JP5869507B2 - Depositing plate for vacuum film forming apparatus, vacuum film forming apparatus, and vacuum film forming method - Google Patents

Depositing plate for vacuum film forming apparatus, vacuum film forming apparatus, and vacuum film forming method Download PDF

Info

Publication number
JP5869507B2
JP5869507B2 JP2013044125A JP2013044125A JP5869507B2 JP 5869507 B2 JP5869507 B2 JP 5869507B2 JP 2013044125 A JP2013044125 A JP 2013044125A JP 2013044125 A JP2013044125 A JP 2013044125A JP 5869507 B2 JP5869507 B2 JP 5869507B2
Authority
JP
Japan
Prior art keywords
vacuum film
forming apparatus
film forming
deposition
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013044125A
Other languages
Japanese (ja)
Other versions
JP2014122411A (en
Inventor
俊次 黒岡
俊次 黒岡
高橋 保夫
保夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013044125A priority Critical patent/JP5869507B2/en
Publication of JP2014122411A publication Critical patent/JP2014122411A/en
Application granted granted Critical
Publication of JP5869507B2 publication Critical patent/JP5869507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、真空蒸着装置やスパッタリング装置等の真空成膜装置に用いられる防着板に関する。詳しくは、付着した成膜材料の剥離を防止することができる真空成膜装置用防着板に関する。   The present invention relates to a deposition preventing plate used in a vacuum film forming apparatus such as a vacuum vapor deposition apparatus or a sputtering apparatus. Specifically, the present invention relates to a deposition preventing plate for a vacuum film forming apparatus that can prevent peeling of the deposited film forming material.

半導体装置や電子部品材料、各種の機能性フィルムの製造には、真空蒸着、スパッタリング、プラズマCVDなどの真空成膜法が利用されている。
例えば、半導体装置や電子部品材料の製造においては、真空成膜法によって、半導体基板やガラス基板に、金、銀、銅、アルミニウム、チタン、モリブデンなどの導電性金属の薄膜を成膜して、電極や配線が作製されている。
Vacuum film formation methods such as vacuum deposition, sputtering, and plasma CVD are used for manufacturing semiconductor devices, electronic component materials, and various functional films.
For example, in the manufacture of semiconductor devices and electronic component materials, a thin film of conductive metal such as gold, silver, copper, aluminum, titanium, and molybdenum is formed on a semiconductor substrate or glass substrate by a vacuum film formation method. Electrodes and wiring are produced.

このような真空成膜法においては、真空成膜装置の真空チャンバ内において、成膜対象となる基板以外の場所に成膜材料が付着して、堆積することが知られている。
そのため、真空成膜法に利用される真空成膜装置には、装置内の基板以外の不要な場所への成膜材料の付着や堆積を防止するために、装置の内壁面等を覆う防着板が設けられている。
In such a vacuum film-forming method, it is known that a film-forming material adheres and deposits at a place other than a substrate to be film-formed in a vacuum chamber of a vacuum film-forming apparatus.
For this reason, the vacuum film-forming apparatus used for the vacuum film-forming method has an anti-adhesion covering the inner wall surface of the apparatus in order to prevent the deposition and deposition of film-forming materials on unnecessary places other than the substrate in the apparatus. A plate is provided.

また、真空成膜法においては、防着板や防着板が設けられていない真空成膜装置の内壁面に付着した成膜材料が剥離してパーティクルが発生することが知られており、更に、このパーティクルが成膜対象となる基板の上に付着することにより、製品の品質低下や不良の原因となることが知られている。   Further, in the vacuum film forming method, it is known that the film forming material attached to the inner wall surface of the vacuum film forming apparatus not provided with the deposition plate or the deposition plate is peeled off to generate particles. It is known that when these particles adhere to a substrate to be deposited, the quality of the product is deteriorated or defective.

例えば、半導体装置や電子材料部品の製造においては、パーティクルが配線に付着または混入してしまうと、配線不良を起こして、生産における歩留りを悪化させてしまう。
特に、高集積な半導体装置を生産するためには、配線幅を狭小化(例えば、0.3μm程度以下)することが必要であるが、このような配線においては、0.3μm程度の微細なパーティクルが配線に混入しても配線不良が生じてしまう。
そのため、このような高密度な配線が要求される半導体装置の製造において、歩留りを向上するためには、真空成膜装置内におけるパーティクルの発生を低減させる必要があった。
For example, in the manufacture of semiconductor devices and electronic material components, if particles adhere to or mix in wiring, wiring failure occurs, and yield in production deteriorates.
In particular, in order to produce a highly integrated semiconductor device, it is necessary to narrow the wiring width (for example, about 0.3 μm or less). In such wiring, a fineness of about 0.3 μm is required. Even if particles are mixed in the wiring, a wiring defect occurs.
Therefore, in manufacturing a semiconductor device that requires such high-density wiring, it is necessary to reduce the generation of particles in the vacuum film forming apparatus in order to improve the yield.

このような問題に対応して、防着板に付着して堆積した成膜材料が剥離してパーティクルとなるのを防止するために、防着板の表面を粗面化処理することが知られている。
例えば、特許文献1には、防着板の表面に、例えば表面粗さRaが10〜20μm程度の溶射膜を形成し、さらに、溶射膜に、溶射膜自体の表面粗さよりも大きな、高さが50〜2000μm程度の凹凸を形成することにより、防着板の表面に堆積した成膜材料の剥離を防止することが記載されている([0016][0041])。
In response to such a problem, it is known that the surface of the deposition preventive plate is roughened in order to prevent the deposition material deposited on the deposition preventing plate from peeling off and forming particles. ing.
For example, in Patent Document 1, for example, a sprayed film having a surface roughness Ra of about 10 to 20 μm is formed on the surface of the deposition preventing plate, and the height of the sprayed film is larger than the surface roughness of the sprayed film itself. Describes that the film-forming material deposited on the surface of the adhesion-preventing plate is prevented from being peeled off by forming irregularities of about 50 to 2000 μm ([0016] [0041]).

また、特許文献2には、防着板の表面に、表面粗さRaが200〜2000μm程度の大きな凹凸を形成し、この大きな凹凸に、表面粗さRaが10〜100μm程度の小さな凹凸を重畳させることにより、防着板の表面に堆積した成膜材料の剥離を防止することが記載されている([請求項1][請求項2][請求項8][0023])。   In Patent Document 2, large unevenness having a surface roughness Ra of about 200 to 2000 μm is formed on the surface of the deposition preventing plate, and small unevenness having a surface roughness Ra of about 10 to 100 μm is superimposed on the large unevenness. It is described that the film forming material deposited on the surface of the deposition preventing plate is prevented from being peeled off ([Claim 1] [Claim 2] [Claim 8] [0023]).

さらに、特許文献3には、薄膜製造装置の防着板等の治具の粗面化処理に利用できる粗面化処理方法が記載されており、具体的には、表面粗さRaを2〜20μmに粗面化するアルミニウムの粗面化処理方法が記載されている([請求項3][0030])。   Further, Patent Document 3 describes a roughening treatment method that can be used for roughening treatment of a jig such as a deposition plate of a thin film manufacturing apparatus. Specifically, the surface roughness Ra is set to 2 to 2. An aluminum surface roughening method for roughening to 20 μm is described ([claim 3] [0030]).

特開2001−49419号公報JP 2001-49419 A 特開2001−226776号公報JP 2001-226776 A 特開2006−274437号公報JP 2006-274437 A

本発明者らは、特許文献1〜3に記載された防着板について検討したところ、表面に粗面化処理が施されていても、成膜材料の剥離防止効果は十分ではないことを明らかとした。   The inventors of the present invention have studied the adhesion preventing plates described in Patent Documents 1 to 3, and it is clear that even if the surface is roughened, the effect of preventing the peeling of the film forming material is not sufficient. It was.

そこで、本発明は、成膜材料の剥離防止効果に優れる真空成膜装置用防着板およびその製造方法、ならびに、この防着板を用いる真空成膜装置および真空成膜方法を提供することを目的とする。   Therefore, the present invention provides an adhesion preventing plate for a vacuum film forming apparatus that is excellent in the effect of preventing the film forming material from peeling off, a method for manufacturing the same, and a vacuum film forming apparatus and a vacuum film forming method using the adhesion preventing plate. Objective.

本発明者は、上記目的を達成すべく鋭意研究した結果、特定の平均開口径の凹部を含む凹凸構造を有し、かつ、算術平均粗さRaが所定の範囲となる表面を設けることにより、成膜材料の剥離防止効果が高くなることを見出し、本発明を完成させた。
すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of earnest research to achieve the above object, the present inventor has a concavo-convex structure including a recess having a specific average opening diameter, and providing a surface having an arithmetic average roughness Ra within a predetermined range. The inventors have found that the effect of preventing the film-forming material from peeling off is high, and completed the present invention.
That is, it has been found that the above object can be achieved by the following configuration.

(1) 真空成膜装置において、不要な位置への成膜材料の付着を防止するための真空成膜装置用防着板であって、
アルミニウム製であり、平均開口径0.01〜9μmの凹部を含む凹凸構造の表面を有し、表面の算術平均粗さRaが0.20μm以上であり、
表面積比ΔSが5%以上であり、かつ、急峻度a45が3%以上である、真空成膜装置用防着板。
ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の25μm×25μmの範囲を256×256点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
ΔS=(Sx−S0)/S0×100(%)・・・(i)
(1) In a vacuum film forming apparatus, a deposition plate for a vacuum film forming apparatus for preventing adhesion of a film forming material to an unnecessary position,
Is made of aluminum, has a surface relief structure including a recessed portion having an average opening diameter 0.01~9Myuemu, arithmetic average roughness Ra of the surface Ri der than 0.20 [mu] m,
A deposition preventing plate for a vacuum film forming apparatus having a surface area ratio ΔS of 5% or more and a steepness a45 of 3% or more .
Here, the surface area ratio ΔS is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 256 × 256 points on the surface of 25 μm × 25 μm using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 has an inclination with an angle of 45 ° or more with respect to the actual area S x (an inclination of 45 ° or more). The area ratio of the part.
ΔS = (S x −S 0 ) / S 0 × 100 (%) (i)

(2) 凹凸構造が、平均開口径0.5〜9μmの凹部を含む凹凸構造、または、平均開口径0.01〜0.3μmの凹部を含む凹凸構造である、(1)に記載の真空成膜装置用防着板。
(3) 凹凸構造が、平均開口径0.5〜9μmの凹部を含む凹凸構造に、平均開口径0.01〜0.3μmの凹部を含む凹凸構造が重畳された凹凸構造である、(1)または(2)に記載の真空成膜装置用防着板。
(4) 表面が、アルミニウムの陽極酸化皮膜で構成される(1)〜(3)のいずれかに記載の真空成膜装置用防着板。
(5) 陽極酸化皮膜が、マイクロポアを有する(4)に記載の真空成膜装置用防着板。
(6) 平均開口径0.01〜9μmの凹部を含む凹凸構造が、さらに大きな凹凸構造の上に重畳されている(1)〜(5)のいずれかに記載の真空成膜装置用防着板。
(7) アルミニウムの厚さが30〜300μmである(1)〜(6)のいずれかに記載の真空成膜装置用防着板。
(8) 引張弾性率が65GPa以下となる(1)〜(7)のいずれかに記載の真空成膜装置用防着板。
(2) The vacuum according to (1), wherein the concavo-convex structure is a concavo-convex structure including a concave portion having an average opening diameter of 0.5 to 9 μm or a concavo-convex structure including a concave portion having an average opening diameter of 0.01 to 0.3 μm. Depositing plate for film forming equipment.
(3) The concavo-convex structure is a concavo-convex structure in which a concavo-convex structure including a recess having an average opening diameter of 0.01 to 0.3 μm is superimposed on a concavo-convex structure including a recess having an average opening diameter of 0.5 to 9 μm. ) Or the deposition preventing plate for a vacuum film forming apparatus according to (2).
(4) The deposition preventing plate for a vacuum film forming apparatus according to any one of (1) to (3), wherein the surface is composed of an anodized film of aluminum.
(5) The deposition preventing plate for a vacuum film forming apparatus according to (4), wherein the anodized film has micropores.
(6) The deposition method for a vacuum film forming apparatus according to any one of (1) to (5), wherein a concavo-convex structure including a concave portion having an average opening diameter of 0.01 to 9 μm is superimposed on a larger concavo-convex structure. Board.
(7) The deposition preventing plate for a vacuum film forming apparatus according to any one of (1) to (6), wherein the aluminum has a thickness of 30 to 300 μm.
(8) The deposition preventing plate for a vacuum film forming apparatus according to any one of (1) to (7), wherein the tensile elastic modulus is 65 GPa or less.

) (1)に記載の真空成膜装置用防着板を製造する製造方法であって、
アルミニウム板の表面に電気化学的粗面化処理を施し、平均開口径0.01〜9μmの凹部を含む凹凸構造を形成し、算術平均粗さRaを0.20μm以上とし、表面積比ΔSを5%以上とし、かつ、急峻度a45を3%以上とする工程を有する真空成膜装置用防着板の製造方法。
ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の25μm×25μmの範囲を256×256点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、前記実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
ΔS=(Sx−S0)/S0×100(%)・・・(i)
10) 電気化学的粗面化処理を施す工程の後に、陽極酸化処理を施し、表面にアルミニウムの陽極酸化皮膜を形成する工程を有する()に記載の真空成膜装置用防着板の製造方法。
11) 陽極酸化処理を施した後に、焼鈍処理を施す工程を有する(10)に記載の真空成膜装置用防着板の製造方法。
( 9 ) A manufacturing method for manufacturing the deposition preventing plate for a vacuum film forming apparatus according to (1),
The surface of the aluminum plate is subjected to an electrochemical roughening treatment to form a concavo-convex structure including concave portions having an average opening diameter of 0.01 to 9 μm, an arithmetic average roughness Ra is set to 0.20 μm or more, and a surface area ratio ΔS is 5 %, And a method for manufacturing a deposition preventing plate for a vacuum film forming apparatus, which includes a step of setting the steepness a45 to 3% or more.
Here, the surface area ratio ΔS is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 256 × 256 points on the surface of 25 μm × 25 μm using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 is an inclination having an angle of 45 ° or more with respect to the actual area S x (an inclination of 45 ° or more). It is the area ratio of the part which has.
ΔS = (S x −S 0 ) / S 0 × 100 (%) (i)
( 10 ) The deposition plate for a vacuum film-forming apparatus according to ( 9 ), which has a step of performing anodizing treatment and forming an anodized film of aluminum on the surface after the step of applying the electrochemical surface roughening treatment. Production method.
( 11 ) The method for producing an adhesion-preventing plate for a vacuum film-forming apparatus according to ( 10 ), including a step of performing an annealing treatment after the anodizing treatment.

12) (1)〜()のいずれかに記載の真空成膜装置用防着板を有する真空成膜装置。 ( 12 ) A vacuum film forming apparatus having the deposition preventing plate for a vacuum film forming apparatus according to any one of (1) to ( 8 ).

13) (1)〜()のいずれかに記載の真空成膜装置用防着板を有する真空成膜装置を用いて、被成膜基板の表面に、Ti、Zr、Nb、Ta、Cr、Mo、W、Pt、Au、Ag、Fe、Ni、Mn、Sn、Zn、Co、Al、CuおよびSiから選択された1種の元素、または、その合金を成膜する真空成膜方法。 ( 13 ) Using the vacuum film forming apparatus having the deposition preventing plate for a vacuum film forming apparatus according to any one of (1) to ( 8 ), Ti, Zr, Nb, Ta, Vacuum deposition method for depositing one element selected from Cr, Mo, W, Pt, Au, Ag, Fe, Ni, Mn, Sn, Zn, Co, Al, Cu and Si, or an alloy thereof .

本発明によれば、成膜材料の剥離防止効果に優れる真空成膜装置用防着板およびその製造方法、ならびに、この防着板を用いる真空成膜装置および真空成膜方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum deposition apparatus for vacuum film-forming apparatuses excellent in the peeling prevention effect of film-forming material, its manufacturing method, and the vacuum film-forming apparatus and vacuum film-forming method using this deposition board are provided. it can.

本発明の真空成膜装置の一例を概念的に示す図である。It is a figure which shows notionally an example of the vacuum film-forming apparatus of this invention. 本発明の真空成膜装置用防着板の表面における凹凸構造の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the uneven structure in the surface of the adhesion prevention board for vacuum film-forming apparatuses of this invention. 本発明の真空成膜装置用防着板の表面における凹凸構造の他の一例を示す模式的な断面図である。It is typical sectional drawing which shows another example of the uneven structure in the surface of the adhesion prevention board for vacuum film-forming apparatuses of this invention. 本発明の真空成膜装置用防着板の表面における凹凸構造の他の一例を示す模式的な断面図である。It is typical sectional drawing which shows another example of the uneven structure in the surface of the adhesion prevention board for vacuum film-forming apparatuses of this invention. 実施例7で作製した防着板表面を高分解能走査型電子顕微鏡(SEM)で撮影(倍率2000倍)した電子顕微鏡写真である。It is the electron micrograph which image | photographed (2000-times multiplication factor) the surface of the adhesion prevention board produced in Example 7 with the high-resolution scanning electron microscope (SEM).

以下に、本発明の真空成膜装置用防着板およびその製造方法、ならびに、この防着板を用いる真空成膜装置および真空成膜方法の好適態様について詳述する。
まず、本発明の従来技術と比較した特徴点について詳述する。
上述したように、本発明の特徴点の1つは、特定の平均開口径の凹部を含む凹凸構造の表面を設ける点である。本発明者は、本発明の効果が得られる理由を以下のように推測する。なお、この推測によって本発明の範囲が限定的に解釈されるものではない。
すなわち、凹凸構造に含まれる平均開口径が0.01〜9μmの凹部が、アンカー効果等により防着板に付着した成膜材料を非常に強く保持するため、特に付着した材料が薄い場合であっても、剥離によるパーティクルの発生を抑制することができると考えられる。
In the following, preferred embodiments of the vacuum deposition apparatus for vacuum film-forming apparatus and the method for producing the same, and the vacuum film-forming apparatus and vacuum film-forming method using this deposition board will be described in detail.
First, the feature point compared with the prior art of this invention is explained in full detail.
As described above, one of the characteristic points of the present invention is that a surface having a concavo-convex structure including a recess having a specific average opening diameter is provided. The inventor presumes the reason why the effect of the present invention is obtained as follows. Note that the scope of the present invention is not limitedly interpreted by this estimation.
In other words, the concave portion having an average opening diameter of 0.01 to 9 μm included in the concavo-convex structure holds the film-forming material adhering to the adhesion-preventing plate very strongly due to the anchor effect or the like. However, it is considered that the generation of particles due to peeling can be suppressed.

以下では、まず、本発明の真空成膜方法および真空成膜装置について説明し、その後、本発明の真空成膜装置用防着板(以下、本発明の「防着板」と略す。)およびその製造方法について詳述する。   In the following, first, the vacuum film forming method and the vacuum film forming apparatus of the present invention will be described, and thereafter, the deposition preventing plate for the vacuum deposition apparatus of the present invention (hereinafter abbreviated as “an adhesion preventing plate” of the present invention) and. The manufacturing method will be described in detail.

〔真空成膜方法および真空成膜装置〕
図1に、本発明の真空成膜方法の一例を実施する、本発明の真空成膜装置の一例を概念的に示す。
[Vacuum film forming method and vacuum film forming apparatus]
FIG. 1 conceptually shows an example of a vacuum film forming apparatus of the present invention, which implements an example of the vacuum film forming method of the present invention.

図1に示す本発明の真空成膜装置10は、真空蒸着によって被成膜部材である基板Zの表面に成膜を行うものであり、後述する本発明の防着板12を有するものである。
また、本発明の真空成膜方法は、本発明の防着板12を有する本発明の真空成膜装置10を用いて、基板Zの表面に、Ti、Zr、Nb、Ta、Cr、Mo、W、Pt、Au、Ag、Fe、Ni、Mn、Sn、Zn、Co、Al、CuおよびSiから選択された1種の元素、または、その合金を成膜するものである。
A vacuum film forming apparatus 10 according to the present invention shown in FIG. 1 forms a film on the surface of a substrate Z as a film forming member by vacuum vapor deposition, and has a deposition plate 12 according to the present invention to be described later. .
Moreover, the vacuum film-forming method of the present invention uses the vacuum film-forming apparatus 10 of the present invention having the adhesion-preventing plate 12 of the present invention to form Ti, Zr, Nb, Ta, Cr, Mo, One element selected from W, Pt, Au, Ag, Fe, Ni, Mn, Sn, Zn, Co, Al, Cu and Si, or an alloy thereof is formed.

ここで、本発明の真空成膜方法および真空成膜装置は、図示例のような真空蒸着によって基板Zの表面に成膜を行うものに限定はされない。
すなわち、本発明の真空成膜方法および真空成膜装置は、スパッタリング、CVD、プラズマCVD、イオンプレーティングなど、公知の各種のCVD(chemical vapor deposition 化学的気相成膜法)およびPVD(physical vapor deposition 物理的気相成膜法)による真空成膜に適用することができる。
同様に、本発明の真空成膜方法および真空成膜装置においては、成膜条件も特に限定されず、成膜方法、成膜する膜、成膜レート、成膜する膜の膜厚等に応じて、適宜、設定すればよい。
Here, the vacuum film forming method and the vacuum film forming apparatus of the present invention are not limited to those which form a film on the surface of the substrate Z by vacuum vapor deposition as shown in the illustrated example.
That is, the vacuum film forming method and the vacuum film forming apparatus of the present invention include various known CVD (chemical vapor deposition) and PVD (physical vapor) methods such as sputtering, CVD, plasma CVD, and ion plating. Deposition can be applied to vacuum deposition by physical vapor deposition.
Similarly, in the vacuum film forming method and the vacuum film forming apparatus of the present invention, the film forming conditions are not particularly limited, depending on the film forming method, the film to be formed, the film forming rate, the film thickness of the film to be formed, and the like. And may be set as appropriate.

図1に示すように、本発明の真空成膜装置10は、公知の真空蒸着装置と同様、真空チャンバ14と、真空チャンバ14の内に配置される蒸着源16および基板ホルダ18と、真空ポンプ20とを有する。
そして、本発明の真空成膜装置10は、真空チャンバ14の内壁面を覆って、本発明の防着板12が設けられる。
As shown in FIG. 1, a vacuum film forming apparatus 10 according to the present invention includes a vacuum chamber 14, a vapor deposition source 16 and a substrate holder 18 disposed in the vacuum chamber 14, and a vacuum pump, as in a known vacuum vapor deposition apparatus. And 20.
And the vacuum film-forming apparatus 10 of this invention covers the inner wall face of the vacuum chamber 14, and the adhesion prevention board 12 of this invention is provided.

ここで、本発明の真空成膜装置10は、本発明の防着板12を用いる以外は、基本的に、公知の真空蒸着装置と同様である。この点に関しては、スパッタリング装置やプラズマCVD装置等の他の真空成膜装置(方法)でも、同様である。
そのため、本発明の真空成膜装置10においては、蒸着源16は、成膜材料が充填され、溶融、蒸発する公知の蒸着源(蒸発源)である。また、基板ホルダ18も、公知の手段で基板Zを保持する公知の基板ホルダである。さらに、真空ポンプ20も、真空チャンバ14内を排気して、所定の成膜圧力に保つための、公知の真空ポンプである。
また、本発明の真空成膜装置10は、必要に応じて、基板ホルダ18(基板Z)を回転(自転、公転、自公転)する回転手段を有してもよい。
Here, the vacuum film forming apparatus 10 of the present invention is basically the same as a known vacuum deposition apparatus except that the deposition preventing plate 12 of the present invention is used. The same applies to other vacuum film forming apparatuses (methods) such as a sputtering apparatus and a plasma CVD apparatus.
Therefore, in the vacuum film forming apparatus 10 of the present invention, the vapor deposition source 16 is a known vapor deposition source (evaporation source) that is filled with a film forming material and melts and evaporates. The substrate holder 18 is also a known substrate holder that holds the substrate Z by a known means. Further, the vacuum pump 20 is also a known vacuum pump for evacuating the vacuum chamber 14 and maintaining a predetermined film forming pressure.
Moreover, the vacuum film-forming apparatus 10 of this invention may have a rotation means which rotates the substrate holder 18 (substrate | substrate Z) as needed (rotation, revolution, self-revolution).

上述したように、本発明の真空成膜装置10は、真空チャンバ14の内壁面を覆って、本発明の防着板12が設けられる。
図示例においては、防着板12として、真空チャンバ14内の上面(天井面)を覆う上面防着板12a、同側面を覆う側面防着板12b、および、同下面(床面)を覆う下面防着板12cが、設けられている。
As described above, the vacuum film forming apparatus 10 of the present invention covers the inner wall surface of the vacuum chamber 14 and is provided with the deposition preventing plate 12 of the present invention.
In the illustrated example, as the adhesion preventing plate 12, an upper surface adhesion preventing plate 12a covering the upper surface (ceiling surface) in the vacuum chamber 14, a side adhesion preventing plate 12b covering the same side surface, and a lower surface covering the same lower surface (floor surface). A protection plate 12c is provided.

図示例の真空成膜装置10は、好ましい態様として、基板ホルダ18および蒸着源16に対応する領域以外において、真空チャンバ14の内壁面のほぼ全面を、本発明の防着板12で覆っている。
本発明は、これに限定はされず、例えば、側面防着板12bのみを設けてもよく、あるいは、上面防着板12aのみを設けてもよい。
しかしながら、成膜材料の付着および堆積を、より好適に防止するためには、少なくとも真空チャンバ14内の蒸着源16(成膜材料が存在する空間)と対向する面、すなわち、上面防着板12aを設けるのが好ましく、真空チャンバ14の内壁面を可能な限り本発明の防着板12で覆うのがより好ましい。
また、本発明の防着板12は、アルミニウム製であるので、基板ZにAuやPt等の金属膜や合金膜を成膜した際には、防着板12に付着した成膜材料を分離して回収できる。そのため、基板Zに成膜されなかった成膜材料の回収率の点でも、真空チャンバ14の内壁面を可能な限り防着板で覆った方が、有利である。
In a preferred embodiment, the vacuum film forming apparatus 10 in the illustrated example covers almost the entire inner wall surface of the vacuum chamber 14 with the deposition preventing plate 12 of the present invention, except for the region corresponding to the substrate holder 18 and the vapor deposition source 16. .
The present invention is not limited to this. For example, only the side surface protection plate 12b may be provided, or only the top surface protection plate 12a may be provided.
However, in order to more suitably prevent the deposition and deposition of the film forming material, at least the surface facing the vapor deposition source 16 (the space where the film forming material exists) in the vacuum chamber 14, that is, the upper surface protection plate 12a. It is preferable to cover the inner wall surface of the vacuum chamber 14 with the deposition preventing plate 12 of the present invention as much as possible.
Further, since the deposition preventive plate 12 of the present invention is made of aluminum, when a metal film such as Au or Pt or an alloy film is formed on the substrate Z, the deposition material attached to the deposition preventive plate 12 is separated. And can be recovered. For this reason, it is advantageous to cover the inner wall surface of the vacuum chamber 14 with an anti-adhesion plate as much as possible in terms of the recovery rate of the film forming material that has not been formed on the substrate Z.

また、本発明の真空成膜方法および真空成膜装置においては、必要に応じて、基板ホルダ18の裏面など、真空チャンバ14の内壁面以外の成膜材料が付着して堆積する可能性を有する部位を、本発明の防着板12で覆ってもよい。   Moreover, in the vacuum film-forming method and the vacuum film-forming apparatus of the present invention, there is a possibility that film-forming materials other than the inner wall surface of the vacuum chamber 14 such as the back surface of the substrate holder 18 adhere and deposit as necessary. The part may be covered with the deposition preventing plate 12 of the present invention.

本発明の真空成膜装置10において、防着板12の取付方法には、特に限定はなく、真空成膜装置において防着板の取付方法として利用されている、公知の板状物やシート状物の取付方法が、各種、利用可能である。
一例として、カプトンテープ等の十分な耐熱性を有する接着テープを用いて、真空チャンバ14内に防着板12を貼着する方法が例示される。また、ビスや取付治具を用いる方法、フック等を用いて吊り下げる方法等の公知の機械的な板状物やシート状物の取付方法も利用可能である。さらに、防着板12が十分な剛性を有する筒状物である場合には、蒸発源を囲んで真空チャンバ14の下面に載置することで、真空チャンバ14内に防着板12を取り付けてもよい。
In the vacuum film forming apparatus 10 of the present invention, there is no particular limitation on the method of attaching the deposition plate 12, and a known plate-like object or sheet shape that is used as a method of attaching the deposition plate in the vacuum deposition apparatus. Various attachment methods can be used.
As an example, a method of adhering the deposition preventing plate 12 in the vacuum chamber 14 using an adhesive tape having sufficient heat resistance such as Kapton tape is exemplified. In addition, a known mechanical plate-like or sheet-like attachment method such as a method using a screw or an attachment jig or a method using a hook or the like can be used. Further, when the deposition preventing plate 12 is a cylindrical object having sufficient rigidity, the deposition preventing plate 12 is attached in the vacuum chamber 14 by surrounding the evaporation source and placing it on the lower surface of the vacuum chamber 14. Also good.

〔防着板〕
本発明の防着板は、真空成膜装置において不要な位置への成膜材料の付着を防止するための真空成膜装置用の防着板であって、アルミニウム製であり、平均開口径0.01〜9μmの凹部を含む凹凸構造の表面を有し、表面の算術平均粗さRaが0.20μm以上である防着板である。
次に、本発明の防着板について、アルミニウム製の基材について説明し、その後、図2〜図4を用いて基材の表面について説明する。
[Protection plate]
The adhesion-preventing plate of the present invention is an adhesion-preventing plate for a vacuum film forming apparatus for preventing adhesion of a film forming material to an unnecessary position in the vacuum film forming apparatus, and is made of aluminum and has an average opening diameter of 0. This is an adhesion-preventing plate having a surface with a concavo-convex structure including recesses of 0.01 to 9 μm and an arithmetic average roughness Ra of the surface of 0.20 μm or more.
Next, regarding the deposition preventing plate of the present invention, the base material made of aluminum will be described, and then the surface of the base material will be described with reference to FIGS.

<基材>
本発明の防着板12は、純アルミニウムやアルミニウム合金からなるアルミニウム製であれば特に限定されず、その形状は、板状ないしシート状であるのが好ましい。
ここで、アルミニウム製の基材としては、真空成膜装置用の防着板として市販されているアルミニウム箔など、各種のアルミニウム製の板状物やシート状物が利用可能である。
また、基材を構成するアルミニウムは、付着物を回収する際にアルミニウム中の不純物が回収物に混入し、回収物の純度が低下するのを抑止するため、その純度が97%以上であるのが好ましく、98%以上がより好ましく、99%以上が更に好ましく、99.5%以上が特に好ましい。
<Base material>
The deposition preventing plate 12 of the present invention is not particularly limited as long as it is made of aluminum made of pure aluminum or an aluminum alloy, and the shape is preferably a plate shape or a sheet shape.
Here, as an aluminum base material, various aluminum plate-like materials and sheet-like materials such as an aluminum foil commercially available as a deposition preventing plate for a vacuum film forming apparatus can be used.
In addition, the aluminum constituting the base material has a purity of 97% or more in order to prevent impurities in the aluminum from being mixed into the recovered material and reducing the purity of the recovered material when recovering the deposit. Is preferable, 98% or more is more preferable, 99% or more is further preferable, and 99.5% or more is particularly preferable.

本発明の防着板12の厚さは特に限定されず、装着される真空成膜装置の構成、防着板の利用方法(使い捨てタイプか、洗浄して再利用するタイプか)、防着板12のサイズ、成膜方法、成膜条件等に応じて、十分な機械的強度および熱的強度を確保でき、また、真空チャンバ14内への取付などの際に扱い易い厚さを、適宜、設定すればよい。
また、本発明の防着板12は、真空成膜装置10の構成に応じて、真空チャンバ14の内面を、無理なく全面的に覆う観点から、ある程度の可撓性を有するのが好ましい。
なお、本発明の防着板は、アルミニウム製であるので、使い捨ての用途の場合には、成膜を終了した後、アルミニウムと成膜材料とを分離して、基板Zに成膜されなかった成膜材料を回収できる。
このような取り扱いの容易性や作業性や、成膜材料の回収処理のし易さなどを考慮すると、本発明の防着板12の厚さは、30〜300μm程度とするのが好ましい。
The thickness of the deposition preventing plate 12 of the present invention is not particularly limited, and the configuration of the vacuum film forming apparatus to be mounted, the method of using the deposition preventing plate (disposable type or the type to be reused after washing), the deposition preventing plate. According to the size, film forming method, film forming conditions, etc., sufficient mechanical strength and thermal strength can be secured, and a thickness that is easy to handle when mounting in the vacuum chamber 14 is appropriately set. You only have to set it.
Moreover, it is preferable that the deposition preventing plate 12 of the present invention has a certain degree of flexibility from the viewpoint of covering the entire inner surface of the vacuum chamber 14 without difficulty according to the configuration of the vacuum film forming apparatus 10.
In addition, since the deposition preventing plate of the present invention is made of aluminum, in the case of a disposable use, after the film formation was finished, the aluminum and the film formation material were separated and the film was not formed on the substrate Z. The film forming material can be collected.
Considering the ease of handling and workability, the ease of collecting the film forming material, etc., the thickness of the deposition preventing plate 12 of the present invention is preferably about 30 to 300 μm.

<表面>
図2〜図4に、本発明の防着板の表面における凹凸構造の一例を模式的な断面図で示す。
図2に示す通り、本発明の防着板12は、平均開口径0.01〜9μmの凹部30aを含む凹凸構造30の表面を有するものである。
ここで、図2に示す通り、凹部30aの開口径は、凹部30a(凹部30aを形成する環状に連なる周囲)の直径であり、平均開口径とは、その平均である。
具体的には、電子顕微鏡を用いて、防着板12の表面を真上から倍率2000〜30000倍で撮影し、得られた電子顕微鏡写真において、周囲が環状に連なっている凹部30a(後述する陽極酸化皮膜に形成されるマイクロポアに起因する凹部を除く。)を少なくとも50個抽出し、その直径(あるいは、凹部30aを内接する円の直径)を読み取って開口径とし、平均開口径を算出する。
また、凹部を含む凹凸構造とは、図2に示すように波型の構造のものであってもよく、図3に示すように凸部が表面の平坦部分で構成される凹部の繰り返し構造であってもよい。
<Surface>
2 to 4 are schematic sectional views showing examples of the concavo-convex structure on the surface of the adhesion-preventing plate of the present invention.
As shown in FIG. 2, the deposition preventing plate 12 of the present invention has the surface of the concavo-convex structure 30 including the concave portions 30a having an average opening diameter of 0.01 to 9 μm.
Here, as shown in FIG. 2, the opening diameter of the recessed part 30a is the diameter of the recessed part 30a (circumferentially connected to the periphery forming the recessed part 30a), and the average opening diameter is the average thereof.
Specifically, using an electron microscope, the surface of the adhesion preventing plate 12 was photographed from right above at a magnification of 2000 to 30000 times, and in the obtained electron micrograph, the recess 30a (which will be described later) is connected in an annular shape. Extract at least 50 recesses due to micropores formed on the anodized film), read the diameter (or the diameter of the circle inscribed in the recess 30a) as the opening diameter, and calculate the average opening diameter To do.
Further, the concavo-convex structure including the concave portion may be a wave-shaped structure as shown in FIG. 2, and is a repeating structure of the concave portion in which the convex portion is a flat portion of the surface as shown in FIG. There may be.

本発明の防着板12は、平均開口径0.01〜9μmの凹部30aを含む凹凸構造を有することにより、上述した通り、防着板12に付着した成膜材料を非常に強い密着強度で防着板12に保持することができる。すなわち、本発明の防着板12においては、従来の粗面化処理を施した防着板に比して、遥かに小さな開口径の凹部を含む凹凸構造を有することで、この開口径が小さい凹部による高いアンカー効果を得て、密着強度が高くなることで、付着した成膜材料の剥離を防止できる。なお、凹部30の平均開口径が9μmを超えると、十分な密着強度を得ることができず、成膜材料が剥離し易くなる。
そのため、本発明によれば、防着板12から剥離した成膜材料によるパーティクルの発生を防止でき、このパーティクルが基板Zに付着することに起因する製品不良や品質低下を防止して、歩留りの向上、生産性の向上、生産コストの低減等を図ることができる。
Since the deposition preventing plate 12 of the present invention has a concavo-convex structure including the recesses 30a having an average opening diameter of 0.01 to 9 μm, as described above, the film deposition material attached to the deposition preventing plate 12 has a very strong adhesion strength. It can be held on the adhesion preventing plate 12. That is, in the deposition preventing plate 12 of the present invention, the opening diameter is small by having a concavo-convex structure including a recess having a much smaller opening diameter than the conventional deposition preventing plate subjected to the roughening treatment. By obtaining a high anchoring effect by the recesses and increasing the adhesion strength, it is possible to prevent peeling of the deposited film forming material. In addition, when the average opening diameter of the recessed part 30 exceeds 9 micrometers, sufficient contact | adhesion intensity | strength cannot be obtained and it becomes easy to peel film-forming material.
Therefore, according to the present invention, it is possible to prevent the generation of particles due to the film forming material peeled off from the deposition preventing plate 12, and to prevent product defects and quality deterioration due to the adhesion of the particles to the substrate Z. Improvement, improvement of productivity, reduction of production cost, etc. can be aimed at.

本発明においては、成膜材料の剥離防止効果がより向上する理由から、平均開口径0.01〜9μmの凹部30aを含む凹凸構造30は、平均開口径0.5〜9μmの凹部を含む凹凸構造(以下、「中波構造」ともいう。)、もしくは、平均開口径0.01〜0.3μmの凹部を含む凹凸構造(以下、「小波構造」ともいう。)、または、これらが重畳している構造であるのが好ましい。
これらのうち、成膜材料の剥離防止効果が更に向上する理由から、中波構造および小波構造が重畳している構造であるのが好ましく、具体的には、図4に示す通り、平均開口径0.5〜9μmの凹部32aを含む中波構造32に、さらに、平均開口径0.01〜0.3μmの凹部34aを含む小波構造34が重畳している態様が好適に挙げられる。
ここで、中波構造32における凹部32aの平均開口径は、電子顕微鏡を用いて、防着板の表面を真上から倍率2000倍で撮影し、得られた電子顕微鏡写真において、周囲が環状に連なっている凹部32a(重畳する小波構造34における凹部34aは除く)を少なくとも50個抽出し、その直径(あるいは、凹部32aを内接する円の直径)を読み取って開口径とし、平均開口径を算出する。
同様に、小波構造34における凹部34aの平均開口径は、電子顕微鏡を用いて、防着板の表面を真上から倍率10000〜30000倍で撮影し、得られた電子顕微鏡写真において、周囲が環状に連なっている凹部34a(重畳する中波構造32における凹部32aは除く)を少なくとも50個抽出し、その直径(あるいは、凹部34aを内接する円の直径)を読み取って開口径とし、平均開口径を算出する。
In the present invention, the uneven structure 30 including the recesses 30a having the average opening diameter of 0.01 to 9 μm is the unevenness including the recesses having the average opening diameter of 0.5 to 9 μm because the effect of preventing the peeling of the film forming material is further improved. A structure (hereinafter also referred to as “medium wave structure”), a concavo-convex structure including recesses having an average opening diameter of 0.01 to 0.3 μm (hereinafter also referred to as “small wave structure”), or a combination thereof. It is preferable that it is a structure.
Of these, a structure in which the medium wave structure and the small wave structure are superposed is preferable because the effect of preventing peeling of the film forming material is further improved. Specifically, as shown in FIG. A mode in which a small wave structure 34 including a concave portion 34a having an average opening diameter of 0.01 to 0.3 μm is further superimposed on the medium wave structure 32 including a concave portion 32a having a thickness of 0.5 to 9 μm is preferably exemplified.
Here, the average opening diameter of the recesses 32a in the medium wave structure 32 is obtained by photographing the surface of the deposition preventing plate from directly above at a magnification of 2000 using an electron microscope. In the obtained electron micrograph, the periphery is circular. At least 50 consecutive recesses 32a (excluding the recesses 34a in the overlapping small wave structure 34) are extracted, and the diameter (or the diameter of a circle inscribed in the recess 32a) is read as an opening diameter to calculate an average opening diameter. To do.
Similarly, the average opening diameter of the concave portion 34a in the small wave structure 34 is obtained by photographing the surface of the deposition preventing plate from directly above at a magnification of 10,000 to 30,000 times using an electron microscope. At least 50 recesses 34a (excluding the recesses 32a in the overlapping medium wave structure 32) are extracted, and the diameter (or the diameter of a circle inscribed in the recess 34a) is read as the opening diameter, and the average opening diameter Is calculated.

(中波構造)
本発明においては、中波構造32を構成する凹部32aの平均開口径は、成膜材料の剥離防止効果が更に向上する理由から、0.5〜5μmが好ましく、1〜5μmがより好ましく、1.5〜3μmが更に好ましい。
また、中波構造32を構成する凹部32aの深さは特に限定されない。なお、本発明の防着板は、後述する防着板の製造方法に示すように、アルミニウム板に電気化学的粗面化処理を施すことで凹凸構造を形成しているため、凹部32aの深さは、ほぼ、凹部32aの開口径に等しいと考えられる。
(Medium wave structure)
In the present invention, the average opening diameter of the recesses 32a constituting the medium wave structure 32 is preferably 0.5 to 5 μm, more preferably 1 to 5 μm, because the effect of preventing the film-forming material from peeling off is further improved. More preferably, it is 5-3 micrometers.
Further, the depth of the concave portion 32a constituting the medium wave structure 32 is not particularly limited. In addition, since the deposition preventing plate of the present invention forms an uneven structure by subjecting the aluminum plate to an electrochemical roughening treatment, as shown in a manufacturing method of the deposition preventing plate described later, the depth of the recess 32a is reduced. This is considered to be substantially equal to the opening diameter of the recess 32a.

(小波構造)
本発明においては、小波構造34を構成する凹部34aの平均開口径は、成膜材料の剥離防止効果が更に向上する理由から、0.1〜0.2μmが好ましい。
また、同様の理由から、小波構造34を構成する凹部34aの開口径に対する深さの比の平均は、0.2〜0.5であるのが好ましい。
ここで、凹部34aにおける開口径に対する深さの比の平均は、高分解能走査型電子顕微鏡(SEM)を用いて防着板の破断面を倍率50000倍で撮影し、得られたSEM写真において微細凹部を少なくとも20個抽出し、開口径と深さとを読み取って比を求めて平均値を算出する。
(Small wave structure)
In the present invention, the average opening diameter of the recesses 34a constituting the small wave structure 34 is preferably 0.1 to 0.2 μm because the effect of preventing the film-forming material from peeling off is further improved.
For the same reason, the average of the ratio of the depth to the opening diameter of the recesses 34a constituting the small wave structure 34 is preferably 0.2 to 0.5.
Here, the average of the ratio of the depth to the opening diameter in the recess 34a is obtained by photographing the fractured surface of the adhesion-preventing plate at a magnification of 50000 times using a high-resolution scanning electron microscope (SEM). At least 20 recesses are extracted, the aperture diameter and depth are read, the ratio is obtained, and the average value is calculated.

本発明の防着板12は、基本的に、凹凸構造を構成する凹部30aが、全面的に、ほぼ均一に形成されている。
ここで、本発明の防着板12においては、凹部30aのうち、開口径が0.5μm以上の凹部30aを、0.003mm2当たり、10個以上、有するのが好ましい。
このような構成を有することにより、防着板12と付着した成膜材料の密着力を十分に確保して、成膜材料の剥離を、より好適に防止できる。
さらに、より優れた成膜材料の剥離防止効果が得られる等の点で、本発明の防着板12は、開口径が5μm以上の凹部30aの場合には、0.003mm2当たり20個以上有するのが好ましく、また、120個以下であるのが好ましい。同じく、開口径が2μm以上の凹部30aの場合には、0.003mm2当たり20個以上有するのが好ましく、50個以上有するのがより好ましく、また、1500個以下であるのが好ましい。さらに、同じく、開口径0.5μm以上の凹部30aの場合には、0.003mm2当たり30個以上有するのが好ましく、150個以上有するのがより好ましい。
In the deposition preventing plate 12 of the present invention, basically, the concave portions 30a constituting the concavo-convex structure are formed almost uniformly over the entire surface.
Here, in the adhesion prevention board 12 of this invention, it is preferable to have 10 or more of the recessed parts 30a whose opening diameter is 0.5 micrometer or more among 0.003 mm < 2 > among recessed parts 30a.
By having such a configuration, the adhesion of the film forming material adhered to the deposition preventing plate 12 can be sufficiently secured, and peeling of the film forming material can be more suitably prevented.
Furthermore, the adhesion preventing plate 12 of the present invention has 20 or more per 0.003 mm 2 in the case of the concave portion 30a having an opening diameter of 5 μm or more in that a more excellent film-forming material peeling prevention effect is obtained. It is preferable to have 120 or less. Similarly, in the case of the recess 30a having an opening diameter of 2 μm or more, it is preferably 20 or more per 0.003 mm 2 , more preferably 50 or more, and preferably 1500 or less. Further, similarly, in the case of the recesses 30a having an opening diameter of 0.5 μm or more, it is preferable to have 30 or more per 0.003 mm 2 , and more preferably 150 or more.

(大波構造)
本発明においては、上述した平均開口径0.01〜9μmの凹部を含む凹凸構造を、この凹凸構造よりも大きな凹凸構造(以下、「大波構造」ともいう。)に重畳してもよい。好ましくは、平均波長5〜100μmの凹凸を有する大きな凹凸構造に、上述した平均開口径0.5〜9μmの凹部を含む凹凸構造を重畳してもよい。
平均波長5〜100μmの凹凸を有する大きな凹凸構造とは、具体的には、触針式粗さ計で二次元粗さ測定を行い、ISO4287に規定される平均山間隔Smを5回測定して、その平均値が5〜100μmである凹凸構造である。
このような大波構造の上に、平均開口径0.01〜9μmの凹部を含む凹凸構造を重畳することにより、より安定して、防着板に付着した成膜材料を保持することができ、成膜材料が防着板から剥離してことによりパーティクルの発生を、より好適に防止することができる。
(Large wave structure)
In the present invention, the concavo-convex structure including the concave portions having an average opening diameter of 0.01 to 9 μm may be superimposed on a concavo-convex structure larger than the concavo-convex structure (hereinafter also referred to as “large wave structure”). Preferably, the concavo-convex structure including the concave portions having the average opening diameter of 0.5 to 9 μm described above may be superimposed on a large concavo-convex structure having concavo-convex portions having an average wavelength of 5 to 100 μm.
Specifically, the large uneven structure having unevenness with an average wavelength of 5 to 100 μm is obtained by measuring the two-dimensional roughness with a stylus type roughness meter and measuring the average peak interval Sm defined in ISO 4287 five times. , An uneven structure having an average value of 5 to 100 μm.
By superimposing a concavo-convex structure including a concave portion having an average opening diameter of 0.01 to 9 μm on such a large wave structure, it is possible to hold the film forming material attached to the deposition preventing plate more stably, Generation | occurrence | production of a particle | grain can be prevented more suitably because film-forming material peels from a deposition board.

(算術平均粗さRa)
本発明の防着板12の表面の算術平均粗さRaは、0.20μm以上であれば特に限定されず、0.25μm以上であるのが好ましく、0.30μm以上であるのがより好ましい。また、8μm以下であるのが好ましく、2μm以下であるのが好ましく、1μm以下であるのがより好ましい。具体的には、0.25〜0.9μm程度であるのが好ましく、0.30〜0.60μmであるのがより好ましい。
ここで、表面粗さRaは、触針式の表面粗さ計(例えば、ミツトヨ社製の表面粗さ測定機SJ−401など)を用いて測定した、JIS B0601:2001に準拠する算術平均粗さである。
(Arithmetic mean roughness Ra)
The arithmetic average roughness Ra of the surface of the deposition preventing plate 12 of the present invention is not particularly limited as long as it is 0.20 μm or more, preferably 0.25 μm or more, and more preferably 0.30 μm or more. Moreover, it is preferable that it is 8 micrometers or less, it is preferable that it is 2 micrometers or less, and it is more preferable that it is 1 micrometer or less. Specifically, it is preferably about 0.25 to 0.9 μm, and more preferably 0.30 to 0.60 μm.
Here, the surface roughness Ra is an arithmetic average roughness based on JIS B0601: 2001, measured using a stylus type surface roughness meter (for example, a surface roughness measuring machine SJ-401 manufactured by Mitutoyo Corporation). That's it.

(表面積比ΔSおよび急峻度a45)
本発明の防着板12は、表面積比ΔSが5%以上であり、かつ、急峻度a45が3%以上であるのが好ましく、表面積比ΔSが30%以上であり、かつ、急峻度a45が25%以上であるのがより好ましく、表面積比ΔSが40%以上であり、かつ、急峻度a45が30%以上であるのが更に好ましく、表面積比ΔSが45%以上であり、かつ、急峻度a45が40%以上であるのが特に好ましい。なお、コスト等の観点から、表面積比ΔSは90%以下であるのが好ましく、また、急峻度a45は85%以下であるのが好ましい。
ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の25μm×25μmの範囲を256×256点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、上記実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
ΔS=(Sx−S0)/S0×100(%) (i)
(Surface area ratio ΔS and steepness a45)
The deposition preventing plate 12 of the present invention preferably has a surface area ratio ΔS of 5% or more and a steepness a45 of 3% or more, a surface area ratio ΔS of 30% or more and a steepness a45. More preferably, it is 25% or more, the surface area ratio ΔS is 40% or more, the steepness a45 is more preferably 30% or more, the surface area ratio ΔS is 45% or more, and the steepness is It is particularly preferable that a45 is 40% or more. In view of cost and the like, the surface area ratio ΔS is preferably 90% or less, and the steepness a45 is preferably 85% or less.
Here, the surface area ratio ΔS is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 256 × 256 points on the surface of 25 μm × 25 μm using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 is a slope having an angle of 45 ° or more (gradient of 45 ° or more) with respect to the actual area S x . It is the area ratio of the part which has.
ΔS = (S x −S 0 ) / S 0 × 100 (%) (i)

表面積差ΔSは、本発明の防着板12の表面における凹凸構造の頻度を示すファクターの一つである。また、急峻度a45は、本発明の防着板12の表面における凹凸構造のとがり具合を表すファクターである。
表面積差ΔSが5%以上であり、かつ、急峻度a45が3%以上であると、成膜材料の剥離防止効果がより向上する防着板を作製することができる。
The surface area difference ΔS is one of the factors indicating the frequency of the uneven structure on the surface of the deposition preventing plate 12 of the present invention. The steepness a45 is a factor representing the sharpness of the concavo-convex structure on the surface of the deposition preventing plate 12 of the present invention.
When the surface area difference ΔS is 5% or more and the steepness a45 is 3% or more, it is possible to produce an adhesion-preventing plate that further improves the effect of preventing the film-forming material from peeling off.

本発明においては、表面積差ΔSおよび急峻度a45を求めるために、原子間力顕微鏡(Atomic Force Microscope:AFM)により表面形状を測定し、3次元データを求める。測定は、例えば、以下の条件で行うことができる。
すなわち、アルミニウム基材を1cm角の大きさに切り取って、ピエゾスキャナー上の水平な試料台にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際、試料の表面形状(波構造)をZ方向のピエゾの変位でとらえる。ピエゾスキャナーは、XY方向について150μm、Z方向について10μm、走査可能なものを使用する。カンチレバーは共振周波数130〜170kHz、バネ定数6〜14N/mのもの(OMCL−AC200TS、OLYMPUS社製)を用い、DFMモード(Dynamic Force Mode)で測定する。また、求めた3次元データを最小二乗近似することにより試料のわずかな傾きを補正し基準面を求める。なお、計測は、表面の25μm×25μmの範囲を256×256点測定して行う。XY方向の分解能は0.1μm、Z方向の分解能は1nm、スキャン速度は15μm/secとする。
In the present invention, in order to obtain the surface area difference ΔS and the steepness a45, the surface shape is measured by an atomic force microscope (AFM) to obtain three-dimensional data. The measurement can be performed, for example, under the following conditions.
That is, cut the aluminum substrate into 1cm square size, set it on the horizontal sample stage on the piezo scanner, approach the sample surface with the cantilever, and when it reaches the region where the atomic force works, it scans in XY direction At that time, the surface shape (wave structure) of the sample is captured by the displacement of the piezoelectric element in the Z direction. A piezo scanner that can scan 150 μm in the XY direction and 10 μm in the Z direction is used. A cantilever having a resonance frequency of 130 to 170 kHz and a spring constant of 6 to 14 N / m (OMCL-AC200TS, manufactured by OLYMPUS) is used for measurement in a DFM mode (Dynamic Force Mode). Further, the reference plane is obtained by correcting the slight inclination of the sample by approximating the obtained three-dimensional data by least squares. The measurement is performed by measuring 256 × 256 points in a 25 μm × 25 μm range of the surface. The resolution in the XY direction is 0.1 μm, the resolution in the Z direction is 1 nm, and the scan speed is 15 μm / sec.

上記で求められた3次元データ(f(x,y))を用い、隣り合う3点を抽出し、その3点で形成される微小三角形の面積の総和を求め、実面積Sxとする。表面積差ΔSは、得られた実面積Sxと幾何学的測定面積S0とから、上記式(i)により求められる。
また、上記で求められた三次元データ(f(x,y))を用い、各基準点と所定の方向(例えば、右と下)の隣接する2点との3点で形成される微小三角形と基準面とのなす角を各基準点について算出する。微小三角形の傾斜度が45度以上の基準点の個数を、全基準点の個数(全データの個数である256×256点から所定の方向の隣接する2点がない点の個数を減じた個数、すなわち、255×255点)で除して、傾斜度45度以上の部分の面積率a45を算出する。
Using the three-dimensional data (f (x, y)) obtained above, three adjacent points are extracted, and the sum of the areas of the minute triangles formed by the three points is obtained to obtain the actual area S x . The surface area difference ΔS is obtained by the above formula (i) from the obtained real area S x and the geometric measurement area S 0 .
In addition, using the three-dimensional data (f (x, y)) obtained above, a small triangle formed by three points of each reference point and two adjacent points in a predetermined direction (for example, right and bottom) And the angle formed by the reference plane is calculated for each reference point. The number of reference points where the inclination of the micro triangle is 45 degrees or more is obtained by subtracting the number of all reference points (the number of all data points from 256 × 256 points that do not have two adjacent points in a predetermined direction). In other words, the area ratio a45 of the portion having the inclination of 45 degrees or more is calculated by dividing by 255).

このような表面積比ΔSおよび急峻度a45は、後述する実施例にも記載する通り、原子間力顕微鏡(SIIナノテクノロジー(現日立ハイテクサイエンス)製原子間力顕微鏡SPA400)を用いて測定することができる。
ここで、後述する電気化学的粗面化処理を施して凹凸構造を形成する場合、形成される凹凸構造が小さく、原子間力顕微鏡(Atomic Force Microscope:AFM)のようなナノオーダーでの評価が必要になる。一方、溶射処理による粗面化処理を施して凹凸構造を形成する場合、形成される凹凸構造が大きく、AFMにおけるピエゾの動作範囲がレンジオーバーになったり、凹凸が3次元的になることで測定端子(ハリ)が追従できずに測定不可となったりする。なお、ブラシグレイン法などの機械的粗面化処理を施す場合、後述する大波構造は形成することができるが、平均開口径0.01〜9μmの凹部を含む凹凸構造は形成することができない。
Such a surface area ratio ΔS and steepness a45 can be measured using an atomic force microscope (atomic force microscope SPA400 manufactured by SII Nanotechnology (now Hitachi High-Tech Science)), as described in Examples described later. it can.
Here, when an uneven structure is formed by performing an electrochemical surface roughening process, which will be described later, the formed uneven structure is small, and evaluation in the nano-order such as an atomic force microscope (AFM) is possible. I need it. On the other hand, when forming a concavo-convex structure by performing a surface roughening process by thermal spraying, the concavo-convex structure to be formed is large, the piezo operating range in the AFM is over-range, or the concavo-convex becomes three-dimensional The terminal (harness) cannot follow and measurement is impossible. In addition, when performing mechanical surface roughening processes, such as a brush grain method, the large wave structure mentioned later can be formed, but the uneven structure containing a recessed part with an average opening diameter of 0.01-9 micrometers cannot be formed.

(陽極酸化皮膜)
本発明の防着板12は、その表面がアルミニウムの陽極酸化皮膜で構成されているのが好ましい。
陽極酸化皮膜で構成されることで、表面に、マイクロポアと呼ばれる細孔を、多数、保有させることができる。その結果、より高いアンカー効果を得て、密着強度が高くなることで、防着板12に付着した成膜材料の剥離を防止できる。
陽極酸化皮膜の厚さには、限定は無いが、0.05〜30μmが好ましく、特に0.25〜5μmが好ましい。陽極酸化皮膜の厚さを、上記範囲とすることにより、防着板の表面に陽極酸化皮膜を有することの効果を、より好適に得ることができ、成膜材料が防着板から剥離してことによりパーティクルの発生を、より好適に防止することができる。
(Anodized film)
The surface of the deposition preventing plate 12 of the present invention is preferably composed of an anodized aluminum film.
By being composed of an anodized film, a large number of micropores called micropores can be retained on the surface. As a result, a higher anchor effect is obtained and the adhesion strength is increased, so that the film forming material attached to the deposition preventing plate 12 can be prevented from being peeled off.
Although there is no limitation in the thickness of an anodized film, 0.05-30 micrometers is preferable and especially 0.25-5 micrometers is preferable. By setting the thickness of the anodized film within the above range, the effect of having the anodized film on the surface of the deposition preventive plate can be obtained more suitably, and the film forming material is peeled off from the deposition preventive plate. Thereby, generation | occurrence | production of a particle can be prevented more suitably.

また、密着強度(剥離防止)および耐キズ性の観点から、陽極酸化皮膜における上記マイクロポアの平均径(平均ポア径)は、5〜80nmであるのが好ましく、平均密度(平均ポア密度)は50〜750個/μm2であるのが好ましい。
ここで、本発明において、平均ポア径は、陽極酸化皮膜の表面を電界放出形走査電子顕微鏡(FE−SEM)を用いて倍率15万倍程度で撮影し、得られたSEM写真で3視野観察し、任意の100個のマイクロポアについて平均径を測定し、その平均値を平均ポア径としている。また、平均ポア密度は、上記SEM写真から、300nm四方の部分を3視野抜き取り、その中のマイクロポア数を数えて密度の平均値を求め、平均ポア密度としている。
In addition, from the viewpoint of adhesion strength (prevention of peeling) and scratch resistance, the average diameter (average pore diameter) of the micropores in the anodized film is preferably 5 to 80 nm, and the average density (average pore density) is The number is preferably 50 to 750 / μm 2 .
Here, in the present invention, the average pore diameter is obtained by photographing the surface of the anodized film at a magnification of about 150,000 times using a field emission scanning electron microscope (FE-SEM), and observing three fields of view with the obtained SEM photograph. And an average diameter is measured about arbitrary 100 micropores, The average value is made into the average pore diameter. Further, the average pore density is taken as an average pore density by extracting three fields of view of a 300 nm square from the above SEM photograph and counting the number of micropores therein to obtain an average value of the density.

〔防着板の製造方法〕
本発明の防着板の製造方法は、上述した本発明の防着板を製造する製造方法であって、アルミニウム板の表面に電気化学的粗面化処理を施し、平均開口径0.01〜9μmの凹部を含む凹凸構造を形成する工程(以下、「凹凸形成工程」ともいう。)を有する製造方法である。
また、本発明の防着板の製造方法は、上述した本発明の防着板の表面に陽極酸化皮膜を形成する観点から、凹凸形成工程の後に、陽極酸化処理を施し、表面にアルミニウムの陽極酸化皮膜を形成する工程(以下、「陽極酸化処理工程」ともいう。)を有するのが好ましい。
更に、本発明の防着板の製造方法は、防着板の加工性の観点から、陽極酸化処理工程の後に、焼鈍処理を施す工程(以下、「焼鈍処理工程」ともいう。)を有するのが好ましい。
次に、本発明の防着板の製造方法について、上述した各工程について説明する。
[Manufacturing method of deposition prevention plate]
The method for producing an adhesion-preventing plate of the present invention is a production method for producing the above-described adhesion-preventing plate according to the present invention, wherein the surface of the aluminum plate is subjected to an electrochemical roughening treatment, and an average opening diameter of 0.01 to It is a manufacturing method having a step of forming a concavo-convex structure including a 9 μm concave portion (hereinafter also referred to as “concave-convex forming step”).
Moreover, the manufacturing method of the deposition preventive plate of the present invention provides an anodizing treatment after the unevenness forming step from the viewpoint of forming an anodic oxide film on the surface of the above-described deposition preventive plate of the present invention, and an aluminum anode on the surface. It is preferable to have a step of forming an oxide film (hereinafter also referred to as “anodizing treatment step”).
Furthermore, the manufacturing method of the adhesion prevention board of this invention has the process (henceforth an "annealing treatment process") which performs an annealing process after an anodizing process process from a viewpoint of the workability of an adhesion prevention board. Is preferred.
Next, each process mentioned above is demonstrated about the manufacturing method of the deposition preventing board of this invention.

<凹凸形成工程>
凹凸形成工程は、アルミニウム板の表面に電気化学的粗面化処理を施し、表面に上述した平均開口径0.01〜9μmの凹部を含む凹凸構造を形成する工程である。
上記電気化学的粗面化処理としては、例えば、塩酸や硝酸を含む電解液を用いて、交流で電解処理する方法が挙げられる。
具体的には、上述した中波構造の凹凸構造を得るためには、電解反応が終了した時点でのアルミニウム基材のアノード反応にあずかる電気量の総和が、1〜1000C/dm2であるのが好ましく、50〜300C/dm2であるのがより好ましい。また、電流密度は20〜100A/dm2であるのが好ましい。
より具体的には、例えば、0.1〜50質量%の塩酸または硝酸を含む電解液中で、20〜80℃の温度、時間1秒〜10分の範囲で処理するのが好ましい。
<Roughness formation process>
The concavo-convex forming step is a step in which the surface of the aluminum plate is subjected to an electrochemical roughening treatment to form the concavo-convex structure including the concave portions having the average opening diameter of 0.01 to 9 μm on the surface.
Examples of the electrochemical surface roughening treatment include a method of performing an electrolytic treatment with an alternating current using an electrolytic solution containing hydrochloric acid or nitric acid.
Specifically, in order to obtain the above-described uneven structure having a medium wave structure, the total amount of electricity involved in the anode reaction of the aluminum substrate at the time when the electrolytic reaction is completed is 1 to 1000 C / dm 2 . Is preferable, and it is more preferable that it is 50-300 C / dm < 2 >. The current density is preferably 20 to 100 A / dm2.
More specifically, for example, the treatment is preferably performed in an electrolyte solution containing 0.1 to 50% by mass of hydrochloric acid or nitric acid at a temperature of 20 to 80 ° C. and a time of 1 second to 10 minutes.

また、上述した小波構造の凹凸構造を得るためには、塩酸を含む電解液を用いて処理するのが好ましく、具体的には、電解反応が終了した時点でのアルミニウム基材のアノード反応にあずかる電気量の総和が、1〜100C/dm2であるのが好ましく、20〜70C/dm2であるのがより好ましい。この際の電流密度は20〜50A/dm2であるのが好ましい。
より具体的には、例えば、0.1〜10質量%の塩酸を含む電解液中で、20〜80℃の温度、時間1秒〜10分の範囲で処理するのが好ましい。なお、塩酸を含む電解液で、中波構造に重畳された小波構造を、同一工程中で形成することも可能である。
Further, in order to obtain the above-described concave / convex structure of the small wave structure, it is preferable to perform treatment using an electrolytic solution containing hydrochloric acid, and specifically, to participate in the anodic reaction of the aluminum substrate when the electrolytic reaction is completed. total amount of electricity is, is preferably from 1~100C / dm 2, and more preferably 20~70C / dm 2. The current density at this time is preferably 20 to 50 A / dm 2 .
More specifically, for example, the treatment is preferably performed in an electrolytic solution containing 0.1 to 10% by mass of hydrochloric acid at a temperature of 20 to 80 ° C. and a time of 1 second to 10 minutes. Note that it is also possible to form a small wave structure superimposed on a medium wave structure in the same process with an electrolyte containing hydrochloric acid.

また、塩酸と硫酸との混合液を用いて、アルミニウム製の基材を電解処理する電気化学的粗面化処理を行うことにより、上述した中波構造に小波構造を重畳してなる凹凸構造を形成することができる。   In addition, an uneven surface structure in which a small wave structure is superimposed on the above-described medium wave structure is obtained by performing an electrochemical surface roughening process in which an aluminum base material is electrolytically treated using a mixed solution of hydrochloric acid and sulfuric acid. Can be formed.

なお、上述した大波構造は、上述した中波構造や小波構造を形成する前に、アルミニウム基材の表面に、ブラシグレイン法、ショットブラスト、ボールグレイン法、放電加工、プラズマエッチング、転写ロールによる加工等の粗面化処理を施すことにより、形成することができる。   The above-described large wave structure is processed by brush grain method, shot blasting, ball grain method, electric discharge machining, plasma etching, transfer roll on the surface of the aluminum substrate before forming the above-described medium wave structure or small wave structure. It can form by performing roughening processes, such as.

<陽極酸化処理工程>
陽極酸化処理工程は、上述した凹凸形成工程の後に、陽極酸化処理を施し、表面の全域にアルミニウムの陽極酸化皮膜を形成する任意の工程である。
この工程により、本発明の防着板の任意の構成である陽極酸化皮膜を形成することができる。
<Anodizing process>
The anodizing process is an arbitrary process in which an anodizing process is performed after the above-described unevenness forming process to form an anodized aluminum film over the entire surface.
By this step, an anodic oxide film that is an arbitrary configuration of the deposition-preventing plate of the present invention can be formed.

防着板表面の陽極酸化は、公知の方法で行えばよい。
具体的には、硫酸濃度50〜300g/Lで、アルミニウム濃度5質量%以下の溶液中で、アルミニウム板を陽極として通電する方法が、好適に例示される。
また、陽極酸化処理に用いられる溶液としては、硫酸のみならず、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等を単独でまたは2種以上を組み合わせて用いることができる。
陽極酸化処理の好ましい条件は、使用する電解液によって異なるが、一般的には電解液濃度1〜80質量%、液温5〜70℃、電流密度0.5〜60A/dm2、電圧1〜100V、電解時間15秒〜50分程度であり、所望の陽極酸化皮膜量が形成できるように、適宜、調整すればよい。
What is necessary is just to perform the anodic oxidation of the surface of a deposition preventing plate by a well-known method.
Specifically, a method of energizing an aluminum plate as an anode in a solution having a sulfuric acid concentration of 50 to 300 g / L and an aluminum concentration of 5% by mass or less is suitably exemplified.
As the solution used for the anodizing treatment, not only sulfuric acid but also phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, etc. may be used alone or in combination of two or more. it can.
The preferred conditions for the anodizing treatment vary depending on the electrolyte used, but in general, the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., the current density is 0.5 to 60 A / dm 2 , and the voltage is 1 What is necessary is just to adjust suitably so that it may be 100V and electrolysis time is 15 second-about 50 minutes, and the desired amount of anodic oxide films can be formed.

<焼鈍処理工程>
焼鈍処理工程は、上述した陽極酸化処理工程の後(後述する封孔処理や親水化処理を施す場合にはこれらの処理の後)に、真空雰囲気中または大気中において、焼鈍処理(アニーリング処理)を施す任意の工程である。
ここで、焼鈍処理の加熱条件は特に限定されず、200〜500℃であるのが好ましく、300℃〜400℃であるのがより好ましい。なお、焼鈍処理に用いる加熱炉としては、ヒーター式や輻射加熱等の一般的な炉を用いることができる。
また、焼鈍処理の処理時間は特に限定されず、10〜120分が好ましく、15〜60分がより好ましい。
<Annealing process>
An annealing treatment process is an annealing treatment (annealing treatment) in a vacuum atmosphere or in the air after the above-described anodizing treatment step (after the sealing treatment or hydrophilic treatment described later, after these treatments). Is an optional step.
Here, the heating conditions for the annealing treatment are not particularly limited, and are preferably 200 to 500 ° C, more preferably 300 to 400 ° C. In addition, as a heating furnace used for an annealing process, general furnaces, such as a heater type and radiation heating, can be used.
Moreover, the processing time of an annealing process is not specifically limited, 10 to 120 minutes are preferable and 15 to 60 minutes are more preferable.

このような焼鈍処理を施すことにより、防着板の加工性が向上し、真空チャンバの内壁面に沿った変形や穴開け等が容易となり、その結果、作製される真空成膜装置において蒸着源から生じる異常放電が抑制され、また、真空排気時間が短縮されるという効果も期待することができる。
ここで、焼鈍処理後の防着板は、JIS K7127:1999で規定する引張弾性率が65GPa以下となるのが好ましく、60GPa以下となるのがより好ましく、55GPa以下となるのがより好ましい。
By performing such an annealing treatment, the workability of the adhesion-preventing plate is improved, and deformation and drilling along the inner wall surface of the vacuum chamber are facilitated. It is also possible to expect the effect that the abnormal discharge generated from the above is suppressed and the evacuation time is shortened.
Here, the adhesion preventing plate after the annealing treatment preferably has a tensile elastic modulus defined by JIS K7127: 1999 of 65 GPa or less, more preferably 60 GPa or less, and more preferably 55 GPa or less.

<他の任意の処理工程>
(機械的粗面化処理)
本発明においては、上述した電解粗面化処理の前に、アルミニウム板の表面にブラシグレイン等の機械的粗面化処理を施してもよい。
<Other optional processing steps>
(Mechanical roughening treatment)
In the present invention, a mechanical surface roughening treatment such as brush grain may be performed on the surface of the aluminum plate before the electrolytic surface roughening treatment described above.

(封孔処理など)
本発明においては、陽極酸化処理の後に、陽極酸化皮膜に存在するマイクロポアを封じる封孔処理を行ってもよい。封孔処理は、沸騰水処理、熱水処理、蒸気処理、ケイ酸ソーダ処理、亜硝酸塩処理、酢酸アンモニウム処理等の公知の方法に従って行うことができる。
また、陽極酸化処理を施した表面や、この表面に封孔処理を施した表面に対して、シリケート、または、ポリビニルホスホン酸、有機カルボン酸化合物、有機スルホン酸化合物などの酸を付着させる親水化処理を施してもよい。
(Sealing treatment etc.)
In this invention, you may perform the sealing process which seals the micropore which exists in an anodized film after an anodizing process. The sealing treatment can be performed according to a known method such as boiling water treatment, hot water treatment, steam treatment, sodium silicate treatment, nitrite treatment, ammonium acetate treatment and the like.
Hydrophilization that attaches an acid such as silicate or polyvinylphosphonic acid, organic carboxylic acid compound, organic sulfonic acid compound to the surface that has been anodized or the surface that has been sealed. Processing may be performed.

以上、本発明の真空成膜装置用防着板、真空成膜装置および真空成膜方法に関して詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。   As described above, the deposition plate for vacuum film formation apparatus, the vacuum film formation apparatus, and the vacuum film formation method of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and does not depart from the gist of the present invention. Of course, various improvements and changes may be made.

以下、本発明の具体的実施例を挙げ、本発明について、より詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention.

[実施例1]
厚さ150μmのアルミニウム板(JIS 1050材)を、40℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行い、防着板を作製した。
電解処理は、60Hz周波数で台形波の交流電源波で行った。電流密度は、100A/dm2とした。
[Example 1]
An aluminum plate (JIS 1050 material) having a thickness of 150 μm is placed in an electrolytic cell having a nitric acid concentration of 10 g / L kept at 40 ° C., and subjected to electrolytic treatment under the condition that the total amount of electricity is 300 C / dm 2. Was made.
The electrolytic treatment was performed with a trapezoidal AC power supply wave at a frequency of 60 Hz. Current density was set to 100A / dm 2.

[実施例2]
厚さ150μmのアルミニウム板(JIS 1050材)を、35℃に保温した硝酸濃度2g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行って、防着板を作製した。
交流電源波は、実施例1と同様に60Hzの台形波を使用した。電流密度は20A/dm2とした。
[Example 2]
An aluminum plate (JIS 1050 material) with a thickness of 150 μm is placed in an electrolytic cell having a nitric acid concentration of 2 g / L kept at 35 ° C. and subjected to electrolytic treatment under the condition that the total amount of electricity is 300 C / dm 2 , thereby preventing adhesion. A plate was made.
As the AC power source wave, a trapezoidal wave of 60 Hz was used as in the first embodiment. Current density was 20A / dm 2.

[実施例3]
厚さ150μmのアルミニウム板(JIS 1050材)を、50℃に保温した塩酸濃度20g/L、硝酸濃度4g/Lの電解槽に入れて、電気量総和が500C/dm2の条件下で電解処理を行って、防着板を作製した。
交流電源波は、60Hzの正弦波を使用した。電流密度は125A/dm2とした。
[Example 3]
An aluminum plate (JIS 1050 material) having a thickness of 150 μm is placed in an electrolytic cell having a hydrochloric acid concentration of 20 g / L and a nitric acid concentration of 4 g / L kept at 50 ° C., and subjected to electrolytic treatment under the condition that the total amount of electricity is 500 C / dm 2. Then, a deposition preventing plate was produced.
A 60 Hz sine wave was used as the AC power supply wave. Current density was set to 125A / dm 2.

[実施例4]
厚さ150μmのアルミニウム板(JIS 1050材)を、40℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行った。
交流電源波は、実施例1と同様に60Hzの台形波を使用した。電流密度は100A/dm2とした。
次いで、このアルミニウム板を、45℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が70C/dm2の条件下で電解処理を行って、防着板を作製した。
交流電源波は、実施例1と同様に60Hzの台形波を使用した。電流密度は50A/dm2とした。
[Example 4]
An aluminum plate (JIS 1050 material) having a thickness of 150 μm was placed in an electrolytic cell having a nitric acid concentration of 10 g / L kept at 40 ° C., and electrolysis was performed under a condition where the total amount of electricity was 300 C / dm 2 .
As the AC power source wave, a trapezoidal wave of 60 Hz was used as in the first embodiment. Current density was set to 100A / dm 2.
Next, this aluminum plate was put in an electrolytic cell having a hydrochloric acid concentration of 10 g / L kept at 45 ° C., and subjected to electrolytic treatment under the condition that the total amount of electricity was 70 C / dm 2 , thereby producing a deposition preventing plate.
As the AC power source wave, a trapezoidal wave of 60 Hz was used as in the first embodiment. Current density was 50A / dm 2.

[実施例5]
厚さ150μmのアルミニウム板(JIS 1050材)を、40℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行った。
交流電源波は、実施例1と同様に60Hzの台形波を使用した。電流密度は100A/dm2とした。
次いで、このアルミニウム板を、45℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が70C/dm2の条件下で電解処理を行って、防着板を作製した。
交流電源波は、実施例1と同様に60Hzの台形波を使用した。電流密度は50A/dm2とした。
さらに、この防着板に硫酸濃度250g/Lで、アルミニウム濃度5%以下の溶液を用い、アルミニウム板を陽極として、直流電圧を45分間印加して、表面に厚さ1.0μmmの陽極酸化皮膜を形成した。電流密度は50A/dm2とした。
[Example 5]
An aluminum plate (JIS 1050 material) having a thickness of 150 μm was placed in an electrolytic cell having a nitric acid concentration of 10 g / L kept at 40 ° C., and electrolysis was performed under a condition where the total amount of electricity was 300 C / dm 2 .
As the AC power source wave, a trapezoidal wave of 60 Hz was used as in the first embodiment. Current density was set to 100A / dm 2.
Next, this aluminum plate was put in an electrolytic cell having a hydrochloric acid concentration of 10 g / L kept at 45 ° C., and subjected to electrolytic treatment under the condition that the total amount of electricity was 70 C / dm 2 , thereby producing a deposition preventing plate.
As the AC power source wave, a trapezoidal wave of 60 Hz was used as in the first embodiment. Current density was 50A / dm 2.
Furthermore, a solution having a sulfuric acid concentration of 250 g / L and an aluminum concentration of 5% or less was used for this deposition preventing plate, and an aluminum plate was used as an anode, a DC voltage was applied for 45 minutes, and a 1.0 μm thick anodic oxide film was formed on the surface. Formed. Current density was 50A / dm 2.

[実施例6]
厚さ150μmのアルミニウム板(JIS 1050材)の表面に、平均粒径30μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを2本にて、アルミニウム板上を移動させて、表面の粗面化処理を行った。
使用した、ナイロンブラシの直径は0.5mm、毛密度は450本/cm2で、ブラシ回転数は150rpmとした。
これ以降は、実施例5と同様に2回の電解処理および陽極酸化処理を行って、防着板を作製した。
[Example 6]
A slurry liquid having a specific gravity of 1.12 using pumiston with an average particle diameter of 30 μm as an abrasive is supplied to the surface of an aluminum plate (JIS 1050 material) having a thickness of 150 μm, and two rotating roller nylon brushes are used. The surface was roughened by moving on the aluminum plate.
The diameter of the nylon brush used was 0.5 mm, the hair density was 450 / cm 2 , and the brush rotation speed was 150 rpm.
Thereafter, the electrolytic treatment and the anodic oxidation treatment were performed twice in the same manner as in Example 5 to prepare an adhesion preventing plate.

[実施例7]
厚さ150μmのアルミニウム板(JIS 1050材)の表面に、平均粒径30μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを2本にて、アルミニウム板上を移動させて、表面の粗面化処理を行った。
使用した、ナイロンブラシの直径は0.5mm、毛密度は450本/cm2で、ブラシ回転数は150rpmとした。
これ以降は、実施例1と同様に電解処理を施した後、実施例5と同様の陽極酸化処理を施した。その後、2.5質量%3号ケイ酸ソーダ水溶液を用いて、70℃で10秒間、親水化処理を施すことにより、防着板を作製した。なお、Siの付着量は10mg/m2であった。
図5に、実施例7で作製した防着板表面を高分解能走査型電子顕微鏡(SEM)で撮影(倍率2000倍)した電子顕微鏡写真を示す。
[Example 7]
A slurry liquid having a specific gravity of 1.12 using pumiston with an average particle diameter of 30 μm as an abrasive is supplied to the surface of an aluminum plate (JIS 1050 material) having a thickness of 150 μm, and two rotating roller nylon brushes are used. The surface was roughened by moving on the aluminum plate.
The diameter of the nylon brush used was 0.5 mm, the hair density was 450 / cm 2 , and the brush rotation speed was 150 rpm.
Thereafter, the electrolytic treatment was performed in the same manner as in Example 1, and then the same anodizing treatment as in Example 5 was performed. Then, the adhesion prevention board was produced by performing a hydrophilic treatment for 10 second at 70 degreeC using 2.5 mass% 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 .
In FIG. 5, the electron micrograph which image | photographed the surface of the adhesion prevention board produced in Example 7 with the high resolution scanning electron microscope (SEM) (2000-times multiplication factor) is shown.

[実施例8]
シリケート処理を施さなかった以外は、実施例7と同様の方法により、防着板を作製した。
[Example 8]
An adhesion-preventing plate was produced in the same manner as in Example 7 except that the silicate treatment was not performed.

[実施例9〜12]
実施例9〜12については、実施例5と同様の陽極酸化処理を施した以外は、それぞれ、実施例1〜4と同様の方法で防着板を作製した。
[Examples 9 to 12]
About Examples 9-12, the adhesion prevention board was produced by the method similar to Examples 1-4, respectively except having performed the anodic oxidation process similar to Example 5. FIG.

参考例13]
電流密度は10A/dm2とした以外は、実施例2と同様の方法で防着板を作製した。なお、以下の説明において、参考例13は実施例13と表記する。
[ Reference Example 13]
An adhesion-preventing plate was produced in the same manner as in Example 2 except that the current density was 10 A / dm 2 . In the following description, Reference Example 13 is referred to as Example 13.

[実施例14]
電解処理の前に、粒径100メッシュのガラスビーズを0.5MPaのエアーで吹き付けるブラスト処理を施した以外は、実施例2と同様の方法で防着板を作製した。
[Example 14]
An adhesion-preventing plate was produced in the same manner as in Example 2, except that blasting was performed by blowing glass beads having a particle size of 100 mesh with 0.5 MPa air before the electrolytic treatment.

[実施例15]
厚さ150μmのアルミニウム板(JIS 1050材)を、45℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が70C/dm2の条件下で電解処理を行って、防着板を作製した。
電解処理は、60Hz周波数で台形波の交流電源波で行った。電流密度は、50A/dm2とした。
[Example 15]
An aluminum plate (JIS 1050 material) with a thickness of 150 μm is placed in an electrolytic cell with a hydrochloric acid concentration of 10 g / L kept at 45 ° C. and subjected to electrolytic treatment under the condition that the total amount of electricity is 70 C / dm 2 to prevent adhesion. A plate was made.
The electrolytic treatment was performed with a trapezoidal AC power supply wave at a frequency of 60 Hz. Current density was 50A / dm 2.

[実施例16]
厚さ150μmのアルミニウム板(JIS 1050材)を、45℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が70C/dm2の条件下で電解処理を行って、防着板を作製した。
交流電源波は、実施例15と同様に60Hzの台形波を使用した。電流密度は50A/dm2とした。
さらに、この防着板に硫酸濃度250g/Lで、アルミニウム濃度5%以下の溶液を用い、アルミニウム板を陽極として、直流電圧を45分間印加して、表面に厚さ1.0μmmの陽極酸化皮膜を形成した。電流密度は50A/dm2とした。
[Example 16]
An aluminum plate (JIS 1050 material) with a thickness of 150 μm is placed in an electrolytic cell with a hydrochloric acid concentration of 10 g / L kept at 45 ° C. and subjected to electrolytic treatment under the condition that the total amount of electricity is 70 C / dm 2 to prevent adhesion. A plate was made.
As in the case of Example 15, a 60 Hz trapezoidal wave was used as the AC power source wave. Current density was 50A / dm 2.
Furthermore, a solution having a sulfuric acid concentration of 250 g / L and an aluminum concentration of 5% or less was used for this deposition preventing plate, and an aluminum plate was used as an anode, a DC voltage was applied for 45 minutes, and a 1.0 μm thick anodic oxide film was formed on the surface. Formed. Current density was 50A / dm 2.

[実施例17]
厚さ150μmのアルミニウム板(JIS 1050材)を、40℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行った。
交流電源波は、実施例15と同様に60Hzの台形波を使用した。電流密度は100A/dm2とした。
次いで、このアルミニウム板を、45℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が70C/dm2の条件下で電解処理を行って、防着板を作製した。
交流電源波は、実施例15と同様に60Hzの台形波を使用した。電流密度は50A/dm2とした。
[Example 17]
An aluminum plate (JIS 1050 material) having a thickness of 150 μm was placed in an electrolytic cell having a nitric acid concentration of 10 g / L kept at 40 ° C., and electrolysis was performed under a condition where the total amount of electricity was 300 C / dm 2 .
As in the case of Example 15, a 60 Hz trapezoidal wave was used as the AC power source wave. Current density was set to 100A / dm 2.
Next, this aluminum plate was put in an electrolytic cell having a hydrochloric acid concentration of 10 g / L kept at 45 ° C., and subjected to electrolytic treatment under the condition that the total amount of electricity was 70 C / dm 2 , thereby producing a deposition preventing plate.
As in the case of Example 15, a 60 Hz trapezoidal wave was used as the AC power source wave. Current density was 50A / dm 2.

[実施例18]
厚さ150μmのアルミニウム板(JIS 1050材)を、40℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が300C/dm2の条件下で電解処理を行った。
交流電源波は、実施例15と同様に60Hzの台形波を使用した。電流密度は100A/dm2とした。
次いで、このアルミニウム板を、45℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が70C/dm2の条件下で電解処理を行って、防着板を作製した。
交流電源波は、実施例15と同様に60Hzの台形波を使用した。電流密度は50A/dm2とした。
さらに、この防着板に硫酸濃度250g/Lで、アルミニウム濃度5%以下の溶液を用い、アルミニウム板を陽極として、直流電圧を45分間印加して、表面に厚さ1.0μmmの陽極酸化皮膜を形成した。電流密度は50A/dm2とした。
[Example 18]
An aluminum plate (JIS 1050 material) having a thickness of 150 μm was placed in an electrolytic cell having a nitric acid concentration of 10 g / L kept at 40 ° C., and electrolysis was performed under a condition where the total amount of electricity was 300 C / dm 2 .
As in the case of Example 15, a 60 Hz trapezoidal wave was used as the AC power source wave. Current density was set to 100A / dm 2.
Next, this aluminum plate was put in an electrolytic cell having a hydrochloric acid concentration of 10 g / L kept at 45 ° C., and subjected to electrolytic treatment under the condition that the total amount of electricity was 70 C / dm 2 , thereby producing a deposition preventing plate.
As in the case of Example 15, a 60 Hz trapezoidal wave was used as the AC power source wave. Current density was 50A / dm 2.
Furthermore, a solution having a sulfuric acid concentration of 250 g / L and an aluminum concentration of 5% or less was used for this deposition preventing plate, and an aluminum plate was used as an anode, a DC voltage was applied for 45 minutes, and a 1.0 μm thick anodic oxide film was formed on the surface. Formed. Current density was 50A / dm 2.

[実施例19]
厚さ150μmのアルミニウム板(JIS 1050材)の表面に、平均粒径30μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを2本にて、アルミニウム板上を移動させて、表面の粗面化処理を行った。
使用した、ナイロンブラシの直径は0.5mm、毛密度は450本/cm2で、ブラシ回転数は150rpmとした。
これ以降は、実施例18と同様に2回の電解処理および陽極酸化処理を行って、防着板を作製した。
[Example 19]
A slurry liquid having a specific gravity of 1.12 using pumiston with an average particle diameter of 30 μm as an abrasive is supplied to the surface of an aluminum plate (JIS 1050 material) having a thickness of 150 μm, and two rotating roller nylon brushes are used. The surface was roughened by moving on the aluminum plate.
The diameter of the nylon brush used was 0.5 mm, the hair density was 450 / cm 2 , and the brush rotation speed was 150 rpm.
Thereafter, the electrolytic treatment and the anodic oxidation treatment were performed twice in the same manner as in Example 18 to produce an adhesion preventing plate.

[比較例1]
厚さ150μmのアルミニウム板(JIS 1050材)を、そのまま防着板として用いて、実施例1と同様に基板ZにAuの真空蒸着を行った。従って、この防着板の表面は平滑で、凹凸構造は有さない。また、表面粗さRaは0.15μmであった。
[Comparative Example 1]
Using an aluminum plate (JIS 1050 material) having a thickness of 150 μm as an adhesion-preventing plate, Au was vacuum-deposited on the substrate Z in the same manner as in Example 1. Therefore, the surface of this deposition preventing plate is smooth and does not have an uneven structure. The surface roughness Ra was 0.15 μm.

[比較例2]
厚さ50μmのアルミニウム箔(昭和真空社製)板を、そのまま防着板として用いて、実施例1と同様に基板ZにAuの真空蒸着を行った。従って、この防着板の表面は平滑で、凹凸構造は有さない。また、表面粗さRaは0.15μmであった。
[Comparative Example 2]
Using an aluminum foil (made by Showa Vacuum Co., Ltd.) plate having a thickness of 50 μm as an adhesion-preventing plate, Au was vacuum deposited on the substrate Z in the same manner as in Example 1. Therefore, the surface of this deposition preventing plate is smooth and does not have an uneven structure. The surface roughness Ra was 0.15 μm.

[比較例3]
厚さ150μmのアルミニウム板(JIS 1050材)の表面に、平均粒径70μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを5本にて、アルミニウム板上を移動させて、表面の粗面化処理を行い、防着板を作製した。
使用した、ナイロンブラシの直径は0.9mm、毛密度は450本/cm2で、ブラシ回転数は400rpmとした。
[Comparative Example 3]
A slurry liquid having a specific gravity of 1.12 using pumiston with an average particle diameter of 70 μm as an abrasive is supplied to the surface of an aluminum plate (JIS 1050 material) having a thickness of 150 μm, and five rotating nylon brushes are rotated. The surface was roughened by moving on the aluminum plate to produce a deposition preventing plate.
The diameter of the nylon brush used was 0.9 mm, the bristle density was 450 / cm 2 , and the brush rotation speed was 400 rpm.

[比較例4]
厚さ150μmのアルミニウム板(JIS 1050材)の表面に、平均粒径30μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを5本にて、アルミニウム板上を移動させて、表面の粗面化処理を行って、防着板を作製した。
使用した、ナイロンブラシの直径は0.9mm、毛密度は450本/cm2で、ブラシ回転数は350rpmとした。
[Comparative Example 4]
A slurry liquid having a specific gravity of 1.12 using Pamiston with an average particle size of 30 μm as an abrasive is supplied to the surface of an aluminum plate (JIS 1050 material) having a thickness of 150 μm, and five rotating nylon brushes are rotated. The surface of the aluminum plate was moved and the surface was roughened to produce a deposition preventing plate.
The diameter of the nylon brush used was 0.9 mm, the bristle density was 450 / cm 2 , and the brush rotation speed was 350 rpm.

[比較例5]
塩酸(塩化水素の濃度は5重量%)が入った溶液槽(液温20℃)中で、電解粗面化処理を行って、防着板を作製した。
具体的には、試験片として用いたアルミニウム合金(A6061、表面のRa=0.1μm、サイズは40mm×50mm×1mmの平板)の対面に、40mm×50mm×1mmのSUS304を、1mm間隔を空けて対極として設置した。
次いで、アルミニウム合金およびSUS304に電源設備からのリード線を設置し、酸化電流をアルミニウム合金に、0.5A/cm2を与えた。
[Comparative Example 5]
An electrolytic surface-roughening treatment was performed in a solution tank (liquid temperature: 20 ° C.) containing hydrochloric acid (hydrogen chloride concentration: 5% by weight) to prepare an adhesion preventing plate.
Specifically, 40 mm x 50 mm x 1 mm of SUS304 is placed at an interval of 1 mm on the opposite side of the aluminum alloy (A6061, surface Ra = 0.1 μm, size 40 mm x 50 mm x 1 mm flat plate) used as a test piece. Installed as a counter electrode.
Next, lead wires from the power supply equipment were placed on the aluminum alloy and SUS304, and an oxidation current of 0.5 A / cm 2 was applied to the aluminum alloy.

[比較例6]
実施例18と同様の陽極酸化処理を施した以外は、比較例4と同様の方法で防着板を作製した。
[Comparative Example 6]
A deposition preventing plate was produced in the same manner as in Comparative Example 4 except that the same anodizing treatment as in Example 18 was performed.

<表面性状>
(1)凹凸構造および凹部個数
作製した各防着板の表面を電子顕微鏡によって倍率2000倍(大波・中波の観察倍率)および倍率30000倍(小波の観察倍率)で観察し、凹凸構造(大波構造、中波構造および小波構造)における凹部の平均開口径を測定した。これらの結果を下記第1表に示す。なお、下記第1表中、「−」で表される項目は、当該項目が存在していないことを示す。
観察の結果、実施例1〜19ならびに比較例3〜6で作製した防着板は、全面的に、ほぼ均一に凹部が形成されていることが確認された。なお、下記第1表に示す下記第1表に示す個数の凹部個数は、0.003mm2あたり、開口径が下記第1表中の括弧書きで示す値(μm)以上の凹部を計数した結果である。
(2)算術平均粗さRa
表面粗さ測定機(ミツトヨ社製 SJ−401/触針 半径2μm)によって、作製した各防着板の表面粗さRaを測定した。この結果を下記第1表に示す。
(3)マイクロポア
陽極酸化処理を施して作製した防着板については、表面の陽極酸化皮膜を電界放出形走査電子顕微鏡(FE−SEM)を用いて倍率15万倍で撮影し、得られたSEM写真で3視野観察し、任意の100個のマイクロポアについて平均開口径(平均ポア径)を測定した。同様に、上記SEM写真から300nm四方の部分を3視野抜き取り、その中のマイクロポア数を数えて密度の平均値(平均ポア密度)を算出した。これらの結果を下記第1表に示す。なお、下記第1表中、「−」で表される項目は、陽極酸化皮膜が存在していないことを示す。
<Surface properties>
(1) Concavity and convexity structure and number of concavities The surface of each of the prepared protective plates was observed with an electron microscope at a magnification of 2000 times (observation magnification of large waves and medium waves) and a magnification of 30000 times (observation magnification of small waves). The average opening diameter of the recesses in the structure, medium wave structure and small wave structure) was measured. These results are shown in Table 1 below. In Table 1 below, an item represented by “-” indicates that the item does not exist.
As a result of observation, it was confirmed that the adhesion preventing plates produced in Examples 1 to 19 and Comparative Examples 3 to 6 were substantially uniformly formed with recesses. The number of recesses shown in the following Table 1 shown in Table 1 below is the result of counting the number of recesses having an opening diameter equal to or larger than the value (μm) shown in parentheses in the following Table 1 per 0.003 mm 2. It is.
(2) Arithmetic mean roughness Ra
The surface roughness Ra of each of the prepared adhesion-preventing plates was measured by a surface roughness measuring machine (SJ-401 / Mitutoyo Corporation radius 2 μm). The results are shown in Table 1 below.
(3) Micropores An anti-adhesion plate produced by anodizing was obtained by photographing the surface anodized film at a magnification of 150,000 using a field emission scanning electron microscope (FE-SEM). Three fields of view were observed with SEM photographs, and the average aperture diameter (average pore diameter) was measured for any 100 micropores. Similarly, three fields of 300 nm square were extracted from the SEM photograph, and the average value of the density (average pore density) was calculated by counting the number of micropores therein. These results are shown in Table 1 below. In Table 1 below, the item represented by “−” indicates that no anodized film is present.

(4)表面積比ΔSおよび急峻度a45
作製した防着板の表面について表面積差ΔSおよび急峻度a45を求めるために、原子間力顕微鏡SIIナノテクノロジー(現日立ハイテクサイエンス)製により表面形状を測定し、3次元データを求めた。以下、具体的な手順を説明する。
防着板を1cm角の大きさに切り取って、ピエゾスキャナー上の水平な試料台にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際、試料の表面形状(波構造)をZ方向のピエゾの変位でとらえた。ピエゾスキャナーは、XY方向について150μm、Z方向について10μm、走査可能なものを使用した。カンチレバーは共振周波数130〜170kHz、バネ定数6〜14N/mのもの(OMCL−AC200TS、OLYMPUS社製)を用い、DFMモード(Dynamic Force Mode)で測定した。また、求めた3次元データを最小二乗近似することにより試料のわずかな傾きを補正し基準面を求めた。
計測の際は、表面の25μm×25μmの範囲を256×256点測定した。XY方向の分解能は0.1μm、Z方向の分解能は1nm、スキャン速度は15μm/secとした。
上記で求められた3次元データ(f(x,y))を用い、隣り合う3点を抽出し、その3点で形成される微小三角形の面積の総和を求め、実面積Sxとした。表面積差ΔSは、得られた実面積Sxと幾何学的測定面積S0とから、上記式(i)により求めた。
また、上記で求められた三次元データ(f(x,y))を用い、各基準点と所定の方向(例えば、右と下)の隣接する2点との3点で形成される微小三角形と基準面とのなす角を各基準点について算出する。微小三角形の傾斜度が45度以上の基準点の個数を、全基準点の個数(全データの個数である256×256点から所定の方向の隣接する2点がない点の個数を減じた個数、すなわち、255×255点)で除して、傾斜度45度以上の部分の面積率a45を算出する。
この結果を下記第1表に示す。
(4) Surface area ratio ΔS and steepness a45
In order to obtain the surface area difference ΔS and the steepness a45 for the surface of the produced deposition preventive plate, the surface shape was measured by an atomic force microscope SII nanotechnology (currently Hitachi High-Tech Science) to obtain three-dimensional data. A specific procedure will be described below.
Cut the adhesion plate to 1cm square size, set it on the horizontal sample stage on the piezo scanner, approach the cantilever to the sample surface, and when it reaches the area where the atomic force works, scan in XY direction, At that time, the surface shape (wave structure) of the sample was captured by the displacement of the piezo in the Z direction. A piezo scanner that can scan 150 μm in the XY direction and 10 μm in the Z direction was used. A cantilever having a resonance frequency of 130 to 170 kHz and a spring constant of 6 to 14 N / m (OMCL-AC200TS, manufactured by OLYMPUS) was used and measured in a DFM mode (Dynamic Force Mode). Further, the reference plane was obtained by correcting the slight inclination of the sample by least-square approximation of the obtained three-dimensional data.
At the time of measurement, 256 × 256 points were measured in a 25 μm × 25 μm range of the surface. The resolution in the XY direction was 0.1 μm, the resolution in the Z direction was 1 nm, and the scan speed was 15 μm / sec.
Using the three-dimensional data (f (x, y)) obtained above, three adjacent points were extracted, and the sum of the areas of the minute triangles formed by the three points was obtained to obtain the actual area Sx . The surface area difference ΔS was determined by the above formula (i) from the obtained real area S x and the geometric measurement area S 0 .
In addition, using the three-dimensional data (f (x, y)) obtained above, a small triangle formed by three points of each reference point and two adjacent points in a predetermined direction (for example, right and bottom) And the angle formed by the reference plane is calculated for each reference point. The number of reference points where the inclination of the micro triangle is 45 degrees or more is obtained by subtracting the number of all reference points (the number of all data points from 256 × 256 points that do not have two adjacent points in a predetermined direction). In other words, the area ratio a45 of the portion having the inclination of 45 degrees or more is calculated by dividing by 255).
The results are shown in Table 1 below.

作製した各防着板を、真空蒸着装置(昭和真空社製 SGC−22SA)の内壁面に、カプトンテープを用いて図1に示すように貼着した。
各防着板を貼着した真空成膜装置を用いて、基板Zの表面に、真空蒸着によって金を0.5μm成膜した。成膜圧力は1×10-3Paとした。
Each produced protection board was affixed on the inner wall surface of a vacuum evaporation system (Showa Vacuum SGC-22SA) as shown in FIG. 1 using the Kapton tape.
Using a vacuum film forming apparatus to which each protective plate was attached, a gold film of 0.5 μm was formed on the surface of the substrate Z by vacuum deposition. The film forming pressure was 1 × 10 −3 Pa.

<剥離試験および密着強度>
成膜を終了した後、各防着板の一部をサンプリングして、JIS Z 1522:2009に規定されたテープを用いて、剥離試験を行った。
テープに、防着板から剥離したAuの貼着が無かった場合を、良好;
テープの一部に、防着板から剥離したAuの貼着が認められた場合を、可;
テープの全面に、防着板から剥離したAuの貼着が認められた場合を、不可;と評価する。
さらに、薄膜密着強度測定機(Romulus社製)を用いて、防着板に付着したAuの密着強度を測定した。
これらの結果を下記第1表に示す。
<Peel test and adhesion strength>
After the film formation was completed, a part of each deposition preventing plate was sampled, and a peel test was performed using a tape defined in JIS Z 1522: 2009.
Good, when there is no adhesion of Au peeled from the protective plate on the tape;
Acceptable when Au is peeled off from the protective plate on part of the tape;
When the adhesion of Au peeled off from the protective plate is recognized on the entire surface of the tape, it is evaluated as “No”.
Furthermore, the adhesion strength of Au adhering to the adhesion-preventing plate was measured using a thin film adhesion strength measuring machine (Romulus).
These results are shown in Table 1 below.

<耐キズ性>
作製した各防着板の表面の引っ掻き試験を行い、耐キズ性を評価した。
引っ掻き試験は、連続加重式引っ掻き強度試験器(SB−53、新東科学社製)を用いて、サファイヤ針0.4mmφ、針の移動速度10cm/秒の条件下、加重100gで行った。
その結果、キズが目視で確認できないものを耐キズ性に優れるものとして「A」と評価し、キズが目視で確認できるものを耐キズ性に劣るものとして「B」と評価した。
これらの結果を下記第1表に示す。
<Scratch resistance>
A scratch test was performed on the surface of each of the produced adhesion prevention plates to evaluate scratch resistance.
The scratch test was performed using a continuous load-type scratch strength tester (SB-53, manufactured by Shinto Kagaku Co., Ltd.) under the conditions of a sapphire needle of 0.4 mmφ and a needle moving speed of 10 cm / second under a load of 100 g.
As a result, the case where scratches could not be visually confirmed was evaluated as “A” as being excellent in scratch resistance, and the case where scratches could be visually confirmed was evaluated as “B” as being poor in scratch resistance.
These results are shown in Table 1 below.

上記第1表にも示されるように、平均開口径0.01〜9μmの凹部を含む凹凸構造を有する本発明の防着板は、付着したAuの密着力が強い。そのため、この防着板を用いることにより、付着した成膜材料が剥離して、パーティクルが発生することを防止できることが分かる(実施例1〜19)。
特に、平均開口径0.5〜9μmの凹部を含む凹凸構造(中波構造)に、平均開口径0.01〜0.3μmの凹部を含む凹凸構造(小波構造)を重畳してなる実施例3〜6、実施例11および12ならびに実施例17〜19は、高いAuの密着力を有している。
また、陽極酸化処理を施し、防着板の表面にアルミニウムの陽極酸化皮膜を設けた実施例5〜12ならびに実施例16、18および19は、陽極酸化皮膜に存在するマイクロポアによるアンカー効果により、密着強度が向上し、また、耐キズ性も良好となることが分かった。
また、実施例1と実施例7との対比から、平均開口径0.5〜9μmの凹部よりも大きな凹部を含む凹凸構造を有している方が、密着強度が向上することが分かった。
また、実施例2と実施例13との対比から、表面積比ΔSが5%以上であり、かつ、急峻度a45が3%以上であることにより、密着強度が向上することが分かった。
これに対し、表面に凹凸構造を有さない比較例1および2の防着板は、付着したAuの密着力が非常に低い。また、平均開口径が10μmを超える大きな凹部を含む凹凸構造(大波構造)のみを有する比較例3、4および6は、表面が平滑な防着板に比して、ある程度のAuの密着力向上効果が得られているが、十分とは言えず、やはり、付着した成膜材料が剥離して、パーティクルが発生することを防止できない。同様に、平均開口径0.01〜0.3μmの凹部を含む凹凸構造(小波構造)の表面を有する場合であっても、表面粗さRaが0.2μmより小さい比較例5の防着板は、表面が平滑な防着板に比して、ある程度のAuの密着力向上効果が得られているが、十分とは言えず、やはり、付着した成膜材料が剥離して、パーティクルが発生することを防止できない。
以上の結果より、本発明の効果は明らかである。
As shown in Table 1 above, the adhesion-preventing plate of the present invention having a concavo-convex structure including a concave portion having an average opening diameter of 0.01 to 9 μm has a strong adhesion force of adhered Au. Therefore, it can be seen that by using this deposition preventing plate, it is possible to prevent the deposited film forming material from peeling off and generating particles (Examples 1 to 19).
Particularly, an embodiment in which a concavo-convex structure (small wave structure) including a concave portion having an average opening diameter of 0.01 to 0.3 μm is superimposed on a concavo-convex structure (medium wave structure) including a concave portion having an average opening diameter of 0.5 to 9 μm. Examples 3 to 6, Examples 11 and 12, and Examples 17 to 19 have high Au adhesion.
In addition, Examples 5 to 12 and Examples 16, 18 and 19 in which an anodizing treatment was performed and an aluminum anodized film was provided on the surface of the deposition preventing plate had an anchor effect due to micropores existing in the anodized film. It was found that the adhesion strength was improved and the scratch resistance was also improved.
Moreover, it turned out that the contact | adhesion intensity | strength improves from the comparison with Example 1 and Example 7 which has a concavo-convex structure containing a recessed part larger than a recessed part with an average opening diameter of 0.5-9 micrometers.
Further, from comparison between Example 2 and Example 13, it was found that the adhesion strength was improved when the surface area ratio ΔS was 5% or more and the steepness a45 was 3% or more.
On the other hand, the adhesion preventing plates of Comparative Examples 1 and 2 having no uneven structure on the surface have a very low adhesion force of the adhered Au. Further, Comparative Examples 3, 4 and 6 having only a concavo-convex structure (large wave structure) including a large concave portion having an average opening diameter exceeding 10 μm have a certain degree of improvement in Au adhesion compared to a deposition preventing plate having a smooth surface. Although the effect is obtained, it cannot be said that it is sufficient, and it is still impossible to prevent the deposited film forming material from peeling off and generating particles. Similarly, even if it has the surface of the uneven structure (small wave structure) containing a recessed part with an average opening diameter of 0.01-0.3 micrometer, the surface roughness Ra of the adhesion prevention board of the comparative example 5 smaller than 0.2 micrometer Compared to the adhesion prevention plate with a smooth surface, the effect of improving the adhesion strength of Au is obtained to some extent, but it cannot be said that it is sufficient. I can't prevent you from doing it.
From the above results, the effects of the present invention are clear.

[実施例20〜22]
最後の陽極酸化処理の後に、下記第2表に示す条件で焼鈍処理を施した以外は、実施例6と同様の方法で防着板を作製した。なお、焼鈍処理の昇温速度はいずれも15℃/分で行った。
[Examples 20 to 22]
After the final anodic oxidation treatment, an adhesion-preventing plate was produced in the same manner as in Example 6 except that the annealing treatment was performed under the conditions shown in Table 2 below. Note that the annealing rate was 15 ° C./min.

[実施例23〜25]
親水化処理の後に、下記第2表に示す条件で焼鈍処理を施した以外は、実施例7と同様の方法で防着板を作製した。なお、焼鈍処理の昇温速度はいずれも15℃/分で行った。
[Examples 23 to 25]
After the hydrophilization treatment, an adhesion preventing plate was produced in the same manner as in Example 7 except that the annealing treatment was performed under the conditions shown in Table 2 below. Note that the annealing rate was 15 ° C./min.

実施例6および実施例20〜22ならびに実施例7および実施例23〜25で作製した防着板の加工性を以下に示す方法により評価した。
<加工性>
実施例1と同様、カプトンテープを用いて、防着板を真空蒸着装置(昭和真空社製 SGC−22SA)の内壁面に貼着する際に、真空チャンバの内壁面から浮き上がらず、容易に貼着することができたものを加工性に大変優れるものとして「A」と評価し、真空チャンバの内壁面からわずかに浮きあがりが生じたものの、容易に貼着することができたものを加工性に優れるものとして「B」と評価し、真空チャンバの内壁面から浮きあがりが生じ、貼着に時間を要したものを加工性に劣るものとして「C」と評価した。
また、作製した各防着板の引張弾性率をJIS K7127:1999で規定する方法で測定した。
これらの結果を下記第2表に示す。
The processability of the adhesion-preventing plates produced in Example 6 and Examples 20 to 22, and Example 7 and Examples 23 to 25 was evaluated by the following methods.
<Processability>
As in Example 1, when using a Kapton tape to attach the adhesion-preventing plate to the inner wall surface of the vacuum deposition apparatus (SGC-22SA, manufactured by Showa Vacuum Co., Ltd.), it does not lift up from the inner wall surface of the vacuum chamber and is easily pasted. What was able to be attached was evaluated as “A” as being extremely excellent in workability, and although it slightly lifted from the inner wall surface of the vacuum chamber, it was easy to attach it. “B” was evaluated as an excellent material, and “C” was evaluated as a product that was lifted from the inner wall surface of the vacuum chamber and took a long time for sticking, and was inferior in workability.
Moreover, the tensile elasticity modulus of each produced protection board was measured by the method prescribed | regulated by JISK7127: 1999.
These results are shown in Table 2 below.

第2表に示す結果から、焼鈍処理を施すことにより、引張弾性率が低くなり、防着板の加工性が良好となることが分かった。   From the results shown in Table 2, it was found that by performing the annealing treatment, the tensile elastic modulus was lowered and the workability of the deposition preventing plate was improved.

半導体装置や電子部品材料の製造等、真空蒸着、スパッタリング、プラズマCVDなどの真空成膜法を利用する各種の製品の製造に、好適に利用可能である。   The present invention can be suitably used for manufacturing various products using vacuum film forming methods such as vacuum deposition, sputtering, and plasma CVD, such as manufacturing semiconductor devices and electronic component materials.

10 真空成膜装置
12 防着板
12a 上面防着板
12b 側面防着板
12c 下面防着板
14 真空チャンバ
16 蒸着源
18 基板ホルダ
30、32、34 凹凸構造
30a、32a、34a、 凹部
DESCRIPTION OF SYMBOLS 10 Vacuum film-forming apparatus 12 Adhesion board 12a Upper surface adhesion board 12b Side surface adhesion board 12c Lower surface adhesion board 14 Vacuum chamber 16 Deposition source 18 Substrate holder 30, 32, 34 Uneven structure 30a, 32a, 34a, Concave part

Claims (13)

真空成膜装置において、不要な位置への成膜材料の付着を防止するための真空成膜装置用防着板であって、
アルミニウム製であり、平均開口径0.01〜9μmの凹部を含む凹凸構造の表面を有し、前記表面の算術平均粗さRaが0.20μm以上であり、
表面積比ΔSが5%以上であり、かつ、急峻度a45が3%以上である、真空成膜装置用防着板。
ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の25μm×25μmの範囲を256×256点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、前記実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
ΔS=(Sx−S0)/S0×100(%)・・・(i)
In a vacuum film forming apparatus, a deposition plate for a vacuum film forming apparatus for preventing adhesion of a film forming material to an unnecessary position,
It is made of aluminum, has a surface with a concavo-convex structure including a recess having an average opening diameter of 0.01 to 9 μm, and the arithmetic average roughness Ra of the surface is 0.20 μm or more,
A deposition preventing plate for a vacuum film forming apparatus having a surface area ratio ΔS of 5% or more and a steepness a45 of 3% or more.
Here, the surface area ratio ΔS is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 256 × 256 points on the surface of 25 μm × 25 μm using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 is an inclination having an angle of 45 ° or more with respect to the actual area S x (an inclination of 45 ° or more). It is the area ratio of the part which has.
ΔS = (S x −S 0 ) / S 0 × 100 (%) (i)
前記凹凸構造が、平均開口径0.5〜9μmの凹部を含む凹凸構造、または、平均開口径0.01〜0.3μmの凹部を含む凹凸構造である、請求項1に記載の真空成膜装置用防着板。   The vacuum film formation according to claim 1, wherein the concavo-convex structure is a concavo-convex structure including a concave portion having an average opening diameter of 0.5 to 9 μm or a concavo-convex structure including a concave portion having an average opening diameter of 0.01 to 0.3 μm. Equipment protection plate. 前記凹凸構造が、平均開口径0.5〜9μmの凹部を含む凹凸構造に、平均開口径0.01〜0.3μmの凹部を含む凹凸構造が重畳された凹凸構造である、請求項1または2に記載の真空成膜装置用防着板。   The concavo-convex structure is a concavo-convex structure in which a concavo-convex structure including a concave portion having an average opening diameter of 0.01 to 0.3 μm is superimposed on a concavo-convex structure including a concave portion having an average opening diameter of 0.5 to 9 μm. 2. A deposition preventing plate for a vacuum film forming apparatus according to 2. 前記表面が、アルミニウムの陽極酸化皮膜で構成される請求項1〜3のいずれか1項に記載の真空成膜装置用防着板。   The deposition surface for a vacuum film forming apparatus according to any one of claims 1 to 3, wherein the surface is made of an anodized aluminum film. 前記陽極酸化皮膜が、マイクロポアを有する請求項4に記載の真空成膜装置用防着板。   The deposition plate for a vacuum film-forming apparatus according to claim 4, wherein the anodized film has micropores. 前記平均開口径0.01〜9μmの凹部を含む凹凸構造が、さらに大きな凹凸構造の上に重畳されている請求項1〜5のいずれか1項に記載の真空成膜装置用防着板。   The deposition preventing plate for a vacuum film forming apparatus according to any one of claims 1 to 5, wherein the concavo-convex structure including the concave portions having an average opening diameter of 0.01 to 9 µm is superimposed on a larger concavo-convex structure. アルミニウムの厚さが30〜300μmである請求項1〜6のいずれか1項に記載の真空成膜装置用防着板。   The deposition preventing plate for a vacuum film forming apparatus according to claim 1, wherein the aluminum has a thickness of 30 to 300 μm. 引張弾性率が65GPa以下となる請求項1〜7のいずれか1項に記載の真空成膜装置用防着板。   The deposition preventing plate for a vacuum film forming apparatus according to any one of claims 1 to 7, wherein the tensile elastic modulus is 65 GPa or less. 請求項1に記載の真空成膜装置用防着板を製造する製造方法であって、
アルミニウム板の表面に電気化学的粗面化処理を施し、平均開口径0.01〜9μmの凹部を含む凹凸構造を形成し、算術平均粗さRaを0.20μm以上とし、表面積比ΔSを5%以上とし、かつ、急峻度a45を3%以上とする工程を有する真空成膜装置用防着板の製造方法。
ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の25μm×25μmの範囲を256×256点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、前記実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
ΔS=(Sx−S0)/S0×100(%)・・・(i)
A manufacturing method for manufacturing the deposition preventing plate for a vacuum film forming apparatus according to claim 1,
The surface of the aluminum plate is subjected to an electrochemical roughening treatment to form a concavo-convex structure including concave portions having an average opening diameter of 0.01 to 9 μm, an arithmetic average roughness Ra is set to 0.20 μm or more, and a surface area ratio ΔS is 5 %, And a method for manufacturing a deposition preventing plate for a vacuum film forming apparatus, which includes a step of setting the steepness a45 to 3% or more.
Here, the surface area ratio ΔS is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 256 × 256 points on the surface of 25 μm × 25 μm using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 is an inclination having an angle of 45 ° or more with respect to the actual area S x (an inclination of 45 ° or more). It is the area ratio of the part which has.
ΔS = (S x −S 0 ) / S 0 × 100 (%) (i)
前記電気化学的粗面化処理を施す工程の後に、陽極酸化処理を施し、表面にアルミニウムの陽極酸化皮膜を形成する工程を有する請求項に記載の真空成膜装置用防着板の製造方法。 The method for producing a deposition preventing plate for a vacuum film forming apparatus according to claim 9 , further comprising a step of performing an anodizing treatment and forming an anodized film of aluminum on the surface after the step of performing the electrochemical surface roughening treatment. . 前記陽極酸化処理を施した後に、焼鈍処理を施す工程を有する請求項10に記載の真空成膜装置用防着板の製造方法。 The manufacturing method of the deposition prevention board for vacuum film-forming apparatuses of Claim 10 which has the process of performing an annealing process after giving the said anodizing process. 請求項1〜のいずれか1項に記載の真空成膜装置用防着板を有する真空成膜装置。 The vacuum film-forming apparatus which has a deposition preventing plate for vacuum film-forming apparatuses of any one of Claims 1-8 . 請求項1〜のいずれか1項に記載の真空成膜装置用防着板を有する真空成膜装置を用いて、被成膜基板の表面に、Ti、Zr、Nb、Ta、Cr、Mo、W、Pt、Au、Ag、Fe、Ni、Mn、Sn、Zn、Co、Al、CuおよびSiから選択された1種の元素、または、その合金を成膜する真空成膜方法。 Using the vacuum film-forming apparatus having the deposition plate for a vacuum film-forming apparatus according to any one of claims 1 to 8 , Ti, Zr, Nb, Ta, Cr, Mo are formed on the surface of the deposition target substrate. , W, Pt, Au, Ag, Fe, Ni, Mn, Sn, Zn, Co, Al, Cu and Si.
JP2013044125A 2012-03-28 2013-03-06 Depositing plate for vacuum film forming apparatus, vacuum film forming apparatus, and vacuum film forming method Expired - Fee Related JP5869507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044125A JP5869507B2 (en) 2012-03-28 2013-03-06 Depositing plate for vacuum film forming apparatus, vacuum film forming apparatus, and vacuum film forming method

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2012073060 2012-03-28
JP2012073060 2012-03-28
JP2012199575 2012-09-11
JP2012199574 2012-09-11
JP2012199574 2012-09-11
JP2012199575 2012-09-11
JP2012255843 2012-11-22
JP2012255843 2012-11-22
JP2013044125A JP5869507B2 (en) 2012-03-28 2013-03-06 Depositing plate for vacuum film forming apparatus, vacuum film forming apparatus, and vacuum film forming method

Publications (2)

Publication Number Publication Date
JP2014122411A JP2014122411A (en) 2014-07-03
JP5869507B2 true JP5869507B2 (en) 2016-02-24

Family

ID=49259408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044125A Expired - Fee Related JP5869507B2 (en) 2012-03-28 2013-03-06 Depositing plate for vacuum film forming apparatus, vacuum film forming apparatus, and vacuum film forming method

Country Status (3)

Country Link
JP (1) JP5869507B2 (en)
TW (1) TW201343944A (en)
WO (1) WO2013146137A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065125A1 (en) * 2012-10-26 2014-05-01 富士フイルム株式会社 Anti-adhesive plate for vacuum film deposition apparatus, method of manufacturing anti-adhesive plate for vacuum film deposition apparatus, vacuum film deposition apparatus, and vacuum film deposition method
US20160349621A1 (en) * 2014-12-15 2016-12-01 Applied Materials, Inc. Methods for texturing a chamber component and chamber components having a textured surface
JP6680265B2 (en) 2017-05-26 2020-04-15 株式会社村田製作所 Method for manufacturing ceramic plate
JP6319505B1 (en) * 2017-09-08 2018-05-09 凸版印刷株式会社 Vapor deposition mask substrate, vapor deposition mask substrate production method, vapor deposition mask production method, and display device production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998044A (en) * 1993-09-21 1999-12-07 Alcan International Limited Aluminium sheet with rough surface
JPH1025569A (en) * 1996-07-11 1998-01-27 Shin Etsu Chem Co Ltd Sputtering device
JPH10321559A (en) * 1997-05-19 1998-12-04 Hitachi Ltd Manufacture of semiconductor device
JP3975387B2 (en) * 2000-02-14 2007-09-12 富士電機ホールディングス株式会社 Method of manufacturing shower electrode for thin film forming apparatus by plasma discharge
KR101204496B1 (en) * 2007-05-18 2012-11-26 가부시키가이샤 아루박 Plasma-processing device and method of manufacturing adhesion-preventing member
JP4623055B2 (en) * 2007-05-23 2011-02-02 日本テキサス・インスツルメンツ株式会社 Metal film peeling prevention structure in metal film forming apparatus and semiconductor device manufacturing method using the structure
JP5283880B2 (en) * 2007-10-01 2013-09-04 株式会社東芝 Vacuum deposition system
JP5440388B2 (en) * 2010-05-26 2014-03-12 三菱マテリアル株式会社 Oxide sputtering target and oxide film for optical recording medium

Also Published As

Publication number Publication date
JP2014122411A (en) 2014-07-03
WO2013146137A1 (en) 2013-10-03
TW201343944A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP2014173106A (en) Deposition preventive plate for vacuum film deposition apparatus, vacuum film deposition apparatus, and vacuum film deposition method
TWI639732B (en) Anodization architecture for electro-plate adhesion
TWI564437B (en) Non-metallic coating and method of its production
JP5869507B2 (en) Depositing plate for vacuum film forming apparatus, vacuum film forming apparatus, and vacuum film forming method
CN101532159B (en) Preparation method for metallic aluminum super-hydrophobic surface
TW201934793A (en) High purity metallic top coat for semiconductor manufacturing components
JP5941003B2 (en) Aluminum substrate for tab lead and tab lead
WO2014065125A1 (en) Anti-adhesive plate for vacuum film deposition apparatus, method of manufacturing anti-adhesive plate for vacuum film deposition apparatus, vacuum film deposition apparatus, and vacuum film deposition method
Xiao et al. Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness
TWI421373B (en) Tungsten coating method for metal base material
TW201905238A (en) Aluminum composite
Yazdi et al. Improving the grain structure and adhesion of Ni-P coating to 3004 aluminum substrate by nanostructured anodic film interlayer
Jiang et al. Tungsten coating prepared on molybdenum substrate by electrodeposition from molten salt in air atmosphere
JP4768478B2 (en) Manufacturing method of fine structure and fine structure
WO2018205307A1 (en) Refractory metal or stainless steel having electroplated layer on surface thereof, and electroplating process for surface of refractory metal or stainless steel
JP5975747B2 (en) Vacuum chamber components
WO2015146681A1 (en) Water repellent aluminum base, method for producing water repellent aluminum base, heat exchanger and power transmission line
Kim et al. Electrodeposition Cu and roll transfer of graphene for large scale fabrication of Cu-graphene nanolayered composite
Zhang et al. Electrodeposition of multi-layer Pd–Ni coatings on 316L stainless steel and their corrosion resistance in hot sulfuric acid solution
Bara et al. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers
Lombardi et al. Electrochemical fabrication of supported Ni nanostructures through transferred porous anodic alumina mask
TWI689632B (en) Method for the layered double hydroxide growing on the surface of stainless steel
KR20070005332A (en) Electroless plating method and plating film obtained by the electroless plating method
Mohan et al. A comparative study of DC and pulse gold electrodeposits
JP4421701B2 (en) Aluminum foil for electrolytic capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent or registration of utility model

Ref document number: 5869507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees