0003〜0.0050mass%
Bはオーステナイト粒界からのフェライトの生成・成長を抑制する作用を有するので、必要に応じて添加することができる。その効果は、0.0003mass%以上の添加量で得られる。しかし、添加量が0.0050mass%を超えると加工性が低下する。また、コストアップの要因にもなる。したがって、Bを添加する場合には、その添加量を0.0003〜0.0050mass%とすることが好ましい。
・ B: 0.0003 to 0.0050 mass%
B has the effect of suppressing the formation and growth of ferrite from the austenite grain boundaries, and can be added as necessary. The effect is acquired with the addition amount of 0.0003 mass% or more. However, if the addition amount exceeds 0.0050 mass%, the workability decreases. In addition, the cost increases. Therefore, when adding B, it is preferable to make the addition amount into 0.0003-0.0050 mass%.

また、鋼板のC当量は1.8以上とする。C当量は上記(b)式で表される。鋼板のC当量が1.8未満では、引張強度980MPa以上の高強度を確保することが難しい。
本発明で製造される合金化溶融亜鉛めっき鋼板の引張強度は980MPa以上である。
The C equivalent of the steel sheet is 1.8 or more. C equivalent is represented by the above formula (b). If the C equivalent of the steel sheet is less than 1.8, it is difficult to ensure a high strength with a tensile strength of 980 MPa or more.
The tensile strength of the galvannealed steel sheet produced by the present invention is 980 MPa or more.

連続溶融亜鉛めっき設備において、表1に示す成分組成を有し、板厚が1.0〜1.4mm、引張強度が1300MPaの鋼板に対して加熱、焼鈍、冷却、溶融亜鉛めっき、合金化処理を順次施し、合金化溶融亜鉛めっき鋼板を製造した。溶融亜鉛めっきは、めっき浴温:480℃、めっき浴中Al濃度:0.12mass%の条件で行った。その後、IH加熱により合金化処理を行った。   In a continuous hot dip galvanizing facility, a steel plate having the composition shown in Table 1, a plate thickness of 1.0 to 1.4 mm, and a tensile strength of 1300 MPa is heated, annealed, cooled, hot dip galvanized, and alloyed. Were sequentially applied to produce a galvannealed steel sheet. Hot dip galvanization was performed under the conditions of a plating bath temperature of 480 ° C. and an Al concentration in the plating bath of 0.12 mass%. Thereafter, an alloying treatment was performed by IH heating.

鋼板の成分組成からC当量を事前に求め、上記(a)式に従って、鋼板の焼鈍温度Tと焼鈍後の鋼板の冷却速度Yを調整することで、合金化処理時のオーステナイト分率γを制御した。得られた合金化溶融亜鉛めっき鋼板のめっき皮膜を酸で剥離し、剥離液中の鉄と亜鉛を定量して皮膜中のFe質量%を求め、合金化度とした。また、得られた合金化溶融亜鉛めっき鋼板のマルテンサイト分率は、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、3%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)についてSEM(走査型電子顕微鏡)を用いて2000倍の倍率で10視野観察し、得られた組織画像をMedia Cybernetics社の「Image-Pro」を用いて解析して、マルテンサイトの分率を10視野分算出し、得られた各値を平均することにより求めた。それらの結果を、製造条件などとともに表2に示す。   The C equivalent is obtained in advance from the component composition of the steel sheet, and the austenite fraction γ during the alloying process is controlled by adjusting the annealing temperature T of the steel sheet and the cooling rate Y of the steel sheet after annealing according to the above formula (a). did. The plating film of the obtained galvannealed steel sheet was peeled with an acid, and the amount of Fe in the film was determined by quantifying iron and zinc in the stripping solution, and the degree of alloying was obtained. In addition, the martensite fraction of the obtained galvannealed steel sheet was obtained by corroding a plate thickness section (L section) parallel to the rolling direction of the steel sheet, corroding with 3% nital, and a thickness of 1/4 position ( 10 positions at a magnification of 2000 times were observed using a scanning electron microscope (SEM) at a position corresponding to ¼ of the plate thickness in the depth direction from the surface of the steel plate, and the resulting tissue image was “Media Cybernetics” Analysis was performed using “Image-Pro”, the martensite fraction was calculated for 10 visual fields, and the obtained values were averaged. The results are shown in Table 2 together with the production conditions.

Figure 0005870874
Figure 0005870874

Figure 0005870874
Figure 0005870874

Claims (3)

C:0.05〜0.25mass%、Si:1.0〜3.0mass%、Mn:1.5〜3.5mass%、P:0.1mass%以下、S:0.01mass%以下、Al:0.1mass%以下を含有し、残部が鉄及び不可避的不純物からなり、且つ下記(b)式で表される[C当量]が1.8以上である鋼板を焼鈍した後、溶融亜鉛めっきし、引き続き合金化処理を行う合金化溶融亜鉛めっき鋼板の製造方法であって、
下記(a)式で表される合金化処理時の鋼板のオーステナイト分率γ(vol%)を30〜70vol%とすることを特徴とする、引張強度が980MPa以上である合金化溶融亜鉛めっき鋼板の製造方法。
γ=[−0.15Y+0.2(T−800)+225[C当量]−374]/1.93 …(a)
但し T:鋼板の焼鈍温度(℃)
Y:焼鈍後の鋼板の冷却速度(℃/sec)
[C当量]=3.73×〔C%〕+0.05×〔Si%〕+0.65×〔Mn%〕 …(b)
但し 〔C%〕: 鋼板のC含有量(mass%)
〔Si%〕:鋼板のSi含有量(mass%)
〔Mn%〕:鋼板のMn含有量(mass%)
C: 0.05-0.25 mass%, Si: 1.0-3.0 mass%, Mn: 1.5-3.5 mass%, P: 0.1 mass% or less, S: 0.01 mass% or less, Al : After hot-dip galvanization after annealing a steel sheet containing 0.1 mass% or less, the balance being iron and inevitable impurities, and [C equivalent] represented by the following formula (b) being 1.8 or more And a method for producing an alloyed hot-dip galvanized steel sheet that is subsequently subjected to alloying treatment,
An alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more, wherein the austenite fraction γ (vol%) of the steel sheet during the alloying treatment represented by the following formula (a) is 30 to 70 vol% Manufacturing method.
γ = [− 0.15Y + 0.2 (T−800) +225 [C equivalent] −374] /1.93 (a)
T: annealing temperature of steel sheet (° C)
Y: Cooling rate of steel plate after annealing (° C / sec)
[C equivalent] = 3.73 × [C%] + 0.05 × [Si%] + 0.65 × [Mn%] (b)
However, [C%]: C content of steel sheet (mass%)
[Si%]: Si content of steel sheet (mass%)
[Mn%]: Mn content of steel sheet (mass%)
鋼板が、さらに、Ti:0.01〜0.1mass%を含有することを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The method for producing a galvannealed steel sheet according to claim 1, wherein the steel sheet further contains Ti: 0.01 to 0.1 mass% . 鋼板が、さらに、B:0.0003〜0.0050mass%を含有し、(a)式で表される合金化処理時の鋼板のオーステナイト分率γ(vol%)を30〜50vol%とすることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The steel sheet further contains B: 0.0003 to 0.0050 mass%, and the austenite fraction γ (vol%) of the steel sheet during the alloying treatment represented by the formula (a) is set to 30 to 50 vol%. The manufacturing method of the galvannealed steel plate of Claim 1 characterized by these.
JP2012179856A 2012-08-14 2012-08-14 Method for producing alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more Active JP5870874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179856A JP5870874B2 (en) 2012-08-14 2012-08-14 Method for producing alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179856A JP5870874B2 (en) 2012-08-14 2012-08-14 Method for producing alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more

Publications (2)

Publication Number Publication Date
JP2014037571A JP2014037571A (en) 2014-02-27
JP5870874B2 true JP5870874B2 (en) 2016-03-01

Family

ID=50285932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179856A Active JP5870874B2 (en) 2012-08-14 2012-08-14 Method for producing alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more

Country Status (1)

Country Link
JP (1) JP5870874B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887308B2 (en) * 2002-12-27 2007-02-28 新日本製鐵株式会社 High strength and high ductility hot dip galvanized steel sheet and its manufacturing method
JP5365217B2 (en) * 2008-01-31 2013-12-11 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5194841B2 (en) * 2008-01-31 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5365216B2 (en) * 2008-01-31 2013-12-11 Jfeスチール株式会社 High-strength steel sheet and its manufacturing method
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5438302B2 (en) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 High yield ratio high strength hot dip galvanized steel sheet or alloyed hot dip galvanized steel sheet with excellent workability and manufacturing method thereof
JP5709151B2 (en) * 2009-03-10 2015-04-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5504677B2 (en) * 2009-03-31 2014-05-28 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability
JP5504737B2 (en) * 2009-08-04 2014-05-28 Jfeスチール株式会社 High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP5883211B2 (en) * 2010-01-29 2016-03-09 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP4893844B2 (en) * 2010-04-16 2012-03-07 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and impact resistance and method for producing the same

Also Published As

Publication number Publication date
JP2014037571A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5765092B2 (en) High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same
JP5423191B2 (en) High strength steel plate and manufacturing method thereof
TWI493054B (en) A method for producing a high-strength galvanized steel sheet excellent in material stability, workability and plating appearance
JP5982906B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
TW201323625A (en) High-strength steel sheet having excellent workability and method for manufacturing the same
JP4883216B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP6443492B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
WO2017168958A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP5888268B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5397437B2 (en) Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dip galvanized steel sheet, and manufacturing method thereof excellent in workability and material stability
JP5272412B2 (en) High strength steel plate and manufacturing method thereof
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5789208B2 (en) High-strength galvannealed steel sheet with excellent chemical conversion and ductility and its manufacturing method
JP5659604B2 (en) High strength steel plate and manufacturing method thereof
JP5103988B2 (en) High strength hot dip galvanized steel sheet
JP5434984B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method
WO2013069210A1 (en) High-tensile-strength hot-rolled plated steel sheet and method for producing same
JP5870874B2 (en) Method for producing alloyed hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more
WO2020049833A1 (en) Steel sheet for hot pressing
JP2015017322A (en) High-strength hot-rolled steel sheet excellent in workability and toughness and production method thereof
JP2020041177A (en) Steel plate for hot pressing
JP5971155B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5870874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250