JP5975747B2 - Vacuum chamber components - Google Patents

Vacuum chamber components Download PDF

Info

Publication number
JP5975747B2
JP5975747B2 JP2012132707A JP2012132707A JP5975747B2 JP 5975747 B2 JP5975747 B2 JP 5975747B2 JP 2012132707 A JP2012132707 A JP 2012132707A JP 2012132707 A JP2012132707 A JP 2012132707A JP 5975747 B2 JP5975747 B2 JP 5975747B2
Authority
JP
Japan
Prior art keywords
film
plating film
electrolytic
vacuum chamber
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012132707A
Other languages
Japanese (ja)
Other versions
JP2013256686A (en
Inventor
千夏 帖佐
千夏 帖佐
邦彦 澁澤
邦彦 澁澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Original Assignee
TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD. filed Critical TAIYO YUDEN CHEMICAL TECHNOLOGY CO., LTD.
Priority to JP2012132707A priority Critical patent/JP5975747B2/en
Publication of JP2013256686A publication Critical patent/JP2013256686A/en
Application granted granted Critical
Publication of JP5975747B2 publication Critical patent/JP5975747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemically Coating (AREA)

Description

本発明は,真空チャンバー構成部品に関し,特に金属メッキ皮膜を備える真空チャンバー構成部品に関する。   The present invention relates to a vacuum chamber component, and more particularly to a vacuum chamber component having a metal plating film.

半導体デバイス等の製造工程においては,スパッタリング法や真空蒸着法等により,真空チャンバー内において基材に各種の薄膜が成膜される。この成膜処理中には,チャンバー内壁,防着板,真空部品等の真空チャンバー構成部品に不要な膜が付着してしまう。   In a manufacturing process of a semiconductor device or the like, various thin films are formed on a base material in a vacuum chamber by a sputtering method, a vacuum deposition method, or the like. During this film forming process, unnecessary films adhere to the vacuum chamber components such as the inner wall of the chamber, the deposition plate, and the vacuum parts.

真空チャンバー構成部品に付着した膜は,他の種類の膜を成膜する際に汚染源となるので,不要な膜が付着した構成部品は洗浄が必要となる。真空チャンバー構成部品の洗浄は,サンドブラストによる物理的洗浄や洗浄液を用いた化学的洗浄によって行われることが多い。このような洗浄作業は高額で洗浄完了までに時間がかかるため,真空チャンバー構成部品から汚れを除去する、より簡便な手法が検討されている。例えば,特開2005-101435号公報には,アルミニウムシートを接着剤で剥離可能に貼り合わせて成る防着板が開示されている。この防着板が汚染された場合には,汚れが付着した最表層のアルミニウムシートを剥離するだけで下層から汚染されていない別層のアルミニウムシートが現れるので,従来の洗浄処理を行うことなく防着板を再利用できる。   The film adhering to the vacuum chamber components becomes a contamination source when depositing other types of films, so that components with unnecessary films adhering must be cleaned. The vacuum chamber components are often cleaned by physical cleaning by sandblasting or chemical cleaning using a cleaning solution. Since such a cleaning operation is expensive and takes time to complete the cleaning, a simpler method for removing dirt from vacuum chamber components has been studied. For example, Japanese Patent Application Laid-Open No. 2005-101435 discloses an adhesion preventing plate formed by laminating an aluminum sheet so as to be peelable with an adhesive. If this adherence plate is contaminated, an aluminum sheet of another layer that is not contaminated will appear from the lower layer only by peeling off the outermost aluminum sheet to which dirt has adhered. You can reuse the landing plate.

特開2005-101435号公報JP 2005-101435 A

しかしながら,アルミニウムシートを接着剤によって接着すると,その接着剤からアウトガスが発生するので,防着板自身が汚染源になってしまう。また,真空チャンバー構成部品は複雑な形状をしたものが多く,かかる複雑な形状を有する構成部品にアルミニウムシートを貼り付けることは困難である。このように,アルミニウムシートを貼り合わせる構造は,平面的な防着板以外への適用が難しい。   However, when an aluminum sheet is bonded with an adhesive, outgas is generated from the adhesive, and the deposition preventing plate itself becomes a contamination source. Many vacuum chamber components have complicated shapes, and it is difficult to attach an aluminum sheet to the components having such complicated shapes. As described above, it is difficult to apply the structure in which the aluminum sheet is bonded to other than the flat protection plate.

そこで、本発明は,付着した汚れを容易に除去できる真空チャンバー構成部品を提供することを目的の一つとする。本発明のその他の目的は,本明細書全体を参照することにより明らかとなる。   Therefore, an object of the present invention is to provide a vacuum chamber component that can easily remove attached dirt. Other objects of the present invention will become apparent by referring to the entire specification.

本発明者は、表層に不動態皮膜が形成された基材の表面粗さを所定値以下にし,その不動態皮膜上に特定の金属メッキ皮膜を形成すると,当該金属メッキ皮膜が基材から剥離し易いことに着目した。そして,かかる金属メッキ皮膜を真空チャンバー構成部品に応用することにより,当該金属メッキ皮膜を剥離させるだけで真空チャンバー構成部品に付着した汚れを容易に除去できることを見いだした。本発明は,かかる知見に基づいてなされたものである。本発明の各実施形態について,以下で詳細に説明を行う。   The inventor makes the surface roughness of the base material on which the passive film is formed on the surface layer below a predetermined value, and when the specific metal plating film is formed on the passive film, the metal plating film is peeled off from the base material. We paid attention to that it is easy to do. Then, by applying such a metal plating film to a vacuum chamber component, it was found that the dirt attached to the vacuum chamber component can be easily removed simply by peeling off the metal plating film. The present invention has been made based on such knowledge. Each embodiment of the present invention will be described in detail below.

本発明の一実施形態に係る真空チャンバー構成部品は,クロム水和オキシ酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.7μm以下のステンレス鋼基材と,前記ステンレス鋼基材に前記不動態皮膜を介して形成され,電解Niメッキ皮膜,電解Snメッキ皮膜,電解Cuメッキ皮膜,電解Agメッキ皮膜,無電解Ni−Pメッキ皮膜,及び無電解Cuメッキ皮膜から成る群より選択される少なくとも1つの金属メッキ皮膜と,を備える。   A vacuum chamber component according to an embodiment of the present invention includes a passive film having a film thickness of 1 nm or more mainly composed of chromium hydrated oxyoxide on the surface, and the surface roughness is an arithmetic average roughness Ra of 0. A stainless steel substrate of 7 μm or less, formed on the stainless steel substrate through the passive film, an electrolytic Ni plating film, an electrolytic Sn plating film, an electrolytic Cu plating film, an electrolytic Ag plating film, an electroless Ni-P And at least one metal plating film selected from the group consisting of a plating film and an electroless Cu plating film.

本発明の他の実施形態に係る真空チャンバー構成部品は,チタン酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.7μm以下のチタン合金基材と,前記チタン合金基材に前記不動態皮膜を介して形成され,電解Niメッキ皮膜及び電解Cuメッキ皮膜から成る群より選択される少なくとも1つの金属メッキ皮膜と,を備える。   A vacuum chamber component according to another embodiment of the present invention includes a passive film having a thickness of 1 nm or more mainly composed of titanium oxide on the surface, and the surface roughness is 0.7 μm or less in terms of arithmetic average roughness Ra. A titanium alloy base material, and at least one metal plating film formed on the titanium alloy base material through the passive film and selected from the group consisting of an electrolytic Ni plating film and an electrolytic Cu plating film.

本発明の他の実施形態に係る真空チャンバー構成部品は,基材と,前記基材上に形成された無電解Niメッキ皮膜であって,その表層にニッケル酸化物を主体とする膜厚1nm以上の不動態皮膜を備え,その硬度がビッカース硬さHvで900以上であり,且つ,その表面粗さが算術平均粗さRaで0.6μm以下のNiメッキ皮膜と,前記Niメッキ皮膜に前記不動態皮膜を介して形成された電解Niメッキ皮膜と,を備える。   A vacuum chamber component according to another embodiment of the present invention is a base material and an electroless Ni plating film formed on the base material, and the surface layer thereof has a thickness of 1 nm or more mainly composed of nickel oxide. A Ni plating film having a Vickers hardness Hv of 900 or more and a surface roughness of 0.6 μm or less in arithmetic mean roughness Ra; And an electrolytic Ni plating film formed through a dynamic film.

本発明の他の実施形態に係る真空チャンバー構成部品は,アルミニウム酸化物及び/又はアルミニウム水酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.3μm以下のアルミニウム合金基材と,前記アルミニウム合金基材に前記不動態皮膜を介して形成された電解Cuメッキ皮膜と,を備える。   A vacuum chamber component according to another embodiment of the present invention is provided with a passive film having a film thickness of 1 nm or more mainly composed of aluminum oxide and / or aluminum hydroxide on the surface, and the surface roughness is an arithmetic average roughness. And an aluminum alloy base material having a thickness Ra of 0.3 μm or less, and an electrolytic Cu plating film formed on the aluminum alloy base material via the passive film.

本発明の様々な実施形態によれば、付着した汚れを容易に除去できる真空チャンバー構成部品が提供される。   According to various embodiments of the present invention, a vacuum chamber component is provided that can easily remove attached dirt.

本発明の一実施形態に係る真空チャンバー構成部品が用いられる真空装置の概略図Schematic of a vacuum apparatus in which a vacuum chamber component according to an embodiment of the present invention is used. 本発明の一実施形態に係る真空チャンバー構成部品の概略図Schematic of vacuum chamber components according to one embodiment of the present invention

本発明の様々な実施形態について添付図面を参照して説明する。各実施形態において、類似の構成要素には類似の参照符号を付して説明を行い、その類似の構成要素についての詳細な説明は適宜省略する。   Various embodiments of the present invention will be described with reference to the accompanying drawings. In each embodiment, similar constituent elements will be described with similar reference numerals, and detailed description of the similar constituent elements will be omitted as appropriate.

本発明は,各種真空装置に備えられる真空チャンバーに適用可能であり,例えば,基板に成膜するための各種成膜装置に備えられる真空チャンバーに適用され得る。本発明を適用可能な成膜装置には,各種物理蒸着法(PVD法)により基板に成膜する各種PVD装置,各種化学蒸着法(CVD法)により基板に成膜する各種CVD装置,及び各種エッチング法により基板表面を加工するエッチング装置が含まれる。本発明を適用可能なPVD装置には,一例として,スパッタリング法により基板に成膜する各種スパッタリング装置が含まれる。   The present invention can be applied to a vacuum chamber provided in various vacuum apparatuses, and can be applied, for example, to a vacuum chamber provided in various film forming apparatuses for forming a film on a substrate. The film forming apparatus to which the present invention can be applied includes various PVD apparatuses for forming a film on a substrate by various physical vapor deposition methods (PVD method), various CVD apparatuses for forming a film on a substrate by various chemical vapor deposition methods (CVD method), and various types. An etching apparatus for processing the substrate surface by an etching method is included. As an example, the PVD apparatus to which the present invention is applicable includes various sputtering apparatuses for forming a film on a substrate by a sputtering method.

図1は,本発明の一実施形態に係る真空チャンバー構成部品が用いられるスパッタリング装置の概略図を示す。図示の通り,本発明の一実施形態に係る真空装置10は,真空チャンバー11を備えており,この真空チャンバー11の内部に,基板13を固定するための基板固定治具12,ターゲット14を固定するためのターゲット設置部15を備えている。基板固定治具12及びターゲット設置部15は,基板13に均一な薄膜を形成するために,それぞれ回転可能に構成されてもよい。   FIG. 1 shows a schematic view of a sputtering apparatus in which a vacuum chamber component according to an embodiment of the present invention is used. As illustrated, a vacuum apparatus 10 according to an embodiment of the present invention includes a vacuum chamber 11, and a substrate fixing jig 12 for fixing the substrate 13 and a target 14 are fixed inside the vacuum chamber 11. A target installation unit 15 is provided. The substrate fixing jig 12 and the target setting unit 15 may be configured to be rotatable in order to form a uniform thin film on the substrate 13.

真空チャンバー11の内部は,ガス管18a及びメインバルブ18bを通じて,圧力制御手段18と接続されている。圧力制御手段18は,真空ポンプを備えており,この真空ポンプにより,所定の到達圧力となるまで真空チャンバー11を真空排気する。成膜時には,ガス供給部19からガス管19a及びガス供給用バルブ19bを介して真空チャンバー11内にスパッタガスが供給され,また,電源部16からターゲット14に対して電圧が印可される。これにより,ターゲットから飛び出した原子がスパッタガスと反応し,この反応により生成された物質が基板13表面に到達する。この基板13表面に到達した物質が,基板13表面に堆積して,当該物質から成る薄膜が成膜される。   The inside of the vacuum chamber 11 is connected to the pressure control means 18 through the gas pipe 18a and the main valve 18b. The pressure control means 18 includes a vacuum pump, and the vacuum chamber 11 is evacuated by the vacuum pump until a predetermined ultimate pressure is reached. During film formation, sputtering gas is supplied from the gas supply unit 19 into the vacuum chamber 11 through the gas pipe 19a and the gas supply valve 19b, and a voltage is applied to the target 14 from the power supply unit 16. As a result, atoms jumping out of the target react with the sputtering gas, and the substance generated by this reaction reaches the surface of the substrate 13. The substance that has reached the surface of the substrate 13 is deposited on the surface of the substrate 13, and a thin film made of the substance is formed.

このターゲットから飛び出した原子及び当該原子とスパッタガスとの反応により生成される生成物(以下,「膜構成物質」という。)は,基板13のみならず,真空チャンバー11の内壁11aや,真空チャンバー11内に露出している各種真空部品に付着し得る。この膜構成物質が内壁11aへ到達することを防止するために,内壁11aを覆うように防着板17が設置される。このように,真空チャンバー11内で成膜処理を行うことにより,膜構成物質が真空チャンバー11に備えられた防着板17や各種真空部品に付着し,これらの表面に不要な膜が形成されてしまう。防着板17の形状や設置方法によっては,内壁11aにも不要な膜が形成され得る。   The atoms ejected from the target and the products (hereinafter referred to as “film constituent materials”) generated by the reaction of the atoms and the sputtering gas are not only the substrate 13 but also the inner wall 11a of the vacuum chamber 11 and the vacuum chamber. 11 may adhere to various vacuum parts exposed in the interior. In order to prevent this film constituent material from reaching the inner wall 11a, a deposition preventing plate 17 is installed so as to cover the inner wall 11a. As described above, by performing the film forming process in the vacuum chamber 11, the film constituent material adheres to the deposition preventing plate 17 and various vacuum parts provided in the vacuum chamber 11, and an unnecessary film is formed on these surfaces. End up. Depending on the shape of the deposition preventing plate 17 and the installation method, an unnecessary film may be formed on the inner wall 11a.

このような真空チャンバー11の構成部品に形成される不要な膜は,成膜処理に様々な不具合を引き起こし得る。例えば,真空チャンバー11の構成部品に付着した不要な膜とは別種の膜を当該真空チャンバー11内で成膜する際に汚染源になる。また,真空チャンバー11の構成部品に付着した膜が水分を吸着することにより,真空排気が長時間化することがある。さらに,真空チャンバー11の構成部品に付着した不要な膜が絶縁性の場合には,真空チャンバー11内に所望の電界を形成することを妨げることがある。   Such an unnecessary film formed on the components of the vacuum chamber 11 can cause various problems in the film forming process. For example, when a film different from the unnecessary film attached to the components of the vacuum chamber 11 is formed in the vacuum chamber 11, it becomes a contamination source. Further, the film attached to the components of the vacuum chamber 11 adsorbs moisture, so that the evacuation may take a long time. Furthermore, when an unnecessary film adhering to the components of the vacuum chamber 11 is insulative, formation of a desired electric field in the vacuum chamber 11 may be prevented.

本発明は,上述のようにして汚れが付着した場合であっても,当該汚れを容易に除去できる真空チャンバー構成部品を提供する。図2は,本発明の一実施形態に係る真空チャンバー構成部品を概略的に示す図である。図示の通り,本発明の一実施形態に係る真空チャンバー構成部品20は,基材21と,当該基材21に形成された金属メッキ皮膜22とを備える。基材21は,基材本体21aと,基材本体21aの表層に形成された不動態皮膜21bと,を備える。金属メッキ皮膜22は,不動態皮膜21bを介して基材本体21aに設けられる。   The present invention provides a vacuum chamber component that can easily remove dirt even when it is attached as described above. FIG. 2 is a view schematically showing a vacuum chamber component according to an embodiment of the present invention. As illustrated, a vacuum chamber component 20 according to an embodiment of the present invention includes a base material 21 and a metal plating film 22 formed on the base material 21. The substrate 21 includes a substrate body 21a and a passive film 21b formed on the surface layer of the substrate body 21a. The metal plating film 22 is provided on the base body 21a via the passive film 21b.

真空チャンバー構成部品20は,真空チャンバー11内で真空雰囲気中に露出される任意の部品又は部材であり,例えば,真空チャンバー11の内壁11a,真空バルブ(不図示),真空計(不図示),及び各種真空部品を含む。図1に示した実施形態における内壁11a,基板固定治具12,ターゲット設置部15,防着板17,メインバルブ18b,ガス供給用バルブ19bは,いずれも真空チャンバー構成部品20の例である。また,ガス管18a及びガス管19aの端部は真空チャンバー11内に露出するので,ガス管18a及びガス管19aも真空チャンバー構成部品20に含まれ得る。   The vacuum chamber component 20 is an arbitrary part or member exposed to the vacuum atmosphere in the vacuum chamber 11, for example, an inner wall 11a of the vacuum chamber 11, a vacuum valve (not shown), a vacuum gauge (not shown), And various vacuum parts. The inner wall 11a, the substrate fixing jig 12, the target installation portion 15, the deposition plate 17, the main valve 18b, and the gas supply valve 19b in the embodiment shown in FIG. 1 are all examples of the vacuum chamber component 20. Further, since the ends of the gas pipe 18a and the gas pipe 19a are exposed in the vacuum chamber 11, the gas pipe 18a and the gas pipe 19a can also be included in the vacuum chamber component 20.

本発明が適用される真空チャンバー構成部品は図示されたものに限られず,例えば,基板固定治具12やターゲット設置部15を回転させるための回転機構,温度測定用の熱電対,ビューポートのシャッター,真空ポンプの回転部分,真空チャンバー11内に備えられる各種ボルト,ナット,バンド,及びフランジ等も本発明が適用される真空チャンバー構成部品に含まれる。本明細書で明示的に説明する以外にも,真空チャンバー11は,その用途に応じた様々な構成部品を備えることができ,かかる構成部品も本発明が適用される真空チャンバー構成部品に含まれ得る。   The vacuum chamber components to which the present invention is applied are not limited to those shown in the figure, but include, for example, a rotation mechanism for rotating the substrate fixing jig 12 and the target setting portion 15, a thermocouple for temperature measurement, and a shutter for the viewport. The rotating part of the vacuum pump, various bolts, nuts, bands, flanges and the like provided in the vacuum chamber 11 are also included in the vacuum chamber components to which the present invention is applied. In addition to those explicitly described in this specification, the vacuum chamber 11 can be provided with various components according to its use, and such components are also included in the vacuum chamber components to which the present invention is applied. obtain.

基材本体21a,不動態皮膜21b,金属メッキ皮膜22の材質は,完成した構成部品20において,金属メッキ皮膜22が基材21から剥離し易いように適宜定められる。例えば,一実施形態において,基材21aはステンレス鋼(SUS304)等のステンレス鋼を構成部品20の形状に形成したものである。図2には,板状の基材21が示されているが,基材21aは,構成部品20の種類に応じた任意の形状を取ることができる。例えば,構成部品20がボルトの場合には,ボルトの形状となる。基材21aがステンレス鋼から成る場合には,不動態皮膜21bは,クロム水和オキシ酸化物CrOx(OH)2-x・nH2Oを主体とする皮膜であり,金属メッキ皮膜22は,電解Niメッキ皮膜,電解Snメッキ皮膜,電解Cuメッキ皮膜,電解Agメッキ皮膜,無電解Niメッキ皮膜,及び無電解Cuメッキ皮膜から成る群より選択される少なくとも1つのメッキ皮膜である。ステンレス鋼から成る基材21は,その表面粗さが算術平均粗さRaで0.7μm以下であり,クロム水和オキシ酸化物の不動態皮膜21bの膜厚は1nm以上である。また,金属メッキ皮膜22の膜厚は,いずれの種類のメッキを用いる場合でも,概ね50nmから1000μmである。金属メッキ皮膜22の膜厚は,剥離時の引っ張り応力に耐えるために,好ましくは20μmから100μmとされる。   The materials of the base body 21a, the passive film 21b, and the metal plating film 22 are appropriately determined so that the metal plating film 22 can be easily separated from the base material 21 in the completed component 20. For example, in one embodiment, the base material 21a is formed of stainless steel such as stainless steel (SUS304) in the shape of the component 20. FIG. 2 shows a plate-like base material 21, but the base material 21 a can take any shape according to the type of the component 20. For example, when the component 20 is a bolt, the shape is a bolt. When the substrate 21a is made of stainless steel, the passive film 21b is a film mainly composed of chromium hydrated oxyoxide CrOx (OH) 2-x · nH2O, and the metal plating film 22 is electrolytic Ni plating. It is at least one plating film selected from the group consisting of a film, an electrolytic Sn plating film, an electrolytic Cu plating film, an electrolytic Ag plating film, an electroless Ni plating film, and an electroless Cu plating film. The base material 21 made of stainless steel has an arithmetic mean roughness Ra of 0.7 μm or less, and the chromium hydrated oxyoxide passive film 21b has a thickness of 1 nm or more. Further, the film thickness of the metal plating film 22 is approximately 50 nm to 1000 μm, regardless of which type of plating is used. The thickness of the metal plating film 22 is preferably 20 μm to 100 μm in order to withstand the tensile stress at the time of peeling.

他の実施形態において,基材21aは,チタン合金(TP340)等のチタン合金を構成部品20の形状に形成したものである。この場合,不動態皮膜21bは,チタン酸化物を主体とする膜厚1nm以上の皮膜であり,金属メッキ皮膜22は,電解Niメッキ皮膜及び電解Cuメッキ皮膜から成る群より選択される少なくとも1つのメッキ皮膜である。チタン合金の基材21は,その表面粗さが算術平均粗さRaで0.7μm以下であり,チタン酸化物を主体とする不動態皮膜21bの膜厚は1nm以上である。   In another embodiment, the base material 21a is formed by forming a titanium alloy such as a titanium alloy (TP340) into the shape of the component 20. In this case, the passive film 21b is a film having a thickness of 1 nm or more mainly composed of titanium oxide, and the metal plating film 22 is at least one selected from the group consisting of an electrolytic Ni plating film and an electrolytic Cu plating film. It is a plating film. The titanium alloy base material 21 has a surface roughness of 0.7 μm or less in terms of arithmetic average roughness Ra, and the thickness of the passive film 21b mainly composed of titanium oxide is 1 nm or more.

他の実施形態において,基材21aは,A2000系アルミニウム合金等のアルミニウム合金を構成部品20の形状に形成したものである。この場合,不動態皮膜21bは,アルミニウム酸化物及び/又はアルミニウム水酸化物を主体とする膜厚1nm以上の皮膜であり,金属メッキ皮膜22は,電解Cuメッキ皮膜である。アルミニウム合金の基材21は,その表面粗さが算術平均粗さRaで0.3μm以下であり,アルミニウム酸化物及び/又はアルミニウム水酸化物を主体とする不動態皮膜21bの膜厚は1nm以上である。   In another embodiment, the base material 21a is formed by forming an aluminum alloy such as an A2000 series aluminum alloy into the shape of the component 20. In this case, the passive film 21b is a film having a thickness of 1 nm or more mainly composed of aluminum oxide and / or aluminum hydroxide, and the metal plating film 22 is an electrolytic Cu plating film. The base material 21 of the aluminum alloy has an arithmetic average roughness Ra of 0.3 μm or less, and the thickness of the passive film 21b mainly composed of aluminum oxide and / or aluminum hydroxide is 1 nm or more. It is.

他の実施形態において,基材21aは,無電解Niメッキ可能な任意の材質から成る基材を構成部品20の形状に形成したものであり,例えば,ステンレス鋼,鉄鋼,Al,Al合金,Ti,Ti合金,Mg,Mg合金,Cu,Cu合金,ガラス,セラミクス,インコネル,及び黄銅等の各種合金材料から成る。この場合,基材21aの表面には,常法に従って、直接、または下地層を伴って間接的に無電解Niメッキ層(不図示)が形成される。この無電解Niメッキ皮膜は,硬度がビッカース硬さHvで900以上であり,且つ,その表面粗さが算術平均粗さRaで0.6μm以下である。この無電解Niメッキ層の表層には,ニッケル酸化物を主体とするる膜厚1nm以上の不動態皮膜21bが形成される。この不動態皮膜21bの上に,金属メッキ皮膜22として,電解Niメッキ皮膜が形成される。   In another embodiment, the base material 21a is formed by forming a base material made of an arbitrary material capable of electroless Ni plating into the shape of the component 20, for example, stainless steel, steel, Al, Al alloy, Ti , Ti alloy, Mg, Mg alloy, Cu, Cu alloy, glass, ceramics, Inconel, and brass. In this case, an electroless Ni plating layer (not shown) is formed on the surface of the base material 21a directly or indirectly with a base layer according to a conventional method. This electroless Ni plating film has a hardness of 900 or more in terms of Vickers hardness Hv and a surface roughness of 0.6 μm or less in terms of arithmetic average roughness Ra. A passive film 21b having a thickness of 1 nm or more mainly composed of nickel oxide is formed on the surface layer of the electroless Ni plating layer. An electrolytic Ni plating film is formed as a metal plating film 22 on the passive film 21b.

真空チャンバー構成部品20の作成方法について,ステンレス鋼の基材21を用いる場合を例に説明する。基材21の材料としてチタン合金等の他の材料を用いる場合にも,同様の方法で構成部品20を作成することができるので,ステンレス鋼の基材21を用いる場合を代表例として説明する。まず,真空チャンバー構成部品の材料として常用されているステンレス鋼基材を準備し,構成部品20の形状に加工する。準備したステンレス鋼基材の表面粗さが算術平均粗さRaで0.7μmよりも粗い場合には,ラッピング研磨やブラスト加工により,当該ステンレス鋼の表面粗さを算術平均粗さRaで0.7μm以下となるように調整する。ステンレス鋼の表層には,通常,膜厚が1nm以上のクロム水和オキシ酸化物を主体とする不動態皮膜が形成されている。ステンレス鋼の表層にクロム水和オキシ酸化物を主体とする不動態皮膜が存在しない場合,又は,不動態皮膜21bの膜厚が1nmよりも薄い場合には,基材21を加熱することにより,基材21表層におけるステンレス鋼の酸化を促進し,基材21の表層に1nm以上のクロム水和オキシ酸化物を主体とする不動態皮膜21bを形成する。   A method of creating the vacuum chamber component 20 will be described by taking as an example the case of using a stainless steel base material 21. Even when another material such as a titanium alloy is used as the material of the base material 21, the component 20 can be produced by the same method. Therefore, the case of using the stainless steel base material 21 will be described as a representative example. First, a stainless steel substrate that is commonly used as a material for vacuum chamber components is prepared and processed into the shape of the component 20. When the surface roughness of the prepared stainless steel base material is larger than 0.7 μm in arithmetic average roughness Ra, the surface roughness of the stainless steel is set to 0. 0 in arithmetic average roughness Ra by lapping polishing or blasting. It adjusts so that it may become 7 micrometers or less. On the surface layer of stainless steel, a passive film mainly composed of chromium hydrated oxyoxide having a film thickness of 1 nm or more is usually formed. When there is no passive film mainly composed of chromium hydrated oxyoxide on the surface layer of stainless steel, or when the thickness of the passive film 21b is less than 1 nm, the substrate 21 is heated, The oxidation of the stainless steel in the surface layer of the base material 21 is promoted, and a passive film 21b mainly composed of chromium hydrated oxyoxide of 1 nm or more is formed on the surface layer of the base material 21.

次に,不動態皮膜21bの上に,電解Niメッキ皮膜,電解Snメッキ皮膜,電解Cuメッキ皮膜,電解Agメッキ皮膜,無電解Niメッキ皮膜,及び無電解Cuメッキ皮膜から成る群より選択される少なくとも1つの金属メッキ皮膜22を形成する。この金属メッキ皮膜22は,常用されている公知のメッキ法を適宜用いて形成される。   Next, it is selected from the group consisting of an electrolytic Ni plating film, an electrolytic Sn plating film, an electrolytic Cu plating film, an electrolytic Ag plating film, an electroless Ni plating film, and an electroless Cu plating film on the passive film 21b. At least one metal plating film 22 is formed. The metal plating film 22 is formed by appropriately using a well-known plating method that is commonly used.

金属メッキ皮膜22の種類及び膜厚は,基材12の材質,基材21の表面粗さ,不動態皮膜21bの形成状態,基材21表層に付与される剥離促進用の油膜や異物層の有無,及び/又は当該構成部品が使用される真空装置の条件(初期到達真空度,当該初期到達真空度への到達時間,プロセス中の真空度,原料ガスの種類,プロセス温度,プロセス中の圧力,及び印加電圧,汚染源として除去されるべき元素等)に応じて,適宜変更することができる。   The type and thickness of the metal plating film 22 include the material of the base material 12, the surface roughness of the base material 21, the formation state of the passive film 21b, the oil film for promoting peeling applied to the surface of the base material 21 and the foreign material layer. Presence / absence and / or conditions of the vacuum equipment in which the component is used (initial vacuum level, time to reach initial vacuum level, vacuum during process, type of source gas, process temperature, pressure during process , And applied voltage, elements to be removed as contamination sources, etc.).

金属メッキ皮膜22を形成する前に,基材21に対して,様々な前処理を行うことができる。例えば、金属メッキ皮膜22の形成前に,基材21の表面に油膜,ワックス,ロウ,又はグラファイトをスプレー塗布してもよく,基材21の表面に非晶質炭素膜の薄膜を形成してもよい。このような前処理を行うことにより,金属メッキ皮膜22が基材21からより一層剥離しやすくなる。スプレー塗布により形成された薄膜や非晶質炭素膜の薄膜は,メッキに必要な導電性を実質的に阻害しない程度の厚さに形成され,例えば,100nm以下の膜厚となるように形成される。基材へのメッキ皮膜の密着性を向上させるために常用されている水洗,湯浄,アルカリ脱脂,電解脱脂,アルコール洗浄,有機溶剤洗浄などの前処理は,金属メッキ皮膜22が基材21から剥がれにくくなる要因となり得るので,省略することが望ましい。   Various pre-treatments can be performed on the base material 21 before the metal plating film 22 is formed. For example, an oil film, wax, wax, or graphite may be spray-coated on the surface of the base material 21 before the metal plating film 22 is formed, and a thin film of an amorphous carbon film is formed on the surface of the base material 21. Also good. By performing such pretreatment, the metal plating film 22 is more easily peeled off from the base material 21. A thin film formed by spray coating or an amorphous carbon film is formed to a thickness that does not substantially impair the conductivity required for plating, for example, to a thickness of 100 nm or less. The For pretreatments such as water washing, hot water purification, alkaline degreasing, electrolytic degreasing, alcohol cleaning, and organic solvent cleaning that are commonly used to improve the adhesion of the plating film to the substrate, the metal plating film 22 is removed from the substrate 21. It is desirable to omit this because it can be a factor that makes it difficult to peel off.

金属メッキ皮膜22を形成する前に,不動態皮膜21bが形成された基材21の表面の一部に平滑加工を行い,当該一部の表面粗さが他の部分よりも小さくなるようにしてもよい。例えば,図2に示されているように,基材21の表面の一部に鏡面加工を施して,鏡面部23を設けても良い。この鏡面部23は,金属メッキ皮膜22の剥がし易さを考慮して,基材21表面の任意の位置に設けることができる。例えば,基材21の縁部に沿って設けられる。このように,基材21の表面の一部に,他の部分よりも表面粗さが小さい部分を設けることにより,当該部分を起点として,金属メッキ皮膜22をより剥がし易くなる。   Before forming the metal plating film 22, a part of the surface of the base material 21 on which the passive film 21b is formed is smoothed so that the surface roughness of the part becomes smaller than that of the other part. Also good. For example, as shown in FIG. 2, a mirror surface processing may be performed on a part of the surface of the base material 21 to provide a mirror surface portion 23. The mirror surface portion 23 can be provided at an arbitrary position on the surface of the base material 21 in consideration of ease of peeling of the metal plating film 22. For example, it is provided along the edge of the substrate 21. Thus, by providing a part of the surface of the base material 21 with a surface roughness smaller than that of the other part, the metal plating film 22 can be more easily peeled off starting from the part.

また,基材21の表面の一部分に粘着テープ等でマスキングを施した状態で金属メッキ皮膜22を形成することにより,当該一部分にメッキ皮膜が形成されないようにしてもよい。これにより,メッキ皮膜が形成されていない部分と形成されている部分とに段差が生じるので,この段差を起点として金属メッキ皮膜22をより容易に剥離させることができる。   Further, the metal plating film 22 may be formed in a state in which a part of the surface of the substrate 21 is masked with an adhesive tape or the like so that the plating film is not formed on the part. As a result, a step is formed between the portion where the plating film is not formed and the portion where the plating film is formed, so that the metal plating film 22 can be more easily peeled off starting from this step.

以上のようにして形成された金属メッキ皮膜22は,作業者が指先で当該金属メッキ皮膜22の一部を摘まんで引っ張るだけで,基材21から容易に剥離させることができる。金属メッキ皮膜22を摘まむために,ケガキ,ピンセット,プライヤー,ペンチなどの工具を用いることもできる。また,金属メッキ皮膜22に超音波を印加し,又は,振動を加えることにより,金属メッキ皮膜22が基材21から一層剥がれ易くなるようにすることもできる。また,金属メッキ皮膜22を交互に高温と低温にすることによっても,金属メッキ皮膜22が基材21から剥がれ易くすることができる。これらの剥離方法の一部を他の剥離方法と併用して用いることもできる。   The metal plating film 22 formed as described above can be easily peeled off from the base material 21 simply by the operator holding and pulling a part of the metal plating film 22 with a fingertip. Tools such as markings, tweezers, pliers, and pliers can be used to pick the metal plating film 22. Further, it is possible to make the metal plating film 22 more easily peeled off from the base material 21 by applying ultrasonic waves to the metal plating film 22 or applying vibration. Further, the metal plating film 22 can be easily peeled off from the substrate 21 by alternately raising the metal plating film 22 to a high temperature and a low temperature. Some of these peeling methods can be used in combination with other peeling methods.

本発明の各実施形態においては,金属メッキ皮膜22を基材21に設けても,金属メッキ皮膜22自身が汚染源となることはない。また,金属メッキ皮膜22の一方の面は基材21の面に密着しているため,水分の吸着量が増加して真空排気を妨げたりすることがない。また,金属メッキ皮膜22は,シート状に基材21から剥離され基材21に残留しない。このため,単純な剥離作業を行うだけで,基材21から金属メッキ皮膜22を除去することができる。また,シート状に剥離された金属メッキ皮膜22に付着している各種物質を容易に回収することができる。特に,金,銀,白金,ロジウム等の貴金属が金属メッキ皮膜22に付着する場合には,金属メッキ皮膜22をSnメッキ皮膜など酸などの薬液に溶解しやすい皮膜とすることができる。Snメッキ皮膜は,酸に溶解し易いので,剥離されたSnメッキ皮膜を酸溶液に浸漬させることで,Snメッキ皮膜に付着した金等の貴金属を容易に分離回収することができる。   In each embodiment of the present invention, even if the metal plating film 22 is provided on the substrate 21, the metal plating film 22 itself does not become a contamination source. Further, since one surface of the metal plating film 22 is in close contact with the surface of the base material 21, the amount of moisture adsorbed does not increase and does not hinder evacuation. Further, the metal plating film 22 is peeled off from the base material 21 in the form of a sheet and does not remain on the base material 21. For this reason, the metal plating film 22 can be removed from the base material 21 only by performing a simple peeling operation. In addition, various substances attached to the metal plating film 22 peeled off in the form of a sheet can be easily recovered. In particular, when a noble metal such as gold, silver, platinum, or rhodium adheres to the metal plating film 22, the metal plating film 22 can be a film that is easily dissolved in a chemical solution such as an acid such as an Sn plating film. Since the Sn plating film is easily dissolved in acid, precious metals such as gold attached to the Sn plating film can be easily separated and recovered by immersing the peeled Sn plating film in an acid solution.

図2には,基材21の一方の面に金属メッキ皮膜22を形成する例を説明したが,金属メッキ皮膜22は,基材21のいずれの表面にも形成され得る。また,金属メッキ皮膜22の上に,本発明の範囲において,様々な皮膜が形成され得る。例えば,金属メッキ皮膜22の上には,Snメッキ皮膜を形成することで,表面に付着した貴金属を容易に回収できるようになる。また金属メッキ皮膜22の上に,Agメッキ皮膜,Cuメッキ皮膜,Auメッキ皮膜,又はRhメッキ皮膜を形成することにより,完成品表面の導電性を向上させることができる。また,金属メッキ皮膜22の上に,非晶質炭素膜や真空プロセスで形成するAuやITOなどの膜を形成しても良い。   Although FIG. 2 illustrates an example in which the metal plating film 22 is formed on one surface of the base material 21, the metal plating film 22 can be formed on any surface of the base material 21. Various coatings can be formed on the metal plating film 22 within the scope of the present invention. For example, by forming a Sn plating film on the metal plating film 22, it becomes possible to easily collect the precious metal adhering to the surface. Further, by forming an Ag plating film, a Cu plating film, an Au plating film, or an Rh plating film on the metal plating film 22, the conductivity of the finished product surface can be improved. Further, on the metal plating film 22, an amorphous carbon film or a film such as Au or ITO formed by a vacuum process may be formed.

実施例1−1〜実施例1−6
表層に1nm以上のクロム水和オキシ酸化物が形成され,表面粗さが算術平均粗さRaで0.08μmのステンレス鋼(SUS304)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。次に,この板材の表層を希釈した中性洗剤で洗浄した。この板材の表面に,日本化学産業株式会社製のスルファミン酸Niメッキ液を用いて,常法に従い,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られたクロム水和オキシ酸化物の不動態皮膜を備えるステンレス鋼基材上に電解Niメッキ皮膜が形成された試料を実施例1−1とした。本明細書に記載されている表面粗さ(算術平均粗さRa)の測定値は,キーエンス社製超深度カラー3D形状測定顕微鏡VK-9510を用い,レンズ倍率を150倍,RUN MODEをカラー超深度,波長を408nm,最大出力を0.9mW,ピッチを0.1μmに設定して測定されたものである。
Example 1-1 to Example 1-6
A plate material of 10 cm in length, 4 cm in width, and 0.5 mm in thickness, made of stainless steel (SUS304) with a surface roughness of 0.08 μm of chromium-hydrated oxyoxide formed on the surface layer and an arithmetic average roughness Ra of 0.08 μm. Got ready. Next, the surface layer of the plate was washed with diluted neutral detergent. An electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of this plate material by using a sulfamic acid Ni plating solution manufactured by Nippon Kagaku Sangyo Co., Ltd. according to a conventional method. A sample in which an electrolytic Ni plating film was formed on a stainless steel substrate provided with the passivated film of chromium hydrated oxyoxide thus obtained was named Example 1-1. The surface roughness (arithmetic mean roughness Ra) values described in this specification were measured using a Keyence ultra deep color 3D shape measurement microscope VK-9510, with a lens magnification of 150 times and a RUN MODE of over color. It was measured with depth, wavelength set to 408 nm, maximum output set to 0.9 mW, and pitch set to 0.1 μm.

実施例1−1と同じステンレス鋼の板材を準備し,この板材の表面に,日本化学産業株式会社製のピロリン酸Cuメッキ液を用いて,常法に従い,膜厚が約25μmの電解Cuメッキを形成した。このようにして得られたクロム水和オキシ酸化物の不動態皮膜を備えるステンレス鋼基材上に電解Cuメッキ皮膜が形成された試料を実施例1−2とした。   The same stainless steel plate as in Example 1-1 was prepared, and electrolytic Cu plating having a film thickness of about 25 μm was prepared on the surface of this plate using a pyrophosphoric acid Cu plating solution manufactured by Nippon Chemical Industry Co., Ltd. according to a conventional method. Formed. A sample in which the electrolytic Cu plating film was formed on the stainless steel substrate provided with the passive film of the chromium hydrated oxyoxide thus obtained was named Example 1-2.

実施例1−1と同じステンレス鋼の板材を準備し,この板材の表面に,石原薬品株式会社製のUTBSnメッキ液を用いて,常法に従い,膜厚が約25μmの電解Snメッキを形成した。このようにして得られたクロム水和オキシ酸化物の不動態皮膜を備えるステンレス鋼基材上に電解Snメッキ皮膜が形成された試料を実施例1−3とした。   The same stainless steel plate as in Example 1-1 was prepared, and electrolytic Sn plating with a film thickness of about 25 μm was formed on the surface of this plate using a UTBSn plating solution manufactured by Ishihara Pharmaceutical Co., Ltd. according to a conventional method. . A sample in which an electrolytic Sn plating film was formed on a stainless steel substrate provided with a passivated film of chromium hydrated oxyoxide thus obtained was named Example 1-3.

実施例1−1と同じステンレス鋼の板材を準備し,この板材の表面に,大和化成株式会社製のダインシルバーメッキ液を用いて,常法に従い,膜厚が約25μmの電解Agメッキを形成した。このようにして得られたクロム水和オキシ酸化物の不動態皮膜を備えるステンレス鋼基材上に電解Agメッキ皮膜が形成された試料を実施例1−4とした。   The same stainless steel plate as in Example 1-1 was prepared, and electrolytic Ag plating with a film thickness of about 25 μm was formed on the surface of this plate using a dine silver plating solution manufactured by Daiwa Kasei Co., Ltd. according to a conventional method. did. A sample in which an electrolytic Ag plating film was formed on a stainless steel substrate provided with the passivated film of chromium hydrated oxyoxide thus obtained was named Example 1-4.

実施例1−1と同じステンレス鋼の板材を準備し,この板材の表面に,メルテックス株式会社製のメルプレートNI−2280LF M1メッキ液,メルプレートNI−2280LF M2メッキ液を用いて,常法に従い,リン濃度が約12.8wt%で膜厚が約25μmの無電解Ni−Pメッキを形成した。このようにして得られたクロム水和オキシ酸化物の不動態皮膜を備えるステンレス鋼基材上に無電解Ni−Pメッキ皮膜が形成された試料を実施例1−5とした。   The same stainless steel plate material as in Example 1-1 was prepared, and Melplate NI-2280LF M1 plating solution and Melplate NI-2280LF M2 plating solution manufactured by Meltex Co., Ltd. were used on the surface of this plate material. Accordingly, an electroless Ni—P plating having a phosphorus concentration of about 12.8 wt% and a film thickness of about 25 μm was formed. A sample in which an electroless Ni—P plating film was formed on a stainless steel substrate provided with the thus obtained passive film of chromium hydrated oxyoxide was designated as Example 1-5.

実施例1−1と同じステンレス鋼の板材を準備し,この板材の表面に,メルテックス株式会社製のメルプレートCuメッキ液を用いて,常法に従い,膜厚が約25μmの無電界Cuメッキを形成した。このようにして得られたクロム水和オキシ酸化物の不動態皮膜を備えるステンレス鋼基材上に無電界Cuメッキ皮膜が形成された試料を実施例1−6とした。   The same stainless steel plate as in Example 1-1 was prepared, and electroless Cu plating with a film thickness of about 25 μm was performed on the surface of the plate using Melplate Cu plating solution manufactured by Meltex Co., Ltd. according to a conventional method. Formed. A sample in which an electroless Cu plating film was formed on a stainless steel substrate provided with the thus obtained passive film of chromium hydrated oxyoxide was defined as Example 1-6.

実施例2−1〜実施例2−6
実施例1−1と同じく,表層に1nm以上のクロム水和オキシ酸化物が形成されており,表面粗さが算術平均粗さRaで0.08μmのステンレス鋼(SUS304)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。そして,この板材にブラスト処理を行い,表面粗さを算術平均粗さRaで0.2μmとした。次に,この板材の表層を希釈した中性洗剤で洗浄した。そして,この板材の表面に,日本化学産業株式会社製のスルファミン酸Niメッキ液を用いて,常法に従い,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を実施例2−1とした。
Example 2-1 to Example 2-6
As in Example 1-1, chromium hydrated oxyoxide of 1 nm or more is formed on the surface layer, the surface roughness is made of stainless steel (SUS304) having an arithmetic average roughness Ra of 0.08 μm, 10 cm in length, A plate material having a width of 4 cm and a thickness of 0.5 mm was prepared. And this board | plate material was blasted and the surface roughness was 0.2 micrometer by arithmetic mean roughness Ra. Next, the surface layer of the plate was washed with diluted neutral detergent. Then, an electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the plate material by using a sulfamic acid Ni plating solution manufactured by Nippon Chemical Industry Co., Ltd. according to a conventional method. The sample thus obtained was named Example 2-1.

実施例2−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.2μm)に,実施例1−2と同様の方法で膜厚が約25μmの電解Cuメッキを形成し,実施例2−2の試料を得た。また,実施例2−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.2μm)に,実施例1−3と同様の方法で膜厚が約25μmの電解Snメッキを形成し,実施例2−3の試料を得た。また,実施例2−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.2μm)に,実施例1−4と同様の方法で膜厚が約25μmの電解Agメッキを形成し,実施例2−4の試料を得た。また,実施例2−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.2μm)に,実施例1−5と同様の方法で膜厚が約25μmの無電解Ni−Pメッキを形成し,実施例2−5の試料を得た。また,実施例2−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.2μm)に,実施例1−6と同様の方法で膜厚が約25μmの無電解Cuメッキを形成し,実施例2−6の試料を得た。   An electrolytic Cu plating having a film thickness of about 25 μm is formed on a stainless steel plate material (Ra is 0.2 μm) blasted as in Example 2-1 in the same manner as in Example 1-2. -2 sample was obtained. Also, electrolytic Sn plating having a film thickness of about 25 μm was formed on a stainless steel plate (Ra: 0.2 μm) blasted in the same manner as in Example 2-1 in the same manner as in Example 2-1. The sample of Example 2-3 was obtained. Further, electrolytic Ag plating having a film thickness of about 25 μm was formed on a stainless steel plate material (Ra: 0.2 μm) blasted in the same manner as in Example 2-1 in the same manner as in Example 2-1, and then performed. The sample of Example 2-4 was obtained. Further, electroless Ni-P plating having a film thickness of about 25 μm is formed on the stainless steel plate material (Ra is 0.2 μm) as in Example 2-1 by the same method as in Example 1-5. Thus, a sample of Example 2-5 was obtained. Further, an electroless Cu plating having a film thickness of about 25 μm is formed on the stainless steel plate material (Ra is 0.2 μm) blasted in the same manner as in Example 2-1 by the same method as in Example 1-6. A sample of Example 2-6 was obtained.

実施例3−1〜実施例3−6
実施例1−1と同じく,表層に1nm以上のクロム水和オキシ酸化物が形成されており,表面粗さが算術平均粗さRaで0.08μmのステンレス鋼(SUS304)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。そして,この板材にブラスト処理を行い,表面粗さを算術平均粗さRaで0.7μmとした。次に,この板材の表層を希釈した中性洗剤で洗浄した。そして,この板材の表面に,日本化学産業株式会社製のスルファミン酸Niメッキ液を用いて,常法に従い,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られたクロム水和オキシ酸化物の不動態皮膜を備えるステンレス鋼基材上に電解Niメッキ皮膜が形成された試料を実施例3−1とした。
Example 3-1 to Example 3-6
As in Example 1-1, chromium hydrated oxyoxide of 1 nm or more is formed on the surface layer, and the surface roughness is made of stainless steel (SUS304) having an arithmetic average roughness Ra of 0.08 μm, 10 cm in length, A plate material having a width of 4 cm and a thickness of 0.5 mm was prepared. And this board | plate material was blasted and the surface roughness was 0.7 micrometer by arithmetic mean roughness Ra. Next, the surface layer of the plate was washed with diluted neutral detergent. Then, an electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the plate material by using a sulfamic acid Ni plating solution manufactured by Nippon Chemical Industry Co., Ltd. according to a conventional method. A sample in which the electrolytic Ni plating film was formed on the stainless steel substrate provided with the passivated film of chromium hydrated oxyoxide thus obtained was named Example 3-1.

実施例3−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.7μm)に,実施例1−2と同様の方法で膜厚が約25μmの電解Cuメッキを形成し,実施例3−2の試料を得た。また,実施例3−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.7μm)に,実施例1−3と同様の方法で膜厚が約25μmの電解Snメッキを形成し,実施例3−3の試料を得た。また,実施例3−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.7μm)に,実施例1−4と同様の方法で膜厚が約25μmの電解Agメッキを形成し,実施例3−4の試料を得た。また,実施例3−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.7μm)に,実施例1−5と同様の方法で膜厚が約25μmの無電解Ni−Pメッキを形成し,実施例3−5の試料を得た。また,実施例3−1と同じくブラスト処理されたステンレス鋼の板材(Raは0.7μm)に,実施例1−6と同様の方法で膜厚が約25μmの無電解Cuメッキを形成し,実施例3−6の試料を得た。   An electrolytic Cu plating having a film thickness of about 25 μm is formed on a stainless steel plate material (Ra is 0.7 μm) blasted in the same manner as in Example 3-1 in the same manner as in Example 3-1, -2 sample was obtained. Also, electrolytic Sn plating having a film thickness of about 25 μm was formed on a stainless steel plate (Ra: 0.7 μm) blasted in the same manner as in Example 3-1 in the same manner as in Example 3-1. A sample of Example 3-3 was obtained. Also, electrolytic Ag plating with a film thickness of about 25 μm was formed on the stainless steel plate material (Ra is 0.7 μm) blasted in the same manner as in Example 3-1 in the same manner as in Example 3-1. The sample of Example 3-4 was obtained. Also, electroless Ni-P plating having a film thickness of about 25 μm is formed on the stainless steel plate material (Ra is 0.7 μm) blasted in the same manner as in Example 3-1, in the same manner as in Example 1-5. Thus, a sample of Example 3-5 was obtained. Further, electroless Cu plating having a film thickness of about 25 μm is formed on a stainless steel plate material (Ra is 0.7 μm) blasted in the same manner as in Example 3-1, in the same manner as in Example 1-6. A sample of Example 3-6 was obtained.

以上のようにして作成された実施例1−1〜実施例1−6,実施例2−1〜実施例2−6,及び実施例3−1〜実施例3−6の各々の試料について,試験者の片方の掌の指で,ステンレス鋼基材の各金属メッキ皮膜が形成された面の縁部を基材本体から離れる方向(概ね図2に示す矢印の方向)に引っ張り,金属メッキ皮膜がステンレス鋼基材本体から剥離するか否かを確認した。その結果,実施例1−1〜実施例1−6,実施例2−1〜実施例2−6,及び実施例3−1〜実施例3−6の各試料について,金属メッキ皮膜をシート状に剥離することができた。本明細書において,シート状に剥離できた,とは,金属メッキ皮膜を剥がす工程で,当該皮膜が基材に皮膜の一部が残らずに,基材表面に形成されている金属メッキ皮膜がその皮膜としての一体性を保ったままシート状に剥離された状態を指す。図2は,金属メッキ皮膜22が基材21からシート状に剥離されている様子を概略的に示している。なお,実施例3−1〜実施例3−6の試料については,試料のステンレス鋼基材の端部(図2における鏡面部23の位置に相当する位置)に表面粗さがRa0.08μmの平滑化処理を行った部分を作成し,当該部分を指で摘まんで剥離させた。   About each sample of Example 1-1 to Example 1-6, Example 2-1 to Example 2-6, and Example 3-1 to Example 3-6 prepared as described above, Pull the edge of the surface of the stainless steel substrate on which the metal plating film is formed with one finger of the tester in the direction away from the substrate body (generally in the direction of the arrow shown in FIG. 2). Whether or not peeled off from the stainless steel base body. As a result, for each sample of Example 1-1 to Example 1-6, Example 2-1 to Example 2-6, and Example 3-1 to Example 3-6, the metal plating film was formed into a sheet shape. It was possible to peel off. In this specification, “peeling into a sheet” means that the metal plating film is formed on the surface of the substrate without leaving a part of the film on the substrate. The state peeled in the sheet form, maintaining the integrity as the film. FIG. 2 schematically shows a state in which the metal plating film 22 is peeled from the base material 21 in a sheet shape. For the samples of Example 3-1 to Example 3-6, the surface roughness Ra is 0.08 μm at the end of the stainless steel substrate of the sample (the position corresponding to the position of the mirror surface portion 23 in FIG. 2). A smoothed part was created, and the part was picked with a finger and peeled off.

このように,クロム水和オキシ酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.08μm,0.2μm,及び0.7μmのステンレス鋼基材の表面に,この不動態皮膜を介して,電解Niメッキ皮膜,電解Snメッキ皮膜,電解Cuメッキ皮膜,電解Agメッキ皮膜,無電解Ni−Pメッキ皮膜,及び無電解Cuメッキ皮膜から成る群より選択される少なくとも1つの金属メッキ皮膜を作成した場合,当該金属メッキ皮膜は,当該ステンレス鋼基材から容易に剥離できることが確認された。基材の表面粗さが小さいほど金属メッキ皮膜は剥離しやすいと考えられるので,以上の実験結果から,表面粗さが算術平均粗さRaで0.7μm以下のステンレス鋼基材の表面に,不動態皮膜を介して上記金属メッキ皮膜を作成することにより,当該金属メッキ皮膜を基材から容易に剥離できることが確認できた。   Thus, the surface layer is provided with a passive film mainly composed of chromium hydrated oxyoxide and having a film thickness of 1 nm or more, and the surface roughness is 0.08 μm, 0.2 μm, and 0.7 μm in arithmetic mean roughness Ra. Electrolytic Ni plating film, electrolytic Sn plating film, electrolytic Cu plating film, electrolytic Ag plating film, electroless Ni-P plating film, and electroless Cu plating through the passive film on the surface of stainless steel It was confirmed that when at least one metal plating film selected from the group consisting of the films was prepared, the metal plating film could be easily peeled off from the stainless steel substrate. As the surface roughness of the base material is smaller, the metal plating film is more easily peeled off. From the above experimental results, the surface roughness of the surface of the stainless steel base material with an arithmetic average roughness Ra of 0.7 μm or less is as follows. It was confirmed that the metal plating film can be easily peeled from the substrate by forming the metal plating film through a passive film.

実施例4−1〜実施例4−2
表層に1nm以上のチタン酸化物を主体とする不動態皮膜が形成されており,表面粗さが算術平均粗さRaで0.38μmのチタン合金(TP340)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。そして,この板材にブラスト処理を行い,表面粗さを算術平均粗さRaで0.28μmとした。次に,この板材の表層を希釈した中性洗剤で洗浄した。この板材の表面に,日本化学産業株式会社製のスルファミン酸Niメッキ液を用いて,常法に従い,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を実施例4−1とした。また,実施例4−1と同じチタン合金の板材(Raは0.28μm)に,実施例1−2と同様の方法で膜厚が約25μmの電解Cuメッキを形成し,実施例4−2の試料を得た。
Example 4-1 to Example 4-2
A passive film mainly composed of titanium oxide of 1 nm or more is formed on the surface layer, and the surface roughness is made of a titanium alloy (TP340) with an arithmetic average roughness Ra of 0.38 μm, 10 cm long, 4 cm wide, thickness A 0.5 mm plate was prepared. And this board | plate material was blasted and surface roughness was set to 0.28 micrometer by arithmetic mean roughness Ra. Next, the surface layer of the plate was washed with diluted neutral detergent. An electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of this plate material by using a sulfamic acid Ni plating solution manufactured by Nippon Kagaku Sangyo Co., Ltd. according to a conventional method. The sample thus obtained was named Example 4-1. Further, electrolytic Cu plating having a film thickness of about 25 μm was formed on the same titanium alloy plate (Ra: 0.28 μm) as in Example 4-1 by the same method as in Example 1-2, and Example 4-2. Samples were obtained.

実施例5−1〜実施例5−2
実施例4−1と同じく,表層に1nm以上のチタン酸化物を主体とする不動態皮膜が形成されており,表面粗さが算術平均粗さRaで0.38μmのチタン合金(TP340)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。次に,この板材の表層を希釈した中性洗剤で洗浄した。そして,この板材の表面に,実施例1−1と同様の方法で,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を実施例5−1とした。また,実施例5−1と同じくブラスト処理されたチタン合金の板材(Raは0.38μm)に,実施例1−2と同様の方法で膜厚が約25μmの電解Cuメッキを形成し,実施例5−2の試料を得た。
Example 5-1 to Example 5-2
As in Example 4-1, a passive film mainly composed of titanium oxide of 1 nm or more is formed on the surface layer, and the surface roughness is made of a titanium alloy (TP340) having an arithmetic average roughness Ra of 0.38 μm. A plate material having a length of 10 cm, a width of 4 cm, and a thickness of 0.5 mm was prepared. Next, the surface layer of the plate was washed with diluted neutral detergent. Then, an electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the plate material in the same manner as in Example 1-1. The sample thus obtained was named Example 5-1. Further, an electrolytic Cu plating having a film thickness of about 25 μm was formed on a titanium alloy plate material (Ra is 0.38 μm) blasted in the same manner as in Example 5-1 and performed. The sample of Example 5-2 was obtained.

実施例6−1〜実施例6−2
実施例5−1と同じく,表層に1nm以上のチタン酸化物を主体とする不動態皮膜が形成されており,表面粗さが算術平均粗さRaで0.38μmのチタン合金(TP340)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。そして,この板材にブラスト処理を行い,表面粗さを算術平均粗さRaで0.7μmとした。次に,この板材の表層を希釈した中性洗剤で洗浄した。そして,この板材の表面に,実施例1−1と同様の方法で,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を実施例6−1とした。実施例6−1と同じくブラスト処理されたチタン合金の板材(Raは0.7μm)に,実施例1−2と同様の方法で膜厚が約25μmの電解Cuメッキを形成し,実施例6−2の試料を得た。
Example 6-1 to Example 6-2
As in Example 5-1, a passive film mainly composed of titanium oxide of 1 nm or more is formed on the surface layer, and the surface roughness is made of a titanium alloy (TP340) having an arithmetic average roughness Ra of 0.38 μm. A plate material having a length of 10 cm, a width of 4 cm, and a thickness of 0.5 mm was prepared. And this board | plate material was blasted and the surface roughness was 0.7 micrometer by arithmetic mean roughness Ra. Next, the surface layer of the plate was washed with diluted neutral detergent. Then, an electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the plate material in the same manner as in Example 1-1. The sample thus obtained was named Example 6-1. An electrolytic Cu plating having a film thickness of about 25 μm was formed on a titanium alloy plate material (Ra: 0.7 μm) blasted as in Example 6-1 by the same method as in Example 1-2. -2 sample was obtained.

以上のようにして作成された実施例4−1〜実施例4−2,実施例5−1〜実施例5−2,及び実施例6−1〜実施例6−2の各々の試料について,試験者の片方の掌の指で,チタン合金基材の各金属メッキ皮膜が形成された面の縁部を基材本体から離れる方向(概ね図2に示す矢印の方向)に引っ張り,金属メッキ皮膜がチタン合金基材本体から剥離するか否かを確認した。その結果,実施例4−1〜実施例4−2,実施例5−1〜実施例5−2,及び実施例6−1〜実施例6−2の各試料について,金属メッキ皮膜をシート状に剥離することができた。なお,実施例6−1〜実施例6−2の試料については,試料のステンレス鋼基材の端部(図2における鏡面部23の位置に相当する位置)に表面粗さがRa0.08μmの平滑化処理を行った部分を作成し,当該部分を指で摘まんで剥離させた。   About each sample of Example 4-1 to Example 4-2, Example 5-1 to Example 5-2, and Example 6-1 to Example 6-2 prepared as described above, With the finger of one hand of the tester, pull the edge of the surface of the titanium alloy substrate on which each metal plating film is formed in the direction away from the substrate body (generally in the direction of the arrow shown in FIG. 2). It was confirmed whether or not peeled off from the titanium alloy base body. As a result, for each sample of Example 4-1 to Example 4-2, Example 5-1 to Example 5-2, and Example 6-1 to Example 6-2, the metal plating film was formed into a sheet shape. It was possible to peel off. In addition, for the samples of Example 6-1 to Example 6-2, the surface roughness Ra is 0.08 μm at the end of the stainless steel substrate of the sample (the position corresponding to the position of the mirror surface portion 23 in FIG. 2). A smoothed part was created, and the part was picked with a finger and peeled off.

このように,チタン酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.28μm,0.38μm,及び0.7μmのチタン合金基材の表面に,当該不動態皮膜を介して,電解Niメッキ皮膜及び電解Cuメッキ皮膜から成る群より選択される少なくとも1つの金属メッキ皮膜を作成した場合,当該金属メッキ皮膜は,当該チタン合金基材から容易に剥離できることが確認された。基材の表面粗さが小さいほど金属メッキ皮膜は剥離しやすいと考えられるので,以上の実験結果から,表面粗さが算術平均粗さRaで0.7μm以下のチタン合金基材の表面に,不動態皮膜を介して上記金属メッキ皮膜を作成することにより,当該金属メッキ皮膜を基材から容易に剥離できることが確認できた。   In this way, a titanium alloy mainly composed of titanium oxide and having a passive film having a thickness of 1 nm or more on the surface, titanium alloys whose surface roughness is 0.28 μm, 0.38 μm, and 0.7 μm in arithmetic mean roughness Ra. When at least one metal plating film selected from the group consisting of an electrolytic Ni plating film and an electrolytic Cu plating film is formed on the surface of the substrate via the passive film, the metal plating film is formed of the titanium alloy. It was confirmed that it can be easily peeled off from the substrate. As the surface roughness of the base material is small, the metal plating film is considered to be easily peeled off. From the above experimental results, the surface roughness of the surface of the titanium alloy base material having an arithmetic average roughness Ra of 0.7 μm or less It was confirmed that the metal plating film can be easily peeled from the substrate by forming the metal plating film through a passive film.

実施例7−1
表層に1nm以上のアルミニウム酸化物及びアルミニウム水酸化物を主体とする不動態皮膜が形成されており,表面粗さが算術平均粗さRaで0.3μmのA2000系アルミニウム合金から成る,縦10cm、横4cm、厚み0.6mmの板材を準備した。次に,この板材の表層を希釈した中性洗剤で洗浄した。この板材の表面に,実施例1−2と同様に,膜厚が約25μmの電解Cuメッキ皮膜を形成した。このようにして得られた試料を実施例7−1とした。
Example 7-1
A passive film mainly composed of aluminum oxide and aluminum hydroxide of 1 nm or more is formed on the surface layer, and the surface roughness is made of an A2000 series aluminum alloy having an arithmetic average roughness Ra of 0.3 μm, 10 cm in length, A plate material having a width of 4 cm and a thickness of 0.6 mm was prepared. Next, the surface layer of the plate was washed with diluted neutral detergent. An electrolytic Cu plating film having a film thickness of about 25 μm was formed on the surface of this plate material in the same manner as in Example 1-2. The sample thus obtained was named Example 7-1.

以上のようにして作成された実施例7−1の試料について,試験者の片方の掌の指で,アルミニウム合金基材の金属メッキ皮膜が形成された面の縁部を基材本体から離れる方向(概ね図2に示す矢印の方向)に引っ張り,金属メッキ皮膜がアルミニウム合金基材本体から剥離するか否かを確認した。その結果,実施例7−1の試料について,金属メッキ皮膜をシート状に剥離することができた。このように,アルミニウム酸化物及びアルミニウム水酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.3μmのアルミニウム合金基材の表面に,当該不動態皮膜を介して,電解Cuメッキ皮膜を作成した場合,当該電解Cuメッキ皮膜は,当該アルミニウム合金基材から容易に剥離できることが確認された。基材の表面粗さが小さいほど金属メッキ皮膜は剥離しやすいと考えられるので,以上の実験結果から,表面粗さが算術平均粗さRaで0.3μm以下のアルミニウム合金基材の表面に,不動態皮膜を介して当該電解Cuメッキ皮膜を作成することにより,当該電解Cuメッキ皮膜を基材から容易に剥離できることが確認できた。   For the sample of Example 7-1 prepared as described above, the edge of the surface on which the metal plating film of the aluminum alloy base material is formed is separated from the base material body with the finger of one palm of the tester. It was pulled (generally in the direction of the arrow shown in FIG. 2) to confirm whether or not the metal plating film was peeled off from the aluminum alloy base body. As a result, for the sample of Example 7-1, the metal plating film could be peeled off in a sheet form. As described above, the surface of the aluminum alloy substrate having a surface roughness of 0.3 μm in terms of arithmetic mean roughness Ra is provided on the surface layer with a passive film mainly composed of aluminum oxide and aluminum hydroxide and having a film thickness of 1 nm or more. In addition, it was confirmed that when an electrolytic Cu plating film was prepared via the passive film, the electrolytic Cu plating film could be easily peeled from the aluminum alloy substrate. As the surface roughness of the base material is small, the metal plating film is considered to be more easily peeled off. From the above experimental results, the surface roughness of the surface of the aluminum alloy base material with an arithmetic average roughness Ra of 0.3 μm or less is as follows. It was confirmed that the electrolytic Cu plating film can be easily peeled from the substrate by creating the electrolytic Cu plating film through the passive film.

実施例8−1〜実施例8−2 縦10cm、横4cm、厚み0.5mmのステンレス鋼(SUS304)の板材の表面に無電解Niメッキ皮膜を形成した基材を準備した。この基材(無電解ニッケルめっき皮膜)の表面粗さは,算術平均粗さRaで0.6μmであった。次に,この基材を,400℃で1時間加熱した。加熱後の基材の表層(無電解ニッケルめっき皮膜の表層)には,ニッケル酸化物を主体とする膜厚1nm以上の不動態皮膜が形成されており,加熱後の基材表面の硬度は,ビッカース硬さHvで900であった。この加熱後の基材の表面に,実施例1−1と同様に,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を実施例8−1とした。 Example 8-1 to Example 8-2 A base material having an electroless Ni plating film formed on the surface of a stainless steel (SUS304) plate having a length of 10 cm, a width of 4 cm, and a thickness of 0.5 mm was prepared. The surface roughness of the substrate (electroless nickel plating film) was 0.6 μm in terms of arithmetic average roughness Ra. Next, the substrate was heated at 400 ° C. for 1 hour. On the surface layer of the substrate after heating (surface layer of electroless nickel plating film), a passive film with a thickness of 1 nm or more mainly composed of nickel oxide is formed. The hardness of the substrate surface after heating is as follows: The Vickers hardness Hv was 900. An electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the heated substrate in the same manner as in Example 1-1. The sample thus obtained was named Example 8-1.

比較例1
縦10cm、横4cm、厚み0.5mmのステンレス鋼(SUS304)の板材の表面に無電解Niメッキ皮膜を形成した基材を準備した。この基材の表面粗さは,算術平均粗さRaで0.13μmであった。次に,この基材の表面に,実施例1−1と同様に,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を比較例1とした。
Comparative Example 1
A base material having an electroless Ni plating film formed on the surface of a stainless steel (SUS304) plate having a length of 10 cm, a width of 4 cm, and a thickness of 0.5 mm was prepared. The surface roughness of this substrate was 0.13 μm in terms of arithmetic average roughness Ra. Next, an electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the substrate in the same manner as in Example 1-1. The sample thus obtained was designated as Comparative Example 1.

以上のようにして作成された実施例8−1及び比較例1の試料について,試験者の片方の掌の指で,基材の金属メッキ皮膜が形成された面の縁部を基材本体から離れる方向(概ね図2に示す矢印の方向)に引っ張り,電解Niメッキ皮膜が基材本体から剥離するか否かを確認した。その結果,実施例8−1の試料について,電解Niメッキ皮膜をシート状に剥離することができた。一方,比較例1の試料については,電解Niメッキ皮膜を剥がす際に,その一部が基材表面に残留し,シート状に剥がすことができなかった。このように,ニッケル酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.6μmの無電解Niメッキ皮膜を備えた基材の表面に,当該不動態皮膜を介して電解Niメッキ皮膜を作成した場合,当該電解Niメッキ皮膜は,当該基材から容易に剥離できることが確認された。基材の表面粗さが小さいほど金属メッキ皮膜は剥離しやすいと考えられるので,以上の実験結果から,表面粗さが算術平均粗さRaで0.6μm以下の無電解Niメッキ皮膜が設けられた基材の表面に不動態皮膜を介して電解Niメッキ皮膜を作成することにより,当該電解Niメッキ皮膜を,無電解Niメッキ皮膜が形成された基材から容易に剥離できることが確認できた。   For the samples of Example 8-1 and Comparative Example 1 prepared as described above, the edge of the surface on which the metal plating film of the base material was formed was removed from the base material body with the finger of one palm of the tester. Pulling in a direction away (generally in the direction of the arrow shown in FIG. 2), it was confirmed whether or not the electrolytic Ni plating film was peeled off from the substrate body. As a result, for the sample of Example 8-1, the electrolytic Ni plating film could be peeled off in a sheet form. On the other hand, when the electrolytic Ni plating film was peeled off, a part of the sample of Comparative Example 1 remained on the substrate surface and could not be peeled off into a sheet shape. As described above, the surface layer of the passive film mainly composed of nickel oxide and having a film thickness of 1 nm or more is provided, and the surface roughness of the base material is provided with an electroless Ni plating film having an arithmetic average roughness Ra of 0.6 μm. When an electrolytic Ni plating film was formed on the surface via the passive film, it was confirmed that the electrolytic Ni plating film can be easily peeled from the substrate. As the surface roughness of the base material is smaller, it is considered that the metal plating film is more easily peeled off. From the above experimental results, an electroless Ni plating film having an arithmetic average roughness Ra of 0.6 μm or less is provided. It was confirmed that the electrolytic Ni plating film was easily peeled from the base material on which the electroless Ni plating film was formed by preparing an electrolytic Ni plating film on the surface of the base material through a passive film.

比較例2−1〜比較例2−4
表面粗さが算術平均粗さRaで0.65μmの鉄(SPCC)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。そして,この板材の表面に,実施例1−1と同様の方法で,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を比較例2−1とした。また,比較例2−1と同じ鉄製の板材(Raは0.65μm)に,実施例1−2と同様の方法で膜厚が約25μmの電解Cuメッキを形成し,比較例2−2の試料を得た。また,比較例2−1と同じ鉄製の板材(Raは0.65μm)に,実施例1−3と同様の方法で膜厚が約25μmの電解Snメッキを形成し,比較例2−3の試料を得た。また,比較例2−1と同じ鉄製の板材(Raは0.65μm)に,実施例1−4と同様の方法で膜厚が約25μmの電解Agメッキを形成し,比較例2−4の試料を得た。
Comparative Example 2-1 to Comparative Example 2-4
A plate material having a surface roughness of arithmetic average roughness Ra of 0.65 μm of iron (SPCC) and having a length of 10 cm, a width of 4 cm and a thickness of 0.5 mm was prepared. Then, an electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the plate material in the same manner as in Example 1-1. The sample thus obtained was designated as Comparative Example 2-1. Further, electrolytic Cu plating having a film thickness of about 25 μm was formed on the same iron plate material (Ra is 0.65 μm) as in Comparative Example 2-1 by the same method as in Example 1-2. A sample was obtained. In addition, electrolytic Sn plating having a film thickness of about 25 μm was formed on the same iron plate material (Ra is 0.65 μm) as in Comparative Example 2-1 by the same method as in Example 1-3. A sample was obtained. Further, electrolytic Ag plating having a film thickness of about 25 μm was formed on the same iron plate material (Ra is 0.65 μm) as in Comparative Example 2-1 by the same method as in Example 1-4, and Comparative Example 2-4. A sample was obtained.

比較例3−1〜比較例3−4
表面粗さが算術平均粗さRaで0.05μmの鉄(SPCC)から成る,縦10cm、横4cm、厚み0.5mmの板材を準備した。そして,この板材の表面に,実施例1−1と同様の方法で,膜厚が約25μmの電解Niメッキ皮膜を形成した。このようにして得られた試料を比較例3−1とした。また,比較例3−1と同じ鉄製の板材(Raは0.05μm)に,実施例1−2と同様の方法で膜厚が約25μmの電解Cuメッキを形成し,比較例3−2の試料を得た。また,比較例3−1と同じ鉄製の板材(Raは0.65μm)に,実施例1−3と同様の方法で膜厚が約25μmの電解Snメッキを形成し,比較例3−3の試料を得た。また,比較例3−1と同じ鉄製の板材(Raは0.65μm)に,実施例1−4と同様の方法で膜厚が約25μmの電解Agメッキを形成し,比較例3−4の試料を得た。
Comparative Example 3-1 to Comparative Example 3-4
A plate material having a surface roughness of arithmetic mean roughness Ra of 0.05 μm of iron (SPCC) and having a length of 10 cm, a width of 4 cm, and a thickness of 0.5 mm was prepared. Then, an electrolytic Ni plating film having a film thickness of about 25 μm was formed on the surface of the plate material in the same manner as in Example 1-1. The sample thus obtained was designated as Comparative Example 3-1. Further, electrolytic Cu plating having a film thickness of about 25 μm was formed on the same iron plate material (Ra is 0.05 μm) as in Comparative Example 3-1 by the same method as in Example 1-2, and Comparative Example 3-2. A sample was obtained. In addition, electrolytic Sn plating having a film thickness of about 25 μm was formed on the same iron plate material (Ra is 0.65 μm) as in Comparative Example 3-1 by the same method as in Example 1-3, and Comparative Example 3-3. A sample was obtained. Further, electrolytic Ag plating having a film thickness of about 25 μm was formed on the same iron plate material (Ra is 0.65 μm) as in Comparative Example 3-1 by the same method as in Example 1-4, and Comparative Example 3-4 A sample was obtained.

以上のようにして作成された比較例2−1〜比較例2−4及び比較例3−1〜比較例3−4の各試料について,試験者の片方の掌の指で,基材の金属メッキ皮膜が形成された面の縁部を基材本体から離れる方向(概ね図2に示す矢印の方向)に引っ張り,各金属メッキ皮膜が基材本体から剥離するか否かを確認した。その結果,比較例2−1〜比較例2−4及び比較例3−1〜比較例3−4の各試料について,電解Niメッキ皮膜を剥がす際に,その一部が基材表面に残留し,シート状に剥がすことができなかった。このように不動態皮膜が形成されにくい,鉄製の基材に金属メッキ皮膜を形成しても,シート状に剥離できないことが確認できた。   About each sample of Comparative Example 2-1 to Comparative Example 2-4 and Comparative Example 3-1 to Comparative Example 3-4 prepared as described above, the tester's palm finger is used to form the base metal. The edge of the surface on which the plating film was formed was pulled away from the base body (generally in the direction of the arrow shown in FIG. 2) to confirm whether each metal plating film was peeled off from the base body. As a result, a part of the samples of Comparative Example 2-1 to Comparative Example 2-4 and Comparative Example 3-1 to Comparative Example 3-4 remained on the substrate surface when the electrolytic Ni plating film was peeled off. , It could not be peeled into a sheet. In this way, it was confirmed that a passive film was difficult to form, and even if a metal plating film was formed on an iron substrate, it could not be peeled into a sheet.

以下のように,本発明の一実施形態に従って防着板を作製し,作製した防着板を設置した真空チャンバーを用いて成膜処理を行い,成膜処理後の防着板から金属メッキ皮膜が剥離可能か否かを確認した。まず,直径φ110mm,厚さ1mm,算術平均粗さRa0.08μmの円板型ステンレス鋼(SUS304)の表面に,クロム水和オキシ酸化物を主体とする不動態皮膜を介して膜厚25μmの電解Niメッキ皮膜が形成された防着板の試験片を準備した。次に,この試験片を,高圧DCマイクロパルスプラズマCVD装置用の真空チャンバー内に配置した。また,前記円筒形のステンレス鋼よりなる防着板の対抗電極となる円柱形状のステンレス鋼(SUS304)のワーク(直径φ110mm、高さ300m)を準備し,当該ワークを,その円形の底部が前記防着板の試験片の一方の円形面と対抗する位置に配置した。このような配置において,ワーク側をアノード,防着板の試験片がカソードとなるように電圧を印可し,ワークに非晶質炭素膜を形成した。なお,真空チャンバーを3×10−4Paまで真空減圧するまでに要する時間は,通常の防着板の場合とほぼ同じであった。 As described below, a deposition plate is produced according to an embodiment of the present invention, a film formation process is performed using a vacuum chamber in which the produced deposition plate is installed, and a metal plating film is formed from the deposition plate after the film formation process. Whether or not can be peeled was confirmed. First, electrolysis with a thickness of 25 μm is carried out on the surface of a disk type stainless steel (SUS304) having a diameter of 110 mm, a thickness of 1 mm, and an arithmetic average roughness Ra of 0.08 μm via a passive film mainly composed of chromium hydrated oxyoxide. A test piece of an adhesion-preventing plate on which a Ni plating film was formed was prepared. Next, this test piece was placed in a vacuum chamber for a high-pressure DC micropulse plasma CVD apparatus. In addition, a cylindrical stainless steel (SUS304) work (diameter: 110 mm, height: 300 m) serving as a counter electrode of the cylindrical stainless steel deposition plate is prepared, and the work has a circular bottom at the bottom. It arrange | positioned in the position which opposes one circular surface of the test piece of an adhesion prevention board. In such an arrangement, a voltage was applied so that the workpiece side was the anode, and the test piece of the deposition plate was the cathode, and an amorphous carbon film was formed on the workpiece. The time required for the vacuum chamber to be evacuated to 3 × 10 −4 Pa was almost the same as in the case of a normal deposition preventing plate.

次に、アルゴンガスプラズマを真空チャンバー内に導入し,ワークを約1分間クリーニングした。アルゴンガスプラズマでのクリーニングはアルゴンガス流量30SCCM,ガス圧2Pa,印加電圧−2kV、パルス周波数10kHz、パルス幅10μsの条件で行なった。クリーニング後,アルゴンガスを排気し,続いて,流量30SCCMのアセチレンを反応容器内のガス圧が2Paになるように真空チャンバー内に導入し,最大印加電圧−6kV,パルス周波数10kHz,パルス幅10μsの条件で当該ワークに非晶質炭素膜を30分間成膜した。次に,窒素ガスをリークガスとして用い,25分間かけて真空チャンバーを常圧(大気圧)に戻した。その後,真空チャンバーを開放し,真空チャンバーから防着板を取り出した。   Next, argon gas plasma was introduced into the vacuum chamber, and the workpiece was cleaned for about 1 minute. Cleaning with argon gas plasma was performed under the conditions of an argon gas flow rate of 30 SCCM, a gas pressure of 2 Pa, an applied voltage of −2 kV, a pulse frequency of 10 kHz, and a pulse width of 10 μs. After cleaning, the argon gas is evacuated, and then acetylene at a flow rate of 30 SCCM is introduced into the vacuum chamber so that the gas pressure in the reaction vessel is 2 Pa, and the maximum applied voltage is −6 kV, the pulse frequency is 10 kHz, and the pulse width is 10 μs. Under conditions, an amorphous carbon film was formed on the workpiece for 30 minutes. Next, nitrogen gas was used as a leak gas, and the vacuum chamber was returned to normal pressure (atmospheric pressure) over 25 minutes. Thereafter, the vacuum chamber was opened, and the deposition plate was taken out from the vacuum chamber.

次に,真空チャンバーから取り出した防着板のNiメッキ皮膜上に,非晶質炭素膜の成膜過程で拡散した炭素成分が付着していることが目視で確認した。次に,防着板の表面の縁部を指で摘まみ防着板表面から離れる方向に引っ張ったところ,防着板表面のNiメッキ皮膜を,当該Niメッキ皮膜に炭素成分が付着したままの状態でシート状に引き剥がすことができた。   Next, it was visually confirmed that the carbon component diffused in the process of forming the amorphous carbon film was adhered on the Ni plating film of the deposition plate taken out from the vacuum chamber. Next, when the edge of the surface of the deposition preventive plate was picked with a finger and pulled away from the surface of the deposition preventive plate, the Ni plating film on the surface of the deposition preventing plate remained carbon component adhered to the Ni plating coating. The sheet could be peeled off in the state.

次に,Niメッキ皮膜が剥離されてステンレス鋼が露出した防着板に電解Niメッキ皮膜を形成した。次に,防着板表面の縁部を指で摘まみ防着板表面から離れる方向に引っ張ったところ,防着板表面のNiメッキ皮膜をシート状に引き剥がすことができた。   Next, an electrolytic Ni plating film was formed on the deposition plate from which the Ni plating film was peeled and the stainless steel was exposed. Next, when the edge of the surface of the adhesion-preventing plate was picked with a finger and pulled away from the surface of the adhesion-preventing plate, the Ni plating film on the surface of the adhesion-preventing plate could be peeled off into a sheet.

10:真空装置
11:真空チャンバー
11a:内壁
12:基板固定治具
13:基板
14:ターゲット
15:ターゲット設置部
16:電源部
17:防着板
18:圧力制御手段
18a:ガス管
18b:メインバルブ
19:ガス供給部
19a:ガス管
19b:ガス供給用バルブ
20:真空チャンバー構成部品
21:基材
21a:基材本体
21b:不動態皮膜
22:金属メッキ皮膜
23:鏡面部
DESCRIPTION OF SYMBOLS 10: Vacuum apparatus 11: Vacuum chamber 11a: Inner wall 12: Board | substrate fixing jig 13: Board | substrate 14: Target 15: Target installation part 16: Power supply part 17: Deposit board 18: Pressure control means 18a: Gas pipe 18b: Main valve 19: Gas supply part 19a: Gas pipe 19b: Gas supply valve 20: Vacuum chamber components 21: Base material 21a: Base material body 21b: Passive film 22: Metal plating film 23: Mirror surface part

Claims (4)

クロム水和オキシ酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.7μm以下のステンレス鋼基材と,
前記ステンレス鋼基材に前記不動態皮膜を介して形成され,電解Niメッキ皮膜,電解Snメッキ皮膜,電解Cuメッキ皮膜,電解Agメッキ皮膜,無電解Ni−Pメッキ皮膜,及び無電解Cuメッキ皮膜から成る群より選択される少なくとも1つの金属メッキ皮膜と,
を備える真空チャンバー構成部品。
A surface layer of a passive film mainly composed of chromium hydrated oxyoxide with a film thickness of 1 nm or more, and a surface roughness of 0.7 μm or less in terms of arithmetic mean roughness Ra;
Formed on the stainless steel substrate through the passive film, electrolytic Ni plating film, electrolytic Sn plating film, electrolytic Cu plating film, electrolytic Ag plating film, electroless Ni-P plating film, and electroless Cu plating film At least one metal plating film selected from the group consisting of:
A vacuum chamber component comprising:
チタン酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.7μm以下のチタン合金基材と,
前記チタン合金基材に前記不動態皮膜を介して形成され,電解Niメッキ皮膜及び電解Cuメッキ皮膜から成る群より選択される少なくとも1つの金属メッキ皮膜と,
を備える真空チャンバー構成部品。
A titanium alloy base material having a surface layer of a passive film mainly composed of titanium oxide and having a film thickness of 1 nm or more, the surface roughness of which is 0.7 μm or less in arithmetic mean roughness Ra;
At least one metal plating film formed on the titanium alloy substrate through the passive film and selected from the group consisting of an electrolytic Ni plating film and an electrolytic Cu plating film;
A vacuum chamber component comprising:
基材と,
前記基材上に形成された無電解Niメッキ皮膜であって,その表層にニッケル酸化物を主体とする膜厚1nm以上の不動態皮膜を備え,その硬度がビッカース硬さHvで900以上であり,且つ,その表面粗さが算術平均粗さRaで0.6μm以下のNiメッキ皮膜と,
前記Niメッキ皮膜に前記不動態皮膜を介して形成された電解Niメッキ皮膜と,
を備える真空チャンバー構成部品。
A substrate,
An electroless Ni plating film formed on the substrate, the surface layer having a passive film having a film thickness of 1 nm or more mainly composed of nickel oxide, and having a Vickers hardness Hv of 900 or more And an Ni plating film whose surface roughness is an arithmetic average roughness Ra of 0.6 μm or less,
An electrolytic Ni plating film formed on the Ni plating film via the passive film;
A vacuum chamber component comprising:
アルミニウム酸化物及び/又はアルミニウム水酸化物を主体とする膜厚1nm以上の不動態皮膜を表層に備え,その表面粗さが算術平均粗さRaで0.3μm以下のアルミニウム合金基材と,
前記アルミニウム合金基材に前記不動態皮膜を介して形成された電解Cuメッキ皮膜と,
を備える真空チャンバー構成部品。
An aluminum alloy substrate having a surface layer of a passive film having a thickness of 1 nm or more mainly composed of aluminum oxide and / or aluminum hydroxide, the surface roughness of which is an arithmetic average roughness Ra of 0.3 μm or less;
An electrolytic Cu plating film formed on the aluminum alloy substrate via the passive film;
A vacuum chamber component comprising:
JP2012132707A 2012-06-12 2012-06-12 Vacuum chamber components Expired - Fee Related JP5975747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132707A JP5975747B2 (en) 2012-06-12 2012-06-12 Vacuum chamber components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132707A JP5975747B2 (en) 2012-06-12 2012-06-12 Vacuum chamber components

Publications (2)

Publication Number Publication Date
JP2013256686A JP2013256686A (en) 2013-12-26
JP5975747B2 true JP5975747B2 (en) 2016-08-23

Family

ID=49953359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132707A Expired - Fee Related JP5975747B2 (en) 2012-06-12 2012-06-12 Vacuum chamber components

Country Status (1)

Country Link
JP (1) JP5975747B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102095101B1 (en) * 2018-03-15 2020-03-30 엘에스피주식회사 Patch for Recovery of Valuable Metal
US20230103643A1 (en) * 2021-10-04 2023-04-06 Applied Materials, Inc. ADVANCED BARRIER NICKEL OXIDE (BNiO) COATING DEVELOPMENT FOR THE PROCESS CHAMBER COMPONENTS
US20230287568A1 (en) * 2022-03-11 2023-09-14 Applied Materials, Inc. ADVANCED BARRIER NICKEL OXIDE (BNiO) COATING DEVELOPMENT FOR PROCESS CHAMBER COMPONENTS VIA OZONE TREATMENT
JP7175420B1 (en) 2022-06-01 2022-11-18 田中貴金属工業株式会社 METHOD FOR MANUFACTURING MEMBERS FOR FILM-FORMING APPARATUS, METHOD FOR REMOVING DEPOSIT, METHOD FOR RECOVERING VALUABLE METAL, AND METHOD FOR REPRODUCTION OF MEMBER FOR FILM-FORMING APPARATUS
JP7129581B1 (en) 2022-06-01 2022-09-01 田中貴金属工業株式会社 Materials for deposition equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136544A (en) * 1992-10-29 1994-05-17 Sumitomo Metal Ind Ltd Plasma treatment device
JP3576598B2 (en) * 1993-12-30 2004-10-13 忠弘 大見 Method for forming oxidation passivation film, ferritic stainless steel, fluid supply system, and fluid contact parts
US20050022736A1 (en) * 2003-07-29 2005-02-03 Lam Research Inc., A Delaware Corporation Method for balancing return currents in plasma processing apparatus
WO2007072708A1 (en) * 2005-12-22 2007-06-28 Tokyo Electron Limited Substrate processing apparatus

Also Published As

Publication number Publication date
JP2013256686A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5975747B2 (en) Vacuum chamber components
CN103597118B (en) The hard films utilizing hard films to be coated to is coated to component and manufacture method thereof
US9758888B2 (en) Preparation of metal substrate surfaces for electroplating in ionic liquids
Zhang et al. Microstructure and corrosion behaviors of conductive Hf/HfN multilayer coatings on magnesium alloys
JP6797816B2 (en) Cleaning method of film forming equipment
JP5792257B2 (en) Method for producing antibacterial DLC film-coated member
JP4961776B2 (en) Pattern forming mask and cleaning method thereof
JP7078232B2 (en) Electroplating process on the surface of refractory metal or stainless steel with an electroplating layer on the surface, and refractory metal or stainless steel
JP4728306B2 (en) Electrostatic chuck member and manufacturing method thereof
JP5727569B2 (en) Method for manufacturing DLC film-coated member and DLC film-coated member
TW201019383A (en) Method for refurbishing a process chamber component
CN106191793B (en) Film forming apparatus and cleaning method thereof
JP5001672B2 (en) Fastener and manufacturing method thereof
JP4599371B2 (en) Amorphous carbon hydrogen solid coating member and method for producing the same
EP1923487B1 (en) Method of reactivating electrode for electrolysis
JPS6379955A (en) Manufacture of stainless steel strip excellent in brazing characteristic
JPH03166361A (en) Thin film forming device
TW201235120A (en) Method for cleaning physical vapor deposition chamber part
JP2626823B2 (en) Thin film forming equipment
JPS6255813A (en) Electric contact part
JP2011219810A (en) Method for manufacturing aluminum material with carbon thin film
JP5796861B2 (en) DLC film-coated member having excellent corrosion resistance and method for producing the same
JPS6379949A (en) Coating method for metallic material having passivating film
JPH06220600A (en) Washing method of vacuum thin film forming device or the like
JP2015227493A (en) Composite hard film member and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R150 Certificate of patent or registration of utility model

Ref document number: 5975747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees